Relaxed virtual memory in Armv8-A (extended version)

Ben Simner! Alasdair Armstrong! Jean Pichon-Pharabod?
Christopher Pulte! Richard Grisenthwaite® Peter Sewell!

! University of Cambridge, UK first.last@cl.cam.ac.uk
2 Aarhus University, Denmark jean.pichon@cs.au.dk
3 Arm Ltd., UK

March 17, 2022

Abstract

Virtual memory is an essential mechanism for enforcing security boundaries, but
its relaxed-memory concurrency semantics has not previously been investigated in
detail. The concurrent systems code managing virtual memory has been left on an
entirely informal basis, and OS and hypervisor verification has had to make major
simplifying assumptions.

We explore the design space for relaxed virtual memory semantics in the
Armv8-A architecture, to support future system-software verification. We identify
many design questions, in discussion with Arm; develop a test suite, including use
cases from the pKVM production hypervisor under development by Google; delimit
the design space with axiomatic-style concurrency models; prove that under simple
stable configurations our architectural model collapses to previous “user” models;
develop tooling to compute allowed behaviours in the model integrated with the full
Armv8-A ISA semantics; and develop a hardware test harness.

This lays out some of the main issues in relaxed virtual memory bringing
these security-critical systems phenomena into the domain of programming-language
semantics and verification with foundational architecture semantics.

This document is an extended version of a paper in ESOP 2022, with additional
explanation and examples in the main body, and appendices detailing our litmus
tests, models, proofs, and test results.

first.last@cl.cam.ac.uk
jean.pichon@cs.au.dk

Contents 2
Contents

1 Introduction 7

2 Background: A crash course on virtual memoryo L 9

2.1 Virtualising addressing Lo 9

2.2 The translation-table walk 9

2.3 Multiple stages of translation 11

24 Caching translations in TLBs 12

3 Concurrency architecture design questions 12

3.1 Coherence with respect to physical or virtual addresses 12

3.2 Relaxed behaviour from TLB caching 13

3.3 Relaxed behaviour of translation-walk non-TLB reads 15

3.4 Further issues 20

4 Virtual memory in the pKVM production hypervisor 20

4.1 Switching to another guest L. 20

4.1.01 pKVM.uvepu run.o 22

4.1.0.2 pKVM.vcpu run.update vmido 24

4.1.0.3 pKVM.vcpu run.update vmid.concurrent 26

4.1.04 pKVM.vcpu_ run.same VI 28

4.2 Data Aborts 30

4.2.0.1 pKVM.host handle trap.stage2 idmap.3 30

4.2.0.2 pKVM.host handle trap.stage2 idmap.already exists 33

4.2.0.3 pKVM.host handle trap.stage2 idmap.change block size . 36

4.3 Initialisation L Lo 39

4.3.0.1 pKVM.switch to new table 40

4.3.0.2 pKVM.create hyp mappings.inv.l2 41

4.3.0.3 pKVM.create hyp mappings.inv.l3 43

) Model e 44

5.1 Strong model 45

5.2 Weak Model 49

6 Metatheory: relationships between models 49

7 Isla-based model evaluation L 49

8 Experimental testing of hardware 0. 50

9 Related work 51

10 Acknowledgments 52

A VMSA litmus tests e 53

Al Test Format 54

Al Naming Convention 54

Al12 Test Listing o 54

A.1.2.1 Pagetablesetup L 55

A.1.2.2 Initial and final state 000 55

A.1.3 Execution witnesso oo 57

A14 Islaoutput 57

Al5 Example 58

A2 Aliasing 60

A2.1 Coherence Lo 60

A2.1.1 Test: CoRRO.alias+po, 60

A.2.1.2 Test: CoRR2.alias+po 61

A.21.3 Test: CoWR.alias 62

A22 Write-Forwarding o000 63

A221 Test: PPOCA.alias 63

Contents

A3

3
A.2.3 Out-of-order reads 64
A23.1 Test: RSW.alias 64
A232 Test: RDW.alias 65
A.233 Test: CoWW.alias 66
A.2.3.4 Test: MP.alias3-trfi-data+dmb 67
Writing new entries L Lo 68
A3.1 Translation tables as data memory 68
A3.11 Test: COWR.nv 68
A3.2 Making anew entry Lo 69
A.3.21 Test: CoWTfinv+po, 70
A.3.2.2 Test: CoWTfinv+dsb-isb 71
A.3.3 Creating a new entry for another core 73
A3.3.1 Test: SST+dmb+po 74
A.3.3.2 Test: MP.RTf.inv+dmb-+dsb-isb 75
A.3.3.3 Test: MP.RTfinv+dmbs 76
A.3.3.4 Test: MP.RTf.inv+dmb-+ctrl-isb 77
A.3.35 Test: MP.RTf.inv+dmb+addr 78
A.3.3.6 Test: MP.RTf.inv+dmb+po 79
A.3.3.7 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+po 80
A.3.3.8 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+dmb 81
A.3.3.9 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+addr 83
A.3.3.10 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+data 84
A.3.3.11 Test: MP.RTf.inv+dmb+data 85
A.3.3.12 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl 86
A.3.3.13 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb 87
A.3.3.14 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl-isb 88
A.3.3.15 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap 89
A3.3.16 Test: LB.TT.invtpos o 90
A.3.3.17 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+data 91
A.3.3.18 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl 92
A.3.3.19 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb 93
A.3.3.20 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+popl 94
A.3.3.21 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+poap 95
A.3.4 Coherence 96
A3.41 Test: CoTWlinv 97
A3.4.2 Test: CoTTfinv+dsb-isb 98
A34.3 Test: CoTTfinv+po 99
A3.4.4 Test: CoTfT+dsb-isb 100
A3.4.5 Test: CoRpteTfinvtdsb-isb 101
A.3.4.6 Test: CoRpteTfinv+dsb 102
A.3.4.7 Test: CoRpteT+dsb-isb 103
A.3.4.8 Test: CoRpteT.EL1+dsb-tlbi-dsb-isb 104
A.3.49 Test: CoRpteT.EL1+dsb-tlbi-dsb 105
A.3.4.10 Test: CoTRpte.inv+dsb-isb 106
A.3.4.11 Test: CoTfRpte+dsb-isb 107
A.3.4.12 Test: CoTfRpte+po 108
A.3.4.13 Test: CoTfRpteteret 109
A.3.4.14 Test: CoTfW.inv+dsb-isb 110
A.3.4.15 Test: CoTfW.inv+po 111
A.3.4.16 Test: PPODA.RT.inv 112
A35 Write-forwarding oo o 113

Contents

A4

A5

A6

AT

A8

4
A.3.5.1 Test: MP.RT.inv+dmb+ctrl-trfi 113
A.35.2 Test: MP.RT.inv+dmb+addr-trfi 114
A.3.6 Address dependencies 115
A3.6.1 MP.RTfinv+dmb+addr 115
A3.7 Data dependencies 116
A3.71 MP.RTfinv+dmb+data 116
Unmapping memory and TLB invalidation 117
A4 Same-thread unmapo 118
A4.1.1 Test: CoWinvI+dsb-isb. 118
A4.1.2 Test: CoWinvT.EL1+dsb-tlbi-dsb 119
A.4.1.3 Test: CoWinvIT.EL1+dsb-tlbiis-dsb 121
A4.14 Test: CoWinvT.EL1+dsb-tlbiis-dsb-isb 123
A.4.15 Test: MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb 125
A4.1.6 Test: RBS+dsb-tlbiis-dsb 126
More TLB invalidation 128
A5.1 TLBI-pipeline interactions 128
A5.1.1 Test: MP.RT.EL1+dsb-tlbiis-dsb+dmb 129
A5.2 Thread-local TLBIs 131
A5.21 Test: CoWinvT.EL1+dsb-tlbi-dsb-isb 131
A.5.2.2 Test: MP.RT.EL1+dsb-tlbi-dsb+dsb-isb 133
A.5.2.3 Test: MP.RT.EL1+dsb-shootdown-dsb-+dsbh-isb 135
A.5.3 Multiple locations 138
A.5.3.1 Test: MP.RTT.EL1+dsb-tlbiis-tlbiis-dsb-+dsb-isb 138
Stage 1 Re-mapping and break-before-make 140
A.6.1 Break-before-make L. 140
A.6.1.1 Test: BBM+dsb-tlbiis-dsb 140
A.6.1.2 Test: BBM.Tf+dsb-tlbiis-dsb 142
A.6.1.3 Test: MP.BBM1+dsb-tlbiis-dsb-dsb-+dsb-isb 143
A.6.1.4 Test: MP.BBM1-+dsb-tlbiis-dsb-dsb-+ctrl-isb 145
Translation-table-walk ordering 146
AT.1 Inter-instruction orderingo 146
A.7.1.1 Test: MP.TTf.inv+dsb-+po 146
A7.1.2 Test: MP.TTfinv+dsbs 147
A.7.1.3 Test: MP.TTf.inv+dsb-+dsb-isb 148
A.7.14 Test: MP. TTf.inv+dsb+ctrl-isb. 149
A.7.15 Test: MP.TTf.inv+dmb+dsb-isb 150
A71.6 Test: MP.TTfinv+dmb+po. 151
A.7.1.7 Test: MP. TTf.inv.EL1+dsb-tlbiis-dsb+po 152
A.7.1.8 Test: MP.TTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb 153
A.7.2 Multi-level translations 154
A721 Test: ROT.inv+dsb 154
A.7.2.2 Test: ROT.inv+dmbst 155
A.7.23 Test: LB+data-trfis 156
A7.24 Test: LB+addr-trfis L 157
A.7.25 Test: WRC.TfRT+po+dsb-isb 158
A.7.2.6 Test: WRC.TfRT+dsb-tlbiis-dsb+dsb-isb 159
Multi-copy atomicity 160
AS8.1 MCA translation-table-walk 160
A8.1.1 Test: CoWTf.inv+po-ctrl-isb+po. 161
A8.12 Test: WRC.TRTf.inv+dsb-+dsb-isb 163
A8.1.3 Test: WRC. TRTf.inv+addrs 165

Contents 5
A8.14 Test: WRC.TRTfinv+dsbs 166
A8.15 Test: WRC. TRTf.inv+dmbs 167
A8.1.6 Test: WRC.TRTf.inv+pos 168
A81.7 Test: WRC. TTTf.invtaddrs 169
A8.1.8 Test: WRC. TTTf.inv+datat+addr 170
A8.19 Test: WRC.RRTf.inv+dsb+dsb-isb 171
A.8.1.10 Test: WRC.RRTf.inv+dsb-+ctrl-isb 172
A8.1.11 Test: WRC.RRTfinv+dsbs 173
A.8.1.12 Test: WRC.RRTf.inv+dmbs 174
A.8.1.13 Test: WRC.RRTf.inv+pos 175
A.8.1.14 Test: WRC.RRTf.inv+addrs 176
A.8.1.15 Test: WRC.TfRR+dsb-isb+dsb 177
A.8.1.16 Test: WRC. TfRR-+ctrl-isb+dsb 178
A8.1.17 Test: WRC. TIRR+dsbs 179
A.8.1.18 Test: WRC. TfRR+po+dsb 180
A8.1.19 Test: WRC.TfRR+pos 181

A9 Multi-address-space support with ASIDs 182
A9.1 TTBRs 182

A9.2 ASIDS e 183
A.9.2.1 Test: CoWinvTal.l+dsb-tlbiasidis-dsb-eret 183
A.9.2.2 Test: CoWinvTa2.14+dsb-tlbiasidis-dsb-eret 185

A.10 Additional tests, as-yet unsorted 187
A.10.0.1 Test: MP.RT.inv+dmb+addr-po-msr-isb. 187
A.10.0.2 Test: MP.RT.inv+dmb+addr-po-isb 188
A.10.0.3 Test: MP.TR.inv+dmb-+msr 189
A.10.0.4 Test: MP.TR.inv+dmb+isb 190
A.10.0.5 Test: MP.TR.inv+dmb-+msr-isb 191
A.10.0.6 Test: SwitchTable.different-asid+eret 192
A.10.0.7 Test: SwitchTable.same-asid+eret 193
A.10.0.8 Test: WDS+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret 194
A.10.0.9 Test: WDS+po-dsb-tlbiipa-dsb-eret 196
A.10.0.10 Test: WDS+dsb-tlbiipa-dsb-eret-po 198
A.10.0.11 Test: WDS+dsb-tlbiipa-dsb-po-eret 200
A.10.0.12 Test: WBM-dsb-tlbiis-dsb 201
A.10.0.13 Test: WBM-+dsb-tlbiis-dsb-[dmb|-dmb 202
A.10.0.14 Test: CoWTt.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret 203

B Full models e 204
B.1 Common 204
B.1.1 Barriers 204

B.1.2 Common Core 204

B.2 Strong Model 209
B.2.1 Translation Faults 209

B.2.2 Edges justificationo 210

B.221 obs ... 210
B.2.2.2 tob ... 210
B.2.2.3 obtlbi_ translateo o 210
B.2.24 obtlbi 210
B.2.25 ctxob ... 211
B.22.6 obfault 211
B.2.27 obETS 211

B.228 dob 211

Contents

6

B.2.2.9 axioms 211

B.3 Weak Model 212
B.4 Break-before-make detection predicate 214
Relationships between models oo 216
C.1 Soundness of the weak model L. 216
C.2 Virtual address abstraction and anti-abstraction 222
C.2.1 Abstraction 222

C.22 Anti-abstraction o 223

C.2.2.1 Step 1: Building the candidate execution in the translation model223

C.2.2.2 Step 2: Consistency 224

Test results e 229
D.1 Islamodel results 229

D.2 Hardware results 234

1 Introduction 7

1 Introduction

Computing relies on virtual memory to enforce security boundaries: hypervisors and operating
systems manage mappings from virtual to physical addresses to restrict access to physical mem-
ory and memory-mapped devices, and thereby to ensure that processes and virtual machines
cannot interfere with each other, or with the parent OS or hypervisor. In a world with endemic
use of memory-unsafe languages for critical infrastructure, and of hardware that does not en-
force fine-grained protection, virtual memory is one of the few mechanisms one has to enforce
strong security guarantees. This has driven interest in hypervisors and virtual machines, and
it provides a compelling motivation for verification of the OS-kernel and hypervisor code that
manages virtual memory to provide security.

However, any such verification requires a semantics for the protection mechanisms provided
by the underlying hardware architecture. There are two major challenges in establishing such
a semantics. First, there is its sequential intricacy: virtual memory is one of the most complex
aspects of a modern general-purpose architecture. For 64-bit Armv8-A (AArch64) it is described
in a 166-page chapter of the prose reference manual [13, Ch.D5| and includes a host of features
and options. Second, and more fundamentally, there is its relaxed memory behaviour. Hardware
implementations of virtual memory use in-memory representations of the virtual-to-physical
address mappings, represented as hierarchical page tables. For performance, there are dedicated
cache structures for commonly used mapping data, in Translation Lookaside Buffers (TLBs).
Translations are used often — a single load instruction might need 40 or more page-table entries to
translate its fetch and access addresses — but they are changed only rarely, and by systems code
not user code. Architectures therefore require manual management of TLB caching, e.g. with
specific instructions to invalidate old TLB entries that should no longer be used, instead of
providing the simpler coherent memory abstraction that they do for normal accesses. All this
gives rise to new relaxed-memory effects, with subtle constraints determining when translations
are required or forbidden to read from specific writes to the page tables, and systems code has
to handle these appropriately to provide the desired virtual-memory abstraction and its security
properties.

Previous work has developed hand-written sequential semantics for some aspects of address
translation in Arm [58, 60, 59, 61, 44, 38, 41] and x86 |34, 35, 29, 63|, but these are at best lightly
validated formalisations, and there is no well-validated relaxed-memory concurrency semantics
of virtual memory. In the absence of that (and of proof techniques above it), previous OS and
hypervisor verification work, e.g. on selL4, CertiKOS, KCore, Hyper-V, the PROSPER hypervi-
sor, and SeKVM (25, 40, 37, 44, 11, 38, 43, 62| has had to make major simplifying assumptions,
either assuming correctness of TLB management and a single-threaded setting (sel.4), or assum-
ing sequentially consistent concurrency with one of those hand-written sequential semantics, or
assuming an extended notion of data-race-freedom (we return to the related work in §9).

We explore the design space for Armv8-A relaxed virtual memory semantics, to support
future systems-software verification. We contribute:

e A description of the current Arm architectural intent as we understand it, and a set of
design questions and issues arising from its relaxed virtual memory semantics (§3).

e A relaxed virtual memory test suite, comprising of a set of hand-written litmus tests which
illustrate the aforementioned design questions and capture key use cases from pKVM, a
production hypervisor under development by Google (§4).

e An axiomatic-style concurrency model for relaxed virtual memory in Armv8 (§5), which
to the best of our knowledge and ability captures the architectural intent described in §3.
We also define a weaker model, motivated by the properties pKVM relies on.

e We prove that, for stable injective page-tables, the first model collapses to the previous
Armv8-A user-mode concurrency model (§6).

1 Introduction

e We extend our Isla tool [15], enabling it to compute the allowed behaviours of virtual
memory litmus tests with respect to arbitrary axiomatic models, using the authoritative
Arm ASL definition of the intra-instruction semantics including pagetable walks (§7).

e We develop a test harness that lets us run virtual-memory litmus tests bare-metal, albeit
currently only for Stage 1 tests, and report results from running these on hardware (§8).

We begin in §2 with an informal introduction to virtual memory in a simple sequential
setting, to make this as self-contained as possible, but familiarity with virtual memory from a
systems perspective, and with previous work on user-space relaxed memory, will be helpful.

Mainstream industrial architecture specifications evolve over many years, balancing
hardware-implementation and systems-software concerns. Experience with “user” relaxed-
memory concurrency has shown that the process of developing rigorous semantics for arbitrary
code provides a useful third input into this process, leading one to ask questions which help
clarify the architectural intent. The architects, hardware designers, and system-software au-
thors typically have a deep understanding of the area, but there is usually not, a priori, a
well-understood informal specification that just needs to be formalised; instead that needs to
be iteratively and collaboratively developed. Our §3 is based on detailed discussion with the
Arm Chief Architect (a co-author of this paper); the current Arm prose documentation [13];
discussion with the pKVM development team; and our experimental testing. To the best of our
knowledge, our models provide a reasonable basis for software development and for verification,
but this paper is surely not the last word on the subject, and it does not give an authoritative
definition of the Armv8-A architecture. The history of relaxed-memory models shows that it
typically takes multiple years, and gradual refinement of models, to converge on something rea-
sonably stable for a production architecture or language, and even then they continue to change
as new knowledge or features arise; with hindsight, few are definitive. Our goal here is rather to
lay out some of the main issues, bringing this security-critical systems code into the domain of
programming-language semantics and verification, above foundational architecture semantics.

This document is an extended version of a paper in ESOP 2022 [56], with additional expla-
nation and examples in the main body, and appendices detailing our litmus tests (A), models
(B), proofs (C), and test results (D). Further details are at https://www.cl.cam.ac.uk/users/
pes20/RelaxedVM-Arm/.

Scope and non-goals

Our scope is Armv8-A virtual memory for the 64-bit (AArch64) architecture, aiming especially
to support aspects relevant to hypervisors such as pKVM. Accordingly, we consider transla-
tion with multiple stages (for both hypervisor and OS), multiple levels, and the full Armv8-A
intra-instruction semantics and translation walk behaviour (as defined by Arm in ASL and
auto-translated to Sail [14]). Our models cover the Armv8-A ETS option as work in progress.
We discuss some mixed-size aspects, but our models do not currently cover them. To keep
things manageable, we do not consider hardware management of access flags or dirty bits, con-
flict aborts, FEAT BBM, FEAT CNP, FEAT XS, the interactions between virtual memory and
instruction-fetch, or all the relaxed behaviour of exceptions, and we handle only some of the
many varieties of the TLBI instruction. We focus on the specification of the architecturally
allowed envelope of functional behaviour, not on side-channel phenomena. We include some
experimental testing, as a sanity check of our models, but our principal goal is to capture the
architectural intent, and our principal validation is from discussion with Arm. Many of the
issues should also be relevant to other architectures, but here we address only Armv8-A.

https://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/
https://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/

2 Background: A crash course on virtual memory

2 Background: A crash course on virtual memory

2.1 Virtualising addressing

In conventional computer systems, the underlying memory is indexed by physical addresses
(PAs), as are memory-mapped devices. For a small microcontroller running trusted code, ac-
cessing resources directly via physical addresses may suffice. Larger systems rely heavily on
virtual addressing: they interpose one or more layers of indirection between virtual addresses
(VAs) used by instructions and the underlying physical addresses. This lets them:

1. partition resources among different programs, giving each access only to those it needs;
2. provide convenient numeric ranges of virtual addresses to each program; and

3. dynamically extend and change the mapping from virtual to physical addresses, e.g. to
support copy-on-write or swapping, or shared buffers.

A simple system might have many processes managed by an operating system, each of which
(including the OS) has a partial function that gives the physical address and permissions for the
virtual addresses it can use, roughly:

translate : VirtualAddress — PhysicalAddress x 2{ReadWriteExecute}

Typically each process would have access to a subset of the physical addresses (the range of its
translate function), disjoint from those of the other processes and from that of the OS, while the
OS would have sole access to its own working memory and also access to that of the processes.
This is implemented with a combination of hardware and system software. The hardware mem-
ory management unit (MMU) automatically translates virtual to physical addresses when doing
an access needed to execute an instruction. If the function is undefined, the instruction traps
with a page fault; if it is defined but does not have the appropriate accesses, it traps with a
permission fault; and if it is defined with the right permissions, the hardware performs the re-
quired access using the resulting physical address. The OS has to set up the translate functions,
ensure that the appropriate function is used when switching to a new process, and handle those
faults. In general translation functions are not necessarily injective, and includes not just access
permissions (which can moreover vary between exception levels), but also additional fields for
cacheability, shareability, security, contiguity, and other aspects which we elide for simplicity
here.

2.2 The translation-table walk

The current translate function for execution is determined by a system register, a translation
table base register or TTBR, that contains the physical address of a lookup-tree data structure in
memory. The details of this structure are (in Armv8-A) highly configurable, e.g. for different
page sizes, controlled by various system registers. In a common configuration used by Linux, it
maps 4096-byte pages and has a tree up to four levels (0-3) deep. We assume this configuration
for the remainder of this section.

Each node in the tree is a 4096-byte block of memory made up of 512 64-bit entries (called
“descriptors” by Arm).

These descriptors are of various types, either: invalid, indicating that this part of the domain
is unmapped; a block or page descriptor, defining a fixed-size mapping to a range of output
addresses; or a table descriptor which points to another level of table for this part of the domain.

The least significant two bits of the descriptor define what type the descriptor is, and the
other bits are partitioned into various fields depending on the type:

e Output address (OA): the page the final output (IPA or PA) address is in.

2 Background: A crash course on virtual memory

10
2.2. The translation-table walk

e Table pointer: a 4k-aligned pointer to the next-level translation table.

e Attrs: encoding of the access permissions, memory attributes, shareability, access bits and
dirty flags.
Invalid descriptors:

63 e 10
| ignored o]

Block or page descriptors:

63 50 47 1 (n-1) 1211 210
| attrs 0[0] output address | ignored | attrs [

Here n depends on how deep in the table this entry is: for a level 1 block descriptor n == 30,
for a level 2 it is 21, and for level 3 it is 12. Note that bit 1 should be set when at level 3 (a
page descriptor), otherwise it is 0 for block descriptors.

Table descriptors:

63 o0 47 1211 210
| attrs 0[0] table pointer | attrs [1]1]

Table descriptors are allowed only at levels 0-2.

Arm’s translation-table walk: The sequential behaviour of Arm’s translation-table walk func-
tion is fully defined in the Arm ASL language.

The hardware walker first splits up the input virtual address into chunks: the upper 16 bits
are typically ignored; fields a-d are used for indexing into the tables; and field e is added to the
final result to get the physical address.

VA

63 48 47 39 38 30 29 21 20 12 11 0
| ignored | a | b | c | d | e |

A pointer to the initial level of translation is obtained by reading the relevant translation
table base register (TTBR). The fields a-d are then used to indirect into each table in turn, until
a block (or page) mapping is found.

Each level of the tree maps a different size block. e.g. in a common configuration each level 1
entry maps a 1GiB region, each level 2 a 2MiB region, and each level 3 a single 4KiB page.

Level 3
Level 2
Level 1 7T page 4B
. d
Level 0 77 block 1§™® tablo
c
table

table

ik
TTBR

2 Background: A crash course on virtual memory

. . 11
2.3. Multiple stages of translation

The final physical address is the output address field of the page or block mapping, with the
remaining bits of the VA appended.
For example, if the VA was translated using the 4KiB page entry y from above:

PA from y
A
63 48 11 0
| ignored | OA from page descriptor | e |
Or for the 1GiB level 1 block entry z:

PA fg%n x
63 48 47 30 29 21 20 12 11 0
| ignored | OAfromblock | ¢ | d | c |

Note that, as mentioned before, the architecture is highly configurable and the above dia-
grams give just a common configuration. Various system registers allows the user to configure:
the size of the input addresses (e.g. 48 bit, 52 bit); the number of translation table levels (e.g.
3, 4, 5); the size of a page (e.g. 4K, 16K, 64K), and much more that we elide here for brevity.

2.3 Multiple stages of translation

The above suffices for an operating system isolating multiple processes from each other, but one
often wants to isolate multiple operating systems (or other guests), managed by a hypervisor.
To support this, the architecture provides a second layer of indirection: instead of going straight
from virtual to physical addresses, with a single stage of mapping controlled by the OS, one
can have two stages, with the OS managing a Stage 1 table which maps virtual addresses to
an intermediate physical addresses (IPAs), composed with a hypervisor-managed Stage 2 table,
mapping [PAs to PAs. The full translation composes the two, intersecting their permissions.

translate stagel : VirtualAddress — IPA x 2{ReadWriteExecute}
translate_stage2 : IPA — PhysicalAddress x 2{ReadWriteExecute}

Armv8-A has various exception levels (ELs), determined by the PSTATE.CurrentEL register, in-
cluding ELO (for user processes), EL1 (for OSs or other guests), and EL2 (for a hypervisor).
These each have associated translation-table base registers:

e TTBRO_EL1: contains a pointer (IPA) to the Stage 1 table for EL1&0, lower VA range
(process addresses), producing IPAs, controlled by OS at EL1

e TTBR1_EL1: contains a pointer (IPA) to the Stage 1 table for EL1&0, upper VA range (OS
kernel addresses), producing IPAs, controlled by OS at EL1

e VTTBR_EL2: contains a pointer (PA) to the Stage 2 table (second stage for IPAs translated
at EL1&0), producing PAs, controlled by hypervisor at EL2

e TTBRO_EL2: contains a pointer (PA) to the single-stage table for EL2 (hypervisor’s own
addresses), producing PAs, controlled by hypervisor at EL2

Each hardware thread has its own base registers (and other system registers), and so different
hardware threads can be using different address spaces (for example, for different processes) at
the same time.

3 Concurrency architecture design questions

2.4. Caching translations in TLBs 12

2.4 Caching translations in TLBs

A naive hardware implementation of address translation would need many translation memory
reads — with four levels, up to 24 with both stages enabled, for every instruction-fetch, read,
or write. This would have unacceptable performance, so processors have specialised caches
for translation-table wal k reads called translation lookaside buffers (or TLBs). Under normal
operation the TLBs are invisible to user code, but systems code has to manage them explicitly,
to change which translation table is currently in use (e.g. when context switching), or to make
changes to the tables for one process or guest. Without correct management a TLB could hold
incorrect (stale) data, breaking the protection that the address translation is intended to provide.

The architecture supports explicit TLB maintenance with various flavours of the TLBI in-
struction (TLB invalidate), to invalidate old entries for specific ranges of virtual or intermediate-
physical addresses, or even whole ASIDs or VMIDs at once. The memory management unit
(MMU) is responsible for performing these translations. It does this by looking at the TLB
and, if the TLB does not contain an entry for the given address (called a miss), it performs the
translation table walk function as described earlier and caches the result in the TLB (a fill).

TLB maintenance and TLB misses are expensive, and one would not want the cost of TLB in-
validation on every context switch, so the architecture provides address space identifiers (ASIDs).
The translation table base registers include an ASID in addition to the table base address, and
when translation data is cached in a TLB it is tagged with the current ASID, giving the illusion
of separate TLBs per ASID, and allowing switching from one to another without TLB mainte-
nance. Eventually the system will need to reclaim and reuse a previously used ASID, and then
TLB maintenance is required to clean that ASID’s old entries. There are similar identifiers for
Stage 2 intermediate physical memory, known as virtual-machine identifiers or VMIDs.

3 Concurrency architecture design questions

Now we will introduce the main concurrency architecture design questions that arise for Armv8-
A virtual memory, within the scope laid out in the introduction. As usual, the architecture
has to define an envelope of behaviour that provides the guarantees needed by software, while
admitting the relaxed behaviour of the microarchitectural techniques necessary for performance.
That means we have to discuss both, including just enough microarchitecture to understand
the possible programmer-visible behaviour, before we abstract it in the semantic models we give
in §5. The discussion includes points of several kinds: some that are clear in the current Arm
documentation, some where Arm have a change in flight, some that are not documented but
where the semantics is (after discussion) obviously constrained by existing hardware or software
practice, and some where there is a tentative Arm intent but it is not yet fixed upon; our
modelling raised a number of questions of the latter two. To make this as coherent as possible,
we discuss all these in a logical order, laying out the design principles. We have developed a
suite comprised of 119 hand-written Isla-compatible virtual-memory litmus tests that illustrate
the issues, but to keep this concise we just give the main ideas here. For ease of reference, we
give the actual tests in App. A, with links in the margin. As a sample, we explain one pKVM
test in detail in §4.

3.1 Coherence with respect to physical or virtual addresses

For normal memory accesses, the most fundamental guarantee that architectures provide is
coherence: in any execution, for each memory location, there is a total order of the accesses to
that location, consistent with the program order of each thread, with reads reading from the
most recent write in that order. Hardware implementations provide this, despite their elaborate
cache hierarchies and out-of-order pipelines, by coherent cache protocols and pipeline hazard
checking, identifying and restarting instructions when possible coherence violations are detected.

3 Concurrency architecture design questions

3.2. Relaxed behaviour from TLB caching 13

Previous work on relaxed-memory semantics for architectures has taken virtual addresses as
primitive, implicitly considering only execution with well-formed, constant, and injective address
translation mappings.

Now, we have to consider whether coherence is with respect to virtual or physical addresses,
for non-injective mappings. For Arm, coherence is w.r.t. physical addresses [13, D5.11.1 (p2812)].
This means that if two virtual addresses alias to the same physical address, then (still assuming
well-formed and constant translation): a load from one virtual address cannot ignore a program-
order (po) previous store to the other; and a load from one virtual address can have its value
forwarded from a store to the other, and similarly on a speculative branch.

3.2 Relaxed behaviour from TLB caching

There are two main aspects of the concurrency semantics of virtual memory: the relaxed be-
haviour arising directly from TLB caching, and the relaxed behaviour of the not-from-TLB
(non-TLB) memory accesses for translation reads that read from memory or by forwarding
from po-previous writes, and that might supply TLB cache fills. We discuss them in this and
the following subsection respectively.

What can be cached: The MMU can cache information from successful translations, and also
from translations that result in permission faults, but it is architecturally forbidden from caching
information from attempted translations that result in translation faults.This ensures that the
handlers of those faults do not need to do TLB maintenance to remove the faulting entry [13,
D5.8.1 (p2780)|, and makes the potential behaviour for page-table updates from invalid-to-valid
and valid-to-any quite different, as we shall see.

TLB implementations might cache any combination of individual page-table entries and
partial or complete translations, e.g. from the virtual address and context to the physical address
of the last-level page. Conceptually, however, we can simply view a TLB as containing a set of
cached page-table-entry writes (i.e., writes that have been read from for a translation), including
at least:

e the context information of the translation: the VMID, ASID (or a “global indicator”), ,
and the originating exception level;

e the virtual address, intermediate physical address, and/or physical address of the transla-
tion;

e the translation stage and level at which the write was used;
e the system register values used in the translation (those which can be cached); and
e for an entry used for a Stage 1 translation, whether it has been invalidated at both stages.

That additional information allows the various TLBI instructions to target specific entries. A
translation walk can arbitrarily use either a cached write (if one exists) or do a non-TLB read,
either from memory or by forwarding from a po-previous write, for any stage or level.

Caching of multiple entries for the same virtual address and context: High-
performance hardware implementations may have elaborate TLB structures, including multiple
“micro TLBs” per thread. These can be seen as a conceptual single per-thread TLB that can
hold zero, one, or more entries for each combination of input address and the other information
above. If zero, a translation will necessarily read from memory (with ordering constrained as
discussed below). If one or more, a translation may use any of those entries or read from memory
(and the write read from might or might not be cached). However, in some cases multiple entries
constitute a break-before-make failure, leading to relatively unconstrained behaviour; we return
to this below.

A21.1
A2.1.2
A213
A.2.3.4
A221

A411
A4.1.4
A7.21

A3.44

3 Concurrency architecture design questions

3.2. Relaxed behaviour from TLB caching 14

When can page-table entries be cached: Any memory read by a translation can be cached.
Any thread can spontaneously do a translation for any virtual address at any program point, with
respect to its context at that point (though this interacts with the system-register write/read
semantics). Spontaneous translations model hardware prefetching, speculative execution, and
branch prediction. They mean that, in the absence of cache maintenance, translations may
use TLB entries from arbitrarily old writes. Additionally, any thread may do a spontaneous
translation at any point using the configuration from any exception level higher than the current
one, but not for lower levels. Preventing spontaneous walks at lower EL is essential, as during
an EL2 hypervisor switch between VMs, the EL1 control registers will be in an inconsistent
state. Allowing spontaneous walks at higher EL models arbitrary interrupts to the higher level
and then doing a spontaneous walk there.

Each virtual-memory access by a thread involves a non-spontaneous translation which is
constrained by the normal inter-instruction constraints on out-of-order and speculative execu-
tion by the thread. These constraints are especially important in order to understand when a
translation must fault: as invalid entries cannot be cached, a translation that gives rise to such
a fault must be at least in part from a non-TLB read, subject to these ordering constraints.

Coherence of translations: Due to the TLB caching as described above translations of the
same virtual address by the same thread need not see a coherent view of page-table memory.
This is in sharp contrast to normal accesses, but analogous to instruction-fetch reads [57] and
reads from persistent memory [51].

Removing cached entries: TLBs may spontaneously forget any cached information at any
point. To ensure that a cached entry is removed, software must ensure that it will not be
spontaneously re-cached. It can do this with a write of an invalid entry and then a DSB
instruction (data synchronization barrier) to ensure that it is visible across the system, followed
by a TLBI.

Break-before-make failures: When changing an existing translation mapping, from one valid
entry to another valid entry, Arm require in many cases the use of a break-before-make (BBM)
sequence: breaking the old mapping with a write of an invalid entry; a DSB to ensure that is
visible across the system; and a broadcast TLBI to invalidate any cached entries for all relevant
threads; a DSB to wait for the TLBI to finish; then making the new mapping with a write
of the new entry, and additional synchronisation to ensure that it is visible to translations
(specifically, to translation-walk non-TLB reads). The current Arm text [13, D5.10.1 (p2795)]
identifies six cases of page-table updates that without such a sequence constitute BBM failures,
and gives very severe architectural consequences: failures of coherency, single-copy atomicity,
ordering, or uniprocessor semantics. Note that these consequences are architecturally allowed if
there could exist a break-before-make-failure change to the translation tables for some virtual
address, irrespective of whether the program architecturally accesses it.

