
Wait-Free Weak Reference Counting
Matthew J. Parkinson
Azure Research, Microsoft

Cambridge, UK
mattpark@microsoft.com

Sylvan Clebsch
Azure Research, Microsoft

Cambridge, UK
sylvan.clebsch@microsoft.com

Ben Simner
University of Cambridge

Cambridge, UK
ben.simner@cl.cam.ac.uk

Abstract
Reference counting is a common approach to memory man-
agement. One challenge with reference counting is cycles
that prevent objects from being deallocated. Systems such as
the C++ and Rust standard libraries introduce two types of
reference: strong and weak. A strong reference allows access
to the object and prevents the object from being deallocated,
while a weak reference only prevents deallocation. A weak
reference can be upgraded to provide a strong reference pro-
vided there are other strong references to the object. Hence,
the upgrade operation is partial, and may fail dynamically.
The classic implementation of this upgrade operation is not
wait-free, that is, it can take arbitrarily long to complete if
there is contention on the reference count.
In this paper, we propose a wait-free algorithm for weak

reference counting. The algorithm requires primitive wait-
free atomic operations of “compare and swap”, and “fetch
and add”. We provide a correctness proof of the algorithm
using the Starling verification tool. We provide a full imple-
mentation in C++ and demonstrate the best and worst case
performance using micro-benchmarks. For our best case sce-
nario with high contention, our new algorithm provides ~3x
more throughput, while for the worst case the new algorithm
is ~85% slower. Based on a worst case analysis, we provide
a second algorithm that combines the strengths of the two
algorithms, and has a significantly improved worst case with
~30% overhead, while maintaining the ~3x speedup for the
best case.

1 Introduction
Reference counting is a popular approach to memory man-
agement. The core idea is to track the number of incoming
edges to an object, and when this number reaches zero, the
object can be deallocated. This is an approximation of reacha-
bility, but when the object graph contains cycles, it is possible
for objects to be unreachable but not deallocated.
One approach to reducing this problem is to count two

types of references: strong and weak [1, 2]. The strong refer-
ences are used to access the object, and the weak references
are used to prevent the object from being deallocated. Ad-
ditionally, a weak reference can be upgraded to a strong
reference, but this upgrade will fail if there are no strong
references to the object: destruction and deallocation. Strong
and weak references lead to having a two stage process to
collecting an object. When there are no more strong refer-
ences, the object can be destructed: its out going references

(both strong and weak) can be removed. When there are no
more strong or weak references, then the object can actually
be deallocated.

Given a cyclic object graph such as a parent pointing tree,
then the parent pointers can be weak, and the child pointers
can be strong. If there are no external references to the tree,
then the tree can be deallocated. Although the root will have
weak references to it, there are no strong references, so its
destructor can run. This removes the strong references from
the children, which in turn will remove the weak references
from the parent, allowing the root to be collected.

The classic implementation of upgrading a counted weak
reference to a strong reference is not wait-free. The imple-
mentations in the standard libraries for both C++ and Rust
involve a loop that checks the current reference count value
and, if it is non-zero, attempts to increment it with a com-
pare and swap operation. Under contention this can take an
arbitrarily long time to complete.
In this paper, we propose a wait-free algorithm for weak

reference counting, where all operations are guaranteed to
terminate in a bounded number of instructions. We assume
the machine supports primitive operations for “compare and
swap”, and “fetch and add”. The new algorithm uses the same
amount of state as the classic algorithm, but uses a different
state machine that allows us to avoid the loop in the upgrade
operation.
To validate the algorithm, first we verify its correctness.

We verify the algorithm’s correctness by encoding the al-
gorithm into the Starling verification tool [15]. Starling is
based on separation logic [4, 12], which allows the proof to
naturally capture the notion of owning a reference count,
which is an important intuition in the correctness of the
algorithm.

We provide a second validation of the algorithm, by eval-
uating the performance of the algorithm. We provide a C++
implementation, which we compare to the classic algorithm
using two micro-benchmarks. The first is designed to exhibit
the best case performance of the wait-free algorithm and
the second is designed to exhibit the worst case overhead
of the wait-free algorithm. The micro-benchmarks show an
improvement of ~3x in the best case, and a ~85% overhead in
the worst case. These results are based on micro-benchmarks
and hence are not representative of real world performance
gains and loses, which would be considerably smaller.

Finally, we provide an optimised algorithm that addresses
the worst case performance of the wait-free algorithm. The

1

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner

strong(0) strong(1) strong(2) . . .

decref
{+WeakRef}

incref incref

decref decref

Figure 1. State machine for the classic algorithm

optimised algorithm detects if there has ever been a weak-
reference, if there has not been, then the algorithm is equiv-
alent to the classic algorithm. Once a weak-reference has
been created, the algorithm is equivalent to the wait-free al-
gorithm. This combines the strengths of the two algorithms,
and has a significantly improved worst case with ~30% over-
head, while maintaining the ~3x speedup for the best case.
In the rest of the paper, we provide a brief overview of

the classic algorithm (§2). We then describe our new algo-
rithm (§3), and give an implementation in C++ (§4). We then
verify the algorithm’s correctness (§5) and evaluate the per-
formance of the algorithm (§6). Finally, based on the worst
case performance evaluation, we provide a second algorithm
that combines the strengths of the classic and the wait-free
algorithms (§7).

2 Classic algorithm
The classic algorithm can be modelled by the state machine
in Figure 1. Effectively, the state machine enforces that once
the reference count reaches zero, it cannot be incremented
again.

In the classic algorithm, the thread that reaches strong(0)
logically receives a weak reference, WeakRef. Effectively,
while the strong reference count is non-zero, there is an
additional weak reference that is owned by the object itself.
When moving to strong(0), this weak reference is trans-
ferred to the thread that decremented the strong reference
count. This weak reference is used to keep the object alive
while the destructor is run. This prevents other threads from
deleting the object while it is being destructed.

The state machine is normally implemented with a single
machine word for the strong reference count, which reflects
the current state, i.e. strong(5) is represented as the integer
5. The weak reference count is stored in a separate machine
word. If a thread owns a strong reference, then it is not
possible to be in the strong(0) state, and hence it is safe to
atomically increment the strong reference count.

Promoting a weak-reference to a strong only requires the
thread to own a weak reference. If a thread only owns a
weak reference, then it is possible that the current state is
strong(0); the object has (or is being) destructed but is not
yet deallocated. It would, therefore, be unsafe to perform
an atomic increment, lest this resurrects a dead or dying

closed strong(0) strong(1) . . .
close

incref
{-WeakRef}
incref incref

decref
{+WeakRef}

decref

Figure 2. State machine for the wait-free algorithm

object by transitioning from strong(0) to strong(1). Weak
reference promotion is thus implemented using a read, a
conditional and then a compare and swap (CAS) instruction.
This CAS may fail and need to be retried. This means it is not
wait-free as it can be delayed by other threads performing
operations on the strong reference count. It is, however, lock-
free, as each iteration of retry must be caused by another
successful operation on the reference count.

We provide a C++ implementation in Figure 3a. The CAS
loop can be seen in acquire_strong_from_weak on lines 38-
42. This is effectively the C++ standard library definition,
but condensed to fit in the paper.

3 Wait-free algorithm
Our implementation differs from the classic one by using an
additional state:

• strong(n) — the strong reference count is n (note that
n can be zero).

• closed — there are no strong references to the object,
and all future promotions will fail.

By separating strong(0) and closed, we are able to imple-
ment wait-free versions of all the standard operations. We
give the state machine for this implementation in Figure 2.
The key change is to make closing the strong reference count
a two-step operation.

We encode the state of the strong reference count by using
the low bit to represent which case we are in, and the upper
63 bits to represent the strong reference count. By packing
into a single word, we can use operations that canmanipulate
both the bit and the count in a single atomic operation. Note
that if the reference count is closed, then the value in the
count is irrelevant. Thus, closed is represented by any odd
number, and strong(𝑛) is represented by 2 × 𝑛.

This representation lets us build the state machine in Fig-
ure 2 using just atomic fetch_add and compare_exchange
operations. The incref operations are built using fetch_add
of 2, and the decref operations are built using fetch_add
of -2. By using fetch_add, we know the starting state of the
incref and decref transitions.

When a thread has performed a decref operation, result-
ing in zero, then it will attempt to close the strong reference

2

Wait-Free Weak Reference Counting

count to stop future upgrades creating new strong refer-
ences. The close transition is implemented using an atomic
compare_exchange operation, which will only succeed if
the current value is strong(0). If it fails, then an upgrade
must have successfully happened and the close operation
is not required.

Recall with the classic algorithm, the transition from str-
ong(1) to strong(0) provides the thread with a weak ref-
erence count. The same is true of the wait-free algorithm.
However, as the state machine allows the reverse transi-
tion, we also require that a transition from strong(0) to
strong(1) removes ownership of a weak reference count
from the thread that performs the transition. This transition
is only performed by a thread that is attempting to acquire a
strong reference count from a weak one. Hence, it will lose
this weak reference, which it must then re-establish by incre-
menting the weak reference count. This ownership transfer
is formalised in the Starling proof in Section 5.

4 Implementation
In Figure 3b, we present the core C++ class for implement-
ing wait-free weak reference counts. This can be used to
build C++ smart pointers for managing memory in the stan-
dard way.1 The full C++ implementation can be found on
GitHub [10].
The implementation uses two atomic variables to store

the state of the reference counts: strong and weak. It addi-
tionally holds the state of the object in body.
The two most important functions are release_strong

and acquire_strong_from_weak. The other functions are
identical to the classic algorithm.

The release_strong function is used to release a strong
reference count. On line 23, due to having just performed
the state machine transition from strong(1) to strong(0),
we know that we have acquired ownership of a weak refer-
ence count. This is required to continue accessing the state
safely. On line 25, we attempt to close the strong reference
count. If this succeeds, we can destruct the underlying object.
Whether or not the strong reference count was closed, we
can and must release the weak reference count.