This severity is because, in some of the six cases, hardware implementations could give
rather arbitrary behaviour, e.g. an amalgamation of old and new entries. From a software
point of view, it seems that one must treat such cases more-or-less as fatal errors. This is
analogous to the Data-race-free-or-catch-fire semantics underlying the C/C-+-+ relaxed memory
model [4, 33, 22, 20], in which any program with a consistent execution that includes a race
between nonatomic accesses is deemed to have undefined behaviour, and the C/C++ standards
do not constrain implementation behaviour for such programs in any way. This makes many
potential litmus tests that change between valid entries uninteresting, as they simply exhibit
BBM failures (though changes of permissions do not necessitate a BBM sequence).

However, for a processor architecture that supports virtualisation, one cannot regard BBM
failures as allowing completely arbitrary behaviour for the entire machine: if one guest virtual
machine (at EL1) changes one of its own translation mappings without correctly following the

A4.1.1

A34.11

A344

A411
A.3.4.8
A4.1.3

A6.1.1
A6.1.2
A6.1.3

3 Concurrency architecture design questions 15
3.3. Relaxed behaviour of translation-walk non-TLB reads

BBM sequence, either mistakenly or maliciously, that should not impact security of the hypervi-
sor (at EL2) or other guests. Instead, one has to bound the arbitrary behaviour to that virtual
machine, allowing arbitrary memory and register accesses that are possible within its context. In
our exhaustively executable semantics, to keep litmus-test executions finite, we currently simply
detect BBM failures; we do not explicitly model that arbitrary behaviour.

In reality, these six BBM failure cases include some where hardware may give such weakly
constrained behaviour and others where, because coherence is over physical addresses and the
mapping may be temporarily indeterminate, software might see well-defined but nondetermin-
istic or surprising results. These were architected as a guide for system software to produce
predictable behaviour, and future versions of the architecture might refine this.

When a hypervisor installs a new guest, it has to be able to reset to a clean state, in case a
previous guest has failed to follow the BBM sequence (which in general the hypervisor cannot
know). It can do so with a TLBI covering all the previous guest’s processes address space. There
seems to be no need or support for finer-grain cleanup.

3.3 Relaxed behaviour of translation-walk non-TLB reads

Now we turn to the semantics of translation-walk non-TLB reads, those that are satisfied from
memory or by forwarding, not from a TLB, and which might then be cached in a TLB. This
matters especially when one knows that there are no relevant cached TLB entries, e.g. when an
invalid entry has been written and a TLBI performed, so one knows that translation walks will
do such a non-TLB read.

Ordering among the translation-walk reads of an access: Each translation-table walk
for a virtual-memory access can involve many memory reads, one for each level of the table for
each stage of translation.

The diagram on the right is an example walk, where each Tn is read 711 T21 T31 T41 T_1
of level n of the Stage 1 table. Each of those Stage 1 reads must first be T2 [the (15 Tiz (T2
translated to get the PA (as the table contains IPAs) and so each Tnk is a Tia| s | s | T3 | 73
read of level k of the Stage 2 table for the address of the Stage 1 table at Tia | The | Tha | Tha | '
level n. Once the full Stage 1 walk has been completed the final output T 12 15 1 akeey
IPA must be translated to the final PA, and those are the final 4 T_n reads, of the Stage 2 table
at level n. The reads are ordered one after another in the order they appear in the ASL walk
function. This ordering must be respected by hardware as software relies on it when building
the tables bottom-up.

For example, if one starts with a Level 2 invalid entry, one might first create a Level 3 table
(then a barrier to keep writes ordered). In other words, the architecture has to prohibit value

speculation of page table entries.

Dependencies into translation-walk non-TLB reads: Address dependencies into a
memory-access instruction in classic “user” models are now explainable as dataflow dependen-
cies to the translation reads of those accesses, as the address has to be available before a walk
can start. These are virtual-address dataflow dependencies (contrasting with physical-address
coherence).

Translation-walk non-TLB reads from non-speculative same-thread writes:

PO-past A translation-walk non-TLB read might read from a po-previous page-table-entry write,
but it is only guaranteed to see such a write if there is enough intervening synchronisation. Arm
have recently introduced Enhanced Translation Synchronization (ETS), optional in Armv8.0
and mandatory from Armv8.7. Armv8-A implementations without ETS require both a DSB,
to make the write visible to translation-walk non-TLB reads, and an ISB, to ensure that any
translations for later instructions that were done out-of-order, before the write, are restarted.

A3.4.5
A.3.4.2

A7.2.2
A7.2.1

A.3.3.5
A8.1.14

3 Concurrency architecture design questions 16
3.3. Relaxed behaviour of translation-walk non-TLB reads
With ETS, only the DSB is required for a translation-walk non-TLB read to definitely see the
write, though one might still need an ISB if the new translation enables new instruction fetch.
Because invalid entries cannot be cached, this means that if an entry is initially invalid,
then after a write of a valid entry and a DSB;ISB/DSB, translations will use that valid entry.
However, the DSB;ISB/DSB does not remove cached entries, so an initially valid entry might
be cached by a spontaneous walk, so even after a write (of an invalid or non-BBM-failure valid
entry) and a DSB;ISB/DSB, the old entry could still be used by translations. One would need
a TLBI sequence to remove old cached entries, which we return to below.

PO-future The Armv8-A architecture allows load-store reordering, but it does not allow writes
to become visible to other threads while they are still speculative. In the same vein, translation-
walk non-TLB reads cannot read from po-later page-table-entry writes [13, D5.2.5 (p2683)].
Before the po-earlier translation is complete, one cannot know that it is not going to fault,
so the later write has to be considered speculative. This prevents a thread-local self-satisfying
translation cycle, analogous to the prevention of load-store cycles with dependencies.

PO-present On the margin, can a translation-walk non-TLB read for a write access see that
write, or a distinct write from the same instruction? The second case could arise from a store-
pair or misaligned store that does two writes, with one to a page-table-entry that could be
used by the other, though real code would typically not do this intentionally. This is explicitly
allowed by the current architecture text [13, D5.2.5 (p2683)|. However that text does not specify
whether the translations for those two writes could both read from the other, a self-satisfying
translation cycle where the writes write each others translations. In general such self-satsifying
cycles give rise to thin air behaviours and are universally forbidden by the architecture.

Translation-walk non-TLB reads from speculative same-thread writes: Speculative
execution requires translation walks, which might result in additional page-table entries be-
ing cached, but in most cases this is indistinguishable from the effects of a non-speculative
spontaneous walk. However, one has to ask whether a translation-walk non-TLB read can see a
po-previous write that is still speculative, e.g. while both instructions follow an as-yet-unresolved
conditional branch. It is clear that the result of such a walk should not be persistently cached, or
made visible to other threads (via a shared TLB), while it remains speculative. Moreover, such
translations could lead to arbitrary reads of read-sensitive device locations, which one normally
relies on the MMU to prevent. The conclusion is therefore that this must be forbidden.

Translation-walk non-TLB reads from same-thread writes, forbidden past (same-
thread TLBI completion): To remove an existing mapping on a single thread, one needs first
to write an invalid entry, then a DSB to ensure that has reached memory and thus is visible to
translation-walk non-TLB reads (to prevent spontaneous re-caching), then a TLBI to invalidate
any cached entries, then a DSB to wait for TLBI completion. Without ETS, one also needs an
ISB to ensure that po-later translations that have been done early are restarted. With ETS, the
ISB is not always necessary, though might still be needed for its instruction-cache effects if the
change of mapping affects instruction fetch. After all that, an attempted access by that thread
is guaranteed to fault.

Translation-walk non-TLB reads from other-thread writes, guaranteed past, initially
invalid: Now consider when a translation-walk non-TLB read is guaranteed to see a write by an-
other thread of a new entry, assuming that the entry was previously invalid and any cached entries
for it invalidated. Consider a two-thread message-passing case, where a producer PO writes a new

valid page table entry (pte_valid), then has PO P1

some ordering before a write of a flag, while a:W pte(x)=pte_valid | c:R flag=l

a consumer P1 reads the flag, then has some <Producer ordering> | <Receiver ordering>
ordering before an access Rx or Wx that needs b:W flag=1 d:Tx, for a Rx or Wx

that entry for a translation Tx of virtual address x.

A.3.4.6
A7.1.2

A3.4.1

A3.5.1

A41.1
A41.2

A4.1.4
A.3.3.6

A.3.3.5

3 Concurrency architecture design questions 17
3.3. Relaxed behaviour of translation-walk non-TLB reads

On some Armv8-A implementations that do not support ETS, some “obvious” combinations
of ordering on PO and P1 could lead to an abort of the translation of (d), which some OS software
would find difficult to handle. This was the main motivation for ETS: implementations without
it can have weak behaviour, requiring strong synchronisation to prevent the abort, while with
ETS the architecture is stronger, requiring only weaker ordering to prevent the abort.

Without ETS, two combinations of ordering are architected as sufficient to ensure that the
translation (d) sees the new valid entry:

1. PO has any ordered-before relationship, and P1 has DSB+ISB.
2. PO has DSB; TLBI; DSB, and P1 has any ordered-before relationship.

In Case 1, the message-passing is enough to ensure the write (a) is in main memory, the P1 ISB
ensures that any out-of-order translation of (d) is restarted, and the P1 DSB keeps the read (c)
and that ISB in order. In Case 2, the first DSB ensures the write is visible to all threads, the
TLBI (broadcast, for the virtual address x) invalidates any older cached entry on P1, and the
second DSB waits for that TLBI to be complete, after which any new translation on P1 will
have to see the new entry. However, it appears that the probability of an unhandleable abort
in practice, where one usually does not have these operations immediately adjacent, and where
in many cases the abort could be handled, has been judged low enough that OS code is not
necessarily using either of these.

With ETS, the architecture says |13, D5.2.5,p2683| that “if @ memory access RW1 is Ordered-
before a second memory access RW2, then RW1 is also Ordered-before any translation table walk
generated by RW2 that generates a Translation fault, Address size fault, or Access flag fault.”
Microarchitecturally, the intuition here is that with ETS any translation done while speculative
that leads to such a fault will have to be reconfirmed as faulting when execution is no longer
speculative, so an early faulting translation of (d) would have to be restarted after the ordered-
before edges have ensured that (a) is visible. However, in the case that the RW2 instruction
faults, there is no read or write event, and if the fault is a translation fault, there is no physical
address. One therefore has to ask what the meaning of ordered-before edges into RW2 is,
especially for the parts of ordered-before dependent on physical addresses, such as coherence.
The conclusion is that this should be only the non-physical-address parts of ordered-before into
RW2, and in modelling one needs a “ghost” event to properly record what the dependencies
would have been if it had succeeded. Note that this includes ordered-before to RW2 that ends
with a data dependency into a write, even though that data would not normally be necessary
for the translation.

Even with ETS, one might need an ISB on P1 if the new translation affects instruction fetch.

Translation-walk non-TLB reads from other-thread writes, guaranteed past, initially
valid (other-thread TLBI completion): The following test has a read-only mapping for

some physical address that is updated with PO P1

a new writeable mapping to the same physi- STR pte_writeable, [pte(z)] LDR X0, [y/]
cal address, followed by a message-pass to an- DSB SY DMB SY
other thread that attempts to write. There TLBI VAAELIS, [page(z)] MOV X1,#1
is no requirement for break-before-make here, DSB SY LO:

as the output address has not changed, but MOV X7,#1 STR X1, [x]
TLB maintenance is required to ensure that STR X7, 1yl

the new writeable entry is guaranteed to be Forbid: 1:Xe=1 & permission_fault(Le,z)?

used by later translation-reads.

Arm forbid the outcome where the STR faults due to a permission check. This is because the
TLBI only completes once all instructions using any old translations which would be invalidated
by the TLBI, on all other threads that the TLBI affects, have also completed, and the following
DSB waits for that (the same-thread case is different; see §3.3). In practice this means that

A3.3.2
A.3.3.13

A4.1.6

3 Concurrency architecture design questions 18
3.3. Relaxed behaviour of translation-walk non-TLB reads
once the TLBI completes, one of the following holds: either the final STR has not performed
its translation of z yet and will be required to see the writeable mapping for its page table
entry (pte); or the STR has translated using the new writeable mapping; or the STR has already
translated using the old read-only mapping, in which case we know that the STR has finished
and performed its write, since the TLBI could not complete while it was still in-progress. In that
case if the STR has completed, then so must have the locally-ordered-before LDR, and that must
have read 0. This explanation also covers the make-after-break case above, for non-ETS Case 2.
This is reflected in text to be included in future versions of the Arm ARM: A TLB main-
tenance operation [without nXS| generated by a TLB maintenance instruction is finished for a
PE when:

1. all memory accesses generated by that PE using in-scope old translation information are
complete.

2. all memory accesses RWx generated by that PE are complete. RWx is the set of all memory
accesses gemerated by instructions for that PE that appear in program order before an
instruction (I11) executed by that PE where:

(a) 11 uses the in-scope old translation information, and

(b) the use of the in-scope old translation information generates a synchronous data abort,
and

(c¢) if 11 did not generate an abort from use of the in-scope old translation information,
11 would generate a memory access that RWx would be locally-ordered-before.

Translation-walk reads from same- and other-thread writes, forbidden past (break-
before-make): Now we can finally return to the break-before-make sequence. Normal reads
cannot read from the coherence-predecessors of the most coherence-recent write that is visible
to them, but translation reads can read old (non-invalid) values from a TLB. To prevent this,
and to ensure that a translation read sees a new page-table entry, one has to both ensure that
any old TLB entries are invalidated, with a suitable TLBI, and that the new entry is visible to
translation-walk non-TLB reads.

Armv8-A says [13, D5.10.1 (p2795)] “A break-before-make sequence on changing from an
old translation table entry to a new translation table entry requires the following steps: (1)
Replace the old translation table entry with an invalid entry, and execute a DSB instruction. (2)
Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute
a DSB instruction to ensure the completion of that invalidation. (3) Write the new translation
table entry, and execute a DSB instruction to ensure that the new entry is visible.”.

Typically the write of an invalid entry and TLBI would be on the same thread, but more
generally, any shape as below should be forbidden, where Tx is a translation-walk read for an
access of x and the trf relation shows the page-table write PO P1 P2
it reads from. In other words, the sequence ensures that the

write of the invalid entry, and of any co-predecessor writes, Wete()=ivalld - TLBI - Wptab)=desc(x)

b b
are hidden behind the new page-table entry as far as new i ’ ¢ y' i
translations are concerned. Here the PO DSB and PO0-to-P1 bS8 DsB bS8
ob ensure the PO write has propagated to memory before ut ISBtf)
...

the P1 TLBI starts; the P1 DSB waits for that TLBI to
have finished on all threads; the P1-to-P2 ob ensures that
has happened before the new page-table-entry write starts;
and the DSB ensures the new write has reached memory and so is visible to translation before
subsequent instructions. The P2 ISB is needed if on non-ETS hardware, to force restarts of any
out-of-order translations for po-later instructions, or (on any hardware) if P2=P1, to ensure any

later translations on the TLBI thread are restarted, or if the new mapping affects instruction
fetch.

v

Tx faults

A.3.4.8

3 Concurrency architecture design questions 19
3.3. Relaxed behaviour of translation-walk non-TLB reads

This generalisation seems necessary, as a TLBI might be performed by a virtual CPU at EL1
which is interrupted and rescheduled by an EL2 hypervisor. One should be able to rely on the
hypervisor doing a DSB on the same hardware thread as part of the context switch, and that
has to suffice. It is sound because the DSBs and TLBI are all broadcast, though note that the
DSB waiting for TLBI completion has to be on the same hardware thread as it.

Translation-walk non-TLB reads from other-thread writes, forbidden future: Above
we saw that translation-walk non-TLB reads should not read from po-later writes. How should

that be generalised to multiple threads? For the simplest PO P1
example, consider the translation version of the LB test on . i | g Ty o . Ry
the right, in which two threads translation-read from each f |
other’s po-future (iio relates translation reads to their ac- Wpte(y) " Wpte(x)

cesses). Standard LB shapes for normal accesses without de-

pendencies are allowed in Armv8-A, but this example should be forbidden: until each translation
is done, one cannot know that the first instruction on each thread will not abort, so one could
not make the po-later write visible to the other thread without inter-thread roll-back. In other
words, the possibility of translation aborts creates ordering rather like a control dependency
from translation reads to po-later writes.

Multicopy atomicity of translation-walk non-TLB reads: The ARMv7 and early Armv8-
A architectures for normal accesses were non-multicopy-atomic: a write could become visible
to some other threads before becoming visible to all threads, broadly similar in this respect
to the IBM POWER architecture [1, 53]. This is one of the most fundamental choices for a
relaxed memory model. In 2017 Arm revised their Armv8-A architecture to be multicopy-atomic
(other multicopy-atomic, or OMCA, in their terminology), a considerable simplification [49, 12].
However, there was no consideration at the time of whether this should also apply to the visibility
of writes by translation-walk non-TLB reads, or of the force of the ARM statement that a
translation table walk is considered to be a separate observer [13, D5.10.2 (p2808)].

For example, consider the following translation-read analogue of the classic WRC+addrs
test, which would be forbidden in OMCA Armv8-A for normal reads. Suppose one has ETS,

the last-level page-table entries for x and y are ini- PO P1 P2
tially invalid and not cached in any TLB, PO writes wptet-vaia > T ——» Rx Ty o, Ry
a valid entry for x, P1 does a translation that sees ad"itrfy a"di
that entry and then (via an address dependency) Wptely)-valid T T Faui

writes a valid entry for y, then P2 does a transla-
tion that sees that entry and then (via an address dependency) tries a translation for x, is that
last guaranteed to see the valid entry instead of faulting? This might be exhibited by a microar-
chitecture with a shared TLB between PO and P1 (e.g. if they are SMT threads on the same
core, or have a shared TLB for a subcluster). The tentative Arm conclusion is that this should
be forbidden, to avoid software issues with unexpected aborts similar to those motivating ETS.
Now consider the above translation version of LB, generalising from po-future writes to other
ob-future writes. For transitive combinations of reads-from and dependencies, it should clearly
still be forbidden, to avoid needing inter-thread roll-back, but for ob including coherence edges
(coe) one can imagine that a translate read could see a write before the coherence relationships
are established, analogous to the weakness of coherence in the Power non-MCA model.
Discussion of these and other cases with Arm led to the tentative conclusion for Armv8-A
that translation-walk non-TLB reads (like normal reads) do not see any non-OMCA behaviour.
In other words, there is no programmer-visible caching observable to some non-singleton subsets
of threads’ translations but not others.

A.3.3.16

A8.1.14
A8.1.15
A8.1.7

4 Virtual memory in the pKVM production hypervisor 20
3.4. Further issues

3.4 Further issues

Our discussions with Arm identified and clarified various other architectural choices, though we
do not discuss them fully here, and our models do not cover them at present. To give a flavour:
(1) Misaligned or load/store-pair instructions give rise to multiple accesses, which might be to
different pages. Each has their own translation; not ordered w.r.t. each other, and with no
prioritisation of faults between them. As noted in §3.3, one might translate-read from the other,
but not both simultaneously. (2) Normal registers act like a per-thread sequential memory,
with reads reading from the most recent po-previous write, but the system registers that control
translations can have more relaxed behaviour, requiring ISBs to enforce sequential behaviour.
(3) The architecture requires, and OSs rely on, the fact that turning on the MMU does not need
TLB maintenance. However, in a two-stage world, if Stage 1 is off, one is still using the TLB
for Stage 2, so entries do get added to the TLB. When one later turns on Stage 1, it is essential
that the entries added from those earlier Stage 2 translations are not used, so one has to regard
them as from a 257th ASID.

4 Virtual memory in the pKVM production hypervisor

Protected KVM, or pKVM [30, 27, 2|, is currently being developed by Google to provide a
common hypervisor for Android, to provide improved compartmentalisation by a small trusted
computing base (TCB) between the Linux kernel and other services. pKVM is built as a com-
ponent of Linux. During boot, the Linux kernel hands over control of EL2 to the pKVM code,
which constructs a memory map for itself and a Stage 2 memory map to encapsulate the Linux
kernel. The Linux kernel thereafter runs only at EL1 (managing EL1&0 Stage 1 memory maps
for itself and for user processes), as the principal guest, also known as the host (not to be con-
fused with the host hardware). Other services can run as other guests, which are protected from
the kernel and vice versa. The kernel remains responsible for scheduling, but context switching
and inter-guest communication is done by hypervisor calls to the pKVM code at EL2. This gives
us an ideal setting in which to examine the management of virtual memory by production code
for Armv8-A relaxed-memory-concurrency, with both one and two stages of translation (for EL2
and EL1&0 respectively). The pKVM codebase is small, so it is feasible to examine all uses
of TLB management, and we benefit from discussions with the pKVM development team. We
have manually abstracted the main pKVM relaxed-virtual-memory scenarios into 14 tests.

To give a flavour for these we will explore just a few of the most fundamental for hy-
pervisor control of translation tables: __pkvm_init performs first-time per-CPU initialisation
of pKVM, which includes setting up the vmemmap, a large array storing a struct entry for
each physical page in memory with ownership information; __kvm_vcpu_run switches to a
different guest; __kvm_flush_vm_context flushes all entries in all TLB caches that relate to
Stage 1 translations; __kvm_tlb_flush_vmid_ipa flushes entries in caches that relate to a par-
ticular guest for a given address; __kvm_tlb_flush_vmid flushes all entries in caches that re-
late to a particular guest; __kvm_flush_cpu_context flushes all entries in caches at EL1 for
a given guest; __pkvm_cpu_set_vector sets the vector base address for handling exceptions;
__pkvm_create_mappings creates entries in the Stage 1 page table that pKVM uses when it
executes; and __pkvm_prot_finalize which enables Stage 2 translations during boot.

In the remainder of this section we describe a selection of litmus tests extracted from the
current pPKVM source code [2] as of Dec 2021.

4.1 Switching to another guest

The most basic task that pKVM is in charge of is the actual swapping from one vCPU’s context
to another to execute a particular VM on the physical CPU. Deciding when and to which vCPU
to switch is done by the underlying host Linux guest. pKVM'’s role is to safely save the current

4 Virtual memory in the pKVM production hypervisor

o 21
4.1. Switching to another guest

guest’s state, and load the EL1 state for the target vCPU, and manage the Stage 2 translation
tables for the vCPU’s VM.

Aside from the fundamental shape of switching from one VM to another on the same core,
there are a few interesting cases to consider:

e Switching from one vCPU in a VM to another vCPU in the same VM.
e Switching to a new vCPU, re-using a previous VMID.
e Re-using an old VMID with a concurrently executing vCPU on another core.

When the host guest Linux kernel wishes to perform the switch from one vCPU to another,
it writes to some general-purpose registers and then performs an HVC instruction (in this case,
to call the __kvm_vcpu_run hypercall).

4 Virtual memory in the pKVM production hypervisor

o 22
4.1. Switching to another guest

4.1.0.1 pKVM.vcpu_run : In the simplest case where pKVM is just switching from one
vCPU to another vCPU in a different VM, pKVM restores the per-CPU register state and sets
the VTTBR with the new VMID. So long as the two vCPUs are using disjoint VMIDs there is no

requirement for TLB maintenance.
This test, pKVM.vcpu_run, is below, with typesetting generated from the TOML input format

A Arch64 pKVM.vcpu_run

Initial state:

PSTATE.EL=0b01

R1=x

R2=ttbr (base=vm2_stagel,asid=0x00)
R3=ttbr(vmid=0x0002,base=vm2_stage2)
Page table setup: R5=x
TTBRO_EL1=ttbr(asid=0x00,base=vml_stagel)
TTBRO_EL2=ttbr(asid=0x00, base=hyp_map)

option default_tables = false;

virtual x; VBAR_EL2=0x1000
physical pal pa2; VTTBR_EL2=ttbr(base=vml_stage2,vmid=0x0001)
intermediate ipal ipa2;
Thread 0

sltable hyp_map 0x200000 {

identity 0x1000 with code; MoV X0, #0

x > invalid; // in guest
} LDR X0, [X1]
sltable vml_stagel 0x2C0000 { HVC #0x0

X+ ipal; MOV X4,#0
¥ // in guest

sltable vm2_stagel 0x300000 { LDR X4, [X5]

} X ipa2; thread0 el2 handler

s2table vml_stage2 0x240000 { 0x1400:

ipal+ pal; MRS X13, ESR_EL2
ipa2 — invalid; // read ESR _EI2.EC
sltable vml_stagel; UBFX X13, X13, #26, #5
} // if EG=HVC (010110)

s2table vm2_stage2 0x280000 {

) .) SUBS X13, X13, 0b010110
ipal~— invalid;

// Branch to HVC handle

ipa2 > pa2;

sltable vm2_stagel; CBZ X13, 2f
} // EG=DABT
*pal = 1; 1:
xpa2 = 2; MOV X4,#0

MRS X20,ELR_EL2

ADD X20,X20,#4

MSR ELR_EL2,X20

ERET

// EGHVC

2:

// kvm/hyp/sysreg—sr.h:96
MSR TTBRO_EL1,X2

// include/asm/kum mmu. h:276
MSR VTTBR_EL2,X3

// kvm/hyp/nvhe/host .S
ERET

Final state: 0:Re=1 & ~0:R4=2

of our Isla tool (§7). Here there is a single physical CPU, initially running a virtual machine
VM1, with VMID 0x0001, at EL1. The section on the left defines the initial and all potential
states of the page tables, and any other memory state. This test sets up separate translation
tables for pKVM at EL2 (which has just a single stage) and for two VMs (each with two stages,
Stage 2 controlled by pKVM and Stage 1 controlled by the VM). pKVM’s own mapping hyp_map
maps its code. VM1’s own Stage 1 mapping vml_stagel maps virtual address x to ipal, and the
initial pKVM-managed Stage 2 mapping vml stage2 maps that ipal to pal, which implicitly

4 Virtual memory in the pKVM production hypervisor

o 2
4.1. Switching to another guest s

initially holds 0. These page tables are described concisely by a small declarative language we
developed, determining the page-table memory (here ~30k) required for the Armv8-A page-table
walks.

The top-right block gives the initial Thread 0 register values, including the various page-table
base registers. The bottom-right blocks give the code of the test both the guest (EL1) code and
the (simplified) hypervisor code.

This test is written in an end-to-end style, where the test will start at EL1, which performs
some actions in the guest, before reaching an HVC instruction which performs a pK'VM hypercall,
before finally returning to the EL1 code and continuing after the HVC. Just as a full execution
of guests and hypervisor together would. The final state can then make assertions about the
state before and after any hypercalls, by inspecting the results of any guest operations.

The key assembly lines are annotated with the pKVM source line numbers they correspond
to. To switch to run another virtual machine VM2, with VMID 0x0002, on this same physical
CPU, pKVM changes VITBR_EL2 to the new vm2_stage2 mapping and, as part of the context-
switch register-file changes, restores TTBRO_EL1 to the VM2’s own Stage 1 mapping vm2_stagel.
The code then executes an ERET (“exception-return”) instruction to return to EL1, and then tries
to read x. The test includes a final assertion of the relaxed outcome that register x0=1 and x4!=2,
which would occur if the second ldr’s translation used the old VM1 mapping instead of VM2’s
mapping. In this case that should be forbidden.

Other tests capture more elaborate scenarios. For example, currently the host kernel manages
VMIDs and assigns each VM its own VMID. If the host runs out of VMIDs to allocate to new
vCPUs, it currently revokes all previously allocated VMIDs and re-allocates from the beginning,
during which pKVM has to ensure that any old vCPUs’ translations using that VMID are
expelled from any TLBs (pKVM.vcpu_run.update vmid). If there is a concurrently executing
vCPU using that VMID, that vCPU must be paused until after the new VMID generation
(and hence any required TLB maintenance), before continuing with the freshly allocated VMID
(pKVM.vcpu, run.update,vmid.concurrent).

For another example, for pKVM to maintain the illusion that each vCPU is on its own core,
the per-core state must be cleaned between running different vCPUs, including ensuring that
translations for one vCPU are not cached and visible to another, even if they happen to be in
the same VM (and using the same VMID) (pKVM.vcpu_run.same_vm).

The most basic task that pKVM is in charge of is the actual swapping from one vCPU’s
context to another to execute a particular VM on the physical CPU. Deciding when and to which
vCPU to switch is done by the underlying host Linux guest. pKVM’s role is to safely save off
the current guest’s state, and load the EL1 state for the target vCPU, and manage the Stage 2
translation tables for the vCPU’s VM.

Aside from the fundamental shape of switching from one VM to another on the same core,
there are a few interesting cases to consider:

e Switching from one vCPU in a VM to another vCPU in the same VM.
e Switching to a new vCPU, re-using a previous VMID.
e Re-using an old VMID with a concurrently executing vCPU on another core.

When the host guest Linux kernel wishes to perform the switch from one vCPU to another,
it writes to some general-purpose registers and then performs an HVC instruction (in this case,
to call the __kvm_vcpu_run hypercall).

4 Virtual memory in the pKVM production hypervisor

o 24
4.1. Switching to another guest

4.1.0.2 pKVM.vcpu run.update vmid :

Since pKVM’s host Linux kernel is responsible for all scheduling, it is responsible for the
selection of VMIDs. Typically, each VM is given its own VMID, and all vCPUs within that
VM share that VMID. By giving distinct VMs different VMIDs, the host Linux kernel can
switch between vCPUs in different VMs without requiring TLB maintenance, as was seen in the
previous test. Eventually, the host kernel runs out of VMIDs to allocate, either from the naive
incremental-allocation or because the number of VMs is larger than the available VMID space
(8 or 16 bits in the worst case). Currently, pKVM’s host Linux kernel will simply revoke all
previously allocated VMIDs, and when pKVM goes to switch to a vCPU for a VM without an
allocated VMID, it will be allocated there and then.

The pKVM.vcpu_run.update_vmid test in Figure 1 is the simplest case, where the new vCPU
is the only vCPU of that VM that is running, and no other physical CPUs are executing. Here,
we have two VMs and their associated tables in the initial state: vml_stage2 is the root of the
Stage 2 table for the first VM, and vm2_stage2 is the root of the Stage 2 table for the second
VM. Initially, the VTTBR points to VM1’s table, with VMID 1. When switching to VM2’s table,
with the same VMID, the host Linux kernel begins a sequence of calls to the hypervisor: first
it must flush the CPU context, to make sure any old cached translations for the old VMID are
removed. From there, pKVM can perform the switch to the new vCPU by restoring the EL1
system register state, then pointing the VTTBR to the new table with the new ASID, before doing
an exception-return to the guest. If the guest then accesses a location, it should be guaranteed
to use the new Stage 2 mapping with its own Stage 1 tables. Figure 1 contains the code listing
and initial conditions for this test; execution begins at EL2 with vml’s vCPU state, with VMID
1. The test performs the pKVM vcpu_run sequence to clean up the TLB, switch to vm2’s EL1
state and then switching to vm2’s Stage 2 mapping with VMID 1 (the same as what vml had
been using) before returning to the guest. The test then asserts that the guest’s access uses
vm2’s own restored Stage 1 translation tables, and does not see the old Stage 2 entries of vml.

Note that this test begins with TLB invalidation. To really capture the full sequence that
is microarchitecturally interesting, the test should really begin from execution at EL1 inside
the guest allowing Stage 2 TLB fills. The test beginning at EL2 from a clean machine state
would not give the TLB time to actually fill with stale entries from vml’s Stage 2 translation
tables in an operational model. Also note that, currently, Isla does not produce candidates with
re-ordering of system register reads, and so there are no ‘bad’ candidate executions to show from
the Isla-generated executions currently. This is work-in-progress to find the correct semantics
for such re-orderings.

4 Virtual memory in the pKVM production hypervisor
4.1. Switching to another guest

A Arch64 pKVM.vcpu_run.update vmid

Page table setup:

option default_tables = false;
physical pal pa2;
intermediate ipal ipa2;

sltable hyp_map 0x200000 {
X +— invalid;

}

s2table vml_stage2 0x300000 {
ipal+— pal;
ipa2 +— invalid;

sltable vml_stagel 0x280000 {
X+ ipal;

}

s2table vm2_stage2 0x380000 {
ipal+ invalid;
ipa2 > pa2;

sltable vm2_stagel 0x2C0000 {

X > ipa2;

}

*pa2 = 1;

Initial state:
Rl=ttbr(base=vm2_stage2,vmid=0x0001)
PSTATE.SP=0b1

TTBRO_EL1=ttbr(base=vml _stagel,asid=0x0000)
R3=x

VBAR_EL2=0x1000

VTTBR_EL2=ttbr (vmid=0x0001,base=vml_stage2)
PSTATE.EL=0b10

TTBRO_EL2=ttbr (asid=0x0000,base=hyp_map)
ELR_EL2=L0:

SPSR_EL2=0b00101
RO=ttbr(base=vm2_stagel,asid=0x0000)

Thread 0

// kvm/hyp/nvhe/tlb.c:145
dsb ishst

// kvm/hyp/nvhe/tlb.c:146
tlbi allelis

// kvm/hyp/nvhe/tlb .c:160
dsb sy

// kvm/hyp/sysreg—sr.h:96
MSR TTBRO_EL1,X0

// include/asm/lm mmu. h:276
MSR VTTBR_EL2,X1

// kvm/hyp/nvhe/host.S

ERET

LO:

// in guest

LDR X2, [X3]

thread(el2 handler
0x1200:

mov x2, #0

// data abort preferred—return—address is itself
// so jump to next instr instead

mrs x20,elr_el2

add x20,x20,#4

msr elr_el2,x20

eret

Final state: o:R2=0

Figure 1

25

4 Virtual memory in the pKVM production hypervisor

o 2
4.1. Switching to another guest 0

4.1.0.3 pKVM.vcpu run.update vmid.concurrent :

The concurrent case of the previous pKVM.vcpu_run.update_vmid test is critical: while switch-
ing from one vCPU to another on the same core is typically a thread-local event, care must be
taken in the case where another CPU is executing a VM whose current VMID should be revoked,
as in Fig. 2.

In this case, pKVM must interrupt the other core, so that it is not concurrently executing
while the new VMIDs are being allocated; otherwise, it might pollute the address space of the
VM that gets allocated that VMID.

pKVM does this by sending an IPI to all the other cores to break out of their current vCPUs.
When it does this, each CPU will attempt to switch back to the host, and, in doing so, will be
forced to take a lock when acquiring the VMID to use. This lock prevents those CPUs from
executing at EL1, and the architecture prevents the hardware from performing TLB fills while at
EL2. These guarantees ensure that while VMIDs are being re-allocated and TLB maintenance
performed on the original core, no stale entries can find their way back into the TLB.