In acquire_strong_from_weak, we attempt to acquire a
strong reference count from a weak reference count. The
code checks if the strong reference count is closed on line 40-
41. The lines 42-45 implement the logic to recreate the weak
reference that is required by the state machine if this promo-
tion caused the transition from strong(0) to strong(1).
In release_weak we apply the common optimisation of

checking for the last reference count before performing the
decrement. If this is observed to be the last decrement, then
the update is not actually required. This is implemented on
line 16.

1The wrapper classes were written by GitHub CoPilot, with minor human
edits.

5 Correctness
In this section, we prove the wait-free algorithm is correct
and wait-free.
First, we show that the algorithm is wait-free. Assuming

fetch_add and compare_exchange_strong are wait-free,
then proving the algorithm is actually wait-free is trivial as
there are no loops.
Second, we verify the specification of the wait-free al-

gorithm using the Starling tool [15]. Starling is based on
ideas from separation logic [4, 8, 12] and naturally models
the notions of owning a reference count.

Starling operates on its own language. The Starling syntax
is sufficiently different from the C++ implementation that we
present a hybrid form here to help the reader understand the
proof. The full Starling proof is available on GitHub [10]. We
discuss the limitations and encodings we use in the Starling
proof in §5.1.
Starling effectively builds a custom separation logic us-

ing the Views Framework [3]. For the reference counting
structure, we have two permissions that are used in specifi-
cations: StrongRef and WeakRef. These correspond to the
caller owning a strong reference count or a weak reference
count, respectively. We specify acquire_strong as:

{StrongRef}acquire_strong(){StrongRef∗StrongRef}
This uses the ∗ operation from separation logic to mean
distinct permissions. Hence, this specification can be read
as: the caller must own a strong reference count before the
call and will own two after the call.

We specify release_strong as:

{StrongRef}release_strong(){emp}
This uses the emp assertion to mean no permissions. Hence,
this specification can be read as: the caller must own a strong
reference count before the call and will own none after the
call.

We specify acquire_weak in two ways as:

{StrongRef} acquire_weak() {StrongRef ∗ WeakRef}
{WeakRef} acquire_weak() {WeakRef ∗ WeakRef}

The first specification is for when the caller owns a strong
reference count, and the second is for when the caller owns
a weak reference count. In both cases, the caller owns an
additional weak reference count after the call.

The final operation, acquire_strong_from_weak, is spec-
ified as:

{WeakRef}
acquire_strong_from_weak()

{WeakRef ∗ (return ⇒ StrongRef)}
Here we use ⇒ to get a StrongRef conditionally on the
return value of the function. The call preserves the weak
reference count.
Starling proofs consist of two components: (1) a set of

constraints that give a set of separation logic-like predicates
3

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner

1 template <typename T>

2 class RCObjectClassic

3 {

4 static constexpr size_t SINGLE_RC = 1;

5 std::atomic<size_t> strong{SINGLE_RC};

6 std::atomic<size_t> weak{1};

7 T body;

8
9
10 public:

11 template <typename... Args>

12 RCObjectClassic(Args &&...args)

13 : body(std::forward<Args>(args)...) {}

14
15 void release_weak() {

16 if ((weak == 1) || (--weak == 0))

17 free(this);

18 }

19
20 void release_strong() {

21 if (strong.fetch_sub(SINGLE_RC) != SINGLE_RC)

22 return;

23 body.~T();

24 release_weak();

25 }

26
27 void acquire_weak() {

28 ++weak;

29 }

30
31 void acquire_strong() {

32 strong.fetch_add(SINGLE_RC);

33 }

34
35 bool acquire_strong_from_weak() {

36 auto curr =

37 strong.load(std::memory_order_relaxed);

38 while (curr != 0) {

39 auto next = curr + SINGLE_RC;

40 if (strong.compare_exchange_weak(curr, next))

41 return true;

42 }

43 return false;

44 }

45 };

1 template <typename T>

2 class RCWaitFree

3 {

4 static constexpr size_t SINGLE_RC = 2;

5 static constexpr size_t CLOSED = 1;

6 std::atomic<size_t> strong{SINGLE_RC};

7 std::atomic<size_t> weak{1};

8 T body;

9
10 public:

11 template <typename... Args>

12 RCWaitFree(Args &&...args)

13 : body(std::forward<Args>(args)...) {}

14
15 void release_weak() {

16 if ((weak == 1) || (--weak == 0))

17 free(this);

18 }

19
20 void release_strong() {

21 if (strong.fetch_sub(SINGLE_RC) != SINGLE_RC)

22 return;

23 // Implicitly holds a weak self-reference here.

24 size_t old = 0;

25 if (strong.compare_exchange_strong(old, CLOSED))

26 body.~T();

27 release_weak();

28 }

29
30 void acquire_weak() {

31 ++weak;

32 }

33
34 void acquire_strong() {

35 strong.fetch_add(SINGLE_RC);

36 }

37
38 bool acquire_strong_from_weak() {

39 auto old = strong.fetch_add(SINGLE_RC);

40 if ((old & CLOSED) != 0)

41 return false;

42 if (old == 0)

43 // Blocked closing; restore implict weak

44 // self-reference

45 acquire_weak();

46 return true;

47 }

48 };

(a) Classic algorithm (b) Wait-free algorithm

Figure 3. Implementation of algorithms

4

Wait-Free Weak Reference Counting

1 void release_strong() {

2 // StrongRef

3 if (strong.fetch_sub(2) != 2)

4 return;

5 // WeakRef

6 last = strong.compare_exchange(0, 1);

7 // if last {Destruct} else {WeakRef}

8 if (last)

9 // Destruct

10 body.~T();

11 // WeakRef

12 // WeakRef

13 release_weak();

14 }

15
16 bool acquire_strong_from_weak() {

17 // WeakRef

18 auto old = strong.fetch_add(2);

19
20 // if (old % 2 = 0) {StrongRef} *

21 // if (old ≠ 0) {WeakRef}

22 if (old % 2 != 0)

23 // WeakRef

24 return false;

25
26 // StrongRef * if (old ≠ 0) {WeakRef}

27 if (old == 0)

28 // StrongRef

29 acquire_weak();

30 // StrongRef * WeakRef

31
32 // StrongRef * WeakRef

33 return true;

34 }

Figure 4. Overlaid starling proof onto original C++ code.

a semantics and (2) a set of proof outlines for the code. The
system behaves similarly to the Owicki-Gries method [9],
but uses a logic for proof outlines that looks like separation
logic.
In addition to the two permissions StrongRef and Weak-

Ref, we also have Destruct and Dealloc permissions. These
correspond to the permission to call the destructor and to
deallocate the underlying object, respectively. These are not
part of the specification but are needed in the proof outline.
In Figure 4, we present the proof outlines of the two

most interesting methods: release_strong and acquire_-
strong_from_weak. We overlay the Starling proof outline
onto the original C++ code.
For the proof outline of release_strong, on line 5 we

have the permission WeakRef. This is modelling the state
machine in Figure 2, where we move from strong(1) to

strong(0). We see the reverse of this on line 21, where the
WeakRef is removed if the old value was 0. The WeakRef is
re-established by the call to acquire_weak on line 29.
On line 7, we see that the Destruct permission is only

present if the reference count has been closed and hence
last is true.

The second aspect of a Starling proof is a set of constraints
that provide a first-order logic interpretation of the permis-
sions. In the interpretation, we introduce two variables to rep-
resent if the object has been destructed and deallocated.
The first constraint provides a basic invariant that must al-
ways be true:

constraint emp →
(strong%2 = 0 ⇒ ¬destructed) ∧
(weak > 0 ⇒ ¬deallocated) ∧
(strong > 0 ∧ strong%2 = 0 ⇒ weak > 0)

This gives some basic correctness and enforces that the pro-
gram does not break the assumptions about when the object
can be destructed and deallocated.
We provide the interpretation of the Destruct and De-

alloc permissions in the following two constraints:

constraint Destruct →
¬destructed ∧ strong%2 = 1 ∧ weak > 0

constraint Dealloc →
¬deallocated ∧ weak = 0

The interpretation in Starling must also account for the
combination of permissions using ∗. For the Destruct and
Dealloc permissions, we have the following constraints:

constraint Destruct * Destruct → false
constraint Dealloc * Dealloc → false

This ensures that the Starling tool must show it is never
possible for two Destruct or two Dealloc permissions to be
held at the same time by any threads. Due to the underlying
theory being intuitionistic (adding permissions only reduces
the set of possible states), this also means there cannot be
more than two held at the same time.
The interpretation of the StrongRef permissions must

account for having an arbitrary number of them:

constraint iter[𝑛] StrongRef →
𝑛 > 0 ⇒ (strong ≥ 𝑛 × 2 ∧ strong%2 = 0)

This states that if you are interpreting 𝑛 StrongRef permis-
sions where 𝑛 > 0, then the state cannot be closed, and the
reference count must contain at least the 𝑛. That is, we are
in the state strong(m) where𝑚 ≥ 𝑛.

5

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner

The final and most complex interpretation is for the Weak-
Ref permission:

constraint iter[𝑛] WeakRef →
𝑛 > 0 ⇒

(¬destructed ∧ strong%2 = 1 ∧ weak ≥ 𝑛 + 1) ∨
(strong%2 = 0 ∧ strong > 0 ∧ weak ≥ 𝑛 + 1) ∨
(destructed ∧ weak ≥ 𝑛) ∨
(strong = 0 ∧ weak ≥ 𝑛)

This must account for the giving and taking of weak ref-
erence permissions on the transition into and out of the
strong(0) state. It also accounts for the Destruct permis-
sion effectively holding a single weak reference count per-
mission.

Although these logical statements are tricky, the Starling
tool can quickly prove that each step in the proof outline
respects the interpretation of the permissions, and moreover,
that it preserves any possible concurrent context. Hence, it
proves that the operations satisfy the specifications given
earlier.

The starling proof indirectly shows that any access cannot
occur once the destructor has run. If we assume that any
thread accessing the protected object has a strong reference
count, then it must have a StrongRef predicate. By the defi-
nition of the StrongRef predicate, we know strong%2 = 0,
and thus by the definition of Emp, we know the destructor
cannot have run.