4 Virtual memory in the pKVM production hypervisor

4.1. Switching to another guest

A Arch64 pKVM.vcpu_run.update vmid.concurrent

Page table setup:

option default_tables = false;
physical pal pa2 pa_ipi pa_kvm_vmid_lock;
intermediate ipal ipa2;

sltable hyp_map 0x200000 {
identity 0x1000 with code;
x — invalid;
ipir pa_ipi;
kvm_vmid_lock — pa_kvm_vmid_lock;

s2table vml_stage2 0x300000 {
ipal+ pal;
ipal ?-> invalid;
ipa2 +— invalid;
ipa2 ?-> pa2;

sltable vml_stagel 0x280000 {
X +— ipal;

s2table vm2_stage2 0x380000 {
ipal+ invalid;
ipal ?-> pal;
ipa2 > pa2;
ipa2 ?-> invalid;

sltable vm2_stagel 0x2C0000 {
X — ipa2;

*pa2 = 1;
*pa_kvm_vmid_lock = 1;

Initial state:

0:R7=kvm_vmid_lock

0:PSTATE.SP=0bl

0:R6=0b0

0:R2=0b1

0:TTBRO_EL2=ttbr (asid=0x0000,base=hyp_map)
0:PSTATE.EL=0b10

0:R3=ipi

0:R5=ipi

0:R0=0b1

0:R1=kvm_vmid_lock
1:TTBRO_EL2=ttbr(base=hyp_map,asid=0x0000)
1:TTBRO_EL1=ttbr(base=vml_stagel,asid=0x0000)
1:VBAR_EL2=0x1000
1:VTTBR_EL2=ttbr(base=vml_stage2,vmid=0x0001)
1:R1=x

1:R3=x

1:PSTATE.EL=0b0O1

1:R6=0b10
1:R10=ttbr(asid=0x0000,base=vm2_stagel)
1:R9=kvm_vmid_lock

1:R5=ipi

1:R7=ipi

1:R11=ttbr(vmid=0x0001, base=vm2_stage2)

Thread 0

// kvm/arm.c:551 force vm_exit(cpu_all _mask);
STR X2, [X3]

// kvm/arm.c:551 force_vm_exit(cpu_all _mask);
LDR X4, [X5]

// kvm/hyp/nvhe/tlb.c:145

dsb ishst

// kvm/hyp/nvhe/tlb .c:146

tlbi allelis

// kvm/hyp/nvhe/tlb.c:160

dsb sy

// kvm/arm.c:567 spin_unlock(&kvm vmid lock);
STR X6, [X7]

Thread 1

// in guest, read X
LDR X0, [X1]

DSB SY

ISB

// fake IPI

HVC #0

// try again

LDR X2, [X3]

threadl el2 handler

0x1400:

// smb recieve

LDR X4, [X5]

// smb reply

STR X6, [X7]

// kvm/hyp/include/nvhe/spinlock.h
LDAR X8, [X9]

// kvm/hyp/sysreg—sr.h:96
MSR TTBRO_EL1,X10

// include/asm/lkvm_mmu.h:276
MSR VTTBR_EL2,X11

// kvm/hyp/nvhe/host.S
ERET

Final state: 0:R4=2 & 1:R0=0 & 1:R4=1 & 1:R8=0 & 1:R2=0

Figure 2

27

4 Virtual memory in the pKVM production hypervisor

o 2
4.1. Switching to another guest 8

4.1.0.4 pKVM.vcpu run.same_ vm :

For another example, for pKVM to maintain the illusion that each vCPU is on its own core,
the per-core state must be cleaned between running different vCPUs, including ensuring that
translations for one vCPU are not cached and visible to another, even if they happen to be in
the same VM (and using the same VMID) (pKVM.vcpu_run.same_vm in Figure 3).

4 Virtual memory in the pKVM production hypervisor

4.1. Switching to another guest

A Arch64 pKVM.vcpu run.same vm

29

Page table setup:

option default_tables = false;
physical pal pa2;
intermediate ipal ipa2;

sltable hyp_map 0x200000 {
identity 0x1000 with code;
X — invalid;

s2table vml_stage2 0x300000 {
ipal+— pal;
ipal ?-> invalid;
ipa2 +— invalid;
ipa2 ?-> pa2;

sltable vml _stagel 0x260000 {
X — ipal;
}

s2table vm2_stage2 0x380000 {
ipal— invalid;
ipal ?-> pal;
ipa2 — pa2;
ipa2 ?-> invalid;

sltable vm2_stagel 0x2C0000 {
X — ipa2;

*pa2 = 1;

Initial state:

R3=x

R5=ttbr (base=0b0, vmid=0x0000)
TTBRO_EL1=ttbr(base=vml_stagel,asid=0x0000)
SPSR_EL2=0b00101
TTBRO_EL2=ttbr(asid=0x0000,base=hyp_map)
ELR_EL2=L0:

R1=ttbr(vmid=0x0001, base=vm2_stage2)
RO=ttbr(asid=0x0000,base=vm2_stagel)
R4=ttbr (base=0b0,vmid=0x0001)
VBAR_EL2=0x1000
VTTBR_EL2=ttbr(vmid=0x0001,base=vml_stage2)
PSTATE.EL=0b10

Thread 0

// arm64/include/asm/kvm_mmu. h:276
MSR VTTBR_EL2,X4

// kvm/hyp/nvhe/tlb.c:43

isb

// kvm/hyp/nvhe/tlb.c:135

tlbi vmallel

// kvm/hyp/nvhe/tlb .c:137

dsb nsh

// kvm/hyp/nvhe/tlb.c:138

isb

// arm64/include/asm/lum_mmu. h:276
MSR VTTBR_EL2,X5

// kvm/hyp/nvhe/tlb .c:52

isb

// kvm/hyp/sysreg—sr.h:96

MSR TTBRO_EL1,X0

// include/asmflvm _mmu. h:276

MSR VTTBR_EL2,X1

// kvm/hyp/nvhe/host.S

ERET

LO:

// in guest

LDR X2, [X3]

threadO el2 handler
0x1200:

mov x2, #0

// data abort preferred—return—address is itself
// so jump to next instr instead

mrs x20,elr_el2

add x20,x20,#4

msr elr_el2,x20

eret

Final state: 0:R2=0

Figure 3

4 Virtual memory in the pKVM production hypervisor 30
4.2. Data Aborts

4.2 Data Aborts

As mentioned earlier, a vCPU accessing a location that it does not have permissions for or which
is not mapped, results in an Abort which is handled at EL2.

4.2.0.1 pKVM.host handle trap.stage2 idmap.13 : If the vCPU accesses a location
which is currently un-mapped, but should be mapped on-demand, then pKVM will make a new
mapping for that vCPU, install it into its VM’s Stage 2 translation tables, and return to the
vCPU to re-try the access (Figures 4 and 5). This action typically requires no TLB invalidation,
as the previously unmapped entries could not have been stored in any TLB.

An added complexity here is that if pKVM wishes to map only a single page then it must
install this mapping with a Level 3 entry. If the mapping is currently invalid at Level 2 or Level 1
then care must be taken to not create entries out-of-order. pKVM manages this by producing a
fresh table of invalid entries first, then installing that new table into the translation tables, and
recursing down until it reaches the level it needs to install the valid mapping at. Otherwise, a
concurrent translation could see the new table entries before the leaf entries had been installed
into the table.

4 Virtual memory in the pKVM production hypervisor

4.2. Data Aborts

31

AArch64 pKVM.host handle trap.stage2 idmap.13

Page table setup:

option default_tables = false;
physical pal;
intermediate ipal;

s2table vm_stage2 0x260000 {
ipal+— invalid;
ipal ?-> pal;

sltable host_sl 0x2C0000 {
X +— ipal;

sltable hyp_map 0x200000 {
X — invalid;
sltable host_s1;
s2table vm_stage2;
identity 0x1000 with code;

*pal = 1;

Initial state:

R1=x

R12=pte3(ipal,vm_stage2)

R3=x

TTBRO_EL1=ttbr (asid=0x0000, base=host_s1)
TTBRO_EL2=ttbr(base=hyp_map,asid=0x0000)
R1ll=mkdesc3(oa=pal)

R10=0b0

PSTATE.EL=0b01
VTTBR_EL2=ttbr(base=vm_stage2,vmid=0x0000)
VBAR_EL2=0x1000

Thread 0

LDR X0, [X1]
LDR X2, [X3]

threadO el2 handler

0x1400:

// count number of exceptions

add x10,x10,#1

// remember which IPA failed

mrs x9,hpfar_el2

1sl x9,x9,#8

// pkvm code

stlr x11, [x12]

dsb ishst

1:

// return to next instruction

// PKW doesn 't really do this, it just tries the same instr again
// but without this the test can loop forever
mrs x20,elr_el2

add x20,x20,#4

msr elr_el2,x20

// return from handle trap

eret

Final state: o:R10=2

Figure 4: pKVM.host_handle_trap.stage2_idmap.13: code listing

4 Virtual memory in the pKVM production hypervisor
4.2. Data Aborts

Initial State

Thegdo NN
al: T #x265600 i a2: Thost sL:13pte(x) i a3: Tm stage2:/3pte(x) i ad: ldr x0, [x1]: Fault

b: stlr x11, [x12]: W #x263000 = host sLi3desc(x) |

¢ |

¢ dshish

d: eret

el: T #x265600

i

e2: Thost sL3pte(x) t» e3:Tvm stage2:(3pte(x) F» ed:ldrx2, [x3]: Fault

f. stirx11, [x12]: W #x263000 = host s1:3desc(x)

¢

g dsh ish

Figure 5: pKVM.host_handle_trap.stage2_idmap.13: forbidden candidate execution

32

4 Virtual memory in the pKVM production hypervisor 33
4.2. Data Aborts

4.2.0.2 pKVM.host handle trap.stage2 idmap.already exists : If the vCPU tries
to access a location that is mapped but that it lacks the necessary permissions for, then there
may be an existing entry already mapping that location. Here, the process is much more
delicate. Because another vCPU in the same VM may be concurrently accessing the same
physical locations mapped by the shared Stage 2 table, pKVM cannot assume its own internal
locks are sufficient to prevent race conditions. Therefore, this is one case where pKVM is required
to use the break-before-make sequence as described by §3.2.

In the following code (Figures 6 and 7), the initial state starts out with x mapped at level 3,
but without read permissions. The first load will fault and pKVM will naturally map a writeable
mapping on-demand, following the break-before-make sequence invalidating the entry by writing
zero (event b) before writing a new valid descriptor (event m). After returning to the guest, we
ask whether loads of x are allowed to fault at Stage 2.

4 Virtual memory in the pKVM production hypervisor 34

4.2. Data Aborts

AArch64 pKVM.host handle trap.stage2 idmap.13.already exists

Page table setup:

option default_tables = false;
physical pal pa2;
intermediate ipal;

s2table vm_stage2 0x260000 {
ipal+> pal with [AP=0b00] and default;
ipal ?-> invalid;
ipal ?-> pa2;

sltable host_sl 0x2C0000 {
X +— ipal;
}
}

sltable hyp_map 0x200000 {
X+ invalid;
s2table vm_stage2;
identity 0x1000 with code;

}
*pal = 1;
*pa2 = 2;

Initial state:

R1=x
R16=ttbr(vmid=0x001,base=vm_stage2)
R17=mkdesc3(oa=pa2)

RO=0b0

PSTATE.EL=0b01

R18=pte3(ipal,vm_stage2)
VTTBR_EL2=ttbr(vmid=0x001, base=vm_stage2)
R10=0b0

R15=page(ipal)

R13=pte3(ipal,vm_stage2)
R14=ttbr(vmid=0x001, base=0b0)

R12=0b0

R3=x
TTBRO_EL1=ttbr(asid=0x000,base=host_s1)
VBAR_EL2=0x1000

TTBRO_EL2=ttbr (asid=0x000, base=hyp_map)

Thread 0

STR X0, [X1]
LDR X2, [X3]

thread0O el2 handler

0x1400:

// count number of exceptions
add x10,x10,#1

// remember which IPA failed
mrs x9,hpfar_el2

// really pKVM would do a read of the pagetable to tell if it needs to update
// we elide that code from the test and just skip on the second fault
cmp x10,#2

b.eq 1f

// pkvm code

// pgtable.c:573

STR X12, [X13]

// tlb.c:63

DSB ISH

// tlb.c:66

MSR VTTBR_EL2,X14

// tlb.c:66

ISB

// tlb.c:74

TLBI IPAS2E1IS,X15

// tlb.c:82

DSB ISH

// tlb.c:83

TLBI VMALLE1IS

// tlb.c:84

DSB ISH

// tlb.c:85

ISB

// tlb.c:109

MSR VTTBR_EL2,X16

// tlb.c:109

ISB

STLR X17, [x18]

DSB ISHST

// return to next instruction
// PKWM doesn 't really do this, it just tries the same instr again
// but without this the test can loop forever ..
1:

mrs x20,elr_el2

add x20,x20,#4

msr elr_el2,x20

// return from handle trap
eret

Final state: 0:r10=2 0:R2=1|

Figure 6: pKVM.host_handle_trap.stage2_idmap.13.already_exists: code listing

4 Virtual memory in the pKVM production hypervisor
4.2. Data Aborts

Initial State >
Thread 0

|

| al: T #x265600 hT6| a2: T host_s1:I3pte(x) }mﬂ a3: T vm_stage2:13pte(x) it

a4: str x0, [x1]: Fault

\

—
[b:strx12, [x13]: W #x263000 = #x0 |

c: dsb ish

| d: msr vttbr_el2, x14 = ttbr(id=#x1, base=#x0) |

A A
| f: tibi ipas2elis, x15: page=#x600 |

g: dsb ish

| h: tbi vmallelis: vmid=#x1 |

b

i

trf|

| k: msr vttbr_el2, x16 = ttbr(id=#x1, base=vm_stage2:10pte(x))

I: isb

| m: stlr x17, [x18]: W #x263000 = host_s1:I13desc(x) |

n: dsb ish

pl: T #x265600 |of p2: T host_sl:i3pte(x) |osf p3: T vm_stage2:i3pte(x) |+

p4: Idr x2, [x3]: Fault

35

Figure 7: pKVM.host_handle_trap.stage2_idmap.13.already_exists: forbidden candidate execu-

tion

4 Virtual memory in the pKVM production hypervisor 36
4.2. Data Aborts

4.2.0.3 pKVM.host handle trap.stage2 idmap.change block size : The com-
plexity of the previous scenario is compounded by the fact that pKVM may wish to map a
larger region (higher in the table) than is currently mapped, and, without FEAT_BBM, this adds
extra break-before-make requirements.

In general, pKVM will itself perform a translation table walk. On the way down, it will
look for the entry to be replaced, invalidate it, and perform TLB maintenance, ensuring that
all entries from old leaf entries below it are cleaned away, but additionally that any old stale
Stage 1 translations are invalidated, before it replaces the entry.

Figures 8 and 9 contain the code listing and the interesting candidate execution diagram (as
generated by Isla). We consider a scenario where there are two locations, x and y which are in
the same 2 MiB region of memory but are mapped by different Level 3 entries. If the Level 3
table contains all valid entries except for one entry for x, then on updating the entry for x to
be valid, if the host kernel maps the whole 2M region, then pKVM will invalidate the 2M entry
before writing a new 2M block entry.

This in effect ‘promotes’ the set of 4K mappings into a single 2M mapping. pKVM then
frees the child table to be re-allocated later.

pKVM may want to remove a mapping for an IPA. This is very similar to the previously
described break-before-make scenario, but without the final make. pKVM just has to ensure
that the old IPA mapping is invalidated, and the necessary TLB maintenance is performed. We
do not include this test at present.

4 Virtual memory in the pKVM production hypervisor

4.2. Data Aborts

A Arch64 pKVM.host handle trap.stage2 idmap.change block size

Page table setup:

option default_tables = false;
physical pal pa2;
intermediate ipal ipa2;

s2table vm_stage2 0x260000 {
ipal+~> invalid at level 3;
ipa2+> pa2 at level 3;
ipal ?-> pal at level 3;

ipal ?-> invalid at level 2;
ipa2 ?-> invalid at level 2;
ipa2 ?-> pa2 at level 2;

sltable host_s1 0x2C0000 {
X — ipal;
y — ipa2;

I

sltable hyp_map 0x200000 {
x — invalid;
s2table vm_stage2;
identity 0x1000 with code;

}
*pal = 1;
*pa2 = 2;

Initial state:

R15=ipal

R13=pte2(ipal,vm_stage2)
R17=mkdesc2(oa=pa2)
VTTBR_EL2=ttbr(vmid=0x0001, base=vm_stage2)
R12=0b0
R16=ttbr(vmid=0x001,base=vm_stage2)

R3=y
TTBRO_EL2=ttbr(base=hyp_map,asid=0x0000)
TTBRO_EL1=ttbr(base=host_s1,asid=0x0000)
R18=pte2(x,vm_stage2)

R14=ttbr(base=0b0, vmid=0x001)

R1=x

R10=0b0

VBAR_EL2=0x1000

PSTATE.EL=0b01

Thread 0

// in guest
MOV Xo,#0
LDR X0, [X1]
MOV X2,#0
LDR X2, [X3]

threadO el2 handler

0x1400:

// count number of exceptions
add x10,x10,#1

// remember which IPA failed
mrs x9,hpfar_el2

// on second fault just exit test
cmp x10,#2

b.eq 1f

// then pkvm code

0:

// pgtable.c:181

STR X12, [X13]

// tlb.c:116

DSB ISH

// tlb.c:119

MSR VTTBR_EL2,X14

// tlb.c:119

ISB

// tlb.c:121

TLBI vmallsl2elis

// tlb.c:122

DSB ISH

// tlb.c:123

ISB

// tlb.c:125

MSR VTTBR_EL2,X16

// tlb.c:125

ISB

STLR X17, [x18]

DSB ISHST

1:

// return to next instruction
// PKWM doesn 't really do this, it just tries the same instr again
// but without this the test can loop forever
mrs x20,elr_el2

add x20,x20,#4

msr elr_el2,x20

// return from handle trap
eret

Final state: e:R1e=2 0:R2=1|

Figure 8: pKVM.host_handle_trap.stage2_idmap.change_block_size: code listing

37

4 Virtual memory in the pKVM production hypervisor
4.2. Data Aborts

Initial State
Thread 0

S —samevmidt

e2:12pte(x) i a5: 1dr x0, [x1]: Fault

|/al: Tvm_stage2:2pte(page table base) |l a2: T #x265600 a1 a3:Thost sLi3pte(x) [rsf a4:Tvm stag
v 7

g . 8
| b: str x12, [x13]: W #x262018 = #x0 |\

F. toi vmallsL2elis: vimid=#x1

[dsb ishst

m: eret

\
same-vmid,

| nl: T vm_stage2:12pte(x) |,“,5| n2: Idr x2, [x3]: Fault

38

Figure 9: pKVM.host_handle_trap.stage2_idmap.change_block_size: forbidden candidate execu-

tion

4 Virtual memory in the pKVM production hypervisor 39
4.3. Initialisation

4.3 Initialisation

During execution, and especially at initial start-up of pKVM, it will be required to create its
own Stage 1 translation tables.
Currently, this only happens on a single core, so there are no interesting concurrent cases.
In the future, however, it is expected that pKVM may need to dynamically map some parts
of memory, as the hypervisor gains richer features. For example, it may need to map some
shared page between guests, or between pKVM and a guest, in which to pass messages.

4 Virtual memory in the pKVM production hypervisor 40
4.3. Initialisation
4.3.0.1 pKVM.switch to new table :

When pKVM first starts, it is using translation tables set up by Linux, so one of the first
things pKVM does is to create its own tables and switch to them.

Usually, switching from using one translation table to another happens at a higher exception
level, and then the new one is not used until the return to the lower exception level. The current
case is more complicated, as pKVM has to change its own translation tables while it is executing.
If pKVM only had to change the TTBR, then this would not be a problem, but there are many
system registers involved in configuring the translation tables (the TCR, MAIR, and so on), and
these registers cannot all be updated ‘atomically’.

To maintain the atomicity, pKVM switches the TTBR to a page of memory where the code it is
executing is identity-mapped, then it disables translation (disabling the MMU), before updating
all of the required system registers (including the new TTBR), before re-enabling the MMU.

Figure 10 contains the code for a litmus test that tries to capture the core of this process.
This pKVM.switch_to_new_table test is an EL2 Stage 1 test with two tables, hyp_pgtable and
new_hyp_pgtable, in memory. The code disables the MMU (by writing to the appropriate field
of the SCTLR), invalidates all of the old cached TLB entries for EL2, updates all the system
registers (only the TTBR is included here) and then re-enables the MMU. We check that the final
load in the hypervisor after the switch has happened reads using the new state.

This test has been cut down for brevity to remove the writes of other system registers, which
would be present in a full execution of pKVM,; ideally, we would have a test that included those
too, and a final state which ensured that the load used a translation using all of the new register
values.

Note that the model presented in Section 5 does not currently contain axioms for when the
MMU is disabled, but the semantics seem clear, and we do not see any impediment in extending
the model to handle it fully.

A Arch64 pKVM.switch to_new_table

Initial state:

R6=x

R4=ttbr(asid=0x0000, base=new_hyp_pgtable)
VBAR_EL2=0x2000

PSTATE.SP=0b1
option default_tables = false; PSTATE.EL=0b10
physical pal;

Page table setup:

TTBRO_EL2=ttbr(base=hyp_pgtable,asid=0x0000

sltable hyp_pgtable 0x200000 {

X+ invalid at level 3; Thread 0
X ?7-> pal; // hyp—init.5:247
identity 0x2000 with code; mrs x2, sctlr_el2
} bic x3, x2, #1
msr sctlr_el2, x3
sltable new_hyp_pgtable 0x240000 { ish
x> pal at level 3; tlbi alle2

x ?-> invalid;
identity 0x2000 with code;
}

msr ttbro_el2, x4
msr sctlr_el2, x2
isb

#pal = 1; dr x5,[x6]

thread0 el2 handler
0x2200:

mov x5, #0

Final state: o:r2=0

Figure 10: pKVM.switch to new table

4 Virtual memory in the pKVM production hypervisor
4.3. Initialisation

41

4.3.0.2 pKVM.create hyp mappings.inv.12 :

Constructing new translation tables is done incrementally, starting from a single zero’d page
of memory as the root table, and then performing a manual translation table walk on insertion
to locate an entry to insert into.

In the case where there is no Level 3 table to install into, pKVM first creates a Level 2
table and installs that, before writing the new valid Level 3 entry. To avoid break-before-make
violations here, pKVM always ensures the table is zeroed before inserting it into the table.

The pKVM. create_hyp_mappings.inv.12 test, in Figures 11 and 12, gives the case where pKVM
is trying to create a new mapping for itself for a 4K page block. This block mapping must be
installed as a Level 3 entry, as installing it any higher would end up mapping more than 4K
of memory. Initially, x is translated using an invalid Level 2 entry in hyp_pgtable. The table
hyp_pgtable_new contains the new Level 3 table which starts life zeroed (all invalid); The test
then sets the Level 2 entry in hyp_pgtable to point to the new table, and then updates the
Level 3 (leaf) entry with a valid descriptor.

Interestingly, we note that pKVM sets these entries with a store-release; although there
seems to be no relaxed-virtual-memory reason why. Given that pKVM is well locked, it is not
clear why making these writes store-releases helps.

AArch64 pKVM.create _hyp mappings.inv.12

Initial state:

RO=mkdesc2 (table=0x283000)

R2=mkdesc3(oa=pal)

PSTATE.SP=0b1

R1l=pte2(x,hyp_pgtable)
Page table setup: R5=x

option default_tables = false; RSIAIECEER0IY

physical pal; TTBRO_EL2=ttbr(asid=0x0000,base=hyp_pgtable
VBAR_EL2=0x1000
sltable hyp_pgtable new 0x280000 { R3=bvor(0x283000,0ffset (level=3,va=x))
X+ invalid at level 3;
X ?-> pal at level 3; Thread 0
! STLR X0, [X1]
sltable hyp_pgtable 0x200000 { STLR X2, [X3]
X+ invalid at level 2; DSB SY
X ?7-> table(0x283000) at level 2; ISB
identity 0x1000 with code; LO:
sltable hyp_pgtable_new; LDR X4, [X5]
¥ thread0 el2 handler
xpal = 1; 0x1200:
mov X2, #0
mrs x20,ELR_EL2
add x20,x20,#4
msr ELR_EL2,x20
eret
Final state: o:rR2=0

Figure 11: pKVM.create_hyp_mappings.inv.12: Code listing

4 Virtual memory in the pKVM production hypervisor
4.3. Initialisation

Initial State >

.

Thread 0

‘ a: stlr x0, [x1]: W #x202018 = hyp_pgtable_new:|2desc(x)

N\

~

// \ b: stir x2, [x3]: W #x283000 = #x600443 \ /
trf
'/

/
/
/

/

/

1 —
el: T hyp_pgtable:I2pte(x) }Wd e2: T hyp_pgtable_new:I3pte(x) }Wd e3: |dr x4, [x5]: Fault

Figure 12: pKVM.create_hyp_mappings.inv.12: (forbidden) candidate execution

4 Virtual memory in the pKVM production hypervisor

4.3. Initialisation

4.3.0.3 pKVM.create hyp mappings.inv.13 :

pKVM can set entries at any level of the table, assuming they are initially invalid. The
following test is a variation on the previous, where the Level 3 table is already created, but

contains an invalid entry at Level 3.

As before, we will map a 4K region, and so it must go at Level 3.

A Arch64 pKVM.create hyp mappings.inv.13

}

*pal = 1;

Page table setup:

physical pal;

sltable hyp_pgtable 0x200000 {
x+— invalid at level 3; STLR X0, [X1]
x ?-> pal; DSB SY
identity 0x1000 with code; ISB

Initial state:
RO=mkdesc3(oa=pal)

R3=x
VBAR_EL2=0x1000

option default_tables = false; PSTATE.EL=0b10

TTBRO_EL2=ttbr(base=hyp_pgtable,asid=0x0000)

R1l=pte3(x,hyp_pgtable)

Thread 0

LO:
LDR X2, [X3]

thread0 el2 handler

0x1000:
mov x2, #0

Figure 13: pKVM.create_hyp_mappings.inv.13: Code listing

Figure 14: pKVM.create_hyp_mappings.inv.13: (forbidden) candidate execution

tf —
Initial State
/

Thread 0 /

a:stir x0, [x1): W #x203000 = #x600443 ‘

K'Y ~
\ d1: T hyp patable:3pte(x) h&ﬂ d2: ldrx2, [x3]: Fault |

Final state: o:R2=0

5 Model 44

5 Model

We now define a semantic model for Armv8-A relaxed virtual memory that, to the best of our
knowledge, captures the Arm architectural intent for the scope laid out in §1 and discussed in
§3, including Stage 1 and Stage 2 translation-table walks and the required TLB maintenance.
For some important questions, most notably for multi-copy atomicity, the Arm intent is cur-
rently tentative, so it is not possible to be more definitive. To capture just the synchronization
required for “simple” software such as pKVM to work correctly we also give a weaker model (in
App. B): instead of trying to exactly capture the architecture or the behaviour of hardware, it
has individual axioms for each behaviour that such software needs to rely on. This gives an
over-approximation to the architecture, which we prove sound with respect to the model given
in this section. The two models together delimit the design space as we understand it.

In §3 and §4 we described the design issues in microarchitectural terms, discussing the
behaviour of TLB caching and translation-walk non-TLB reads, along with the needs of system
software. We now abstract from microarchitecture: instead of explicitly modelling TLBs we
include a translation-read event for each read performed by the architected translation-table
walker, and make those reads read-from writes in the execution (so there are no special ‘pagetable
write’ events). We give the model in an axiomatic Herd-like 9] style, as an extension to the
base Armv8-A semantics [26, 49, 13]. In principle it would be desirable to also have equivalent
abstract-microarchitectural operational models, as for base Armv8-A [49, 48| but with explicit
TLBs for each thread and events for reading from and into the TLB. However, address translation
introduces many more events to litmus-test executions, which would make them harder to explore
exhaustively, and a proof of equivalence would be a major undertaking, so we leave this to future
work.

The base Armv8-A axiomatic model is defined as a predicate over candidate executions, each
of which is a graph with various events (reads, writes, barriers) and relations over them, notably
the per-thread program order po, the per-location coherence order co, the reads-from relation
rf from writes to reads, the addr, data, and ctrl-dependency subsets of po, and others. These
candidates may be arbitrarily inconsistent graphs, possibly containing executions that can never
happen.

The model is then a per-candidate consistency check consisting of two parts: that the graph
corresponds to some execution consistent with the underlying ISA, but with arbitrary memory
reads and writes; and a global consistency check over those reads and writes which enforces
memory consistency properties such as coherence.

The base memory consistency model is essentially the conjunction of two acyclicity checks
with an emptiness check for atomics: an external (inter-thread) acyclicity property, effectively
stating that the execution must respect some total order of events hitting the shared memory,
constrained by the derived ordered-before (ob) relation; and an internal acyclicity property,
enforcing per-location coherence; and an atomic axiom for atomic and exclusive operations.

As usual in Herd-style models, relations are suffixed e or i to restrict to their inter-thread
or intra-thread parts. The Herd concrete syntax for relational algebra uses [X] for the identity
on a set X, ; for composition, ~ for complement, | and & for union and intersection, and * for
product. To extend this base memory consistency model to the world with translations and
TLBs we add translation data to events, including virtual, intermediate physical, and physical
addresses (as determined by the translation regime).

We add the following events and relations:

e T for reads originating from architected translation-table walks.
These roughly correspond to the actual satisfaction from memory which with TLBs may
happen very early.

e TLBI events for each TLBI instruction, with a single such event per TLBI instruction, corre-
sponding to the TLBI being completed on all relevant cores.

5 Model A5
5.1. Strong model
e TE and ERET events for taking and returning from an exception (these might not correspond
to changes in exception level).

e MSR events for writes to relevant system registers, such as the TTBR.
e DSB events for DSB instructions.
e trf, tfr relations as analogues to rf and fr but for translation-read events (Ts).

e iio relation (“intra-instruction order”) which relates events of the same instruction in
the order they occur during execution of that instruction’s intra-instruction semantics as

defined by the Arm ASL.

e same-va, same-ipa, same-pa relations which relate events whose virtual, intermediate phys-
ical or physical address of the associated explicit memory access are the same.

e same-va-page, same-ipa-page, same-pa-page which relate events whose associated explicit
memory events are in the same page (e.g. 4KiB chunk) of the virtual, intermediate physical
or physical address space.

e same-asid, same-vmid relates events for which translations for the associated memory event
are using the same ASID or VMID.

In addition we modify some existing events and relations:
e R, W events are now to a physical location.
e loc and co both relate events which are to the same physical address.

e addr which is derived from a new tdata relation, which relates the event which provide the
input address for a translation.

e We re-arrange the barrier events into a hierarchy which includes DSBs, see Figure 17.

For convenience we define new event sets: € for all cache-maintenance operations (DC, IC,
and TLBI instructions); T_f for all translation-read events which read a descriptor which causes
a translation fault; W_inv for all the write events which write an invalid descriptor; Stagel and
Stage2 for the T events which originate from the respective stage of translation; ContextChange
for all context-changing events (such as writes to translation-controlling system registers); and
CSE for all context-synchronizing events (taking and returning from exceptions and ISB).

5.1 Strong model

The model is given in full in Figure 15 with auxiliary definitions of the tlb-affects and barrier
hierarchy given in Figures {16,17}.

Its basic form is very similar to previous multicopy-atomic Armv8-A models. It still has
external, internal, and atomic axioms, to which we add a translation-internal axiom for
ensuring translations do not read from po-later writes.

Most of the changes to the model are in the external axiom, where we add several rela-
tions to ordered-before (ob): iio orders the intra-instruction events as ordered by the ASL;
tob (“translation ordered-before”) ensures the order arising from the act of translation itself is
respected; obtlbi orders translates and their explicit memory events with TLBIs which affect
these translations; and ctxob (“context ordered-before”) orders events which must come before
some context-changing operation or after some context-synchronizing operation. We also add a
generalised coherence-order relation, wco, an existentially quantified total order expressing when
TLBIs complete w.r.t. writes.

5 Model

46
5.1. Strong model
let tlb-affects = let obfault =
see Figure 16 data ; [Fault & IsFromW]

| speculative ; [Fault & IsFromW]
let TLB_barrier = | [dmbst] ; po ; [Fault & IsFromW]
([TLBI] ; tlb-affects ; [T] ; tfr ; [W])™-1 | [dmbld] ; po ; [Fault & (IsFromW|IsFromR)]
& wco | [A[Q] ; po ; [Fault & (IsFromW | IsFromR)]
| [RIW] ; po ; [Fault & IsFromW & IsReleaseW]

let maybe_TLB_cached =

([T] ; trf~-1 ; wco ; [TLBI-S1]) & tlb-affects™-1

(* ETS-ordered-before x)

let obETS =
let tcachel = [T & Stagel] ; tfr ; TLB_barrier (obfault ; [Fault]) ; iio™-1 ; [T_f]
let tcache2 = [T & Stage2] ; tfr ; TLB_barrier | ([TLBI] ; po ; [dsb] ; instruction-order ; [T])
& tlb-affects
let speculative =
ctrl (* dependency-ordered-before x)
| addr; po let dob =
| [T] ; instruction-order addr | data
(x translation-ordered-before x) | speculative ; [W]
let tob = | addr; po; [W]
[T_f] ; tfre | (addr | data); rfi
| ([T_f] ; tfri) | (addr | data); trfi
& (po ; [DSB.SY] ; instruction-order)”-1
| [T] ; iio ; [R|W] ; po ; [W] (*x atomic-ordered-before *)
| speculative ; trfi let aob = rmw
(*x observed by x) | [range(rmw)]; rfi; [A | Q]

let obs = rfe | fr | wco
| trfe (* barrier-ordered-before x)
(* ordered-before TLBI and translate x*) let bob = [R] ; po ; [dmbld]
let obtlbi_translate = | [W] ; po ; [dmbst]
tcachel | [dmbst]; po; [W]
| tcache2 | [dmbld]; po; [R|W]
& (iio™-1 ; [T & Stagel] ; trf~-1 ; wco™-1) | [L]; po; [A]
| (tcache2 ; wco? ; [TLBI-S1]) | TA | Ql; po; [R | W]
& (iio™-1 ; [T & Stagel] ; maybe TLB_cached) | [R | WI; po; [LI]
| [F | CI; po; [dsbsy]
(* ordered-before TLBI x) | [dsb] ; po
let obtlbi =
obtlbi_translate (x Ordered-before x)
| [R|W|Fault] ; iio”~-1 ; (obtlbi_translate & ext) let ob = (obs | dob | aob | bob
; [TLBI] | iio | tob | obtlbi | ctxob | obfault | obETS)"+

(* context-change ordered-before x*)

(* Internal visibility requirement x)

let ctxob = acyclic po-loc | fr | co | rf as internal
speculative ; [MSR] (* External visibility requirement x)
| [CSE] ; instruction-order irreflexive ob as external
| [ContextChange] ; po ; [CSE] (* Atomic requirement x)
| speculative ; [CSE] empty rmw & (fre; coe) as atomic
| po ; [ERET] ; instruction-order ; [T] (* Writes cannot forward to po-future translates x*)

(* ordered-before a translation fault x)

acyclic (po-pa | trfi) as translation-internal

Figure 15: Strong Model (with baseline Armv8-A model parts in gray)

let tlb_might_affect =
[TLBI-S1 & ~TLBI-S2 &
; [T & Stagel]
| [TLBI-S1 & ~TLBI-S2 &

TLBI-VA & TLBI-ASID &

~TLBI-VA & TLBI-ASID &

TLBI-VMID] ; (same-va-page & same-asid & same-vmid)

TLBI-VMID] ; (same-asid & same-vmid) ; [T & Stagel]

| [TLBI-S1 & ~TLBI-S2 & ~TLBI-VA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T & Stagel]

| [~TLBI-S1 & TLBI-S2 & TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; (same-ipa-page & same-vmid) ; [T &
Stage?]

| [~TLBI-S1 & TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T & Stage2]

| [TLBI-S1 & TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T]

| (TLBI-S1 & ~TLBI-IPA & ~TLBI-ASID & ~TLBI-VMID) * (T & Stagel)

| (TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & ~TLBI-VMID) * (T & Stage2)

let tlb-affects =
[TLBI-IS] ; tlb_might_affect
| ([~TLBI-IS] ; tlb_might_affect) & int

Figure 16: The tlb-affects relation.