5.1 Limitations of proof
The Starling proof tool is naturally suited to this form of
problem. However, there are a few places where we were
not able to prove as strong a property as we wanted.
The first is dynamic allocation. The full API allows the

allocation of objects at runtime. Starling does support this
with an extension to use Grasshopper [11]. However, we
stayed in the more stable fragment, and just represented a
single object, by using global variables for its fields. This
keeps the complexity down, while covering the majority of
the cases.

We did not model the actual destruction and deallocation
of objects, but instead used additional global variables to
encode the allocation status of the single object that the
proof considers.

The Starling proof logic is intuitionistic. As such, it allows
permissions to be leaked. Thus, the proof does not guarantee
that the object is not leaked. We are confident the code does
not leak references, but it is not shown by the tool.

The proof we discuss in the paper does not guarantee that
the destructor is called before deallocation occurs. Given
the specification of release_weak, it is a perfectly valid
implementation to call it directly after line 5 of Figure 4.
We can fix this deficiency in the proof using an alternative
type of WeakRef permission on line 5. However, we were not
able to encode that into Starling without using an auxiliary

variable to the proof that tracks the number of threads on
line 5 of Figure 4. The extended Starling proof is available
online [10]. The C++ implementation contains an optimised
reference release. We do not encode this into the Starling
proof, as it would also require an auxiliary variable to model
taking the non-decrementing path. As this is not the aspect
of our algorithm that is different from the classic algorithm,
we have not modelled it.

Starling does not provide sufficient modulo arithmetic to
use the bottom bit trick. We instead encode the invariants
in terms of two variables, the bottom bit and the actual
strong reference count. Starling supports elaborate atomic
operations over multiple variables, so we are able to encode
the correct behaviour without the bottom bit trick.

6 Evaluation
Weevaluate our implementations using twomicro-benchmarks
that exhibit the best and worst case behaviour of the wait-
free algorithm (Figure 3b) with respect to the classic algo-
rithm (Figure 3a). All our experiments were run on an Azure
F72s v2 instance running Ubuntu, which has 72 hardware
threads. As one of our micro-benchmarks performs alloca-
tion, we use snmalloc [5] as the system allocator tominimise
the effect of the allocator. All the benchmarking code, scripts
for generating graphs, and unprocessed data are available
on GitHub [10].
The first benchmark is designed to illustrate the base

case of the algorithm. It repeatedly acquires a strong ref-
erence from a weak reference, and then immediately drops
the strong reference. We perform this operation a million
times, and divide the operation across a set of threads. The
results are shown in Figure 5, where we plot the time taken
to perform the upgrade and release operations a million
times as a function of the number of threads. The results
demonstrate that the wait-free algorithm performs better
in this scenario across all core counts. With a single thread
the classic algorithm has ~40% overhead as compared to the
wait-free algorithm. As the core count increases, so does
the overhead. At the limit of the machine with 72 hardware
threads, the wait-free algorithm is ~3x faster than the classic
algorithm. We also note that the performance worsens once
the number of threads exceeds the number of physical cores,
i.e. 36 hardware threads.
To further refine this benchmark, we measured the in-

dividual cycle count of a single upgrade operation and the
subsequent strong release. The results are shown in Figure 6.
We present a cumulative distribution function to illustrate
that the cycle counts for the wait-free are generally much
lower than the classic algorithm. The graphs show that, in
almost all circumstances, the wait-free algorithm has a lower
cycle count cost than the classic algorithm. This leads to
lower latency in upgrading a reference count. For instance,
for 36 threads the wait free algorithm completed over 50%

6

Wait-Free Weak Reference Counting

0 20 40 60

50k

100k

Wait-free

Classic

Hardware Threads

Ti
me

 (
mi

ll
is

ec
on

ds
)

Figure 5. Throughput of upgrading a weak reference to a
strong reference

of the operations within 2900 cycles, whereas the classic
algorithm took over 9900 cycles to reach the same point.

To get accurate cycle counts, we used instructions to pre-
vent speculative execution around the operations.2 This has
the effect of increasing the running cost, but allows for a
more accurate representation of the cost of contention. We
distinguished a sampling thread from interfering threads.
The n-1 interfering threads all performed the upgrade and
release operations until the sampling thread had 1000 sam-
ples, and repeated the experiment 600 times. We ignored the
first five runs to avoid any warm-up effects.
The second micro-benchmark is designed to exhibit the

worst case behaviour of the wait-free algorithm. It repeat-
edly creates a new object, and then releases it. This causes
the more complex path of the wait-free algorithm to be
taken, where it must perform both the fetch_add and the
compare_exchange to close the strong reference count. This
benchmark shows that the wait-free algorithm has ~85%
overhead in the worst case when hyper-threading is used.
This is expected, as the wait-free algorithm has two atomic
operations instead of one.
As each operation actually allocates a new object and

then frees it, we also measure the snmalloc costs for those
operations. We can see that the snmalloc costs are small
but grow when the machine reaches its physical core count.
This is expected, as at least one pair of threads are sharing a
core, and hence the wall-clock time approximately doubles.

The microbenchmarking shows very promising results for
the wait-free algorithm. These benchmarks have been pre-
sented to show the extremes in performance of the wait-free
algorithm. As with all micro-benchmarks the performance

2https://www.intel.de/content/dam/www/public/us/en/documents/white-
papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

of real systems will be affected far less than shown here. We
address the worst case in the next section.