Coherence: By making loc (and therefore rf and co) relate events with the same physical
addresses, we get coherence over physical addresses rather than virtual, and all the previously
allowed shapes are also allowed when there is aliasing with different virtual addresses. Coherence

5 Model A7
5.1. Strong model

let dsbsy
let dsbst

DSB.ISH | DSB.SY | DSB.NSH
dsbsy | DSB.ST | DSB.ISHST | DSB.NSHST

let dsbld = dsbsy | DSB.LD | DSB.ISHLD | DSB.NSHLD
let dsbnsh = DSB.NSH
let dmbsy = dsbsy | DMB.SY

let dmbst
let dmbld

dmbsy | dsbst | DMB.ST | DSB.ST | DSB.ISHST | DSB.NSHST
dmbsy | dsbld | DMB.LD | DSB.ISHLD | DSB.NSHLD

let dmb = dmbsy | dmbst | dmbld

let dsb = dsbsy | dsbst | dsbld

Figure 17: Barrier definitions.
Note we do not distinguish between Inner-Shareable and Full-System barriers

of writes to translation tables is expressed in two places: including trfe in obs captures the fact
that translation-table reads from memory microarchitecturally come from the ‘flat’ coherent
storage subsystem, and so the writes that they read from must have been propagated before the
translation happened; and the translation-internal axiom forbids forwarding against program-
order. Note that including only trfe allows forwarding locally (a trfi edge), and including
(addr|data);trfi in dob ensures those forwarded writes cannot form bad self-satisfying cycles.

TLB maintenance and break-before-make: The obtlbi relation ensures that instructions
whose translations read from writes which are “hidden” by some TLBI instruction are ordered
before the completion of that TLBI. This is achieved by the two clauses of obtlbi: the first
clause ensures the translation-before-TLBI ordering is preserved, and the second clause orders
the explicit memory access of any such instruction with the same TLBI as the first clause. To
do this, the model computes the set of writes which are in effect “barriered” by a given TLBI
instruction, by looking at all translations in the execution, and if any translation reads-from a
write which is before a TLBI, we then get TLB_barrier between them. The tcachel and tcache2
relations then simply relate translations which read from coherence-predecessors of any of those
writes with their respective barriering TLBI.

To accurately match up each of the various TLBI instructions with the translations they may
affect, we define a tlb-affects relation which relates TLBI events with the T events they are
relevant to. Its definition uses sets TLBI-VA, TLBI-ASID, TLBI-IPA, TLBI-VMID, and TLBI-ALL for
each of the categories of TLBI instruction. Note that some instructions can fall into multiple
categories, such as TLBI VAE1 which is in TLBI-VA for the specified virtual address, TLBI-ASID, as
the register input contains an ASID to perform the invalidation for, and also TLBI-VMID as the
invalidations only affect translations in the same VM.

We add obtlbi_translate to relate those translations to TLBIs which invalidate the writes
they read from. For Stage 1 translations we can simply order any Stage 1 translation before any
TLBI which would tlb_affect this translation where the translation reads from a write which is
ordered-before than the TLBI. However, for Stage 2 translations this is not sufficient. Recall that
microarchitecturally the TLB could store whole virtual-to-physical mappings, and so a Stage 2
translation-read is only ordered after the TLBIs which remove not only any Stage 2 mappings
but also those that would remove the combined Stage 1 and Stage 2 mappings. For a Stage 2
translation whose previous Stage 1 walk only read from writes newer than the TLBI then the
Stage 2 invalidation is sufficient. But where any of the reads read-from a write older than the
TLBI, a cached virtual-to-physical mapping could exist and Stage 1 invalidation is required, hence
the Stage 2 translation is ordered after the Stage I invalidation.

Translation-table-walk reading from memory: As noted in §3.3, a translation which re-
sults in a translation fault must read from memory or be forwarded from program-order earlier
instructions, and those memory reads behave multi-copy atomically. In general the only time the
model can guarantee that such a memory read happens is when the read results in a translation
fault, since entries that result in a translation fault cannot be stored in the TLB (§3.2). The

5 Model

5.1. Strong model 18

model captures this succinctly by including [T_f];tfr in ob.

In general, a translation-read is ordered after the write which it reads from, as captured by
the inclusion of the trfe edge in ob; this is strong enough to ensure that TLB fills and faulting
memory walks pull values out of the memory system in a coherent way, but still weak enough
to allow other-multi-copy-atomic behaviour such as forwarding.

As discussed in §3.3, a DSB ensures that writes are propagated out to memory. For translations
this amounts to ensuring that a faulting translation cannot read-from something older than a
po-previous DSB-barriered write, as captured by the last edge in tob which says that a tfri edge
from such a faulting translation must not have an interposing DSB.

Note that the absence of the full tfr relation in ob for non-faulting translations intentionally
allows some incoherence, in essence allowing a translation-read to “ignore” a newer write.

Context-changing operations: In general, the sequential semantics takes care of the con-
text, such as current base register and system register state, for us. The ctxob relation simply
ensures that such context-changing operations cannot be taken speculatively, and that context-
synchronization ensures that all po-previous context-changing operations are ordered-before po-
later translations.

Detecting BBM Violations: As discussed in §3.2, we do not model in detail the bounded-
catch-fire semantics that currently architecturally results from a missing break-before-make se-
quence, as that would make it hard to enumerate possible litmus-test executions. Instead,
because what one normally wants to know for litmus tests is that a test does not exhibit a BBM
failure, we conservatively detect the existence of such violations and flag them for the user. This
is achieved through a per-candidate-execute predicate, written in SMT, which looks for a situa-
tion which could be a break-before-make violation. It does this by asserting that there does not
exist a pair of writes which conflict such that there is no interposing break-and-TLBI sequence.
This approach is slightly over-approximate, as it might look for two writes that technically con-
flict even if they (for other reasons) are not used at the same time. This means that while we
support programs that switch from one page table to another, we do not support programs that
garbage collect page-table memory and then repurpose it.

ETS: We discussed the Armv8-A optional ETS feature, providing additional ordering strength
for translations, in §3.3,3.3. The intuition is that the model would have ghost events in the
event an instruction faults, to represent the explicit read or write which would have happened
had the instruction not faulted. The model would then have to compute a special variant of ob
including such dependencies, but without the physical-address-dependent relations such as loc,
rf and co. Then any edge in the version of ob with the ghost events would become an edge in
the real ob but attached to the faulting translation. To capture this, our model produces fault
events which have the correct dependencies (and fault information) and the model orders the
fault event with respect to program-order previous events which would have ordered and place
those into ob. To achieve this, we manually insert all edges from the syntactic subsets (those
edges which do not rely on loc) from bob and dob into a obfault relation. We use this to build
an obETS relation which then orders translations that result in a translation fault after anything
the fault is ordered-after.

An additional complexity here is for thread-local behaviours of TLBI instructions. With ETS
one does not require context synchronization to see the effect of a TLBI thread-locally. Our
obETS covers this with its second clause which orders translations from instructions po-after a
subsequent DSB as happening after any TLBI which affected that translation.

Reclaimation of pagetable memory: There may be cases where the memory being used to
store a translation table may become unreachable by any TTBR and properly cleaned from the
TLBs. In practice this means the memory can now be reclaimed and re-purposed.

7 Isla-based model evaluation 49
5.2. Weak Model

Allowing this is work-in-progress but the model as presented here does not support it and
our break-before-make-violation detection predicate will assume that this is a break-before-make
violation.

5.2 Weak Model

Relaxed memory model design for hardware architectures has to resolve a three-way tension
between providing enough strength for software (forbidding enough behaviours so that code
works as desired without needing excessive synchronisation), weakness for hardware (rendering
desirable microarchitectural optimisations sound), and simplicity. For “user” concurrency, one
has to accommodate the broad space of concurrent code in the wild, which is hard to map, but
systems concurrency is managed by much smaller bodies of code, in more specific ways. This
makes it interesting to explore models which are as weak as possible, subject to the constraints
from system software such as pKVM.

We define such a model by capturing just the requirements we identified from pKVM usage
(§4), expressing them as additional axioms over the Armv8-A base model: coherence over phys-
ical memory; no self-satisfying translations or translations using speculative writes; ‘breaking’
a translation with an invalidation and a broadcast TLBI ensuring that all cores have finished
using that translation before the TLBI returns; writing a new entry to a broken page without TLB
maintenance; and changing translation tables and context without TLB maintenance.

This weak model uses the same candidates and auxiliary definitions as the strong, but instead
of including extra edges in ob we impose new axioms for each of those behaviours. For example,
for the ‘break’ part of Stage 1 break-before-make we have:

empty ([W] ; co ; [W_invalid] ; ob ; [dsb.sy] ; po
; ([TLBI-S1] ; po ; [dsb.syl ; ob ; [CSE] ; instruction-order ; [T]) & tlb_affects

) & trf
as brk2

This forbids the case where a write is read-from by a translation-table-walk when there is an
interposing break and Stage 1 TLB-invalidation sequence, which would ‘hide’ that write from
future translations. Note the ob edges allow the sequence to be split over multiple threads in
the context-switching scheduler case described in §3.3.

Note that the pKVM developers believe that pKVM does not rely on the ETS feature, and
so the weak model does not include ETS.

6 Metatheory: relationships between models

The virtual memory mechanisms are complex in both sequential and concurrent ways, as we
have seen, but they are intended to let system software provide a relatively simple abstraction
to higher-level code. As first steps towards establishing this, and as sanity checks of our models,
we prove three theorems: that for static injectively-mapped address spaces, any execution which
is consistent in the model with translation, erasing translation events gives an execution that is
consistent in the original Armv8-A model without translation; that for any consistent execution
in the original Armv8-A model, there is a corresponding consistent execution in our extended
model with translations; and that our weak model is a sound over-approximation of our full
translation model, i.e., that for any consistent execution in our full translation model, that same
execution is consistent in the weak translation model. Details are in App. C.

7 Isla-based model evaluation

Making relaxed-memory semantics exhaustively executable is essential for exploring their be-
haviour on examples [67, 54, 53, 20, 9, 36, 66, 23, 64, 49, 57]. Handling relaxed virtual memory

8 FExperimental testing of hardware 50

brings several new challenges. First, even just the sequential definition of Armv8-A address trans-
lation, with the page-table walk and its options, is remarkably intricate, defined in thousands
of lines of Arm’s ASL instruction description language. Manually reimplementing a simplified
version would be error-prone and incomplete, so we instead build on our Isla tool [15], which
integrates the full 123,000 line Armv8-A ISA semantics (as defined by Arm in ASL and auto-
matically translated into Sail [14]), with SMT-based tooling to evaluate tests w.r.t. axiomatic
concurrency models. Previously Isla supported only “user” models, expressed in a language
based on relational-algebra similar to the Cat language of Herd [9]. The integration with a full
ISA semantics led us to raise several of the questions of §3, e.g. relating to system registers and
mixed-size effects, which would not arise in a more idealised setting. The second main challenge
is the combinatorics.

Previous litmus tests typically involved only a few abstract memory locations and events,
but even simple virtual memory tests require 30kB of page tables, each “user” memory access
might have 24 or more page-table accesses, and each 64-bit descriptor may be represented by a
symbolic value representing all possible states that descriptor can be in. To avoid overwhelming
the SMT solver during symbolic execution, the formula representing each symbolic descriptor is
created dynamically when read. When encoding the final SMT problem that decides whether a
candidate execution is allowed, we ensure that only the parts of the page tables actually used
by that candidate execution are included. We also implemented a model-specific optimization
that removes irrelevant translation events which cannot affect the result of the test, improving
performance by a factor of 13 on average, and up to 90 times for some tests. Third, we had
to provide a convenient way to express the page table configuration for each test, with the
declarative language of which we saw a small part on the left-hand side of the §4 test.

Initial State

| po |
A good user interface is essential. Above, we show an Isla-generated execution for a WRC test
like that of §3.3, showing how uninteresting translation events can be suppressed in the output
to avoid overwhelming noise.

The main result is that, in the strong model, all 119 litmus tests and 14 pKVM tests are
allowed or forbidden as intended, based on our discussion with Arm of their architectural intent,
except two pKVM tests which time out. Additionally, we tested that the weak model never
forbids any test allowed by the strong model. The tool performance is eminently usable in
practice: most tests take around 1 minute, and the full set of litmus tests can be run in less
than 2 hours CPU time, on a 36-core Intel Xeon Gold 6240. Details are in App. D.

A further key property is that for ordinary relaxed-memory litmus tests which do not involve
virtual memory, our model should give the same results as the published Armv8-A [26, 49, 13|
axiomatic memory model. To validate this (and our tools) we test our strong model on an
existing library of tests, comparing to reference results from Herd and RMEM [31]. We ran an
additional 1927 such litmus tests, which all returned the expected results.

8 Experimental testing of hardware

Experimental investigation of hardware implementation behaviour, and experimental validation
of models with respect to that, is one important input to the development of practically relevant
relaxed memory semantics [24, 54, 3, 8]. However, almost all that work has focussed on “user”

9 Related work 51

concurrency, with litmus tests that could be run as user processes under a normal OS, and that
could easily iterate tests over arrays. Experimental testing of virtual memory behaviour is consid-
erably more challenging, as one needs to run code at higher privilege levels, including exception
handlers, and manipulate the page tables that a normal OS and/or hypervisor would be depend-
ing on. When we started this work, that was not supported by litmus, so we have developed
a litmus-like test harness for running virtual-memory tests bare-metal or in KVM. Currently it
runs Stage 1 tests only; for Stage 2 tests some adaption to run code at EL2 is still needed. The
harness can be found at https://github.com/rems-project/system-litmus-harness. At present
this and Isla use different test formats, so we have some tests manually written in both.

We ran tests on three devices: a Raspberry Pi 3 (Arm A53), a Raspberry Pi4 (Arm A72), and
an AWS még.metal (AWS Graviton2, claiming to be an A72). Our experimental data suggests
that all are multi-copy atomic with respect to translation-table-walks, respect coherence over
physical locations, correctly perform TLB maintenance, and do not disagree with the tests
presented here except for one behaviour: we sometimes observe anomalous results with respect
to writes not being made globally visible to translation-table-walks (a DSB not sufficing); this is
currently under discussion with Arm. Full results are in App. D.

Further testing on other platforms would be desirable, but our emphasis in this work is
principally on exploring the design space and capturing the architectural intent, and the main
validation is from discussion with the Arm Chief Architect, who ultimately is responsible for
determining what the architecture is. In this context, experimental data serves mainly to provide
reassurance that some envisaged architecture strength is not invalidated by extant hardware
implementations.

9 Related work

There is extensive previous work on “user” relaxed-memory semantics of modern architectures,
but very little extending this to cover systems aspects such as virtual memory. We build on
the approaches established in “user” models for x86, IBM Power, Arm, and RISC-V, combining
executable-as-test-oracle models, discussion with architects, and experimental testing [54, 5, 7,
47,55, 53, 21, 52, 46, 9, 36, 31, 32, 49, 65].

Arm publish a machine-readable version of their Armv8-A relaxed memory model [45], in
the Cat language of the Herd7 tool [6], but that model does not currently cover the relaxed
virtual-memory semantics. Independent work in progress by Alglave et al. is similarly aiming to
characterise this, and to update Arm’s published model in due course, but with complementary
scope to the current paper: including hardware updates of access and dirty bits, but without
integration with the full ASL/Sail instruction semantics and its multiple levels and stages of
translation. Both have been informed by discussion with senior Arm staff, and one would hope
to synthesise the understanding in future. Hossain et al. [39] develop an “estimated” model
for virtual memory in x86 (which has a much less relaxed base semantics) in a broadly similar
axiomatic style. Tao et al. [62] axiomatise six conditions for weak data-race-freedom that should
be satisfied by Armv8-A kernel code that uses virtual memory in simple ways, and an extension
of Promising-Arm [50] that effectively builds in these conditions; they extend the sequential
verification of the SeKVM hypervisor by Li et al. [43] to show it satisfies these conditions.
The paper does not attempt to characterise the exact guarantees provided by the Armv8-A
architecture, or discuss the issues of our §3. A foundational model such as our §5 would let one
ground such results on the actual architecture. Simner et al. [57] study relaxed instruction-fetch
semantics.

Several works give non-relaxed-memory semantics for Arm or x86 address translation, more
or less simplified and with or without TLBs: Bauereiss [14]|, Goel et al. [34, 35|, Syeda and
Klein [58, 60, 59, 61|, Degenbaev [29] (used for verification of a hypervisor shadow pagetable
implementation [42, 28, 11, 10]), Barthe et al. [19, 17, 18, 16|, Tews et al. [63], Kolanski [41],

https://github.com/rems-project/system-litmus-harness

10 Acknowledgments 59

and Guanciale et al. [38].

10 Acknowledgments

We thank Arm Ltd. for its support of Simner’s PhD and the wider project of which this is
part. We thank the Google pKVM development team, especially Will Deacon, Quentin Perret,
Andrew Scull, Andrew Walbran, and Serban Constantinescu, for discussions on pKVM, and the
Google Project Oak team, Ben Laurie, Hong-Seok Kim, and Sarah de Haas, for their support.
We thank Luc Maranget for comments on a draft.

This work was partially funded by an Arm/EPSRC iCASE PhD studentship (Simner), Arm
Limited, Google, ERC Advanced Grant (AdG) 789108 ELVER, and the UK Government Indus-
trial Strategy Challenge Fund (ISCF) under the Digital Security by Design (DSbD) Programme,
to deliver a DSbDtech enabled digital platform (grant 105694).

A VMSA litmus tests 53

A VMSA litmus tests

This appendix gives the main Armv8-A virtual-memory-systems-architecture litmus tests that
we have developed, systematically exploring the design space.

It is structured into subsections, with each building upon the tests of the previous and
expanding the architectural scope of the tests. Each subsection is divided into subsubsections
for each shape. Each shape may have many variations, e.g. with different choices of dependencies
or barriers or cache maintenance instructions. §A.1 explains the test format, then subsequent
sections describe test shapes in detail:

8A.2 explores coherence over physical and virtual addresses.

8§A.3 gives tests which create new simple mappings for previously unused pages.
§A.4 considers unmapping in-use pages and the TLB invalidation requirements.
§A.5 considers extended questions about the operation of the TLBI instruction.

§A.6 gives tests which swap one translation for another, and the required break-before-make
sequence.

§A.7 considers ordering within a single translation-table walk.
§A.8 considers for multi-copy atomicity.

§A.9 gives address-space tests.

Throughout, unless otherwise stated, the tests apply to both Stage 1 and Stage 2 translations,
and for all exception levels, and memory is by default normal and cacheable.

The Isla-generated results can be found alongside each test, but we also include a table in
App. D with all results.

A VMSA litmus tests

54
A.1. Test Format

A.1 Test Format
In this document the tests are given in a consistent format. Each test is given in three parts:

e The test listing.
e Execution witness diagram.

e Isla output.

A.1.1 Naming Convention

Throughout this document we will use a standard convention for names.
Each test name is of the following format:

TestName ::= ExtendedShape ("+" ThreadEdges)+
ThreadEdges ::= EDGE | ThreadEdges "-" ThreadEdges
ExtendedShape ::= SHAPE ("." ["Tf"|"T"|"R"|"Rpte"])* (".EL1")? (".inv")?

For tests that are completely new shapes, those shapes have their own names:
e ROT (“Re-ordered translations”, §A.7.2.1)

e RBS (“Read broken secret”, §A.4.1.6)

e BBM (“Break-before-make”, §A.6.1.1)

e ctc
Otherwise the underlying shape is just one of the original ‘data memory’ shapes:

e MP
e SB
e |LB

e etc

To produce the full name we take the shape and expand it out to include an extra R for each
read, for example MP becomes MP.RR as there are two reads. The Rs represent the loads that
happen with each thread appearing as a block with the Rs within the block following program
order. Then each R can be replaced with either, T (a successful translation), T_f (a translation
which results in a fault), a Rpte (a load of the pagetable entry itself) or remain a R (a data
memory load)

For example, MP.RpteT.inv+dsb-isb represents an MP-shaped test where the first load on the
receiver thread is replaced with a load of the pagetable and the second read is a translation
(which succeeds) reading from the (initially invalid) initial state, where there is a DSB SY ; ISB
between the two instructions on the receiving thread. See MP.RpteT.inv+dsb-isb for the full
test and diagram

A.1.2 Test Listing
The test listing is comprised of 4 main sections:

e memory and page-table initialisation code (on the left-hand-side).
e per-thread initial state (in the “Initial state” section on the right-hand-side).
e thread sections (labelled ‘Thread 0’,Thread 1’,Thread 0 EL1 handler’, etc).

e final state condition.

A VMSA litmus tests 55
A.1. Test Format

A.1.2.1 Pagetable setup The core of the pagetable setup is a small DSL, whose syntax is
given by the grammar in Fig. 18.

The setup is a sequence of constraints. Initially the table is unconstrained, except for some
initial mappings (each code section is identity mapped executable, etc).

Constraints can create new physical, intermediate-physical or virtual addresses to be used in
the program, and set initial (and other possible) states of their mappings. The pagetable setup
code must describe not only the initial state of all translation tables, but also any intermediate
or final state that the translation tables could be in during execution of the test.

This constraint language comes with some built-in functions:

- raw(N) is a raw 64-bit number, useful as right-hand-side of |-> relations.
- table(addr) is a mapping for a whole table, useful as the right-hand-side of a | -> relation.

- va_to_pa casts a virtual address to a physical one.
See also pa_to_va, ipa_to_va, ipa_to_pa, etc.

A.1.2.2 Initial and final state The initial state box is a key-value store, mapping the
per-thread registers to initial values. These values are set just after machine reset.

The final state box contains a single expression which asserts the expected values of registers
in the relaxed outcome. If the final state is allowed, then the test will have exhibited relaxed
behaviours.

Both the final and initial state boxes use a simplified expression language which is common
to both, and its full simplified syntax is given by the grammar in Fig. 19.

This expression language comes with some built-in functions, which make it easier to write
the tests:

extz(v,bits) zero-extends v to be bits wide.

- ttbr(id=id, base=base) produces a correctly-packed 64-bit number suitable as a TTBRx_ELy
value, with base and the given asid/vmid.

- pte3(IA,PTE BASE) returns the address of the level 3 descriptor used to translate the virtual
or intermediate-physical IA starting from a table rooted at PTE BASE.
There are also pte2, ptel and pte@ variants.

- desc3(IA, PTE BASE) which is roughly *pte3(IA, PTE BASE), that is, the actual 64-bit de-
scriptor found at the address given by the pteN(...).

- raw(N) is a raw 64-bit number, useful as right-hand-side of | -> relations.

- mkdesc3(0a=0A) constructs a fresh level3 block descriptor with default permissions and
output address 0A.
(See also mkdesc2, mkdescl).

- mkdesc2(table=ADDR) constructs a fresh level2 table descriptor with default permissions
and table address ADDR.
(See also mkdescl, mkdescO).

- page(addr) is the page the address is found in, defined as addr right-shifted 12 bits.

- asid(id) is a 64-bit value suitable for use in TLBI-by-ASID instructions, defined to be id
left-shifted 48 bits.

A VMSA litmus tests
A.1. Test Format

Page

Cons

Arg ::

Stag
Leve

Alig

Attr
Attr

With

TableSetup :

traint ::=
"option" n
Alignment?
Alignment?
Alignment?
"identity"
Expr "|->"
Expr "?7->"
"x" Expr "
"assert" E
Stage name
Stage name

Expr "&&"
Expr "||"
Expr "&" E
Expr "|" E
Expr "~" E
Expr "=="
Expr "!="
"~" Expr
name " (" (
hex | nat
"(" Expr "

name "=" E
Expr

e ::= "slt
1 ::= "at"

nment ::

Field ::
s 1:i=
"default"
"code"

"[" AttrFi

Attrs ::=
"with" Att
"with" Att

:= Constraint (";" Constraint)=x
ame "=" ("true" | "false") # enable/disable option
"virtual" name+ # va/ipa/pa with optional alignment

"intermediate" name+
"physical" name+

Expr WithAttrs? Level? identity mapping

#

Expr WithAttrs? Level? # mapsto

Expr WithAttrs? Level? # maybe mapsto
=" Expr # deref equality
Xpr

Expr?

Expr? "{" PageTableSetup "}"

Expr # boolean AND

Expr # boolean OR
Xpr # bitwise AND
Xxpr # bitwise OR
Xpr # bitwise XOR

Expr # equality

Expr # inequality

bitwise negation

Arg ("," Arg)x)? ")" # call
| bin
)II
Xpr # keyword argument
able" | "s2table"
"level" nat
"aligned" u64
name "=" (hex | bin)
eld ("," AttrField)x "1"

rs # with S1
rs "and" Attrs # with S1 and S2

Figure 18: Pagetable Setup DSL — Simplified Grammar

56

A VMSA litmus tests

57
A.1. Test Format

Loc "=" Expr

label ":" # code label
bin | hex | nat

name "(" (Arg ("," Arg)x*)? ")"

n (n Expr n) n
"true" | "false"

Expr ("&" Expr)+

I

I

|

I

| II~II Expr
I

I

| Expr ("|" Expr)+
I

Expr "->" Expr
Loc ::=
nat ":" regname # register
| "x" name # deref
Arg ::=
name "=" Expr
| Expr

Figure 19: Litmus Test — Simplified Expression Grammar

A.1.3 Execution witness

The test is run by Isla with a model with no axioms to allow all behaviours. Executions that
satisfy the final state then have graphs produced (and if multiple, the ‘interesting’ execution is
hand-picked for display).

The diagrams contain an ‘initial state’ node which represents all initial writes in the system
(which may or may not be writes of zero). Threads are then laid out in a row, with instructions
within each Thread box placed in a single column with po (‘program-order’) going top to bottom.
Multiple events within the same instruction are then aligned horizontally within the same row,
where possible.

Translates are highlighted (in blue) and interesting relations (iio, po, co, rf, trf, fr, tfr,
same-va-page, and same-ipa-page) are shown (and where the relation is transitively closed, we
display the transitive reduction of that relation to reduce clutter). Labels for po are elided to
reduce clutter.

A.1.4 Isla output

The test is run in Isla, using the strong model (see App. B).
The generated Isla output that is produced is cut down to just the final line of output, which
contains five key pieces of information:

e The test name
e Model outcome (allowed or forbidden)
e The total number of executions, and how many were allowed.

e The total Isla execution time for the test.

A VMSA litmus tests
58
A.1. Test Format

A.1.5 Example

Consider CoTW1.inv. It has one thread (Thread 0) and one other code section (Thread 0’s EL1
exception vector). The initial state says that the thread starts from ELO (from the PSTATEEL
register), with R1 (aka X1) containing the 64-bit virtual address named x, R2 containing the 64-bit
level 3 descriptor which the initial pagetable setup uses to translate y, R3 containing the 64-bit
virtual address of the location that contains the level 3 descriptor used in translating x, and
finally that the thread’s EL1 vector base address (VBAR) is at 0x1000.

The pagetable setup has two virtual addresses (x and y), with one physical address (pal).
Initially x is unmapped, and y maps to pal where pal is initially 1. The page containing the
vector table (starting at 0x1000) is identity mapped as executable.

During execution of the test it is expected that at some point x may map to pal, and so
there is a x ?-> pal constraint. Without this constraint Isla will not generate any executions
that involve translating x resulting in a translation to pal. (In fact, in this instance Isla will fail
on symbolic evaluation of STR X2, [X3] as the write is unsatisfiable.)

The exception handler of interest is located at 0x1400, this is at VBAR+0x400. An offset of
0x400 represents a synchronous exception from a lower exception level. The handler overwrites
X0 with 0, to mark that an exception has occured, and then does an exception-return to the
next-instruction-address (i.e. ELR+4).

The final state asserts that 0:R0=1, that is that seeing X0 being 1 would imply a relaxed
execution of the above test. See the CoTWl1.inv section for an explanation of which relaxed
behaviour(s) this outcome corresponds to.

The diagram then shows such an execution.

Finally we see that the test is forbidden by our strong model, that Isla generates 2 candidate
executions for this test (and neither are allowed), and that it took 38589 miliseconds for Isla to
run the test (just under 40 seconds).

AArch64 CoTWl.inv

Initial state:
PSTATE.EL=0b00
PSTATE.SP=0b0
Page table setup: Ri=x
R2=desc3(y,page_table_base)
physical pal; R3=pte3(x,page_table_base)

x— invalid; VBAR_EL1=0x1000

X ?7-> pal;
y— pal; Thread 0
xpal = 1;
identity 0x1000 with code; LDR X0, [X1]
STR X2, [X3]
threadO ell handler
0x1400:
MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 0:Re=1

A VMSA litmus tests
A.1. Test Format

Initial State

777

al: Tsl: I3pte(X) “0 a2: Idr x0, [x1]: R pal = Ox1

””””””””””””””””””””””” t-ff‘ce\ ””””” / ”””””””””””””””””””””””””
b: str x2, [x3]: W s1:I13pte(x) = mkdesc(addr=page(pal))

Model Result

Base no result for CoTW1.inv
ETS coTwl.inv forbidden (0 of 2) 2714ms

A VMSA litmus tests

A.2. Aliasing 60

A.2 Aliasing
A.2.1 Coherence

Arm’s notion of coherence gives a fixed total order per location of all writes to that location.
With virtual memory, that becomes a total order per physical address location.
CoRR-shaped tests

A.2.1.1 Test: CoRRO0.alias+po forbid

This is the classic coherence shape. Here, we ask whether two reads with different VAs but
which map to the same PA are allowed to re-order with respect to each other if they read from
different writes. For Arm, they are not, as coherence is with respect to physical addresses.

A Arch64 CoRRO0.alias+po

Initial state:
0:RO=0b1
0:R1=x
1:PSTATE.EL=0b00
Page table | | oorate. sp=ob
setup: 1:R1=x
physical pal; 1:R3=y
X pal;
yrpal; Thread 0
*pal = 0;
STR X0, [X1]
Thread 1
LDR X0, [X1]
LDR X2, [X3]
Final state: 1:Re=1 & 1:R2=0

Initial State

co |
Thread 0

-—

‘ a: str x0, [x1]: W pal = Ox1 : By

iThread 1 ;
rf i ‘ 3

a: ldr x0, [x1]: R pal = Ox1

~Sa y

b: ldr x2, [x3]: Rpal =0x0 |

Model Result
Base CoRRO.alias+po forbidden (0 of 1) 2512ms
ETS CoRRO.alias+po forbidden (0 of 1) 1420ms

A VMSA litmus tests

61

A.2. Aliasing

A.2.1.2 Test: CoRR2.alias+po forbid
This is another standard variant of CoRR, adapted to physical memory.

A Arch64 CoRR2.alias+po

Initial state:
:RO=0b01

:R1=u

:RO=0b10

:R1=v
:PSTATE.EL=0b00O
:PSTATE. SP=0b0
:R1=w

:R3=x
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R3=z

Page table
setup:

physical pal;

u— pal;

v — pal;

w— pal;

X — pal;

y > pal;

z+—> pal; Thread 0
*pal = 0;

STR X0, [X1]
Thread 1
STR X0, [X1]
Thread 2
LDR X0, [X1]
LDR X2, [X3]
Thread 3
LDR X0, [X1]
LDR X2, [X3]
Final state: 2:re=1 & 2:R2=2 & 3:R0=2 & 3:R2=1

W W W wWw N N NN P 2 O o

___Initial State

o

iThread 0 G __——iThread 1~
i a: str x0, [x1]: W pal = Ox1 I:CO:{ a: str x0, [x1]: W pal = 0x2

===

iThread 2 iThread 3
_] a: Idr x0, [x1]: R pal = Ox1 \ ; b: Idr x0, [x1]: R pal = 0x2

— r

l;:rldr x2, [x3]: R pal = O;Z

771 c: ldr x2, [x3]: R pal = 0x1 ‘

Model Result
Base CoRR2.alias+po forbidden (0 of 1) 1934ms

ETS CoRR2.alias+po forbidden (0 of 1) 2260ms

A VMSA litmus tests 69

A.2. Aliasing

A.2.1.3 Test: CoWR.alias forbid
If one writes to one VA, and reads with another that is mapped to the same PA, must the read

read-from the program-order preceding write of the same PA, or something newer, regardless of
the second VA? For Armv8-A, yes.

A Arch64 CoWR.alias

Initial
state:
RO=0x1
Page table
R1=x
setup: R3=y
physical pal;
x> pal; Thread 0
y — pal;
+pal = 0; STR X0, [X1]
LDR X2, [X3]
Final state: o:r2=0

Initial State

Threado AN '

a: str x0, [x1]: W pal = 0x1
po-loc

b: Idr x2, [x3]: R pal = 0x0

Model Result
Base CowR.alias forbidden (0 of 1) 977ms
ETS CoWR.alias forbidden (0@ of 1) 967ms

A VMSA litmus tests 63
A.2. Aliasing

A.2.2 Write-Forwarding

A.2.2.1 Test: PPOCA.alias allow

Can a load from one virtual address have its value forwarded from a store to distinct VA
that is mapped to the same PA, on a speculative branch?

Our model says yes.

A Arch64 PPOCA .alias

Initial state:
0:RO=0x1
0:R1=z
0:R2=0x1
0:R3=y
Page table setup: 1:R1=y
physical pal pa2 pa3; 1:R2=0x1
Wi pal; 1:R3=x
X+ pal; 1:R5=w
y > paz; 1:R7=z
z > pa3;
*pal = 0; Thread 0
*pa2 = 0;
pa3 = 0; STR X0, [X1]
DMB SY
STR X2, [X3]
Thread 1
LDR X0, [X1]
CBNZ X0,L0
LO:
STR X2, [X3]
LDR X4,[X5]
EOR X8,X4,X4
LDR X6, [X7,X8]
Final state: 1:Re=1 & 1:R4=1 & 1:R6=0
co
ThreadO ~ ———— -
‘ a: str x0, [x1]: W pa3 = 0x1 ‘// i ‘ c: Idr x0, [x1]: R pa2 = Ox1 ‘
co_~ co\ —— 7 ctrl |
) : - 3
b:dmbsy | P ff ‘ d str x2, [x3]: W pal = 0x1 >\
//// ,/*’//T/ : rf !
v | ctrl |
c: strx2, [x3]: W pa2 = Ox1 ‘ ‘ e: ldr x4, [x5]: R pal = Ox1 /
b i :\\\\ ctr
| N addr 1
\ f: Idr x6, [x7, x8]: R pa3 = 0x0 \
Model Result

Base PPOCA.alias allowed (1 of 2) 4744ms
ETS PPOCA.alias allowed (1 of 2) 4932ms

A VMSA litmus tests
A.2. Aliasing

A.2.3 Out-of-order reads

A.2.3.1 Test: RSW.alias allow
If two reads from different VAs which translate to the same PA read from the same write,
they can be re-ordered with respect to program-order.