7 Optimisation
The wait-free algorithm has a worst case cost that is high
in what could be a common scenario. With the algorithm
given earlier, we are forced to pay the cost of two atomic
instructions even if we do not use weak references. Next, we
present an algorithm that effectively combines the best of
both algorithms.

The key insight in the optimised wait-free algorithm is to
detect if there has ever been a weak reference to an object. If
there has not been a weak-reference, then we use the classic
algorithm for strong reference counts, and if there has been
a weak reference, then we use the wait-free algorithm. This
provides an algorithm that performs close to the classic algo-
rithmwhen there are no weak references, and performs close
to the wait-free algorithm when there are weak references.
To track if there has ever been a weak reference to an

object, we borrow a second bit from the representation of
the reference count to be the weak reference bit. This bit
is set to 1 when a weak reference is created, and is never
reset. This bit is then used to allow the state machines for the
classic algorithm, and thewait-free algorithm to be combined
into a single state machine (Figure 8).

The first thread that creates a weak reference is responsi-
ble for setting the weak reference bit. The transition labelled
weak in Figure 8 is the transition that sets the weak refer-
ence bit. We use strong for counts without the bit set, and
strong𝑊 for ones where there is potentially a weak refer-
ence.

With this more refined state machine, the state strong(0)
does not need to wait for weak references to be removed
before deallocating the object. We do not need to delay the
deallocation as there cannot be any weak references if we
are in this state.
We present the code in Figure 9. The release_strong

method first determines if decrement has led to strong(0) or
strong𝑊 (0) state. If it has not then it returns immediately.
Otherwise, it performs a second check to determine if the
weak reference bit is set. Based on that it either runs the
destructor and deallocates the object, or attempts to close
the strong reference count.

The acquire_weak code, first attempts to detect if this is
the first weak reference. If it is, then attempts to increase
it from 0 to 2 using a CAS. It attempts to add two weak-
references one for the current thread, and one owned by the
reference count object that is used to protect the threads
attempting to close the strong reference count.
If the CAS succeeds, then this thread is responsible for

setting the weak reference bit. It is possible for other threads
to successfully create a weak-reference between the CAS and
the setting of the weak reference bit. This is not a problem

7

https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner

100 1000 10k 100k
0%

50%

100%

100 1000 10k 100k 100 1000 10k 100k 100 1000 10k 100k

Wait-free

Classic

HW threads=1 HW threads=4 HW threads=9 HW threads=16

100 1000 10k 100k
0%

50%

100%

100 1000 10k 100k 100 1000 10k 100k 100 1000 10k 100k

Cycles Cycles Cycles Cycles

HW threads=25 HW threads=36 HW threads=49 HW threads=64

Figure 6. Percentage of operations terminating within a specified cycle count for a single upgrade operation and the subsequent
strong release.

0 20 40 60
0

10k

20k

30k

40k

Wait-free

Classic

Allocation-only

Hardware Threads

Ti
me

 (
mi

ll
is

ec
on

ds
)

Figure 7. Throughput of 1 million strong references releases
per thread.

as the strong reference count cannot reach zero until the
weak-reference bit is set. This is because a thread that is
attempting to set the weak-reference bit must own a strong
reference count.
We rerun the worst case scenario for the wait-free algo-

rithm and present the results in Figure 10. This illustrates
that the optimised algorithm does not suffer any overhead on

this case. This is expected because the optimised algorithm
does very little additional work in this case. We present two
hardware thread counts, one not using hyper-threading and
one using hyper-threading.

We also consider the worst case scenario for the optimised
wait-free algorithm. This is where a single thread creates a
reference counted object, creates a single weak-reference,
and then drops both the strong and weak references it owns.
We present the results in Figure 11. Here we see that the opti-
mised algorithm is the worst of the three algorithms with an
overhead of approximately 30%. This benchmark is design to
defeat the optimised path and cause the maximum overhead.
As a worst case this is less common than the previous worst
case.

We reran the previous best cases and the results between
the optimised wait-free algorithm and the wait-free algo-
rithm are indistinguishable.

We prove (1) that the optimised algorithm is wait-free, as
we need no loops and it only uses other wait-free primitives;
and, (2) that the optimised algorithm correctly implements
its specification, by writing a proof which Starling checks.
We do not prove that the object is destroyed before deal-

location, and like with the proof of the wait-free algorithm
Starling cannot check that references are not leaked, we
prove that the algorithm is correct but not that the included
C++ implementation implements it correctly.
The optimised wait-free algorithm is proved similarly to

the wait-free algorithm, by implicitly gaining a WeakRef-
like view when releasing the last strong reference, paired

8

Wait-Free Weak Reference Counting

strong(0) strong(1) strong(2) . . .

decref

incref

decref

incref

decref

strong𝑊 (0)closed strong𝑊 (1) strong𝑊 (2) . . .

weak weak

close

incref incref incref

decref decref

incref

decref

Figure 8. State machine for the optimised wait-free algorithm

1 void release_strong() {

2 auto old = strong.fetch_sub(SINGLE_RC);