A Arch64 RSW.alias

Page table setup:

physical pal pa2 pa3;
w+— pal;
X — pal;
y — paz;
z +— pa3;
*pal = 0;
*pa2 = 0;
*pa3 = 0;

Initial state:
:PSTATE.EL=0b00O
:PSTATE.SP=0b0
:RO=0b1

:R1=z

:R2=0b1

:R3=y
:PSTATE.EL=0b00O
:PSTATE.SP=0b0
:R1l=y

:R4=w

1R6=Xx

:R9=z

H R R B R R ® 0 0 B 0 O

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X2,X0,X0
LDR X3, [X4,X2]
LDR X5, [X6]
EOR X7,X5,X5
LDR X8, [X9,X7]

Final state: 1:re=1 & 1:R8=0

-

iThread 0

a: str x0, [x1]: W pa3 - 0x1

P

>
co |

y S
b:dmbsy |
// _

c: Idr x0, [x1]: R pa2 = 0x1

e

5

c: strx2, [x3]: W pa2 = 0x1

Model Result

’ e: Idr x5, [x6]

: R pal = 0x0

N

.

| f.1drx8, [x9, x71: R pa3 = 0x0

64

rfrf] d: Idr x3, [x4, x2]: Rpal = 0x0 | |

Base Rsw.alias allowed (1 of 1) 2765ms
ETS RSW.alias allowed (1 of 1) 2609ms

A VMSA litmus tests
A.2. Aliasing

A.2.3.2 Test: RDW.alias forbid
If two loads of different VAs which translate to the same PA read from different writes, then

can they be re-ordered?
Our model says no.

A Arch64 RDW.alias

Page table setup:

physical pal pa2 pa3;
w— pal;

X +— pal;

y — paz2;

z +—> pa3;

*pal = 0;

*pa2 = 0;

*pa3 = 0;

Initial state:
:PSTATE . EL=0b00
:PSTATE . SP=0b0
:RO=0b1

:R1=z

:R2=0b1

:R3=y
:PSTATE.EL=0b00O
:PSTATE . SP=0b0
:R1l=y

:R4=w

:R6=x

:R9=z

:RO=0b1

:R1=x

N N B B P B B B 0 0 0O 0 o ©

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X2,X0,X0
LDR X3, [X4,X2]
LDR X5, [X6]
EOR X7,X5,X5
LDR X8, [X9,X7]

Thread 2

STR X0, [X1]

Final state: 1:Re=1 & 1:R3=0 & 1:R5=1 & 1:R8=0

co —

Initial State

co_

65

iThread 0 R
: a: str x0, [x1]: W pa3 = 0x1 ‘;

b
b: dmb sy //’/) - T

/// :
c: str x2, [x3]: W pa2 = 0x1 ‘}

~ Thread T
[cldrx0,[x1l: Rpa2 = 0x1 |\

[dildrx3, [x4, x2]: R pal = 0x0

[e |drx5,[x6]:Rpaf/=/6x1 |,

—f]

P
_

Pe

[Fldrx8, [x9, x7]: R pa3 = 0x0

Model Result
Base RDW.alias forbidden (0 of 1) 2972ms
ETS Row.alias forbidden (0 of 1) 3317ms

~Thread 2,

f: str x0, [x1]: W pal = Ox1

A VMSA litmus tests

A2.

Aliasing

A.2.3.3 Test: CoWW.alias forbid

Should the coherence-order of writes respect program-order in the same thread even if they

are to different VAs?

Our model says yes, and forbids the following CoWW .alias test.
A Arch64 CoWW.alias

Page table
setup:

physical pal;
X — pal;
y — pal;
*pal = 0;

Initial

state:
PSTATE.EL=0b00
PSTATE. SP=0b0
RO=0b01

R1=x

R2=0b10

R3=y

Thread 0

STR X0, [X1]
STR X2, [X3]

Final state: x=1

Initial State

a: str x0, [x1]: W pal

CcO

b: str x2, [x3]: W pal

Model

Result

Base CoWw.alias forbidden (0 of 1) 822ms
ETS coww.alias forbidden (6 of 1) 849ms

66

A VMSA litmus tests
A.2. Aliasing

A.2.3.4 Test: MP.alias3-}rfi-data-+tdmb allow
This shows thread-local forwarding of a write to a read with distinct VA but the same PA,

in a potentially non-speculative path.

A Arch64 MP .alias3-+rfi—data+dmb

Initial state:
0:R0O=0x1
0:R1=x
0:R3=z
P table setup:
age table setup 0:R5y
physical pal pa2; | 1:R1=y
X pal; 1:R3=x
y — paz;
zpals Thread 0
*pal = 0;
*pa2 = 0; STR X0, [X1]
LDR X2, [X3]
STR X2, [X5]
Thread 1
LDR X0, [X1]
DMB SY
LDR X2, [X3]
Final state: 1:Re=1 & 1:R2=0
Initial State
,,, co__—
iThread 0 - i /iThread 1
| a: str x0, [x1]: W pal = Ox1 ‘5 / g’ c: Idr x0, [x1]: R pa2 = 0x1
r f // .\\ B g
' ; Lo ¢ <§?f: \
] b: Idr x2,d[x3]: Rpal=0x1 et N d: dmb sy
ata _— | i \\
. - . : N
| A 4 _— a4 A A
’ C: str x2, [x5]: W pa2 = 0x1 ’ e: Idr x2, [x3]: R pal = 0x0
Model Result
Base MP.alias3+rfi-data+dmb allowed (1 of 1) 1431ms
ETS

MP.alias3+rfi-data+dmb allowed (1 of 1) 1483ms

67

A VMSA litmus tests 63
A.3. Writing new entries

A.3 Writing new entries
A.3.1 Translation tables as data memory

Writes to the translation tables are treated as completely normal writes to memory as far as
normal reads are concerned, like any other location: they can be re-ordered, cached, and take
part in coherence as far as their memory attributes allow. We assume here that all reads and
writes are to ‘normal’ cacheable memory.

A.3.1.1 Test: CoWR.inv forbid

Writing a new entry to the page-table then loading the location again performs a normal
data memory read.

We do not adapt all of the standard “user” data memory tests here with translation tables
as memory locations. Instead, we just give one representative co-shaped example.

AArch64 CoWR.inv

Initial

state:
PSTATE.SP=0b0

RO=desc3(y,page_tablelbase)
Page table

setup:

R1l=pte3(x,page_table_base)
R3=pte3(x,page_table_base)

physical pal; | \pap £l 1-0x1000

X —» invalid;

?_ .
x 7-> pal; Thread 0
y — pal;
STR X0, [X1]
LDR X2, [X3]

Final state: 0:rR2=0

Initial State > 1

Model Result
Base CoWR.inv forbidden (0 of 1) 825ms

ETS CoWR.inv forbidden (0 of 1) 1104ms

A VMSA litmus tests 69
A.3. Writing new entries

A.3.2 Making a new entry

If a VA is currently unmapped (and that has been fully synchronized with sufficient TLBI and
barrier instructions), then, to produce a new virtual-to-physical mapping, all that is needed is
to simply write to the physical location that contains the invalid entry for that VA.

To ensure that the new entry is seen by the same processor, the pipeline must be flushed
with an ISB or other context-synchronizing event. Without this, the processor can re-order (or
perhaps even speculatively perform) the translation.

A VMSA litmus tests

A.3. Writing new entries 70

CoWTf-shaped tests

A.3.2.1 Test: CoWTf.inv+po allow

If a thread writes to a page table entry initially containing an invalid descriptor, and the
translation of the address of the next instruction uses the page table entry, then the translate is
allowed to see the old, invalid descriptor.

To detect this, we install a handler for synchronous aborts which writes @ to X2 before
incrementing the ELR to the next instruction address and performing an exception-return.

If the final state sees X2=1, then we know the load read-from the new physical location, but
if it saw X2=0, then it must have been caused by a translation-fault.

The role of y in this litmus test is to make it possible to succinctly describe the new descriptor

for x.
AArch64 CoWTf.inv+po
Initial state:
PSTATE. SP=0b0
RO=desc3(y,page_table_base)
Page table setup: Rl=pte3(x,page_table_base)
physical pal; e
x5 invalid; VBAR_EL1=0x1000
X ?7-> pal;
y — pal; Thread 0
*pal = 1; _ STR X0, [X1]
identity 0x1000 with code; LDR X2, [X3]
threadO ell handler
0x1400:
MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET
Final state: 0:rR2=0
rf
— ~Initial State
/////
Thfegdo ¢«
L (a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal))
L\ v
I s [tr
bl: T s1:I13pte(x) it
Model Result

Base CoWTf.inv+po allowed (1 of 2) 4112ms
ETS CoWTf.inv+po allowed (1 of 2) 4160ms

A VMSA litmus tests 7
A.3. Writing new entries
A.3.2.2 Test: CoWTf.inv+dsb-isb forbid

If there is a DSB; ISB interposed in between the overwriting of the invalid descriptor with
the valid descriptor and the translation, then the translation is required to see a write no older
than that of the valid descriptor, as the DSB; ISB causes a pipeline flush.

A Arch64 CoWTf.inv+dsb—isb

Initial state:
PSTATE. SP=0b0

RO=desc3(y,page_table_base)

Page table setup: R1=pte3(x,page_table_base)
physical pal; R3=x
X invalid: VBAR_EL1=0x1000
X ?7-> pal;
y > pal; Thread 0
*pal = 1; STR X0, [X1]
identity 0x1000 with code; DSB SY
ISB
LDR X2, [X3]
threadO ell handler
0x1400:
MOV X2,#0

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final state: 0:rR2=0

a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal))
{ P4
/// y
/| b:dsb sy
o tfr /
I
c: isb

dl: T sl:I13pte(x) d2: Idr x2, [x3]: Fault

A VMSA litmus tests
A.3. Writing new entries

Model Result

Base CoWTf.inv+dsb-isb forbidden (0 of 2) 3024ms
ETS CoWTf.inv+dsb-isb forbidden (0 of 2) 2475ms

72

A VMSA litmus tests

A.3. Writing new entries 3

A.3.3 Creating a new entry for another core

If two CPUs are using the same (or overlapping) translation tables, then, necessarily, writes to
the translation table by one CPU can be visible to the other.

A VMSA litmus tests
A.3. Writing new entries

A.3.3.1 Test: S.T+dmb-+po forbid
In this S-shaped test, Thread 0 writes some data and then gives Thread 1 a new mapping.
If Thread 1 sees the mapping, then the program-order-later store must wait for the translation

to finish before propagating to memory.

A Arch64 S. T+dmb+po

Page table setup:

physical pal pa2;
X — pal;

y — invalid;
y ?-> paz;

*pal = 0;
*pa2 = 1;
identity 0x1000 with

code;

Initial state:
:RO=0x1

:R1=x
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R2=0x2

:R3=x
:VBAR_EL1=0x1000

I R e e N = = < <]

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
STR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & x=1

74

{Thread 0

Initial State >
— <o

Thread 1 ~

fcl: Tsl:iBptely) [msf c2:1drx0, [x1]: R pa2 = 0x1

] d: str x2, [x3]: W pal = Ox2

‘ c: str x2, [x3]: W s1:I3pte(y) = mkdesc(addr=page(pa2))

Model Result
Base S.T+dmb+po forbidden (0 of 2) 6152ms
ETS

S.T+dmb+po forbidden (0 of 2) 4485ms

A VMSA litmus tests
A.3. Writing new entries

MP.RTf.inv-shaped tests

A.3.3.2 Test: MP.RTf.inv+dmb-+dsb-isb forbid
Note that Thread 0 only has a DMB SY; in fact, any ordered-before relation here would suffice.
Thread 1 requires the pipeline flush, as described above.

A Arch64 MP.RTf.inv+dmb-+-dsb—isb

X — invalid;
X ?7-> pal;
z+— pal;
*pal = 1;

y — paz2;

Initial state:
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)

Page table setup:

physical pal pa2;

identity 0x1000 with code;

:R2=0b1

:R3=y
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x100

[S I S R S R ST © B o B B o)

0

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:
MOV X2,#0

ADD X13,X13,#4

ERET

MRS X13,ELR_EL1

MSR ELR_EL1,X13

Final state: 1:Re=1 & 1:R2=0

" Initial State

75

‘ c: Idr x0, [x1]: R pa2 = 0x1

iThread g - . Thread 1
: a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) ‘
_ N
b: dmb sy co M- F

/,f:rf:if,,,,\,tf,r,t

_—

c: str x2, [x3]: W pa2 =0x1

‘4 \
f1: T s1:13pte(x) h(ﬁ f2: 1dr x2, [x3]: Fault

Model Result
Base MP.RTf.inv+dmb+dsb-isb forbidden (0 of 2) 5345ms
ETS MP.RTf.inv+dmb+dsb-isb forbidden (0 of 2) 3982ms

A VMSA litmus tests 76
A.3. Writing new entries
A.3.3.3 Test: MP.RTf.inv+dmbs allow (forbid with ETS)

The DSB; ISB is required for the base architecture, as illustrated by the this test.

However, if the implementation has the ETS optional feature (“Enhanced Translation Syn-
chronization”), then this test is forbidden. This is because ETS ensures that a translation-table-
walk which results in a translation-fault (that is, one that reads an invalid entry) is ordered-after
any memory event which would be ordered-before the read/write of any load/store (as appro-
priate) in the place of the instruction which generated the translation-fault.

A Arch64 MP.RTf.inv+dmbs

Initial state:

:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+— pal;

*pal = 1; Thread 0

y — pa2; STR X0, [X1]
identity 0x1000 with code; | DMB ST

STR X2, [X3]
Thread 1

LDR X0, [X1]

DMB SY

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

[S SR S B S o B © B © B)

_ Initial State

= \\\Thread i

iThread 0 P——
- [arstrx0, [x1): W sLii3pte(x) = mkdesc(addr=page(pal)) |, [cildrxo, [x1]: R pa2 = 0x1

fr D\
- ///t _ _ | |

e - N \
c: str x2, [x3]: W pa2 = 0x1 el: T s1:13pte(x) hoﬂ e2: Idr x2, [x3]: Fault

_—

Model Result
Base MP.RTf.inv+dmbs allowed (1 of 2) 5896ms
ETS Mp.RTf.inv+dmbs forbidden (0 of 2) 3681ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.4 Test: MP.RTf.inv+dmb--ctrl-isb forbid?
AArch64 MP.RTf.inv+dmb-ctrl—isb

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

y > paz;
identity 0x1000 with code

’

Initial state:
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

e e e = < - N)

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:
ISB
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

Initial State

7

iThread 0

a: str x0, [x1]: W s1:I3pte(x) = mkdegg(ﬁaddr=page(pa1)) ‘

Thread 1

'

| c: Idr x0, [x1]: R pa2 = Ox1

rl

d: isb ctrl

e N ctrl Sax
c: str x2, [x3]: W pa2 = Ox1 el: T s1:13pte(x) i e2: Idr x2, [x3]: Fault
Model Result

Base MP.RTf.inv+dmb+ctrl-isb forbidden (0 of 4) 5734ms
ETS MP.RTf.inv+dmb+ctrl-isb forbidden (6 of 4) 5059ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.5 Test: MP.RTf.inv-+tdmb+addr forbid?
A Arch64 MP.RTf.inv+dmb-+addr

X — invalid;
X ?7-> pal;
z+—> pal;
*pal = 1;

y — paz2;

Page table setup:

physical pal pa2;

identity 0x1000 with code;

Initial state:
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

e e e = < - N)

Thread 0

STR X0, [X1]
DMB ST
STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
LDR X2, [X3,X4]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

Initial State
o :

78

iThread 0 - /// El‘h(ead 1
i a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) ‘ / N ‘ c: Idr x0, [x1]: R pa2 = 0x1 ‘
| B e <~
[dlLiTsliBpte(x) [sf d2:ldrx2, [x3, x4]: Fault
-
c: str x2, [x3]: W pa2 = 0x1
Model Result
Base MP.RTf.inv+dmb+addr forbidden (0 of 2) 3574ms
ETS Mp.RTf.inv+dmb+addr forbidden (0 of 2) 4327ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.6 Test: MP.RTf.inv+dmb-+po allow

Even with ETS, program-order alone is not enough to ensure that Thread 1 sees the write

of the valid descriptor.

A Arch64 MP.RTf.inv+dmb-+po

Page table setup:

physical pal pa2;
x — invalid;

X ?7-> pal;
z+— pal;
*pal = 1;

y > pa2;

identity 0x1000 with code;

Initial state:
:RO=desc3(z,page_table_base)
:R1l=pte3(x,page_table_base)
:R2=0b1

:R3=y

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

H P P B H 0 O O O

Thread 0

STR X0, [X1]
DMB ST
STR X2, [X3]

Thread 1

LDR X0, [X1]
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

_ Initial State

79

:Thread 0

a: str x0, [x1]: W s1:I3pte(x) = mkdegéiéddr=page(pa1)) ‘

Thread 1
trf

C: strx2, [x3]: W pa2 = 0x1

‘ c: Idr x0, [x1]: R pa2 = 0x1 ‘

dl: T s1:13pte(x) W d2: Idr x2, [x3]: Fault

Model Result

Base MP.RTf.inv+dmb+po allowed (1 of 2) 5316ms
ETS MP.RTf.inv+dmb+po forbidden (0 of 2) 2598ms

A VMSA litmus tests
A.3. Writing new entries

80

A.3.3.7 Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+po allow

This is a variant of message passing where x is initially not mapped, Thread 0 maps x,
performs a DSB;TLBI;DSB, and writes to the flag, and Thread 1 reads the flag and reads x.
Because there is only program-order in Thread 1, the reads can be completely reordered, and
thus the second read can happen entirely before the TLBI.

A Arch64 MP.RTf.inv.EL1-+dsb—tlbiis—dsb+po

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+— pal;
*pal = 1;

y = pa2;
identity 0x1000 with

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page (x)

:PSTATE.EL=0b00O
:PSTATE.SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

= =2 =2 2 2 0 0 0 0o o O

Thread 0

code; STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]
Thread 1

LDR X0, [X1]
LDR X2, [X3]
threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

Thread 0

Initial State

a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) ‘ /

trf > ‘

tr : <
e/ _| f1: T s1:13pte(x) hnﬁ f2: 1dr x2, [x3]: Fault
samefvafpagi/s/a/me

/,samezw =

c: tibi vaelis, x4: page=page(x) | =

Model

Result

Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+po forbidden (0 of 2) 20910ms

ETS Mp.RTf.inv.ELl+dsb-tlbiis-dsb+po forbidden (0 of 2) 3710ms

A VMSA litmus tests 81
A.3. Writing new entries
A.3.3.8 Test: MP.RTf.inv.EL1-+4dsb-tlbiis-dsb+dmb forbid

A fault inherits the order that the corresponding memory access would have had if it had
not faulted. (With ETS, its translates also inherit the order, making this test forbidden more
directly.) Moreover, the pipeline effect of the broadcast TLBI enforces that a memory access
and its translate-reads are ‘atomically’ ordered with respect to the TLBI: they are either both
ordered-before it, or both ordered-after it. Therefore, because the counterfactual load of x in
Thread 1 is ordered after the load of the flag y by the DMB SY, the translate is also ordered after
it. Therefore, if Thread 1 sees that the flag y is set to 1, then the translate is guaranteed to
translate-read something at least as new as the new, valid mapping that Thread 0 wrote.

A Arch64 MP.RTf.inv.EL1-+dsb—tlbiis—dsb+dmb

Initial state:
: PSTATE . EL=0b01

:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

Page table setup: :R4=page (x)
:PSTATE.EL=0b00O
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x1000

physical pal pa2;
X — invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

H =2 =2 R 20O 0 0 0 o o

Y paz; Thread 0

identity 0x1000 with code; | STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]
Thread 1

LDR X0, [X1]

DMB SY

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:rRe=1 & 1:R2=0

A VMSA litmus tests
A.3. Writing new entries

co —

Initial State

Thread 0

|7 a: str x0, [x1]: W s1:I3pte(x) =

mkdegéiéddr=page(pal))

b: dsb sy

c: tibi vaelis, x4: page=page(x) ‘

] S

/
—tfr

e-asid sd

AN

\/Thread 1

|

e: Idr x0, [x1]: R pa2 = Ox1

£, —
\\\ //////// .
N\ f: dmb sy

me-vm

dj

l e: str x2, [x3]: W p;£/= 0Ox1 ‘

same

fva-pag

el

'y
gl: T s1:13pte(x) H

.
S g2: Idr x2, [x3]: Fault

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 10762ms
ETS MP.RTf.inv.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 5294ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.9 Test: MP.RTf.inv.EL1-4dsb-tlbiis-dsb+addr forbid

AArch64 MP.RTf.inv.EL1-+dsb—tlbiis—dsb+{addr

83

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

1R3=x

:VBAR_EL1=0x1000

= = =2 =2 2 0 0 0 o o o

y — paz;

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
LDR X2, [X3,X4]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

Initial State
/ N\

Thread 0

a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal))

c: tibi vaelis, x4: page=page(/x)

| £ ‘
/ trf\
N

e N e

. \‘A
J f1: T s1:13pte(x)

va-page

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+addr forbidden (0 of 2) 3994ms
ETS MP.RTf.inv.EL1l+dsb-tlbiis-dsb+addr forbidden (6 of 2) 3882ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.10 Test: MP.RTf.inv.EL1-+dsb-tlbiis-dsb-+data forbid

AArch64 MP.RTf.inv.EL1+dsb—tlbiis—dsb-+data

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

H =2 =2 =R 2 HE 0 0 O 0 o o

y — pa2;

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
STR X4, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

Initial State

84

Thread 0

Thread 1

’7 a: str x0, [x1]: W s1:I3pte(x) =

e: ldr x0, [x1]: R pa2 = 0x1 \

b dsb sy

mkdesdaddr page(paln M

same-asi e
eiva-page
c: tibi vaelis, x4: page= page(x)

&
‘ e: str x2, [x3]: W pa2 = 0x1 ‘

/ data

”':55’_|/ f1: T s1:3ptex)

f2: str x4, [x3]: Fault

s

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+data forbidden (0 of 2) 3744ms
ETS MP.RTf.inv.EL1+dsb-tlbiis-dsb+data forbidden (© of 2) 5394ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.11 Test: MP.RTf.inv+dmb-+data allow?

The version with just a DMB is not enough.

A Arch64 MP.RTf.inv+dmb-+data

Initial state:

:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:R1l=y

:R2=0b1

:R3=x

:R5=0b1

:VBAR_EL1=0x1000

Page table setup:

physical pal pa2;
x — invalid;

X ?7-> pal;
z+— pal;
*pal = 1;

L R N = e = = = I -}

v s paz; Thread 0

identity 0x1000 with code; | STR X0, [X1]
DMB ST

STR X2, [X3]
Thread 1

LDR X0, [X1]

EOR X4,X0,X0

ORR X6,X4,X5

STR X6, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

_ Initial State

:Thread 0

- Thread 1
a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) ‘ / >

N ‘ c: Idr x0, [x1]: R pa2 = 0x1 ‘

——"qata

dl: T s1:I3pte(x) }Wo'(d2: str x6, [x3]: Fault

c: str x2, [x3]: W pa2 = x1

e: eret

Model Result
Base MP.RTf.inv+dmb+data forbidden (0 of 2) 3232ms
ETS mp.RTf.inv+dmb+data forbidden (0 of 2) 3843ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.12 Test: MP.RTf.inv.EL1-+dsb-tlbiis-dsb-ctrl forbid

A Arch64 MP.RTf.inv.EL1+dsb—tlbiis—dsb-+ctrl

Page table setup:

physical pal pa2;
X +— invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

H =2 =2 =R 2 HE 0 0 O 0 o o

y — pa2;

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:

STR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

_ Initial State

86

Thread 0

Thread 1
trf\

b: dsb sy

%

l e: str x2, [x3]: W pa2 = Ox1 ‘

a: str x0, [x1]: W s1:I3pte(x) = mkdeslg(ﬁaddr=page(pal)) ‘/

thr
c: tibi vaelis, x4: page=page(x) ‘ ///

[eldrx0, [x1:Rpa2=0xl |

_/

e

—r 17 sT3pte(a) Il

f2: str x2, [x3]: Fault

trh
tri

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl forbidden (0 of 4) 15261ms
ETS MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl forbidden (6 of 4) 6025ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.13 Test: MP.RTf.inv.EL1-+dsb-tlbiis-dsb-}+dsb-isb forbid
AArch64 MP.RTf.inv.EL1+dsb—tlbiis—dsb-+dsb—isb

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

y — paz2;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

1R3=x

:VBAR_EL1=0x1000

= = =2 =2 2 0 0 0 o o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

_ Initial State

87

Thread 0

Thread 1

a: str x0, [x1]: W s1:I3pte(x) = mkdes‘ézaddr=page(pa1)) ‘/ / [

e: |dr x0, [x1]: R pa2 = Ox1

/ /
/
/ tri,

£

c: tibi vaelis, x4: page=page(x)

| <

pd

_

e: str x2, [x3]: W pa2 = 0x1 ‘

Nrﬂgymid
sgnie-va-page same-asid__

N W
| hL:Tsli3pte(x) hcﬁ h2: Idr x2, [x3]: Fault

Model

Result

Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (0@ of 2) 52965ms
ETS MP.RTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 2) 6204ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.14 Test: MP.RTf.inv.EL1-+dsb-tlbiis-dsb-ctrl-isb forbid
AArch64 MP.RTf.inv.EL1+dsb—tlbiis—dsb-+ctrl—isb

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

y — paz2;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

1R3=x

:VBAR_EL1=0x1000

= = =2 =2 2 0 0 0 o o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:
ISB
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

_ Initial State

88

Thread 0

a: str x0, [x1]: W s1:I3pte(x) = mkdegéiaddr=page(pa1)) ‘

Thread 1

[e: Idr x0, [x1]: R pa2 = 0x1

. / ctrl
tr L N [isb

\

ctrl

s

-

[e: strx2, [x3]: W pa2 = 0x1 \

same-va-page |

. i = Y ctrl
c: tibi vaelis, x4: page=page(x) } Sy@as'd sdme-vinidy gl: T s1:13pte(x) % g2: Idr x2, [x3]: Fault

h: eret

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl-isb forbidden (0 of 4) 31160ms
ETS Mp.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl-isb forbidden (0 of 4) 8117ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.15 Test: MP.RTf.inv.EL1-+dsb-tlbiis-dsb+poap forbid
A Arch64 MP.RTf.inv.EL1+dsb—tlbiis—dsb+poap

Initial state:

0:PSTATE.EL=0b01
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
0:R2=0b1
0:R3=y
Page table setup: 0:R4=page (x)

physical pal pa2; 1:PSTATE.EL=0b00

% — invalid; 1:PSTATE. SP=0b0
1:R1l=y

x ?7-> pal; 1:R3=x

i:lpil’l; 1:VBAR_EL1=0x1000

v paz; Thread 0

identity 0x1000 with code; STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY
STR X2, [X3]

Thread 1

LDAR X0, [X1]
LDR X2, [X3]

threadl ell handler

0x1400:
MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

o

Initial State

89

Thread 0

a: str x0, [x1]: W s1:I3pte(x) =

c: tibi vaelis, x4: page=page(x

&
l e: str x2, [x3]: W pa2 = Ox1 ‘

)

%

mkde;é(éddr=page(pal)) ‘ :

tfr —/

same-va-page’san

/W
|~

Thread 1

e l e: Idar x0, [x1]: R pa2 = 0x1 ‘

_ — \\ ~a
_| f1: T s1:13pte(x) hfo" f2: 1dr x2, [x3]: Fault ‘

Model Result
Base MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap forbidden (0 of 2) 75710ms
ETS

MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap forbidden (0 of 2) 3279ms

A VMSA litmus tests 90
A.3. Writing new entries
A.3.3.16 Test: LB.TT.inv+pos forbid

This is a variant of load buffering where the first thread’s store writes the descriptor that
the translate for the second thread’s load translate-reads from, and symmetrically. This kind of
self-satisfying cycle would be very problematic, and this test is forbidden.

A Arch64 LB.TT.inv+pos

Initial state:
0:PSTATE.EL=0b00
0:PSTATE. SP=0b0
0:R1=x
0:R2=mkdesc3(oa=pal)
0:R3=pte3(y,page_table_base)

Page table setup: 0:VBAR_EL1=0x1000

1:PSTATE.EL=0b00

1:PSTATE.SP=0b0

1

1

1

1

:R1l=y

physical pal;
X — invalid;

y — invalid;
:R2=mkdesc3(oa=pal)
x 7-> pal; :R3=pte3(x,page_table_base)
y ?7-> pal; :VBAR_EL1=0x2000
*pal = 1; Thread 0

identity 0x1000 with code; LDR X0, [X1]
identity 0x2000 with code; | STR X2, [X3]
Thread 1

LDR X0, [X1]
STR X2, [X3]
threadO ell handler

0x1400:

MOV XO,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

threadl ell handler

0x1400:

MOV XO,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 0:Re=1 & 1:Re=1

Initial State >
Thread 0 g {Thread 1

al: T sl:I3pte(x) L—IO»{ a2: Idr x0, [x1]: R pal = Ox1 \ P J bl: T s1:I3pte(y) %0{ b2: Idr x0, [x1]: R pal = Ox1 \

jgéh- fpa-page " —co] - i
b: str x2, [x3]: W s1:I3pte(y) = mkdesc(adﬁr:page(pal)) ‘ : ‘7 c: str x2, [x3]: W s1:13pte(x) = mkdesc(addr=page(pal)) ‘

Model Result
Base |B.TT.inv+pos forbidden (0 of 4) 15481ms

ETS LB.TT.inv+pos forbidden (0 of 4) 16545ms
S.RTf.inv.EL-shaped tests

A VMSA litmus tests
A.3. Writing new entries

A.3.3.17 Test: S.RTf.inv.EL1-}dsb-tlbiis-dsb+4data forbid
AArch64 S.RTf.inv.EL1+dsb—tlbiis—dsb-+data

Page table setup:

physical pal pa2;
X +— invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

y —> pa2;
identity 0x1000 with

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,pag
:R1=pte3(x, page
:R2=0b1

:R3=y
:R4=page(x)
:PSTATE.EL=0b00
:PSTATE. SP=0b0
:R1=y

:R2=0b1

:R3=x
:VBAR_EL1=0x100

H =2 =2 =R 2 HE 0 0 O 0 o o

e_table_base)

_table_base)

0

Thread 0

code;
STR X0, [X1]

DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
ORR X2,X2,X4
STR X2, [X3]

threadl ell handler

0x1400:
MOV X2,#0

ADD X13,X13,#4

ERET

MRS X13,ELR_EL1

MSR ELR_EL1,X13

Final state: 1:

RO=1 & 1:R2=0

Initial State

91

Thread 0

a: str x0, [x1]: W s1:I3pte(x) =

b: dsb sy

mkde;iéddr=page(paln M

/
AL

tr

Thread 1

N | e: Idr x0, [x1]: R pa2 = Ox1 \

~ data

— — .
- _| f1: T s1:13pte(x) hrd f2: str x2, [x3]: Fault \

l e: str x2, [x3]:Wpa2=0x1 ‘
Model Result
Base S.RTf.inv.EL1+dsb-tlbiis-dsb+data forbidden (0 of 2) 4120ms
ETS s.RTf.inv.EL1+dsb-tlbiis-dsb+data forbidden (0 of 2) 4535ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.18 Test: S.RTf.inv.EL1-+dsb-tlbiis-dsb-ctrl forbid
AArch64 S.RTf.inv.EL1+dsb—tlbiis—dsb-+ctrl

Page table setup:

physical pal pa2;
X +— invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

y —> pa2;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

H =2 =2 =R 2 HE 0 0 O 0 o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:

STR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

Initial State

92

Thread 0

a: str x0, [x1]: W s1:I3pte(x) =

Thread 1

| e: Idr x0, [x1]: R pa2 = Ox1

b: dsb sy

mkde;iéddr=page(paln M

‘ rf\

/
AL

tr

f2: str x2, [x3]: Fault

— —
_| f1: T s1:13pte(x) hr&q
|

trl
trl

o

l e: str x2, [x3]:Wpa2=0x1 ‘
Model Result
Base S.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl forbidden (0 of 4) 12958ms
ETS s.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl forbidden (0 of 4) 4463ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.19 Test: S.RTf.inv.EL1-+dsb-tlbiis-dsb4+dmb forbid
AArch64 S.RTf.inv.EL1+dsb—tlbiis—dsb+dmb

Initial state:
: PSTATE.EL=0b01

:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+—> pal;
*pal = 1;

H =2 =2 =R 2 HE 0 0 O 0 o o

y = paz; Thread 0
identity 0x1000 with code;
STR X0, [X1]

DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]
Thread 1

LDR X0, [X1]

DMB SY

STR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:rRe=1 & 1:R2=0

_ Initial State

Thread 0 — \\\Thread 1
’7 a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) "/ e: Idr x0, [x1]: R pa2 = Ox1
b: dsb sy iy // , f: dmb sy
. s - — N S
c: tibi vaelis, x4: page=page(x) Saﬁémgg(;?_?;_’sas'ge—i gl: T sl:I3pte(x) ho’(g2: str x2, [x3]: Fault
/
P
‘ e: str x2, [x3]: W pa2 = 0x1 ‘
Model Result

Base S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 11481ms
ETS S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 4349ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.20 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+popl forbid

A Arch64 S.RTf.inv.EL1+4dsb—tlbiis—dsb+popl

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

H =2 =2 =R 2 20 0 0O 0 o ©

y — paz;

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
STLR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

Initial State

94

Thread 0

~_Thread 1

trf ‘

e: Idr x0, [x1]: R pa2 = 0x1

b: dsb sy

’7 a: str x0, [x1]: W s1:13pte(x) = mkde‘ég(addr=page(pa1)) "

same-vmid

[[y S G

] fuTsuBpte() sl f2:istirx2, [x31 |

s

A
\ e: str x2, [x3]: W pa2 = 0x1

Model Result
Base S.RTf.inv.EL1+dsb-tlbiis-dsb+popl forbidden (0 of 2) 28716ms
ETS

S.RTf.inv.EL1+dsb-tlbiis-dsb+popl forbidden (0 of 2) 4266ms

A VMSA litmus tests
A.3. Writing new entries

A.3.3.21 Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+poap forbid
A Arch64 S.RTf.inv.EL1+dsb—tlbiis—dsb+poap

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

Initial state:
:PSTATE.EL=0b01
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y

:R4=page(x)

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1=y

:R2=0b1

:R3=x

:VBAR_EL1=0x1000

H =2 =2 =R 2 20 0 0O 0 o ©

y — paz;

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDAR X0, [X1]
STR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

_ Initial State

95

Thread 0

“Fhread 1

’7 a: str x0, [x1]: W s1:I3pte(x) =

N ‘

b dsb sy

mkdesdaddr page(paln

same-va- pag issic
c: tibi vaelis, x4: page= page(x)

)
‘ e: str x2, [x3]: W pa2 = 0x1 ‘

e: ldar x0, [x1]: R pa2 = Ox1

‘/ trf o\

_| /f1;Tsl=|3pte<X) s

\
f2: str x2, [x3]: Fault

Model Result
Base S.RTf.inv.EL1+dsb-tlbiis-dsb+poap forbidden (0 of 2) 45733ms
ETS s.RTf.inv.ELl+dsb-tlbiis-dsb+poap forbidden (0 of 2) 3117ms

A VMSA litmus tests 96
A.3. Writing new entries

A.3.4 Coherence

Similarly to our previous questions about Instruction<»Data coherence, we can ask questions
about Translation<»Data coherence:

1. If a translation-table-walk reads-from a write, must a later translation-table-walk that
reads the same location read-from the same write or something coherence-newer?
(Translation—Translation Coherence).