3 if (old > (SINGLE_RC + WEAK))

4 return;

5
6 if ((old & WEAK) == 0) {

7 body.~T();

8 free(this);

9 return;

10 }

11
12 old = WEAK;

13 if (strong.compare_exchange_strong(old, CLOSED))

14 body.~T();

15 release_weak();

16 }

17
18 void acquire_weak() {

19 size_t old = weak;

20 if (old == 0) {

21 if (weak.compare_exchange_strong(old, 2)) {

22 strong += WEAK;

23 return;

24 }

25 }

26 weak++;

27 }

Figure 9. Optimised wait-free algorithm

with losing a WeakRef when acquiring a strong reference on
incref from strong𝑊 (0).
For the proof we introduce variants of the WeakRef and

StrongRef views: WeakRefShared to represent holding the
implicit WeakRef gained on decref to strong𝑊 (0); WeakRef-
Closed for a weak reference to the closed object which is not
yet destroyed; StrongRefWeakBitNotSet which is gained
immediately after incrementing the weak reference count,
but before setting the weak bit; and StrongRefWeakNotZero
for holding a strong reference where the weak reference

20 60
0

5k

10k

15k

20k

Wait-free (Opt)

Classic

HW Threads

Ti
me

 (
mi

ll
is

ec
on

ds
)

Figure 10.Optimised wait-free algorithm on previous worst-
case

count is not zero. Figure 12 presents the proof outline, over-
laid on the C++ code from Figure 9 for the release_strong
and acquire_weak methods. Note that it only shows the
proof for the specification of acquire_weakwith the Strong-
Ref precondition, for brevity. The full proof follows the out-
line, with constraints for the views based on those from
Section 5, but where particular care is required around the
weak bit. The proof cannot assume that the weak bit has
been set when given a weak reference, as the setting of the
bit does not happen atomically when incrementing the weak
counter, and the bit becomes unset again when closing the
strong counter. If there is a WeakRef and the weak bit is
not set, then either there must be a StrongRef and there-
fore the count cannot be closed yet, or the strong reference
count must already have been closed. This is captured by the

9

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner

Wait-free Wait-free (Opt) Classic
0

10k

20k

30k

40k

Ti
me

 (
mi

ll
is

ec
on

ds
)

Figure 11.Optimisedwait-free algorithm on newworst-case

following constraint:

constraint
iter[𝑤] WeakRef ∗
iter[𝑤𝑐] WeakRefClosed ∗
iter[𝑤𝑠] WeakRefShared ∗
iter[𝑠] StrongRef ∗
iter[𝑠𝑤] StrongRefWeakBitNotSet ∗
iter[𝑠𝑛𝑧] StrongRefWeakNotZero →
𝑤 > 0 ⇒ (

(weak_bit ∧ 𝑠 + 𝑠𝑤 + 𝑠𝑛𝑧 > 0
∧ weak > 𝑤 +𝑤𝑐 +𝑤𝑠)

∨ (weak_bit ∧𝑤𝑠 > 0)
∨ (¬weak_bit ∧ (closed ∨ 𝑠𝑤 > 0))

)

This says that that having a WeakRefmeans either: the weak
bit is set and there are strong references and so there must
be the +1 reference initially set by acquire_weak; or there
are shared weak references and the weak bit is set but not
necessarily requiring there to be strong references (although
it is permitted); or if the weak bit is not set then either the
strong reference count is already closed or there is a strong
reference being held in the state waiting to set the weak
bit, after updating the weak reference count. The proof then
contains a number of other constraints which exactly capture
which states the counters can be in given the state of the
weak bit.

The full Starling proof can be found on GitHub [10].
Overall, we believe the optimised version is a good can-

didate for a default implementation to replace the existing
classic algorithm.

1 void release_strong() {

2 // StrongRef

3 auto old = strong.fetch_sub(SINGLE_RC);

4
5 // if (old > (SINGLE_RC + WEAK))

6 // {emp}

7 // else if ((old & WEAK) = 0)

8 // {Destruct}

9 // else

10 // {WeakRefShared}

11
12 if (old > (SINGLE_RC + WEAK))

13 return;

14
15 if ((old & WEAK) == 0) {

16 // Destruct

17 body.~T();

18 return;

19 }

20
21 // WeakRefShared

22 old = WEAK;

23 if (strong.compare_exchange_strong(old, CLOSED))

24 // WeakRefClosed

25 body.~T();

26 // WeakRef

27 release_weak();

28 }

29
30 void acquire_weak() {

31 // StrongRef

32 size_t old = weak;

33 // if (old = 0)

34 // then {StrongRef}

35 // else {StrongRefWeakNotZero}

36 if (old == 0) {

37 // StrongRef

38 if (weak.compare_exchange_strong(old, 2)) {

39 // StrongRefWeakBitNotSet

40 strong += WEAK;

41 // StrongRef * WeakRef

42 return;

43 }

44 // StrongRefWeakNotZero

45 }

46 // StrongRefWeakNotZero

47 weak++;

48 // StrongRef * WeakRef

49 }

Figure 12. Overlaid Starling proof sketch of the optimised
wait-free algorithm onto the original C++.