2. If a translation-table-walk reads-from a write, must a later load/store that reads/writes
that location read-from something at least that new, or write something coherence-after
it? (Data—Translation Coherence).

3. If a load reads-from a write, must a later translation-table-walk which reads that location
read-from that write or something newer? (Translation—Data Coherence).

A VMSA litmus tests
A.3. Writing new entries

A.3.4.1 Test: CoTWlLl.inv forbid
Translations cannot read-from writes which appear program-order after the instruction that

does the translation.

AArch64 CoTWl.inv

Page table setup:

physical pal;
X +— invalid;
X ?-> pal;

y — pal;

*pal = 1;

Initial state:
PSTATE.EL=0b00
PSTATE.SP=0b0

R1=x
R2=desc3(y,page_table_base)
R3=pte3(x,page_table_base)
VBAR_EL1=0x1000

Thread 0

identity 0x1000 with code;

LDR X0, [X1]
STR X2, [X3]

threadO ell handler

0x1400:

MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: o:Ro=1

Initial State

———

gThgread 0

al: T sl:I3pte(x)

Model Result

Base no result for CoTW1.inv
ETS coTwl.inv forbidden (0 of 2) 271l4ms

97

A VMSA litmus tests
A.3. Writing new entries

CoTTf-shaped tests

A.3.4.2 Test: CoTTf.inv-+dsb-isb forbid

Here, Thread 0 makes a new mapping, and Thread 1 observes that new mapping by per-
forming a translation using it, and then later tries to load that same location. If the first read

is translated using the new entry, then the second one is not allowed to fault.
Note this test’s handler writes to X2, so the test saves it into X0 after the first load.

This suggests a kind of translation—translation coherence. In general, you do observe such
coherence when TLB-misses (and therefore walks in memory) occur. However, the CoTfT+dsb-

isb test (later in this document) shows that this is not guaranteed for all translations.

A Arch64 CoTTf.inv+dsb—isb

Page table setup:

physical pal;
X — invalid;
x ?-> pal;

y — pal;
*pal = 1;

identity 0x1000 with code;

Initial state:
:RO=desc3(y,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:R1=x

:R3=x

:VBAR_EL1=0x1000

e T S S I S R > N)

Thread 0

STR X0, [X1]

Thread 1

LDR X2, [X1]
MoV X0, X2
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

__Initial State

iThread 0 - trf Thread 1
|7 a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) ‘\ r ﬁal: T s1:13pte(x) ’TF(?‘ a2:1dr x2, [x1]: R pal = 0x1
trf b: dsb sy

tfr same-¥a-page

c:isb

~ N
d1: TsLi3pte(x) |l d2:1dr x2, [x3]: Fault

1o

Model Result
Base CoTTf.inv+dsb-isb forbidden (0 of 4) 21525ms
ETS CoTTf.inv+dsb-isb forbidden (0 of 4) 26198ms

A VMSA litmus tests
A.3. Writing new entries

A.3.4.3 Test: CoTTf.inv4po allow

Same as above, but with no explicit order between the two loads.

This is allowed.

A Arch64 CoTTf.inv+po

Page table setup:

physical pal;

X — invalid;

X ?7-> pal;

y — pal;

*pal = 1;

identity 0x1000 with

code;

Initial state:

:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1=x

:R3=x
:VBAR_EL1=0x1000

e e < <]

:RO=desc3(y,page_table_base)
:R1=pte3(x,page_table_base)

Thread 0

STR X0, [X1]

Thread 1

LDR X2, [X1]
MOV X0,X2
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

o

_ Initial State

iThread 0

Thread 1

a: str x0, [x1]: W s1:13pte(x) = mkdesckéddr:page(pal))

|t al: TshiBpte(x) |l

a2:ldr x2, [x1]: R pal = 0x1
[

tfr -

Same-va-page

[bLiTs

1:13pte(x) }m[

b2: Idr x2, [x3]: Fault

Model Result
Base CoTTf.inv+po allowed (1 of 4) 51495ms
ETS

CoTTf.inv+po forbidden (0 of 4) 29031ms

A VMSA litmus tests
A.3. Writing new entries

A.3.4.4 Test: CoTfT+dsb-isb allow

This test is in contrast to the previous test, where the VA used by the loads in Thread 1 are
instead valid from the start, and Thread 0 attempts to ‘break’ the entry by writing an invalid
descriptor (e.g. 0) to the entry. In contrast to the previous test, this one does not obey the

translation<»translation coherence principle.

AArch64 CoT{T+dsb—isb

Page table setup:

physical pal;

X — pal;

x ?-> invalid;

y — pal;

*pal = 0;

identity 0x1000 with code;

Initial state:

:RO=0b0O
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1=x

:R3=x

:VBAR_EL1=0x1000

N L e <]

Thread 0

STR X0, [X1]

Thread 1

LDR X2, [X1]
MOV X0,X2
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

;Thread 0 P
a: str x0, [x1]: W s1:13pte(x) = 0x0
w_

*Eﬁ\

_ Initial State

trf Thread 1
T aliTsLi3pte(x) oo

same-va-page

| el: T s1:3pte(x) H e2: Idr x2, [x3]: R pal = 0x0

io

Model Result
Base CoTfT+dsb-isb allowed (1 of 4) 78905ms
ETS CoTfT+dsb-isb allowed (1 of 4) 95644ms

A VMSA litmus tests 101
A.3. Writing new entries

CoRpteTf.inv-shaped tests

A.3.4.5 Test: CoRpteTf.inv+dsb-isb forbid

In this test, Thread 0 writes a new mapping, which Thread 1 reads-from with a load before
trying to access the location mapped by that entry.

So long as the later translation is ordered after the read (with a context-synchronizing event,
or if with ETS then any ordered-before), then the translation must see the new mapping too.

This implies a kind of Translation—Data coherence. Note that this only applies going

Invalid—Valid; removing a mapping does not guarantee this coherence and TLB maintenance
is required (c.f. CoRT+dsb-isb)

A Arch64 CoRpteTf.inv+dsb—isb

Initial state:

0:RO=desc3(y,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00
Page table setup: 1:PSTATE. SP=0b0

option default_tables = true; e

physical pal; 1:R3=x

intermediate ipal; 1:VBAR_EL1=0x1000

x — invalid; Thread 0

X 7> pal; STR X0, [X1]

y — pal;

identity 0x1000 with code; Thread 1
LDR X0, [X1]

*pal = 1; DSB SY
ISB
LDR X2, [X3]
threadl ell handler
0x1400:
MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=desc3(y,page_table_base) & 1:R2=0

C_Initial State

e

iThread 0 - " Thread 1
f a: str x0, [x1]: W s1:I13pte(x) = mkdesc(addr=page(pal)) } r ‘h a: Idr x0, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))
\\\ c: isb
h N
i Y N
; | d1: T s1:I3pte(x) H.d d2: Idr x2, [x3]: Fault
Model Result

Base CoRpteTf.inv+dsb-isb forbidden (0 of 2) 3347ms
ETS CoRpteTf.inv+dsb-isb forbidden (0 of 2) 3472ms

A VMSA litmus tests

A.3. Writing new entries 102

A.3.4.6 Test: CoRpteTf.inv+dsb allow (unless ETS)
Same as previous, but without the ISB. Allowed (unless ETS, then forbidden).

A Arch64 CoRpteTf.inv-+dsb

Initial state:

0:RO=desc3(y,page_table_base)
0:R1l=pte3(x,page_table_base)
1:PSTATE.EL=0b00
Page table setup: 1:PSTATE. SP=0b0

physical pal; 1:R1=pte3(x,page_table_base)

intermediate ipal; L:R3=x
1:VBAR_EL1=0x1000

x — invalid;

X ?-> pal; Thread 0

Y pal; STR X0, [X1

identity 0x1000 with code; , [X1]
Thread 1

*pal = 1; LDR X0, [X1]
DSB SY

LDR X2, [X3]
threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=desc3(y,page_table_base) & 1:R2=0

co____—
iThread 0 o Thread 1
H ’7 a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) } "7 a: Idr x0, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))
— i t_
fr) N b: dsb sy
RS ~a ~a
c1: T s1:13pte(x) th?’ c2: Idr x2, [x3]: Fault
Model Result

Base CoRpteTf.inv+dsb allowed (1 of 2) 5413ms
ETS CoRpteTf.inv+dsb forbidden (0 of 2) 2582ms

A VMSA litmus tests

A.3. Writing new entries 103

A.3.4.7 Test: CoRpteT+dsb-isb allow

Here, Thread 0 unmaps a location, and Thread 1 loads the translation table entry containing
the invalid descriptor. Given Thread 1 read the invalid descriptor, is a ‘later’ translation of the
possibly-unmapped location required to fault?

On Arm, no. The TLB can cache the old mapping and then the later translation can read
that cached value.

A Arch64 CoRpteT+dsb—isb

Initial state:
:RO=0b0O

:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00O

Page table setup: :PSTATE. SP=0b0
:R1=pte3(x,page_table_base)
:R3=x

:VBAR_EL1=0x1000

physical pal;

e e = <)

X — pal;
X ?-> invalid;
identity 0x1000 with code; | Thread 0

STR X0, [X1]
Thread 1

LDR X0, [X1]

DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=0 & 1:R2=0

*pal = 0;

i Initial State

;Thread 0 P iThread 1
: a: str x0, [x1]: W s1:I3pte(x) = 0x0 :

a: Idr x0, [x1]: R s1:I3pte(x) = 0x0

trf b: dsb sy

tfr

A |
dl: T s1:I3pte(x) h»’ d2: Idr x2, [x3]: R pal = 0x0

10

Model Result
Base CoRpteT+dsb-isb allowed (1 of 2) 7347ms
ETS CoRpteT+dsb-isb allowed (1 of 2) 7604ms

A VMSA litmus tests
A.3. Writing new entries

104

A.3.4.8 Test: CoRpteT.EL1-+dsb-tlbi-dsb-isb forbid
In order to forbid the case in the previous test, an extra TLBI (with correct synchronization)
must be inserted to remove those cached entries before trying to load the possibly-unmapped

location.

A Arch64 CoRpteT.EL1+dsb—tlbi—dsb—isb

Page table setup:

physical pal;
intermediate ipal;

X — pal;

Initial state:

:RO=0b0O
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b01
:R1=pte3(x,page_table_base)
:R3=x

:R4=page (x)
:VBAR_EL1=0x1000

e e = <)

X ?7-> invalid;

Thread 0

identity 0x1000 with code;

STR X0, [X1]

*pal = 0;

Thread 1

LDR X0, [X1]
DSB SY

TLBI VAE1, X4
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:re=0 & 1:R2=0

iThread 0 P —
a: str x0, [x1]: W s1:I3pte(x) = 0x0
A

fﬂ_

Model Result

g Initial State

iThread 1 |
: a: Idr x0, [x1]: R s1:13pte(x) = 0x0

b: dsb sy

c: tlbi vael, x4: page=page(x)

trf|

same-va-page
same-asig’” same-vmid

<
f1: T s1:13pte(x) hﬁﬁ f2: Idr x2, [x3]: R pal = 0x0

Base CoRpteT.EL1+dsb-tlbi-dsb
ETS coRpteT.EL1+dsb-tlbi-dsb

-isb forbidden (0 of 2) 53579ms
-isb forbidden (0 of 2) 28345ms

A VMSA litmus tests
A.3. Writing new entries

A.3.4.9 Test: CoRpteT.EL1-+dsb-tlbi-dsb allow

Same as previous test, but without the ISB.

A Arch64 CoRpteT.EL1+dsb—tlbi—dsb

Page table setup:

physical pal;

X — pal;
X ?-> invalid;

identity 0x1000 with code;

*pal = 0;

Initial state:
:RO=0b0O

:PSTATE.EL=0b0O1
:R3=x

:R4=page (x)
:VBAR_EL1=0x1000

e e = <)

:R1=pte3(x,page_table_base)

:R1=pte3(x,page_table_base)

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DSB SY

TLBI VAE1, X4
DSB SY

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:re=0 & 1:R2=0

{Thread 0

co

Initial State

105

trf|

b: dsb sy

c: tlbi vael, x4: page=page(x)

a: str x0, [x1]: W sl:|3pte(x‘)'; 0x0
tfr
Model Result
Base
ETS

CoRpteT.EL1+dsb-tlbi-dsb allowed (1 of 2) 10293ms
CoRpteT.EL1+dsb-tlbi-dsb allowed (1 of 2) 11815ms

A VMSA litmus tests 106
A.3. Writing new entries

A.3.4.10 Test: CoTRpte.inv{dsb-isb forbid

Here, Thread 0 makes a new mapping, and Thread 1 reads-from that entry during a
translation-table-walk before trying to load the entry itself.

If Thread 1 sees the new mapping, then ‘later’ loads of the translation table must see that
entry or something newer. This is Data—Translation coherence.

A Arch64 CoTRpte.inv+dsb—isb

Initial state:

:RO=desc3(y,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1=x

Page table setup:

physical pal;
X — invalid;
x ?-> pal;
y — pal;
*pal = 1; Thread 0
identity 0x1000 with code;

STR X0, [X1]

Thread 1

LDR X0, [X1]

DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO0,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:rRe=1 & 1:R2=0

:R3=pte3(x,page_table_base)
:VBAR_EL1=0x1000

N L e <]

~Initial State

iThread 0 - trf Thread 1
1 a: strx0, [X1]: W sl:I3pte(x) = mkdesc(addr=page(pal)) [al:Tsli3pte(x) |l a2:Idrx0, [x1]: R pal = Ox1
S
L
DN

d: Idr x2, [x3]: R s1:I3pte(x) = 0x0

Model Result
Base CoTRpte.inv+dsb-isb forbidden (0 of 2) 4436ms

ETS CoTRpte.inv+dsb-isb forbidden (0 of 2) 5367ms

A VMSA litmus tests

A.3. Writing new entries 107

CoTfRpte-shaped tests

A.3.4.11 Test: CoTfRpte+dsb-isb forbid

Here, Thread 0 unmaps a location and Thread 1 translates that location getting a translation
fault. Is a later load of the translation-table entry in Thread 1 required to see the write of the
invalid descriptor or something newer? On Armv8-A, yes, since the fault is from a TLB-miss it
reads from memory and therefore respects the total coherence-order for that entry.

AArch64 CoTfRpte+dsb—isb

Initial state:
:RO=0bO

:R1=pte3(x,page_table_base)
:PSTATE . EL=0b00
:PSTATE.SP=0b0

:R1=x

Page table setup:

physical pal;
X — pal;
X ?-> invalid;
y — pal;
identity 0x1000 with code; | Thread 0

STR X0, [X1]
Thread 1

LDR X0, [X1]

DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=desc3(y, page_table_base)

:R3=pte3(x,page_table_base)
:VBAR_EL1=0x1000

e = <)

__Initial State

Thread 7
4 al: T slL:i3pte(x) hd a2: Idr x0, [x1]: Fault

iThread 0 PR— -
: a: str x0, [x1]: W s1:I3pte(x) = 0x0 }7 r

e: |dr x2, [x3]: R s1:I3pte(x) = mkdesc(addr=page(pal))

Model Result
Base CoTfRpte+dsb-isb forbidden (0 of 2) 5543ms
ETS coTfRpte+dsb-isb forbidden (0 of 2) 5852ms

A VMSA litmus tests
A.3. Writing new entries

108

A.3.4.12 Test: CoTfRpte+po This test cannot exist, because a fault causes an excep-
tion, which the test has to take, and from which the test has to return, both of which cause
synchronisation.

A VMSA litmus tests
A.3. Writing new entries

A.3.4.13 Test: CoTfRpteteret forbid

A Arch64 CoTfRpte+eret

Page table setup:

physical pal;

X — pal;

X ?-> invalid;

y —pal;

identity 0x1000 with code;

Initial state:

:RO=0b0O
:R1=pte3(x,page_table_base)
:PSTATE . EL=0b00
:PSTATE.SP=0b0

:R1=x
:R3=pte3(x,page_table_base)
:VBAR_EL1=0x1000

L = <)

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Rre=1 & 1:R2=desc3(y,page_table_base)

o

Initial State >

~

109

§Thread 0

a: str x0, [x1]: W s1:I3pte(x) = Ox

y

Thread 1 <

trf

>| al: T sl:I3pte(x) \HR#

a2: Idr x0, [x1]: Fault

rf

c: Idr x2, [x3]: R s1:13pte(x) = mkdesc(addr=page(pal))

Model Result
Base CoTfRpte+eret forbidden (0 of 2) 2995ms
ETS

CoTfRpte+eret forbidden (0 of 2) 4168ms

A VMSA litmus tests
A.3. Writing new entries

CoTfW.inv-shaped tests

A.3.4.14 Test: CoTfW.inv+dsb-isb forbid

Here, Thread 0 writes a new mapping, and Thread 1 then sees this mapping with a
translation-table walk, before overwriting it with another entry.

coherence-before the original write?

Our model forbids this, requiring that writes pass the point of coherence before being visible

to translations.

A Arch64 CoTfW.inv-+dsb—isb

Page table setup:

physical pal;

x — invalid;

x ?7-> pal

X ?7-> raw(2);

*pal = 1;

identity 0x1000 with code;

Initial state:
0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=mkdesc3(oa=pal)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00
1:PSTATE.SP=0b0

1:R1=x

1:R2=0b10
1:R3=pte3(x,page_table_base)
1:VBAR_EL1=0x1000
2:R1=pte3(x,page_table_base)
Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]

DSB SY

ISB

STR X2, [X3]

Thread 2

LDR X0, [X1]

LDR X2, [X1]

threadl ell handler
0x1400:

MOV XO,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:R0=2 & 2:R2=mkdesc3(oa=pal)

Can this later write be

iThread 0 ! Thread 1

a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal))

[[aL: TsTiBptex) 4l aZ ldr x0, [x11: R pal = 0x1
— 0

iThread 2

d: Idr x0, [x1]: R s1:I3pte(x) = 0x2

e: ldr x2, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))

=

\ _—

d: str x2, [x3]: W s1:I3pte(x) = 0x2

Model Result
Base CoTfw.inv+dsb-isb forbidden (0 of 2) 5572ms
ETS CoTfw.inv+dsb-isb forbidden (0 of 2) 8392ms

A VMSA litmus tests 11
A.3. Writing new entries
A.3.4.15 Test: CoTfW.inv+po forbid

This is like the previous test, except that there is no barrier between the instruction which
faults and the program-order-later write.

However, this write is still ordered after the translation-table-walk. This is due to the write
being unable to propagate until after the translation-table-walk has finished and the fault is
known, as stores cannot propagate while speculative.

A Arch64 CoTfW.inv+po

Initial state:
:PSTATE.EL=0b00O

:PSTATE. SP=0b0
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE . SP=0b0

:R1=x

:R2=0b10

Page table setup:

physical pal;

X — invalid;

x ?-> pal;

X ?7-> raw(2);

*pal = 1;

identity 0x1000 with code;

:R3=pte3(x, page_table_base)
:VBAR_EL1=0x1000

N B B P B B P 0 0 © ©

:R1=pte3(x, page_table_base)

Thread 0

STR X0, [X1]
Thread 1

LDR X0, [X1]
STR X2, [X3]
Thread 2

LDR X0, [X1]
LDR X2, [X1]
thread0 ell handler

0x1400:

MOV XO,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:R0=2 & 2:R2=mkdesc3(oa=pal)

fThread 0 e [Thread 1 /
i a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) H—b{ a1 Tsuispte(x) sl a2:1drxo, (x1:Rpal=0x1 |}
—— - — = i

—t—

“Fhread 2
; [bi1dr x0, [x1]: R sLi3pte(x) = 0x2

— N E——
| b: str x2, [x3]: W s1:13pte(x) = 0x2 \ c: Idr x2, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))

Model Result
Base CoTfW.inv+po forbidden (0 of 2) 6038ms
ETS CoTfW.inv+po forbidden (0 of 2) 7738ms

A VMSA litmus tests
A.3. Writing new entries

A.3.4.16 Test: PPODA.RT.inv

allow?

Can writes be forwarded to translation-table-walks in general?

A Arch64 PPODA.RT.inv

Page table setup:

physical pal pa2 pa3;
w > pal;

X — invalid;

x ?-> pal;

y — paz2;

z +— pa3;

*pal = 1;

*pa2 = 0;

*pa3 = 0;

identity 0x1000 with code;

Initial state:

:RO=0x1

:R1=z

:R2=0x1

:R3=y

:Rl=y
:R3=desc3(w,page_table_base)
:R4=pte3(x,page_table_base)
:R5=x

:R7=z

:VBAR_EL1=0x1000

I T S R S R N © B © B © I o)

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
EOR X2,X0,X0
ORR X2,X2,X3
STR X2, [X4]
LDR X6, [X5]
EOR X8,X6,X6
LDR X9, [X7,X8]

threadl ell handler

0x1400:

MOV X6,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R6=1 & 1:R9=0

iThread 0
i a: str x0, [x1]: W pa3 =

0x1

Initial State

E‘ c: Idr x0, [x1]: R pa2 = 0x1

///ﬂ////cogii/' data
d: str x2, [x4]: W s1:I3pte(x) = mkdesc(addr=page(pal))
) f
e A T
el: T sl:I3pte(x) ﬁo\ e2: Idr x6, [x5]: R pal = Ox1 ‘

Model Result
Base PPODA.RT.inv forbidden (0 of 2) 5779ms
ETS ppoDA.RT.inv forbidden (0 of 2) 6596ms

A VMSA litmus tests
A.3. Writing new entries

A.3.5 Write-forwarding

A.3.5.1 Test: MP.RT.inv+dmb--ctrl-trfi forbid

It seems that write forwarding should not allowed down speculative paths. Allowing it could
be problematic, as forwarding in a non-taken path from a write to the translate for a read would
make it possible for the read to read from device memory, which the device could observe.

A Arch64 MP.RT.inv+dmb-+ctrl—trfi

Page table setup:

physical pal pa2;
w invalid;

w ?7-> pal;

X — pal;

*pal = 0;

y — pa2;
identity 0x1000 with code;

Initial state:
:RO=0b1

:R1=x

:R2=0b1

:R3=y
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y
:R2=mkdesc3(oa=pal)
:R3=pte3(w, page_table_base)
:R5=w
:VBAR_EL1=0x1000

e e e e = B = I - I o)

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X0, [X1]
CBZ X0,LC00
LCOO:

STR X2, [X3]
LDR X4, [X5]

threadl ell handler

0x1400:

MOV X4,#2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R4=0

Initial State

S

113

‘x trl

g//// \\’ c: Idr x0, [x1|]: R pa2 = 0x1 .

V4 N ctrl

f C N l

" d: str x2, [x3]: W sl:I3pte(w) = mkdesc(addr=page(pal))

| o "'“"“"“’*—‘—t‘—ifﬁi‘,‘j;:jjj‘fr‘fj “““““““““““““““““““““““““““““““““““““ g

[el:TshiBptew) |ial e2:ldrx4, [x51:Rpal=0x0 |

co
Thread0 T
I a: str x0, [x1]: W pal = Ox1 i
co_—
i ~
A
- H
- T
~
‘/

] c: str x2, [x3]: W pa2 = 0x1 \
Model Result
Base
ETS

MP.RT.inv+dmb+ctrl-trfi forbidden (0 of 4) 601lms

MP.RT.inv+dmb+ctrl-trfi forbidden (0 of 4) 6144ms

A VMSA litmus tests

" : 114
A.3. Writing new entries

A.3.5.2 Test: MP.RT.inv+dmb-+addr-trfi forbid

Model Result
Base no result for MP.RT.inv+dmb-+addr-trfi

ETS MP.RT.inv+dmb+addr-trfi forbidden (0 of 2) 7235ms

A VMSA litmus tests
A.3. Writing new entries

A.3.6 Address dependencies

A.3.6.1 MP.RTf.inv--dmb-addr forbid
(See MP.RTf.inv-+dmb-+addr from earlier)

115

A VMSA litmus tests 116
A.3. Writing new entries

A.3.7 Data dependencies

A.3.7.1 MP.RTf.inv-+dmb-data allow

The data dependency (unlike an address dependency) is to the memory access itself, not its
translates, so a translate can happen much earlier.

(See MP.RTf.inv+dmb+data for diagrams/results)

A VMSA litmus tests 17
A.4. Unmapping memory and TLB invalidation

A.4 Unmapping memory and TLB invalidation

In the previous section, we explored the sequences required to successfully create, or map a given
virtual address in the current address space.

Removing a mapping (or unmapping) is more subtle: simply overwriting the entry back to
zero is not enough, due to caching of those old entries in the thread’s TLB.

A VMSA litmus tests

A.4. Unmapping memory and TLB invalidation

A.4.1 Same-thread unmap
CoWinvT-shaped tests

A.4.1.1 Test: CoWinvT-+dsb-isb allow
A Arch64 CoWinvT+dsb—isb

Page table setup:

physical pal pa2;
X +— pal;
X ?-> invalid;

Initial state:
PSTATE.SP=0b0

RO=0b0
Rl=pte3(x,page_table_base)
R3=x

VBAR_EL1=0x1000

Thread 0

identity 0x1000 with code;

STR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadO ell handler

0x1400:

MOV X2,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final state: 0:R2=0

/ a: str x0, [x1]: W s1:13pte(x) = 0x0

y
| b:dsb sy
tfr

/
/
/

/

118

dl: T s1:13pte(x)

d2: Idr x2, [x3]: R pal = 0x0

le)

Model Result

Base cowinvT+dsb-isb allowed (1 of 2) 5292ms
ETS CowinvT+dsb-isb allowed (1 of 2) 5212ms

A VMSA litmus tests

A.4. Unmapping memory and TLB invalidation

A.4.1.2 Test: CoWinvT.EL1-+dsb-tlbi-dsb allow
This is the ‘break’ side of break-before-make, but without an ISB at the end on the same

thread, so it is not guaranteed that the po-later translations for this core are restarted.

A Arch64 CoWinvT.EL1-+dsb—tlbi—dsb

Page table setup:

physical pal pa2;
X +— pal;
X ?-> invalid;

identity 0x1000 with code;

Initial state:
PSTATE.EL=0b01
RO=0b0O

R3=x
R5=page(x)

Rl=pte3(x,page_table_base)

VBAR_EL1=0x1000

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1,X5
DSB SY

MOV X2,#0
LDR X2, [X3]

threadO ell handler

0x1000:
MOV X2,#1

ERET

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13

Final state: 0:R2=0

119

{Thread 0

t rf ‘\ tfr ///

/,,,/ \ /

b: dsb sy

4

c: tlbi vael, x5:

page=page(x)

same-vmid
-asi

\ same

fff

A |

el: T sl:I13pte(x)

A VMSA litmus tests 120
A.4. Unmapping memory and TLB invalidation

Model Result
Base CoWinvT.EL1+dsb-tlbi-dsb allowed (1 of 2) 10117ms
ETS CoWinvT.EL1+dsb-tlbi-dsb allowed (1 of 2) 12882ms

A VMSA litmus tests

A.4. Unmapping memory and TLB invalidation

A.4.1.3 Test: CoWinvT.EL1-+dsb-tlbiis-dsb allow
This is the same as the previous test, but with a broadcast TLBI.

A Arch64 CoWinvT.EL1-+dsb—tlbiis—dsb

Page table setup:

physical pal pa2;
X+ pal;
X ?-> invalid;

identity 0x1000 with code; Thread 0

Initial state:
PSTATE.EL=0b01

RO=0b0O
Rl=pte3(x,page_table_base)
R3=x

R5=page(x)

VBAR_EL1=0x1000

STR X0, [X1]

DSB SY

TLBI VAE1IS, X5

DSB SY

MOV X2,#0

LDR X2, [X3]

threadO ell handler

0x1000:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 0:R2=0

" C Initial State

Thread 0 CQ
a: str x0, [x1]: W s1:13pte(x) = 0x0
/ //////v
‘;"f e v
| b: dsb sy
trfk tfr
\‘\ c: tibi vaelis, x5: page=page(x)
\ ‘
\ | same-asid %—yggig
‘F)Eﬂ ' S)/

same-va

e2: ldr x2, [x3]: R pal = 0x0

121

A VMSA litmus tests 129
A.4. Unmapping memory and TLB invalidation

Model Result
Base CoWinvT.EL1+dsb-tlbiis-dsb allowed (1 of 2) 11490ms
ETS CoWinvT.EL1+dsb-tlbiis-dsb allowed (1 of 2) 12759ms

A VMSA litmus tests 193
A.4. Unmapping memory and TLB invalidation
A.4.1.4 Test: CoWinvT.EL1-4dsb-tlbiis-dsb-isb forbid

This (similarly to the previous test) is the ‘break’ side of break-before-make, but now in-
cluding the ISB at the end on the same thread, so this time it is guaranteed that the po-later
translations for this core are restarted.

A Arch64 CoWinvT.EL1-+dsb—tlbiis—dsb—isb
Initial state:

PSTATE.EL=0b01
RO=0b0O

R1l=pte3(x,page_table_base)
Page table setup: R3=x

physical pal pa2; R5=page (x)
X — pal; VBAR_EL1=0x1000
X ?-> invalid;
identity 0x1000 with code; Thread 0

STR X0, [X1]

DSB SY

TLBI VAELIS, X5

DSB SY

ISB

MOV X2,#0

LDR X2, [X3]

thread0 ell handler

0x1000:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 0:R2=0

A VMSA litmus tests

124
A.4. Unmapping memory and TLB invalidation

A
b: dsb sy

\ 4
c: tlbi vaelis, x5: page=page(x)

éan%e-va-page
\ |same-asid’ same-vmig

[S

\ e: |Sb

f2: 1dr x2, [x3]: R pal = 0x0

1le)

! <
§ fl: T sl:I3pte(x)

Model Result
Base CoWinvT.EL1+dsb-tlbiis-dsb-isb forbidden (0 of 2) 7548ms
ETS CowinvT.EL1+dsb-tlbiis-dsb-isb forbidden (0 of 2) 12986ms

A VMSA litmus tests

A.4. Unmapping memory and TLB invalidation

A.4.1.5 Test: MP.RT.EL1-4dsb-tlbiis-dsb-+dsb-isb forbid

This is the ‘break’ side of break-before-make, now with a message passing to another core.

A Arch64 MP.RT.EL1+dsb—tlbiis—dsb+dsb—isb

Page table setup:

physical pal pa2;
X — pal;
X ?-> invalid;

y > pa2;

identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=0b0O
:R1l=pte3(x,page_table_base)
:R2=0b1

:R3=y
:R4=page (x)
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x1000

H =2 =2 2 20O 0 0 0o O O

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

EThread 0 -

-—

a: str x0, [x1]: W s1:I3pte(x) =

b: dsb sy

|

c: tlbi vaelis, x4: page=page(x) ‘

-
=

l e: str x2, [x3]: W ﬁéZ = 0x1 ‘

§anm§%ski~
same-va-page-5a ;
d: dsb sy ,//{//// i | |

_ Initial State

125

rf/////

S
h2: Idr x2, [x3]: R pal = 0x0

Model Result
Base MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 2) 348942ms
ETS MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 2) 16656ms

A VMSA litmus tests

A.4. Unmapping memory and TLB invalidation

A.4.1.6 Test: RBS-+dsb-tlbiis-dsb forbid

This ‘read-broken-secret’ (RBS) test is a fundamental test for the security guarantees ‘break’
gives you. Thread 0 unmaps a VA before writing to the original PA (for example, here, through

an alias). Thread 1 attempts to read that VA.

It is allowed for Thread 1 to see the translation-fault, or to translate the VA using the old
mapping and see the old write, but it is forbidden to translate the VA to the PA and see the

new write.

This ensures that, once a mapping to a location is ‘broken’, later writes to that location are

‘secret’ for any cores that were using that VA.

A Arch64 RBS-+dsb—tlbiis—dsb

Page table setup:

physical pal;
X — pal;
X ?7-> invalid;
y > pal;
*pal = 0;

identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01

:RO=0b0O
:R1=pte3(x,page_table_base)
1R2=0x2

:R3=y

:R5=page (x)

:R1=x

:VBAR_EL1=0x1000

H R ® ©@ ®@ © ©®© ©

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X5
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]

threadl ell handler

0x1400:

MOV XO,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:re=2

_ Initial State

§Thread 0

Thread 1 &rf

a: str x0, [x1]: W sl:l3pte(x4)/= 0x0

bi dsb sy | @M Varpage

l

c: tlbi vaelis, x5: page=page(x) ‘

—

==
e: str x2, [x3]: W pal = 0x2

i R
FTAAAAfj | el:TslLi3pte(x) hﬂﬁ
i —

e2: Idr x0, [x1]: R pal = 0x2

samie-vmid

ﬁ///////

A VMSA litmus tests 127
A.4. Unmapping memory and TLB invalidation

Model Result
Base RBS+dsb-tlbiis-dsb forbidden (0 of 2) 4158ms
ETS RBS+dsb-tlbiis-dsb forbidden (0 of 2) 12912ms

A VMSA litmus tests

. 128
A.5. More TLB invalidation

A.5 More TLB invalidation
A.5.1 TLBI-pipeline interactions

Broadcast TLBI variants, also called TLB shootdowns, not only clean the cached entries in the
TLB, but also go into the pipeline of other cores to invalidate any unfinished instructions that
had already started using any of the old translations.

A VMSA litmus tests
A.5. More TLB invalidation

MP.RT.EL1-shaped tests

A.5.1.1 Test: MP.RT.EL1-+dsb-tlbiis-dsb-+dmb forbid
The message-passing ensures that the read of x is ordered after the broadcast TLBI, and the
translate of x has to be on the same side as the access it translates for, so it has to be after the

TLBI too, and therefore has to fault.