10

Wait-Free Weak Reference Counting

8 Related work
Weak references have been around for almost 40 years [2].
They have appeared in many languages, either integrated
with reference counting (such as in C++, Python and Rust),
or integrated into a tracing GC (such as in Java and C#). The
implementation of weak-references in a tracing GC are very
different to a reference counted system. The tracing GC is
able to remove the incoming weak references rather than
having the two stage deallocation process that is in a refer-
ence counted system with weak references. Our approach
in this paper can be applied to reference counted systems,
rather than tracing GC.
We are not aware of any other work that provides wait-

free weak references in a reference counted system. The
closest work to this paper is on using reference counting
for memory management in lock-free and wait-free algo-
rithms [7, 13, 14]. These works use the same representation
as we develop here for the strong reference count with an
additional state of closed being represented by the bottom bit.
Their use is different as they are attempting to handle opti-
mistic reads that later add a reference count. If the reference
count is closed, then the optimistic read must be rolled back.
Additional checks are required, such as hazard pointers [6],
before memory can be reused. These works are solving a
different problem to us, but with a similar solution.

9 Conclusion
In this paper, we present a new implementation of weak
reference counting that is wait-free. We provide a formal
proof of aspects of the correctness of the algorithm using
the Starling tool. We evaluate the performance of the al-
gorithm and show that it is faster than the classic algorithm
in the best case, but has an overhead in the worst case.

We present a more complex algorithm that effectively com-
bines the classic and the wait-free algorithm. It has a much
better performance in the worst case, while maintaining the
benefits of the wait-free algorithm.
The implementation here could be used as a drop-in re-

placement both in C++’s reference counted smart point-
ers (shared_ptr and weak_ptr), and in Rust’s Arc<T> and
Weak<T>. In C++, due to some aspects of the C++ API being
implemented in the header files, it would require a revision
of the library’s ABI. In Rust, by simply changing the stan-
dard library implementation and recompiling the program,
it could use this approach.

Acknowledgments
We thank Wes Filardo, Marios Kogias, the ISMM’23 anony-
mous reviewers for their feedback on the paper, and Mike
Dodds and Matt Windsor for discussions about the proof in
Starling. This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant
agreement No 789108, ERC AdG ELVER).

References
[1] T. H. Axford. Reference Counting of Cyclic Graphs for Functional

Programs. The Computer Journal, 33(5):466–470, 01 1990.
[2] D. R. Brownbridge. Cyclic reference counting for combinator ma-

chines. In Proc. of a Conference on Functional Programming Languages
and Computer Architecture, pages 273–288, Berlin, Heidelberg, 1985.
Springer-Verlag.

[3] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang. Views: Compositional reasoning for
concurrent programs. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13,
pages 287–300, New York, NY, USA, 2013. Association for Computing
Machinery.

[4] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language
for mutable data structures. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’01, pages 14–26, New York, NY, USA, 2001. Association for Computing
Machinery.

[5] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-
tersteiger, and David Chisnall. Snmalloc: A message passing allocator.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2019, pages 122–135, New York, NY, USA,
2019. Association for Computing Machinery.

[6] Maged M. Michael. Hazard pointers: safe memory reclamation for
lock-free objects. IEEE Transactions on Parallel and Distributed Systems,
15(6):491–504, 2004.

[7] Maged M. Michael and Michael L. Scott. Correction of a memory
management method for lock-free data structures. Technical report,
University of Rochester, USA, 1995.

[8] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local
reasoning about programs that alter data structures. In Proceedings of
the 15th International Workshop on Computer Science Logic, CSL ’01,
pages 1–19, Berlin, Heidelberg, 2001. Springer-Verlag.

[9] Susan S. Owicki and David Gries. An axiomatic proof technique for
parallel programs I. Acta Informatica, 6:319–340, 1976.

[10] Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner. Wait-free
weak reference counting: Supplementary material. https://github.com/
microsoft/verona-artifacts/tree/main/WFWeakRC, 2023.

[11] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Grasshopper. In
Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 124–139, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[12] J.C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, 2002.

[13] H. Sundell. Wait-free reference counting and memory management. In
19th IEEE International Parallel and Distributed Processing Symposium,
pages 10 pp.–, 2005.

[14] John David Valois. Lock-free data structures. PhD thesis, Rensselaer
Polytechnic Institute, USA, 1995. UMI Order No. GAX95-44082.

[15] Matt Windsor, Mike Dodds, Ben Simner, and Matthew J. Parkinson.
Starling: Lightweight concurrency verification with views. In Rupak
Majumdar and Viktor Kunčak, editors, Computer Aided Verification,
pages 544–569, Cham, 2017. Springer International Publishing.

11

https://github.com/microsoft/verona-artifacts/tree/main/WFWeakRC
https://github.com/microsoft/verona-artifacts/tree/main/WFWeakRC

	Abstract
	1 Introduction
	2 Classic algorithm
	3 Wait-free algorithm
	4 Implementation
	5 Correctness
	5.1 Limitations of proof

	6 Evaluation
	7 Optimisation
	8 Related work
	9 Conclusion
	Acknowledgments
	References