A Arch64 MP.RT.EL1-+dsb—tlbiis—dsb+dmb

Page table setup:

physical pal pa2;
X +— pal;
X ?-> invalid;

y — pa2;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=0b0O
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y
:R4=page(x)
:PSTATE.EL=0b00O
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x1000

H =2 =2 2 20O 0 0 0 o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
DMB SY
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:re=1 & 1:R2=0

_ Initial State

129

o /
{Thread 0 . o
a: str x0, [x1]: W s1:I3pte(x) = Ox : P/ ‘ o197 X0, AT R paz = 0x
-‘ // trf - o,
T Ml T
e

c: tlbi vaelis, x4: page=paga(x)

-

e: str x2, [x3]: W pa2 = 0x1 \

4;4/
%

Y

- \
.iglasiglz T s1:I3pte(x) hﬁ g2: Idr x2, [x3]: R pal = 0x0

A VMSA litmus tests 130
A.5. More TLB invalidation

Model Result
Base MP.RT.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 57372ms

ETS MP.RT.EL1+dsb-tlbiis-dsb+dmb forbidden (0 of 2) 5360ms

A VMSA litmus tests 131
A.5. More TLB invalidation

A.5.2 Thread-local TLBIs

In the previous section, we described broadcast TLB maintenance (aka ‘TLB shootdowns’). But
Arm also have thread-local TLB-maintenance instructions. These thread-local TLBIs can be
used to clear thread-local context information (such as local TLB-cached entries), and can be
combined together to emulate a broadcast TLB-maintenance by interrupting other cores and
performing a thread-local TLBI.

A.5.2.1 Test: CoWinvT.EL1-+dsb-tlbi-dsb-isb forbid
The effect of a thread-local TLBI is enough for the thread executing it.

AArch64 CoWinvT.EL1-+dsb—tlbi—dsb—isb

Initial state:
PSTATE.EL=0b01
RO=0b0O

R1l=pte3(x,page_table_base)

Page table setup:
R3=x

physical pal pa2; R5=page(x)

x— pal; VBAR_EL1=0x1000
X ?-> invalid;

Thread 0

STR X0, [X1]

DSB SY

TLBI VAE1, X5

DSB SY

ISB

LDR X2, [X3]

threadO ell handler

0x1000:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 0:r2=0

identity 0x1000 with code;

A VMSA litmus tests
A.5. More TLB invalidation

132

‘\
fl: T sl:I3pte(x)

f2: 1dr x2, [x3]: R pal = 0x0

A —

| !

/ b: dsb sy

: tr / v

trf\\ c: tlbi vael, x5: page=page(x)

$ame-asid

| \ same-vmi

h \

prmemnm e 4

110
Model Result
Base CoWinvT.EL1+dsb-tlbi-dsb-isb forbidden (0 of 2) 18380ms
ETS CoWinvT.EL1+dsb-tlbi-dsb-isb forbidden (0 of 2) 25267ms

A VMSA litmus tests
A.5. More TLB invalidation

A.5.2.2 Test: MP.RT.EL1-+dsb-tlbi-dsb-+dsb-isb allow
The effect of a thread-local TLBI is indeed thread-local, and does not get carried over to

another thread by message-passing.

AArch64 MP.RT.EL1+dsb—tlbi—dsb-+dsb—isb

Page table setup:

physical pal pa2;
X — pal;
X ?7-> invalid;

y — paz;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=0b0
:R1=pte3(x,page_table_base)
:R2=0b1

:R3=y
:R4=page (x)
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x1000

= = =2 2 2 0 0 0 o o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

_ Initial State

133

EThread 0

~
.

tfr

o~
e: str x2, [x3]: W pa2 = 0x1

a: str x0, [x1]: W sLi3pte(x) = 0x0 |

§Thre9d/1

P y e: Idr x0, [x1]: R pa2 = 0Ox1
/ —

E trf ////// f: dsb sy

L g: isb
hid

e

iio

~ v \
] h1: T s1:I3pte(x) H h2: Idr x2, [x3]: R pal = 0x0

A VMSA litmus tests 134
A.5. More TLB invalidation

Model Result
Base MP.RT.EL1+dsb-tlbi-dsb+dsb-isb allowed (1 of 2) 10678ms

ETS MP.RT.EL1+dsb-tlbi-dsb+dsb-isb allowed (1 of 2) 87237ms

A VMSA litmus tests 135
A.5. More TLB invalidation
A.5.2.3 Test: MP.RT.EL1-4dsb-shootdown-dsb-+dsb-isb forbid

A broadcast TLBI can be emulated by performing a thread-local TLBI on each core, with
sufficient synchronization between them.

In the following test, we take MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb and split the broadcast
TLBI over many threads. Thread 0 ‘breaks’ the location and then sends messages to each core
requesting it perform the TLB maintenance locally.

Note that to correctly emulate the behaviour of the broadcast TLBI, each core must perform
an ISB (or other context-synchronizing event) to get the pipeline effects of the TLBI. This

A VMSA litmus tests
A.5. More TLB invalidation

requirement is slightly stronger than the TLBI semantics, also flushing unrelated accesses.

AArch64 MP.RT.EL1+dsb—shootdown—dsb+dsb—isb

Page table setup:

physical pal pa2 pa3;
X — pal;
X ?7-> invalid;

y — paz;
*pa2 = 0;

f+— pa3;
*pa3 = 0;
identity 0x1000 with code;

Initial state:

0:PSTATE.EL=0b01
0:R0=0b0O
0:R1=pte3(x,page_table_base)
0:R2=0b1

0:R3=y

0:R4=0b1

0:R5=f
1:PSTATE.EL=0b00
1:PSTATE.SP=0b0
1:R1l=y

1:R3=x

1:R5=f
1:R6=page(x)
1:R7=0b10
1:VBAR_EL1=0x1000
Thread 0

STR X0, [X1]
DSB SY

STR X4, [X5]
LDR X6, [X5]
DSB SY

STR X2, [X3]
Thread 1

LDR X4, [X5]
SVC #0

STR X7, [X5]
LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]
threadl ell handler
0x1400:

MRS X9,ESR_EL1
LSR X9,X9,#26
SUB X9,X9,#0b010101
CBNZ X9,1f

0:

DSB SY

TLBI VAE1, X6
DSB SY

ISB

ERET

1:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:R4=1 & 0:R6=2 & 1:R0=1 & 1:R2=0

136

A VMSA litmus tests

137
A.5. More TLB invalidation

-—

a: str x0, [x1]: W sLi3pte(x) = 0x0 | |

Initial State
,,,,,,,,,,,,,,,,,,,,,,,,,, t ‘
’ ooee :

—>

;] f: Idr x4, [x5]: R pa3 = Ox1

|
|

T—rfi L. .
~_same-vmid /same-asit~>

gsaméﬁra—pzige ’ m: str x7, [x5]: W pa3 = 0x2 ‘

P l

[[niidrx0, [x1l: Rpaz = 0x1 |

|
p: isb
\

g2: Idr x2, [x3]: R pal = 0x0

v
| ql: T sl:I3pte(x) h(ﬁ

Model Result
Base MP.RT.EL1+dsb-shootdown-dsb+dsb-isb forbidden (0 of 2) 765865ms
ETS

MP.RT.EL1+dsb-shootdown-dsb+dsb-isb forbidden (0 of 2) 49466ms

A VMSA litmus tests

138
A.5. More TLB invalidation

A.5.3 Multiple locations

A.5.3.1 Test: MP.RTT.EL1+dsb-tlbiis-tlbiis-dsb+dsb-isb forbid
Here, we invalidate two different VAs, and perform their TLBIs together in the same thread,
effectively allowing concurrent execution of the two TLBIs on the same core.

AArch64 MP.RTT.EL1-+dsb—tlbiis—tlbiis—dsb-+dsb—isb

Initial state:
:PSTATE.EL=0b01
:RO=0bO

:R1=pte3(x,page_table_base)
:R2=0b0O
:R3=pte3(z,page_table_base)
:R4=page (x)

:R5=page(z)

:R6=0x1

:R7=y

:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1l=y

1R3=x

:R5=z

:VBAR_EL1=0x1000

Page table setup:
physical pal pa2 pa3;

X +— pal;
X ?-> invalid;

y — paz2;

z +— pa3;
z ?-> invalid;

H =2 R 2 HE 0 0 0 0O 0 0 o o o

identity 0x1000 with code; | Thread 0O

STR X0, [X1]
STR X2, [X3]
DSB SY

TLBI VAE1IS, X4
TLBI VAE1IS, X5
DSB SY

STR X6, [X7]
Thread 1

LDR X0, [X1]

DSB SY

ISB

LDR X4, [X3]

MOV X2,X4

LDR X4, [X5]

threadl ell handler

0x1400:

MOV X4,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0 & 1:R4=0

A VMSA litmus tests

139
A.5. More TLB invalidation
co Al
‘Thread 0 P : ; rea/d/l \
i] a: str x0, [x1]: W s1:13pte(x) = 0x0 e] g: Idr x0, [x1]: R pa2 = Ox1

[brstrx2, [x31: W sLif3pte(z) = 0x0

A

.

S~/
tfr_ | /k

ame-as @\gém; e e
| d: tibi vaelis, x4: page=page(x).5 =" ST T sLi3pte(x) fosl
le-va-page i\l iio
Same-vmid Ssa 76 NS I

l _same-asEEme=vmid ,E,é Y
l e: tlbi vaelis, x5: page=page(z3"mq};{;’%e(iiv‘_js_apngsdE 1: T s1:13pte(z) il k2: Idr x4, [x5]: R pa3 = 0x0 ‘

|

| g: str x6, [x7]: W pa2 = 0x1 \

\
j2: 1dr x4, [x3]: Rpal = 0x0 |

Model Result
Base

ETS

MP.RTT.EL1+dsb-tlbiis-tlbiis-dsb+dsb-isb forbidden (0 of 4) 520042ms
MP.RTT.EL1+dsb-tlbiis-tlbiis-dsb+dsb-isb forbidden (0 of 4) 305092ms

A VMSA litmus tests 140
A.6. Stage 1 Re-mapping and break-before-make

A.6 Stage 1 Re-mapping and break-before-make
A.6.1 Break-before-make
BBM-shaped tests

A.6.1.1 Test: BBM-+dsb-tlbiis-dsb allow

This is the smallest example of a safe change of output address mapping, using the ‘break-
before-make’ (BBM) pattern.

Thread 1 loads a fixed VA, and Thread 0 tries to re-map that VA from the initial PA to a
new one.

To do this safely, Arm prescribe a “break-before-make” sequence to ensure that the other
threads will not ever see both the new and old mappings at the same time. Instead, the mapping
must be ‘broken’ (unmapped) and cleaned between the two states.

This test is the minimum required to correctly change OA (“output address”) for a given

mapping.
A Arch64 BBM-+dsb—tlbiis—dsb
Initial state:

:PSTATE.EL=0b01
:RO=0b0O

:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)

Page table setup: Ra=0b1
:R6=page(x)
:PSTATE.EL=0b00
:PSTATE. SP=0b0
:R1=x
:VBAR_EL1=0x1000

physical pal pa2;
X — pal;

X ?-> invalid;

X ?7-> pa2;

H =2 2 2 0O O 0 o o o

identity 0x1000 with code;

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X6
DSB SY

STR X2, [X1]
Thread 1

LDR X0, [X1]
threadl ell handler

0x1400:

MOV X0,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=e

*pa2 = 2;

A VMSA litmus tests

A.6. Stage 1 Re-mapping and break-before-make 141

Initial State

co____— ~_ trf
Thread 0 . t Thread 1,
a: str x0, [x1]: W s1:13pte(x) = 0x0 ‘\ r | el: T s1:I3pte(x) ’Wo'\ e2: Idr x0, [x1]: R pal = 0x0
— ———

~

e
l e: str x2, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pa2))

Model Result
Base BBM+dsb-tlbiis-dsb allowed (1 of 3) 12702ms
ETS BBM+dsb-tlbiis-dsb allowed (1 of 3) 19328ms

A VMSA litmus tests

A.6. Stage 1 Re-mapping and break-before-make 142

A.6.1.2 Test: BBM.Tf+dsb-tlbiis-dsb allow

This illustrates the other allowed outcome of the previous test: the correct use of break-
before-make ensures that the change of output address is safe, but does not guarantee that the
new page table entry is seen. Thread 1 sees a translation-fault from the transient invalid entry
during the break-before-make sequence.

A Arch64 BBM.Tf+dsb—tlbiis—dsb

Initial state:

0:PSTATE.EL=0b01
0:R0O=0b0
0:R1=pte3(x,page_table_base)
0:R2=mkdesc3(oa=pa2)
Page table setup: 0:R4=001
0:R6=page(x)
physical pal pa2; 1:PSTATE.EL=0b00
X pal; 1:PSTATE. SP=0b0
X ?-> invalid;
X ?-> pa2; 1:R1=x
1:VBAR_EL1=0x1000
identity 0x1000 with code;
Thread 0
*paz = 2; STR X0, [X1]
DSB SY
TLBI VAE1IS, X6
DSB SY
STR X2, [X1]
Thread 1
LDR X0, [X1]
threadl ell handler
0x1400:
MOV XO,#1
Final state: 1:rRe=1
Thread 0 / / Thread 1
\ a: str x0, [x1] W s1:13pte(x) = Ox0 ‘ trf/ | el: T s1:13pte(x) hﬁﬁ e2: Idr x0, [x1]: Fault
e

c: tibi vaelis, x6: page= page(x)

\

‘ e: str x2, [x1]: W s1: I3pte(x) = mkdesc(addr=page(pa2))

Model Result
Base BBM.Tf+dsb-tlbiis-dsb allowed (1 of 3) 9196ms
ETS BBM.Tf+dsb-tlbiis-dsb allowed (1 of 3) 13659ms

A VMSA litmus tests 143
A.6. Stage 1 Re-mapping and break-before-make

MP.BBM-shaped tests

A.6.1.3 Test: MP.BBM1-}dsb-tlbiis-dsb-dsb-+dsb-isb forbid

In this test, Thread 0 break-before-makes a new mapping, and then synchronises with
Thread 1 with a message pass.

While this is a slightly unusual setup, as one would mostly expect break-before-make to
happen concurrently with the other thread, rather than be synchronised-before it, this is still
an interesting test to explore the architecture.

Arm forbid both the translation-fault and the translation with the old entry.

A Arch64 MP.BBM1+-dsb—tlbiis—dsb—dsb-+dsb—isb

Initial state:
:PSTATE.EL=0b01

:RO=0b0O
:R1=pte3(x,page_table_base)

:R2=mkdesc3 (oa=pa2)
:R4=0b1

:R5=y

:R6=page (x)
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:R1l=y

:R3=x
:VBAR_EL1=0x1000

Page table setup:

physical pal pa2 pa3;
X — pal;

X ?-> invalid;

X ?7-> pa2;

H =2 =2 2 2 0O 0 0 0O 0 o o

y — pa3;
identity 0x1000 with code;

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X6
DSB SY

STR X2, [X1]
DSB SY

STR X4, [X5]
Thread 1

LDR X0, [X1]

DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

*pa2 = 1;

A VMSA litmus tests

A.6. Stage 1 Re-mapping and break-before-make

144

Thread 0

a: str x0, [xl] W sl: I3pte(x) = 0x0

—v

c: tlbi vaelis, x6: page=page(x)

f: dsb sy

Initial State

/
/

Thread 1

[g:ldrx0, [x1]: R pa3 = Ox1

/] j1: T s1:13pte(x)

\
hrd j2: 1dr x2, [x3]: Fault

same
same-as
d: dsb sy
/
e: str x2, [x1]: W s1:13pte(x) = mkdesc(addr=page(pa2)) ‘

_— —
l g: str x4, [x5]: W pa3/= Ox:‘L/ ‘
Model Result
Base MP.BBM1l+dsb-tlbiis-dsb-dsb+dsb-isb forbidden (0 of 3) 116116ms
ETS

MP.BBM1l+dsb-tlbiis-dsb-dsb+dsb-isb error (0 of 3) 182456ms

A VMSA litmus tests
A.6. Stage 1 Re-mapping and break-before-make

A.6.1.4 Test: MP.BBM1-}dsb-tlbiis-dsb-dsb-ctrl-isb forbid
A Arch64 MP.BBM1-+dsb—tlbiis—dsb—dsb--ctrl—isb

Page table setup:

physical pal pa2 pa3;
X — pal;

X ?-> invalid;

X ?7-> pa2;

y = pa3;
identity 0x1000 with code;

*pa2 = 1;

Initial state:
:PSTATE.EL=0b01
:RO=0b0O
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R4=0b1

:R5=y

:R6=page (x)
:PSTATE.EL=0b00O
:PSTATE. SP=0b0
:Rl=y

:R3=x
:VBAR_EL1=0x1000

H =2 =2 2 2 0O 0 0 0 0o o o

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X6
DSB SY

STR X2, [X1]
DSB SY

STR X4, [X5]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:
ISB
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

Model Result
Base MP.BBM1l+dsb-tlbiis-dsb-dsb+ctrl-isb forbidden (0 of 6) 1068905ms
ETS Mp.BBM1+dsb-tlbiis-dsb-dsb+ctrl-isb forbidden (0 of 6) 571232ms

145

A VMSA litmus tests
A.7. Translation-table-walk ordering

A7

A.7.1 Inter-instruction ordering

Translation-table-walk ordering

146

Typically, translations of separate instructions are not ordered with respect to each other: simply
having program-order between them introduces no strength. Earlier, we saw that even same-VA

did not give strength (CoTTf.inv+po)
MP.TT.inv-shaped tests

A.7.1.1 Test: MP. TTf.inv+dsb-+po allow
The translates on the reader side are not ordered.

A Arch64 MP.TTf.inv+dsb-+po

Page table setup:

physical pal pa2;
x — invalid;
X ?7-> pal;

y — invalid;
y ?7-> pa2;

*pal = 1;
*pa2 = 1;
identity 0x1000 with code;

Initial state:
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

P P B H 0 O O O

Thread 0

STR X0, [X1]
DSB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
MOV X0, X2
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

__Initial State

iThread 0

Thread 1

_—

a: str x0, [x1]: W s1:13pte(x) = mkdeszr(gddr=page(pa1)) ‘

T

cl: T s1:I3pte(y) hTo’\

c2: |dr x2, [x1]: R pa2 = Ox1
T

T

—_tfr -

co_~

o ~d1 T s1i3pte(x) sl

)
s d2: Idr x2, [x3]: Fault

< str x2, [x3]: W sLiI3pte(y) = mkdesc(addr=page(pa2)) ‘

Model Result
Base MP.TTf.inv+dsb+po allowed (1 of 4) 42061ms
ETS

MP.TTf.inv+dsb+po forbidden (0 of 4) 23415ms

A VMSA litmus tests

A.7. Translation-table-walk ordering 147

A.7.1.2 Test: MP.TTf.inv+dsbs allow (unless ETS, then forbid)
The translates on the reader side are not ordered, as the DSB SY does not order them by itself
(it needs an ISB), except with ETS, which would provide order with the faults.

A Arch64 MP.TT{.inv-+dsbs

Initial state:
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:Rl=y

:R3=x

:VBAR_EL1=0x1000

Page table setup:

physical pal pa2;
X — invalid;
x ?7-> pal;

R P B H R 0 O © O

y — invalid;
y 7-> paz; Thread 0

xpal = 1; STR X0, [X1]
xpa2 = 1; DSB SY
identity 0x1000 with code; | STR X2, [X3]
Thread 1

LDR X2, [X1]

MOV X0, X2

DSB SY

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 1:R2=0

__Initial State

Thread 0 P /" \[Thread 1
’7 a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) ‘ :licl: T sl:I13pte(y) }-m)-\ c2: Idr x2, [x1]: R pa2 = 0x1

' - o //////7/,,//"'tﬁ\
b: dsb sy ///tfr;rf = . d: dsb sy

_—) - \\

e e .
c: str x2, [x3]: W s1:I3pte(y) = mkdesc(addr=page(pa2)) ‘ el: T s1:13pte(x) }-]Td e2: Idr x2, [x3]: Fault

Model Result
Base MP.TTf.inv+dsbs allowed (1 of 4) 64484ms
ETS Mp.TTf.inv+dsbs forbidden (0 of 4) 28800ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.1.3 Test: MP. TTf.inv+dsb-+dsb-isb forbid
The translates on the reader side are ordered by the DSB SY;ISB combination.

A Arch64 MP.TTf.inv+dsb-+dsb—isb

Page table setup:

physical pal pa2;
X — invalid;
X ?7-> pal;

:R1l=y
:R3=x

R P B H R 0 O © O

y — invalid;

Initial state:
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00O
:PSTATE. SP=0b0

:VBAR_EL1=0x1000

y 7-> paz; Thread 0

*pal =1; STR XO, [Xl]

xpa2 = 1; DSB SY

identity 0x1000 with code; | STR X2, [X3]

Thread 1

MOV X0,X2
DSB SY
ISB

LDR X2, [X1]

LDR X2, [X3]

threadl ell handler

0x1400:
MOV X2,#0

ERET

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13

Final state: 1:Re=1 & 1:R2=0

__Initial State

148

iThread 0 N
: ’7 a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) ‘
] co /////,,,--f/
b: dsb sy //Ciﬁfxtdxx

c: str x2, [x3]: W s1:I3pte(y) = mkdggf(addr=page(pa2)) ‘

Model Result

/

Thread 1

Fcl: TsliBptely) |l c2:1drx2, [x1]: R pa2 = 0x1

trk,

e:isb

~ N
fl: Tsli3pte(x) |l f2:1dr x2, [x3]: Fault

1o

Base
ETS

MP.TTf.inv+dsb+dsb-isb forbidden (@ of 4) 29708ms
MP.TTf.inv+dsb+dsb-isb forbidden (0 of 4) 22505ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.1.4 Test: MP. TTf.inv+dsb-+ctrl-isb forbid

AArch64 MP.TTf.inv+dsb-+ctrl—isb

Page table setup:

physical pal pa2;
X — invalid;
x ?-> pal;

:R1l=y
:R3=x

e e e = = I - N)

y — invalid;

Initial state:
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00
:PSTATE. SP=0b0

:VBAR_EL1=0x1000

y ?7-> paz; Thread 0

*pal = 1; STR X0, [X1]
xpa2 = 1; DSB SY
identity 0x1000 with code; STR X2, [X3]

Thread 1

LDR X2, [X1]
MOV X0, X2
CBNZ X0O,L0
LO:

ISB

LDR X2, [X3]

threadl ell handler

0x1400:
MOV X2,#0

ERET

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13

Final state: 1:rRe=1 & 1:R2=0

" Initial State

co 7

149

iThread 0 _—
i a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal))

P/
4

;
e

co thr—
b: dsb sy Pt t

_—

c: str x2, [x3]: W sl:I3pte(y) = mkd;sc(addr=page(p32))

Model Result

Thread 1

[c1: T s1i3pte(y) lrsl c2:ldrx2, [x1]: R pa2 = 0x1

trf,
N\

\\

C

r.

~ s
el: T s1:13pte(x) }ﬁ# e2: ldr x2, [x3]: Fault

Base MP.TTf.inv+dsb+ctrl-isb forbidden (0 of 6) 30317ms
ETS MP.TTf.inv+dsb+ctrl-isb forbidden (© of 6) 37812ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.1.5 Test: MP. TTf.inv+dmb-}dsb-isb forbid
The DMB SY on the writer thread is enough (a DSB SY is not needed), as it is only here to

order the writes as normal writes.

AArch64 MP.TTf.inv+dmb-+dsb—isb

Page table setup:

physical pal pa2;
X — invalid;
x ?-> pal;

y — invalid;
y ?-> pa2;

xpal = 1;
*pa2 = 1;
identity 0x1000 with code;

Initial state:
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1l=y

1R3=x

:VBAR_EL1=0x1000

[I S R B S B B > B o)

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
MoV X0, X2
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

co

_ Initial State

150

iThread 0

Thread 1

— i/
a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) ‘ /

c2: Idr x2, [x1]: R pa2 = Ox1

< trf

S

| cl:TsuBptey) |pa

e

co
g trf\:

tfr

< str x2, [x3]: W sL:I3pte(y) = mkdesc(addr=page(pa2)) |

‘\ S
fl: Tsli3pte(x) |l f2:1dr x2, [x3]: Fault

1o

Model Result
Base MP.TTf.inv+dmb+dsb-isb forbidden (0 of 4) 27192ms
ETS MP.TTf.inv+dmb+dsb-isb forbidden (0 of 4) 47972ms

A VMSA litmus tests 151
A.7. Translation-table-walk ordering
A.7.1.6 Test: MP. TTf.inv+dmb-+po allow

Note that although the final translation-fault in the second thread must be ordered-before the
write of the valid entry in Thread 1 (as the fault must come from a non-TLB read of memory),
the translation-fault is not necessarily ordered-after the initial translate or even the first load’s
read.

A Arch64 MP.TTf.inv+dmb+po

Initial state:
:RO=mkdesc3(oa=pal)

:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y, page_table_base)
:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1l=y

:R3=x

:VBAR_EL1=0x1000

Page table setup:

physical pal pa2;
X — invalid;
X ?7-> pal;

I e R N =<

y — invalid;
y 7-> paz; Thread 0

xpal = 1; STR X0, [X1]
xpa2 = 1; DMB SY
identity 0x1000 with code; STR X2, [X3]
Thread 1

LDR X2, [X1]

MOV X0, X2

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

__Initial State

Thread 0 - / Thread 1
: a: str x0, [x1]: W s1:13pte(x) = mkdesc(addr=page(pal)) | [c1: T s1:i3pte(y) hr&‘ c2:ldrx2, [x1]: Rpa2 = 0x1 |
e A i

co // \ o *
b: dmb sy i [d1: T sLi3pte(x) hro’l d2: Idr x2, [x3]: Fault |

_— —
< str x2, [x3]: W sLiI3pte(y) = mkdesc(addr=page(pa2)) ‘

Model Result
Base MP.TTf.inv+dmb+po allowed (1 of 4) 52201ms

hoN

T

ETS mp.TTf.inv+dmb+po forbidden (0 of 4) 9113ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.1.7 Test: MP.TTf.inv.EL1+dsb-tlbiis-dsb+po allow

Program-order between the loads does not induce order between the translates of the loads.

A Arch64 MP.TTf.inv.EL1+dsb—tlbiis—dsb-+po

Page table setup:

physical pal pa2;
X — invalid;
X ?7-> pal;

y — invalid;
y ?-> paz;

Initial state:
:PSTATE.EL=0b01
:RO=mkdesc3(oa=pal)
:R1l=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y, page_table_base)
:R4=page (x)

:PSTATE.EL=0b00
:PSTATE.SP=0b0

:Rl=y

:R3=x

:VBAR_EL1=0x1000

H =2 =2 2 2 0O 0 0 0o O O

xpal = 1;

Thread 0

*pa2 = 1;
identity 0x1000 with code;

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X2, [X1]
MoV X0, X2
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 1:R2=0

Initial State

/
/

152

Thread 0

/ Thread 1

| el:Isl:Bpte(y) }Wo"

c: tibi vaelis, x4: page=page(x) ‘

d: dsb sy /,,;//:/

7

a: str x0, [x1]: W s1:I3pte(x) = mkdesEr(V;ddr=page(pa1)) ‘

b: dsb sy Ssaamm:—as!d - A
sanie-vmid
s spage satme-asid

e2: Idr x2, [x1]: R pa2 = 0x1
[

T

c/'/
/ /t/’) -

;|]fl:Tsl:I3pte(x) ’Wcﬂ

f2: Idr x2, [x3]: Fault

™

l e: str x2, [x3]: W s1:13pte(y) = mkdesc(addr=page(pa2))

Model Result
Base MP.TTf.inv.EL1+dsb-tlbiis-dsb+po forbidden (0 of 4) 162552ms
ETS

MP.TTf.inv.EL1+dsb-tlbiis-dsb+po forbidden (0 of 4) 200958ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.1.8 Test: MP. TTf.inv.EL1-+dsb-tlbiis-dsb+dsb-isb forbid
A DSB; ISB between the loads does not induce order between the translates of the loads.

AArch64 MP.TT{.inv.EL1+dsb—tlbiis—dsb+dsb—isb

Page table setup:

physical pal pa2;
X — invalid;
X ?7-> pal;

y — invalid;
y ?-> paz;

xpal = 1;
*pa2 = 1;
identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b01
:RO=mkdesc3(oa=pal)
:R1=pte3(x,page_table_base)
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:R4=page (x)

:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:Rl=y

:R3=x

:VBAR_EL1=0x1000

H =2 =2 2 2 0O 0 0 0 o O

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS, X4
DSB SY

STR X2, [X3]

Thread 1

LDR X2, [X1]
MoV X0, X2
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 1:R2=0

o

153

Thread 0

/_ a: str x0, [x1]: W s1:13pte(x) = mkdesckéddr=page(pal))

I

e2: Idr x2, [x1]: R pa2 = 0x1

C: tibi vaelis, x4: page=page(x) ‘

same-asid s

G

7

—csamevmid sanmie-va-page
~ " same-asid ——

Thread 1
‘ \ ,_elz T s1:13pte(y)

Vmid L,

"

- N

N .
| h1:TsLi3pte(x) sl h2:1drx2, [x3]: Fault

-
e: str x2, [x3]: W s1:13pte(y) = mkdesc(addr=page(pa2)) ‘

Model Result
Base MP.TTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 4) 16436ms
ETS MP.TTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb forbidden (6 of 4) 29491ms

A VMSA litmus tests 154
A.7. Translation-table-walk ordering

A.7.2 Multi-level translations
ROT.inv-shaped tests

A.7.2.1 Test: ROT.inv-+dsb forbid

In this ROT test (“reorder translation”), Thread 0 writes to the leaf entry of a fresh (unused)
translation-table, and then replaces an (initially invalid) leaf higher in the table with a new table
entry which points to the freshly created table.

Thread 1 then tries to load an address that would use this new freshly made entry. If the
individual accesses during the translation-table-walk are allowed to re-order, then it would be
possible for Thread 1 to see the updated table but still see the old leaf entry.

This must be forbidden, requiring that the translation-table-walk happens ‘in-order’ and the
ordering on Thread 0 ensures the two writes are visible to the walker in that order.

The exception handler code records which translation level caused the exception.

AArch64 ROT.inv+dsb

Initial state:
:PSTATE.EL=0b01
:RO=mkdesc3(oa=ipal)
Page table setup: :R2=mkdesc2 (table=0x283000)
physical pal; :R3=pte2(x,page_table_base)

0
0
0:R1l=pte3(x,new_table)
0
0
intermediate ipal; 1

:R1=x
1:VBAR_EL1=0x1000
assert pal == ipal;

ipal~s pal; Thread 0
sltable new_table 0x280000 { STR X0, [X1]

x > invalid; DSB SY

X 7-> ipal; STR X2, [X3]
i Thread 1
identity 0x283000 with default LDR X0, [X1]
ldentyl X. W1’ efau H

i thread 1 ell handler

x+>invalid at level 2; 0x1400:

x ?7-> table(0x283000) at level 2; | MRS X14,ESR_EL1

AND X14,X14,#0b111

identity 0x1000 with code; CMP X14,#0b111

MOV X17,#1

MOV X18,#2

// if ESR_EL1.1SS.DFSC = Translation Level 3 then x2 =1 else x2 =2
CSEL X0,X17,X18,eq

Final state: 1:Re=1

Initial State >
(O,,,,,,,,,,,,,,,,,,, -

_trf
read 1

cliﬁ':lfﬁmiwjgr?-——ﬁ"‘”E’Z,‘\‘Wtableﬁpte(x) Frl—c3:1dr x0, [x1J: Fault

Thread 0

a: st x0, [x1J: W new_table:3pte(x) = mkdesc(addr=page(pal)) |

c: str x2, [x3]: W s1:12pte(x) = mkdesc(AF=0x1, AP=0x1, addr:m;desc(AF:Dxl, SH=0x0, AP=0x3, addr=0x0))

_—

Model Result
Base ROT.inv+dsb forbidden (0 of 3) 2805ms
ETS ROT.inv+dsb forbidden (0 of 3) 3202ms

A VMSA litmus tests

. . 155
A.7. Translation-table-walk ordering
A.7.2.2 Test: ROT.inv-+dmbst forbid
This is like the previous test, but with a much weaker barrier between the two writes.
This is also forbidden: any respected ordering between the writes would suffice.
AArch64 ROT.inv-+dmbst
Initial state:
0:PSTATE . EL=0b01
0:RO=mkdesc3(oa=ipal)
0:R1l=pte3(x,new_table)
Page table setup: 0:R2=mkdesc2 (table=0x283000)
physical pal; 0:R3=pte2(x,page_table_base)
intermediate ipal; 1:R1=x
1:VBAR_EL1=0x1000
assert pal == ipal;
ipalr pal; Thread 0
sltable new_table 0x280000 { STR X0, [X1]
X+ invalid; DMB ST
x 7-> ipal; STR X2, [X3]
}; Thread 1
identity 0x283000 with default; LDR X0, [X1]
reemtity B e detautts thread 1 ell handler
x> invalid at level 2; 0x1400:
x ?7-> table(0x283000) at level 2; | MRS x14,esr_ell
AND X14,X14,#0b111
identity 0x1000 with code; CMP x14,#0b111
MOV X17,#1
MOV X18,#2
// if ESR_EL1.1SS.DFSC = Translation Level 3 then x2 =1 else x2 =2
CSEL x0,x17,x18,eq
Final state: 1:Re=1
Thread? a: str x0, [x1]: W new_table:13pte(x) = mkdesc(rarglrdrr;;arge(pal)) \7 /7// " '%mﬁéﬁ}mgable:mpte(xl bielc3:1dr x0, [x1]: Fault

o _—

b: dmb st “‘

c: strx2, [x3]: W s1:I2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=mkdesc(AF=0x1, SH=0x0, AP=0x3, addr=0x0))

Model Result
Base ROT.inv+dmbst forbidden (0 of 3) 3998ms
ETS ROT.inv+dmbst forbidden (0 of 3) 3919ms

A VMSA litmus tests

A.7. Translation-table-walk ordering 156

A.7.2.3 Test: LB+data-trfis forbid
This is a variant of LB-+datas+WW.

AArch64 LB+data—trfis

Initial state:

0:R1=x
0:R3=desc3(y,page_table_base)
0:R4=pte3(u,page_table_base)
0:R5=0b1
0:R6=u
0:R7=0b1
0:VBAR_EL1=0x1000
Page table setup:
1:R1l=y
physical pal pa2 pa3 pa4; 1:R3=desc3(x,page_table_base)
x> pal; 1:R4=pte3(v,page_table_base)
y — paz2;
u+ invalid; 1:R5=0b1
u ?-> pa2; 1:R6=v
v+ invalid; 1:R7=0b1l
v ?7-> pal; 1:VBAR_EL1=0x2000

identity 0x1000 with code;
identity 0x2000 with code; Thread 0

LDR X0, [X1]
EOR X2,X0,X0
ORR X3,X3,X2
STR X3, [X4]
STR X5, [X6]
Thread 1

LDR X0, [X1]

EOR X2,X0,X0

ORR X3,X3,X2

STR X3, [X4]

STR X5, [X6]

threadl el0 handler

0x1400:

MOV X7,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

threadl ell handler

0x2400:

MOV X7,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 0:Re=1 & 0:R7=1 & 1:R0=1 & 1:R7=1

Initial State

= <
~ ~

JiThread T-_
/I ~

iThread 0 —
; a: Idr x0, [x1]: R pal = Ox1 co_—
— -

c: Idr x0, [x1]: R pa2 = 0x1
- data

data >

d: str x3, [x4]: W slzlgpte(v) = mkdesc(addr=page(pal)) ‘

l b: str x3, [x4]: W s1:I3pte(u) = ml?desc(addr:page(paZ)) - ‘

o <
| el: T s1:I3pte(v) hT(ﬂ e2: str x5, [x6]: W pal = Ox1 ‘

1 P <y e
| cl: T sl:I3pte(u) hTo'{ c2: str x5, [x6]: W pa2 = 0x1 ‘

Model Result
Base LB+data-trfis forbidden (0 of 4) 26579ms
ETS |B+data-trfis forbidden (0 of 4) 18056ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.2.4 Test: LB+addr-trfis forbid
This is a variant of LB-+datas+WW.

A Arch64 LB+addr—trfis

Initial state:

0:R1=x
0:R3=desc3(y,page_table_base)
0:R4=pte3(u,page_table_base)
0:R5=0b1
0:R6=u
0:R7=0b1
0:VBAR_EL1=0x1000
0:__isla_monomorphize_writes=true
Page table setup: P

1:Rl=y

physical pal pa2 pa3 pa4; 1:R3=desc3(x, page_table_base)

x> pal; 1:R4=pte3(v,page_table_base)

y — paz;

u+ invalid; 1:R5=0b1

u ?7-> pa2; 1:R6=v

v invalid; 1:R7=0b1

v 7-> pal; 1:VBAR_EL1=0x2000

identity 0x1000 with code; . .

identity 0x2000 with code; 1:__isla_monomorphize_writes=true
Thread 0

LDR X0, [X1]
EOR X2,X0,X0
STR X3, [X4,X2]
STR X5, [X6]

Thread 1

LDR X0, [X1]
EOR X2,X0,X0
STR X3, [X4,X2]
STR X5, [X6]

threadl el0 handler

0x1400:

MOV X7,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl ell handler

0x2400:

MOV X7,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 0:Ro=1 & 0:R7=1 & 1:R0=1 & 1:R7=1

Initial State

157

iThread 0 _—
i a: Idr x0, [x1]: R pal = Ox1
addr e

Thread 1 ~_

c: Idr x0, [x1]: R pa2 = 0x1

\

addr

‘ b: str x3, [x4, x2]: W s1:13pte(u) = %kdesc(addr:page(paZ)) -
H i

] d: str x3, [x4, x2]: W sﬁ3pte(v) = mkdesc(addr=page(pal)) ‘
= o —

Pl i

| cl: T sl:I3pte(u) }.—.(ﬁ c2: str x5, [x6]: W pa2 = 0x1

el: T s1:I3pte(v) }Wd

\
e2: str x5, [x6]: W pal = 0x1

Model Result
Base LB+addr-trfis forbidden (0 of 4) 7042ms
ETS LB+addr-trfis forbidden (0 of 4) 7977ms

A VMSA litmus tests
A.7. Translation-table-walk ordering

A.7.2.5 Test: WRC.TfRT+po-+dsb-isb allow

A Arch64 WRC.TfRT+po+dsb—isb

Initial state:
0:PSTATE . EL=0b00
0:PSTATE . SP=0b0
0:RO=0b0O
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00
1:PSTATE. SP=0b0
1:R1=x

Page table setup: 1:R2=0b1
1:R3=y
1:VBAR_EL1=0x1000
2:PSTATE . EL=0b00
2:PSTATE. SP=0b0
2:Rl=y
2:R3=x
2:VBAR_EL1=0x2000

physical pal pa2;

X pal;
X ?7-> invalid;
*pal = 1;

y > pa2;
*pa2 = 0;

identity 0x1000 with code; | Thread 0

identity 0x2000 with code; STR X0, [X1]

Thread 1

LDR X0, [X1]
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV Xo,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV Xo,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=0 & 2:R0=1 & 2:R2=1

__Initial State
©w

158

—{Thread 1 -

{Thread 0

a: str x0, [x1]: W s1:I13pte(x) = 0x0 J”}—L»I al: T sl:I3pte(x) hi'c/)"[

a2: ldr x0, [x1]: Fault

cof

N
c: str x2, [x3]: W pa2 = 0x1

Thread 2

c: Idr x0, [x1]: R pa2 = Ox1

d: dsb sy

N ~a
fli TsliBpte(x) |l f2:1drx2, [x3]: R pal = Ox1

Model Result
Base WRC.TfRT+po+dsb-isb allowed (1 of 4) 39075ms
ETS

WRC.TfRT+po+dsb-isb allowed (1 of 4) 57628ms

A VMSA litmus tests

A.7. Translation-table-walk ordering

A.7.2.6 Test: WRC.TfRT}+dsb-tlbiis-dsb-+dsb-isb allow

A Arch64 WRC.TfRT+dsb

—tlbiis—dsb-+dsb—isb

Page table setup:
physical pal pa2;
x> pal;

X ?-> invalid;

*pal = 1;

y > pa2;
*pa2 = 0;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
:PSTATE.EL=0b00
:PSTATE.SP=0b0
RO=0b0O
R1=pte3(x,page_table_base)
PSTATE.EL=0b00
PSTATE.SP=0b0
R1l=x

R2=0b1

R3=y

R4=page(x)
VBAR_EL1=0x1000
PSTATE.EL=0b00
PSTATE.SP=0b0
R1=y

R3=x
:VBAR_EL1=0x2000

N NN NNKRKRKHBRBRBR O O © O

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
// the TLBI is in the handler
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO,#0

DSB SY

TLBI VAELIS, X4
DSB SY

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV XO,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=e & 2:Re=1 & 2:R2=1

~ Initial State

< N

159

—fihread 1

iThread 0

N

a: str x0, [x1]: W s1:I3pte(x) = 0x0 77/}—;L

i+ aliTsli3pte(x) [l a2:1drx0, [x1]: Fault |
=S

same-asl

s

same-va-page
T same-va-page

/.

/-

[c: tibi vaelis, x4: page=page(x)
sa

e sar
co /Same-ast
d: dsb sy

,/

.
/
[fistrx2, [x3]: W pa2 = 0x1

}*K

e-vimig

Thread 2

f: Idr x0, [x1]: R pa2 = 0x1
>

-

g: dsb sy

e

= \ N
| i:iTsui3pte(x) fpl i2:1drx2, [x3]: R pal = 0x1

Model Result
Base WRC.TfRT+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 4) 549315ms
ETS WRC.TfRT+dsb-tlbiis-dsb+dsb-isb forbidden (0 of 4) 1582501ms

A VMSA litmus tests 160
A.8. Multi-copy atomicity

A.8 Multi-copy atomicity
A.8.1 MCA translation-table-walk

A fundamental guarantee given by Armv8 over data memory is that of multi-copy atomicity,
that is, once a write is seen by one other core, then all cores must see it or something newer if
they try read that location.

Translation-table-walks are a kind of read, and we can ask whether those reads come with
the same guarantee. There are multiple ways in which multi-copy atomicity could be violated
here:

1. If a translation-table-walk reads from a write, must another core’s translation-table-walk
that reads the same entry read-from that same write or something newer?

2. If a load reads a translation table entry directly, must another core’s translation-table-walk
that reads that location read-from that write or something newer?

3. If a translation-table-walk reads from a write, must another core which loads that entry
read-from that write or something newer?

We tackle each in turn.

Note that questions about multi-copy atomicity are only interesting under assumptions about
coherence, and due to the lack of data—translation coherence in the non-TLB-miss case (c.f.
CoRT+dsb-isb), all the tests below start from an invalid state to avoid those uninteresting cases.

A VMSA litmus tests

A.8. Multi-copy atomicity 161

A.8.1.1 Test: CoWTf.inv+po-ctrl-isb+po forbid?

Can another core see a write propagate to its translation-table-walk ‘before’ the writer
thread’s own translation-table-walker does?

In this test Thread 0 writes a new valid descriptor which Thread 1 uses in a translation-

table-walk before sending a message back to Thread 0; if Thread 0 sees that message can a later
translation-table-walk still see the old invalid entry?

A Arch64 CoWTf.inv+po—ctrl—isb+po

Initial state:
: PSTATE. EL=0b00
: PSTATE . SP=0b0

0

0
0:RO=desc3(u,page_table_base)
0:R1=pte3(x,page_table_base)
0:R3=y

0:R5=x

0:VBAR_EL1=0x1000
1:PSTATE.EL=0b00
1:PSTATE.SP=0b0

1
1
1
1

Page table setup:

physical pal pa2;
x — invalid;

x ?-> pal; :R1=x
ur—pal; :R2=0b1
1=1;
*pa :R3=y
y 5 pa2; :VBAR_EL1=0x2000
*pa2 = 0;

Thread 0

identity 0x1000 with code; STR X0, [X1]
identity 0x2000 with code; LDR X2, [X3]

CBNZ X2,L0
LO:

ISB

LDR X4, [X5]
Thread 1

LDR X0, [X1]
STR X2, [X3]
threadO ell handler

0x1400:

MOV X4 ,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

threadl ell handler

0x2400:

MOV X0, #0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 0:R2=1 & 0:R4=0 & 1:R0=1

A VMSA litmus tests 162
A.8. Multi-copy atomicity

__— 7 Q.
Thread 0

4 Thread 1 N
|7 a: str x0, [x1]: W sl: I3pte(x) = mkdesc(addr page(pal)) ‘\ P ’7e1: T s1:13pte(x) % e2: Idr x0, [x1]: R pal = 0x1

Initial State >
c© ___—)

tir
/ — // rf I
[bildrx2, [x3] R pa2 = 0x1

[fstrx2, 3LEWpa2=0x1 |
trf /saméva page
< isb ctrl_

vl W '
d1:Tsl:I3pte(x) . d2: Idr x4, [x5]; Fault |1

Model Result

Base
ETS

CoWTf.inv+po-ctrl-isb+po allowed (1 of 8) 64271ms
CoWTf.inv+po-ctrl-isb+po allowed (1 of 8) 70941ms

A VMSA litmus tests

A.8. Multi-copy atomicity 163

WRC.TRTf.inv-shaped tests

A.8.1.2 Test: WRC.TRTf.inv-+dsb-+dsb-isb forbid

In this WRC-shaped test, Thread 0 writes a new mapping before Thread 1 translates using
that entry. Thread 1 then messages Thread 2, which then tries to translate the same location
that Thread 1 did. If Thread 2 were allowed to see a translation fault, then this would be a kind
of non-multi-copy atomic behaviour.

Multi-copy atomicity would forbid this, requiring that translation-table walks are multi-copy
atomic reads of flat memory.

A Arch64 WRC.TRTf.inv+dsb+dsb—isb

Initial state:
:PSTATE. EL=0b00
:PSTATE . SP=0b0

:RO=desc3(z,page_table_base)
:R1l=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R1=x

Page table setup:

physical pal pa2;
X > invalid;

X ?7-> pal;
z+> pal;
*pal = 1;

y — pa2;

identity 0x1000 with code;
identity 0x2000 with code;

:R3=y
:VBAR_EL1=0x1000
:PSTATE.EL=0b00
:PSTATE.SP=0b0
:Rl=y

:R3=x

0
0
0
0
1
1
1
1:R2=0b1
1
1
2
2
2
2
2:VBAR_EL1=0x2000

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DSB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY

ISB

LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 2:R0=1 & 2:R2=0

Initial State

{Thread 0

i /_ a: str x0, [x1]: W s1:I13pte(x) = mkdesc(addr=page(pal))

ad 1 /
al: TsLi3pte(x) |4 a2:1drx0, [x1]: R pal = Ox1
co

tfr\| b: dsbsy
\ same-va-page——

c: strx2, [x3]: W pa2 = 0x1

Thread 2

c: Idr x0, [x1]: R pa2 = Ox1

d: dsb sy

\
fliTsliBpte(x) |ral f2:1dr x2, [x3]: Fault

il

A VMSA litmus tests
. .. 164
A.8. Multi-copy atomicity

Model Result
Base WRC.TRTf.inv+dsb+dsb-isb forbidden (0 of 4) 9146ms
ETS WRC.TRTf.inv+dsb+dsb-isb forbidden (0 of 4) 16960ms

A VMSA litmus tests 165
A.8. Multi-copy atomicity
A.8.1.3 Test: WRC.TRTf.inv+addrs forbid
The address-dependency into the instruction which yields a translation fault ensures that the
translation-table-walk happens after the address is determined, and so the fault is ordered-after
the read which its address depends on.
AArch64 WRC.TRTf.inv+addrs

Initial state:

0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE.SP=0b0
1:R1=x
Page table setup: 1:R2=0b1

physical pal pa2; HalEy

x 5 invalid; 1:VBAR_EL1=0x1000
2:PSTATE.EL=0b00

x ?7-> pal; 2:PSTATE. SP=0b0

i;;zpili; 2:R1l=y
2:R3=x

y > pa2; 2:VBAR_EL1=0x2000

identity 0x1000 with code; | Thread 0
identity 0x2000 with code;
ldentity 0Ox Wl code STR XO, [Xl]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
STR X2,[X3,X4]
Thread 2

LDR X0, [X1]

EOR X4,X0,X0

LDR X2, [X3,X4]
threadl ell handler

0x1400:

MOV XO,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:Re=1 & 2:R2=0

—Clnitial state >
c_____—
iThread 0 ,,ﬂ—ﬂfﬂjj;" Thread 1 7 i Thread 2
H a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) }:(774 al: Tsli3pte(x) |l a2:1drx0, [x1): R pal = 0x1 [bridrxo, [x1::Rpa2 = 0x1 |
+ - fo S
addr ~——~, —aqgdr —— N Eddr <y
| b: str x2, [x3, x4]: W pa2 = Ox1 T c1: T s1:13pte(x) H&l c2: Idr x2, [x3, x4]: Fault
Model Result

Base WRC.TRTf.inv+addrs forbidden (0 of 4) 10005ms
ETS WRC.TRTf.inv+addrs forbidden (0 of 4) 11073ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.4 Test: WRC.TRTf.inv+dsbs allow (unless ETS, then forbid)
AArch64 WRC.TRTf.inv+dsbs

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+— pal;
*pal = 1;

y > pa2;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
PSTATE.EL=0b00
PSTATE.SP=0b0
RO=desc3(z,page_table_base)
R1l=pte3(x, page_table_base)
PSTATE.EL=0b00
PSTATE.SP=0b0

R1=x

R2=0b1

R3=y

VBAR_EL1=0x1000
PSTATE.EL=0b00
PSTATE.SP=0b0

Rl=y

R3=x

:VBAR_EL1=0x2000

N N N NN H H H H B B © © © ©

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DSB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=1 & 2:R0=1 & 2:R2=0

__ Initial State >

166

iThread 0 —

~iThread

&t Thread 2

ad 1
al: Tsli3pte(x) |rff

éla2:1dr x0, [x1]: R pal = Ox1,

a: strx0, [x1]: W sL:13pte(x) = mkdesc(addr=page(pal)) }La|

c: Idr x0, [x1]: R pa2 = 0x1

d: dsb sy

c: strx2, [x3]: W pa2 = Ox1

- N
el: T sl:I3pte(x) H

~
WS e2: ldr x2, [x3]: Fault

Iﬁﬁ{/

Model Result
Base WRC.TRTf.inv+dsbs allowed (1 of 4) 48023ms
ETS wRC.TRTf.inv+dsbs forbidden (0 of 4) 8487ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.5 Test: WRC.TRTf.inv+dmbs allow (unless ETS, then forbid)
AArch64 WRC.TRTf.inv-+dmbs

Page table setup:

physical pal pa2;
X — invalid;

X ?7-> pal;
z+— pal;
*pal = 1;

y > pa2;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
PSTATE.EL=0b00
PSTATE.SP=0b0
RO=desc3(z,page_table_base)
R1l=pte3(x, page_table_base)
PSTATE.EL=0b00
PSTATE.SP=0b0

R1=x

R2=0b1

R3=y

VBAR_EL1=0x1000
PSTATE.EL=0b00
PSTATE.SP=0b0

Rl=y

R3=x

:VBAR_EL1=0x2000

N N N NN H H H H B B © © © ©

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DMB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
DMB SY
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=1 & 2:R0=1 & 2:R2=0

__ Initial State >

167

iThread 0 —

~iThread

&t Thread 2

ad 1
al: Tsli3pte(x) |rff

éla2:1dr x0, [x1]: R pal = Ox1,

a: strx0, [x1]: W sL:13pte(x) = mkdesc(addr=page(pal)) }La|

c: Idr x0, [x1]: R pa2 = 0x1

d: dmb sy

c: strx2, [x3]: W pa2 = Ox1

- N
el: T sl:I3pte(x) H

~
WS e2: ldr x2, [x3]: Fault

Iﬁﬁ{/

Model Result
Base WRC.TRTf.inv+dmbs allowed (1 of 4) 35492ms
ETS wRC.TRTf.inv+dmbs forbidden (0 of 4) 8559ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.6 Test: WRC.TRTf.inv+pos allow

A Arch64 WRC.TRTf.inv+pos

Initial state:
0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:R0=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE.SP=0b0
1:R1=x

Page table setup: 1:R2=0b1
1:R3=y
1:VBAR_EL1=0x1000
2:PSTATE.EL=0b00
2:PSTATE.SP=0b0
2:Rl=y
2:R3=x
2:VBAR_EL1=0x2000

physical pal pa2;
X > invalid;

X ?7-> pal;
z > pal;

*pal = 1;

y > pa2;

identity 0x1000 with code; | Thread 0

identity 0x2000 with code; STR X0, [X1]

Thread 1

LDR X0, [X1]
STR X2, [X3]

Thread 2

LDR X0, [X1]
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=1 & 2:R0=1 & 2:R2=0

168

o 7
{Thread 0 ,,,,#x—fffffig;’ Thread 1 i Thread 2
H a: str x0, [x1]: W sLi3pte(x) = mkdesc(addr=page(pal)) |- al: T sLi3pte(x) lqal a2:1drx0, [x1): R pal = Ox1 ~ [b:ldrxo, [x1l: Rpa2 = 0x1 |
— R v rf -

[b:strx2, [x3]: W pa2 = 0x1

=~ ~
1 c1: T s1:I13pte(x) hiﬁ’ c2: Idr x2, [x3]: Fault

Model Result
Base WRC.TRTf.inv+pos allowed (1 of 4) 26642ms
ETS

WRC.TRTf.inv+pos forbidden (0 of 4) 9414ms

A VMSA litmus tests

A.8. Multi-copy atomicity 169

A.8.1.7 Test: WRC.TTTf.inv+addrs forbid
AArch64 WRC.TTTf.inv+addrs

Initial state:

0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=mkdesc3(oa=pal)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE. SP=0b0
1:R1=x
1:R2=mkdesc3(o0a=pa2)
Page table setup: P
1:R3=pte3(y,page_table_base)
physical pal pa2; 1:VBAR_EL1=0x1000
x — invalid; 1:__isla_monomorphize_writes=true
X ?-> pal;
2:PSTATE.EL=0b00
y > invalid; 2:PSTATE. SP=0b0
y ?7-> pa2; 2:R1=y
2:R3=x
*pal = 1;
2:VBAR_EL1=0x2000
*pa2 = 1;
identity 0x1000 with code; Thread 0
identity 0x2000 with code; | STR X0, [X1]
Thread 1
MOV XO,#0
LDR X0, [X1]

EOR X4,X0,X0
STR X2, [X3,X4]
Thread 2

MOV XO,#0

LDR X0, [X1]

EOR X4,X0,X0

MOV X2,#0

LDR X2, [X3,X4]
threadl ell handler

0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MRS X13,ELR _EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:Re=1 & 2:R2=0

iThread 0 e Thread 1 Thread 2
H a: str x0, [x1]: W s1:I3pte(x) = mkdesc(addr=page(pal)) [‘7"4 al: T s1:I3pte(x) [ﬁ\ a2: Idr x0, [x1]: R pal = Ox1 _| bl: T s1:I3pte(y) }m’-\ b2: Idr x0, [x1]: R pa2 = Ox1 \ i
— L — — T T
addr ~__\{ir adgr L iTT=gaary sEdr i
[b: str x2, [x3, x4]: W sL:I3pte(y) = mkdesc(addr=page(pa2)) I "“1: cl: T s1:3pte(x) h’d c2:1dr x2, [x3, x4): Fault |

Model Result
Base wRC.TTTf.inv+addrs forbidden (0 of 8) 31851ms
ETS

WRC.TTTf.inv+addrs forbidden (0 of 8) 23959ms

A VMSA litmus tests

A.8. Multi-copy atomicity 170

A.8.1.8 Test: WRC.TTTf.inv+datataddr forbid
AArch64 WRC.TTTf.inv+data+addr

Initial state:

0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=mkdesc3(oa=pal)
0:R1l=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE.SP=0b0
1:R1=x
1:R2=mkdesc3(o0a=pa2)
Page table setup: :

1:R3=pte3(y,page_table_base)

physical pal pa2; 1:VBAR_EL1=0x1000

x> invalid; 1:__isla_monomorphize writes=true

x ?7-> pal;
2:PSTATE.EL=0b00

y s invalid; 2:PSTATE.SP=0b0

y ?-> paz; 2:R1=y
2:R3=x

*pal = 1;
2:VBAR_EL1=0x2000

*pa2 = 1;
Thread 0

identity 0x1000 with code;
identity 0x2000 with code; | STR X0, [X1]

Thread 1

MOV XO,#0
LDR X0, [X1]
EOR X4,X0,X0
ORR X2,X2,X4
STR X2, [X3]
Thread 2

MOV XO,#0

LDR X0, [X1]

EOR X4,X0,X0

MOV X2,#0

LDR X2, [X3,X4]
threadl ell handler

0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13
ERET

thread2 ell handler

0x2400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:R0=1 & 2:R2=0

‘fiiisad 0 1 =g Thread s
i r a: str x0, [x1]: W s1:I3pte(x) = mkdesc! = al: T sl:3pte(x) ha{ a2: 1dr x0, [x1]: R pal = Ox1 bl: T s1:13pte(y) h&\ b2: Idr x0, [x1]: R pa2 = Ox1 \
i e — » W « D — T I
data ~ \{fr dger —— = it Fgary ST i i
b: str x2, [x3]: W sl:I3pte(y) = mkdesc(addr=page(pa2)) F\| cl:Tslidpte(x) |sf c2ildrx2, [x3, xal: Fault | !
naﬁ{/
Model Result

Base WRC.TTTf.inv+data+addr forbidden (0 of 8) 49883ms
ETS wRC.TTTf.inv+data+addr forbidden (0 of 8) 40834ms

A VMSA litmus tests 171
A.8. Multi-copy atomicity

WRC.RRTf.inv-shaped tests

A.8.1.9 Test: WRC.RRTf.inv+dsb-+4dsb-isb forbid

This test is like the previous one, except, instead of loading the unmapped location in
Thread 1 (therefore reading from the entry during the translation-table walk), it loads the entry
itself directly.

Arm also forbid this test, as the load in Thread 1 will ensure that the write is visible to the
translation-table-walk that would be performed if Thread 2 had a translation-fault.

A Arch64 WRC.RRTf.inv+dsb-+dsb—isb

Initial state:
:PSTATE. EL=0b00
:PSTATE . SP=0b0

:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE . SP=0b0

Page table setup:
:R2=0b1

:R3=y
:PSTATE.EL=0b00
:PSTATE . SP=0b0

physical pal pa2;

0
0
0
0
1
1
1:R1=pte3(x,page_table_base)
1
1
X +— invalid; 2
2
2
2
2

x ?-> pal;

z+ pal; :R1l=y

*pal = 1; :R3=x
:VBAR_EL1=0x2000

y > pa2;

. . . Thread 0
identity 0x1000 with code;

identity 0x2000 with code; | STR X0, [X1]
Thread 1

LDR X0, [X1]
DSB SY

STR X2, [X3]
Thread 2

LDR X0, [X1]

DSB SY

ISB

LDR X2, [X3]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

Y
o = ~
{Thread 0 ,,,J——f"":”f” Thtead 1 T bef (Thread 2
! a: strx0, [x1]: W sLi3pte(x) = mkdesc(addr=page(pal)) |-—"—{ a:ldrx0, [x1]: R sl:i3pte(x) = mkdesc(addr=page(pal)) c:1dr x0, [x1]: R pa2 = 0x1
\5\ i [brdsbsy d: dsb sy
Cstr x2, [x3]: W paz = Ox1 erisb
14 ~
f1: T s1:I3pte(x) hﬁ?’ 2: 1dr x2, [x3]: Fault
Model Result

Base WRC.RRTf.inv+dsb+dsb-isb forbidden (0 of 2) 5393ms
ETS WRC.RRTf.inv+dsb+dsb-isb forbidden (0 of 2) 5591ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.10 Test: WRC.RRTf.inv+dsb-+-ctrl-isb forbid
A Arch64 WRC.RRTf.inv+dsb+ctrl—isb

Page table setup:

physical pal pa2;
X +— invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

y — paz;

Initial state:
:PSTATE . EL=0b00
:PSTATE . SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE. SP=0b0

:R2=0b1

:R3=y

:PSTATE . EL=0b00
:PSTATE. SP=0b0
:Rl=y

:R3=x

0

0

0

0

1

1
1:R1=pte3(x,page_table_base)
1

1

2

2

2

2
2:VBAR_EL1=0x2000

identity 0x1000 with code;

Thread 0

identity 0x2000 with code;

STR X0, [X1]

Thread 1

LDR X0, [X1]
DSB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
CBNZ X0,L0
LO:
ISB
LDR X2, [X3]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

172

<o
— initial State >
[—
{Thread 0 ,,,,/—J”T”” Thtead 1 et Thread 2
: a: str x0, [x1]: W sLil3pte(x) = mkdesc(addr=page(pal)) |+ a:ldr x0, [x1]: R sLi3pte(x) = mkdesc(addr=page(pal)) [cdrxo, Ix11: R pa2 = 0x1
S S — — /xw
. b: dsb sy . [Cazise N
TTe—— \. \
A% il X

< strx2, [x3]: W pa2 = Ox1 LT sLi3ptex)

e2: Idr x2, [x3]: Fault

f: eret

Model Result
Base WRC.RRTf.inv+dsb+ctrl-isb forbidden (0 of 4) 5218ms
ETS WRC.RRTf.inv+dsb+ctrl-isb forbidden (0 of 4) 5459ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.11 Test: WRC.RRTf.inv+{dsbs allow (unless ETS, then forbid)
AArch64 WRC.RRTf.inv+dsbs

Page table setup:

physical pal pa2;
X+ invalid;

X ?-> pal;
z+> pal;
*pal = 1;

y — pa2;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00
1:PSTATE.SP=0b0
1:R1=pte3(x,page_table_base)
1:R2=0b1

1:R3=y

2:PSTATE.EL=0b00
2:PSTATE.SP=0b0

2:Rl=y

2:R3=x

2:VBAR_EL1=0x2000

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DSB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY
LDR X2, [X3]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

<o
— Cinitial State >

173

Thread 2

c: Idr x0, [x1]: R pa2 = Ox1

d: dsb sy

AN

N\

Sy ~
el: T sL:13pte(x) }ﬁ\ e2: 1dr x2, [x3]: Fault

ffiiead 6 — — hread 1 et
H a: str x0, [x1]): W s1:I3pte(x) = mkdesc(1)) ‘\ it r a: Idr x0, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))
Vc: str x2, [x3]: W pa2 =70x717
Model Result
Base WRC.RRTf.inv+dsbs allowed (1 of 2) 8964ms

ETS

WRC.RRTf.inv+dsbs forbidden (0 of 2) 4568ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.12 Test: WRC.RRTf.inv4+dmbs allow (unless ETS, then forbid)
A Arch64 WRC.RRTf.inv{dmbs

Page table setup:

physical pal pa2;
X+ invalid;

X ?-> pal;
z+> pal;
*pal = 1;

y — pa2;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00
1:PSTATE.SP=0b0
1:R1=pte3(x,page_table_base)
1:R2=0b1

1:R3=y

2:PSTATE.EL=0b00
2:PSTATE.SP=0b0

2:Rl=y

2:R3=x

2:VBAR_EL1=0x2000

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
DMB SY
STR X2, [X3]

Thread 2

LDR X0, [X1]
DMB SY
LDR X2, [X3]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

<o
— Cinitial State >

174

Thread 2

c: Idr x0, [x1]: R pa2 = Ox1

d: dmb sy

AN

N\

Sy ~
el: T sL:13pte(x) }ﬁ\ e2: 1dr x2, [x3]: Fault

ffiiead 6 — — hread 1 et
H a: str x0, [x1]): W s1:I3pte(x) = mkdesc(1)) ‘\ it r a: Idr x0, [x1]: R s1:I3pte(x) = mkdesc(addr=page(pal))
Vc: str x2, [x3]: W pa2 =70x717
Model Result
Base WRC.RRTf.inv+dmbs allowed (1 of 2) 6441ms

ETS

WRC.RRTf.inv+dmbs forbidden (0 of 2) 3589ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.13 Test: WRC.RRTf.inv{pos allow

A Arch64 WRC.RRTf.inv+p

0os

Page table setup:

physical pal pa2;
X — invalid;

x ?-> pal;
z+—> pal;

*pal = 1;

y — paz;

Initial state:
:PSTATE.EL=0b00
:PSTATE . SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE . SP=0b0

0

0

0

0

1

1
1:R1=pte3(x,page_table_base)
1:R2=0b1

1:R3=y
2:PSTATE.EL=0b00
2:PSTATE.SP=0b0
2:R1l=y

2:R3=x

2

:VBAR_EL1=0x2000

identity 0x1000 with code;

Thread 0

identity 0x2000 with code;

STR X0, [X1]

Thread 1

LDR X0, [X1]
STR X2, [X3]

Thread 2

LDR X0, [X1]
LDR X2, [X3]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

175

iThread 0 ——

o _—=
Thread 1

——Initial State >
L Thread 2

a: str x0, [x1]: W sLi3pte(x) = mkdesc(addr=page(pal))

a: Idr x0, [x1]: R s1:13pte(x) = mkdesc(addr=page(pal))

b: Idr x0, [x1]: R pa2 = Ox1

— R

— T 9
[brstrx2,[x31: W pa2 = 0x1 T cuTsuBpte) |

~
c2: Idr x2, [x3]: Fault

Model Result
Base WRC.RRTf.inv+pos allowed (1 of 2) 5334ms
ETS

WRC.RRTf.inv+pos allowed (1 of 2) 5239ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.14 Test: WRC.RRTf.inv+addrs forbid
A Arch64 WRC.RRTf.inv+addrs

Page table setup:

physical pal pa2;
X +— invalid;

x ?-> pal;
z+—> pal;
*pal = 1;

y — paz;

Initial state:
:PSTATE.EL=0b00
:PSTATE . SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x,page_table_base)
:PSTATE.EL=0b00
:PSTATE.SP=0b0

:R2=0b1

:R3=y
:PSTATE . EL=0b00
:PSTATE. SP=0b0
:Rl=y

:R3=x

0

0

0

0

1

1
1:R1=pte3(x,page_table_base)
1

1

2

2

2

2
2:VBAR_EL1=0x2000

identity 0x1000 with code;

Thread 0

identity 0x2000 with code;

STR X0, [X1]

Thread 1

LDR X0, [X1]
EOR X4,X0,X0
STR X2, [X3,X4]

Thread 2

LDR X0, [X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

thread2 ell handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Ro=desc3(z,page_table_base) & 2:R0=1 & 2:R2=0

176

mitd Thread 2

b: Idr x0, [x1]: R pa2 = 0x1

adar Y
- 1 c1: T sL:3pte(x) }“3[€2: 1dr x2, [x3, x4]: Fault

Ciniial State >
o — -
Thread 0 P ;”f”’ Thread 1
i [arstrx0, [x1]: W sLii3pte(x) = mkdesc(addr=page(pal) |-+ a:Idr x0, [x1]: R sLi3pte(x) = mkdesc(addr=page(pal))
T T
e 0 S
b: str x2, [x3, x4]: W pa2 = 0x1
Model Result
Base

ETS

WRC.RRTf.inv+addrs forbidden (0 of 2) 4100ms
WRC.RRTf.inv+addrs forbidden (0 of 2) 4411lms

A VMSA litmus tests 177
A.8. Multi-copy atomicity

WRC.TfRR-shaped tests

A.8.1.15 Test: WRC.TfRR-+dsb-isb+dsb forbid
This is like the previous tests, except that, here, Thread 1 loads the unmapped address and
suffers a translation-fault. Can Thread 2 load the entry and read-from a write before the break?
As before, Arm forbid this, enforcing a kind of multi-copy atomicity for translation-table-
walks.
A Arch64 WRC.TfRR+dsb—isb+dsb

Initial state:

0:PSTATE.EL=0b00O
0:PSTATE.SP=0b0
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE.SP=0b0
1:R1=x
Page table setup:

1:R2=0b1

physical pal pa2; 1:R3=y

x> pal; 1:VBAR_EL1=0x1000

X ?7-> invalid;
2:PSTATE.EL=0b00

xpal = 0; 2:PSTATE.SP=0b0
2:Rl=y

y > paz; 2

:R3=pte3(x, page_table_base)

identity 0x1000 with code; Thread 0

STR X0, [X1]
Thread 1

LDR X0, [X1]
DSB SY

ISB

STR X2, [X3]
Thread 2

LDR X0, [X1]

DSB SY

LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:R0=1 & ~2:R2=0

~__CInitial State

co — —

iThread 0 i ad 1

a: str x0, [x1]: W s1:I3pte(x) = 0%—-' al: T sl:I3pte(x) hﬁﬁ a2: Idr x0, [x1]: Fault ‘ -

iFhread

e: Idr x0, [x1]: R pa2 = 0x1

f: dsb sy

A g: Idr x2, [x3]: R sL:I3pte(x) = mkdesc(addr=page(pal))

T~

\. P
e: str x2, [x3]: W pa2 = Ox1

A VMSA litmus tests
A.8. Multi-copy atomicity

Model Result

Base WRC.TfRR+dsb-isb+dsb forbidden (0 of 2) 5353ms
ETS WRC.TfRR+dsb-isb+dsb forbidden (0 of 2) 5963ms

A.8.1.16 Test: WRC.TfRR-ctrl-isb-+dsb forbid
A Arch64 WRC.TfRR-+ctrl—isb-+dsb

Page table setup:
physical pal pa2;
X pal;
X ?-> invalid;
*pal = 0;

y — pa2;

identity 0x1000 with code;

Initial state:
:PSTATE . EL=0b00

:PSTATE. SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x, page_table_base)
:PSTATE . EL=0b00
:PSTATE . SP=0b0

:R1=x

:R2=0b1

:R3=y

:VBAR_EL1=0x1000
:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:R1l=y

N N N N P B B B H P o o

:R3=pte3(x,page_table_base)

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
CBNZ X0,L0
LO:
ISB
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 2:R0=1 & ~2:R2=0

co

- Initial State

178

iThread 0 CL——fiiread 1

-| al: T sl:I3pte(x) }T’f&) a2: Idr x0, [x1]: Fault ‘

iThread 2

a: str x0, [x1]: W s1:I3pte(x) = 0x0 - trf

d: Idr x0, [x1]: R pa2 = Ox1

of

[edsbsy |

fi 1dr x2, [x3]: R s1:I3pte(x) = mkdesc(addr=page(pal))

N
‘ d: str x2, [x3]: W pa2 = Ox1

Model Result

Base WRC.TfRR+ctrl-isb+dsb forbidden (0 of 3) 5699ms

ETS wRC.TfRR+ctrl-ish+dsb forbidden (® of 3) 6787ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.17 Test: WRC.TfRR-+dsbs forbid
A Arch64 WRC.TfRR-+dsbs

Page table setup:
physical pal pa2;
X — pal;
x ?7-> invalid;
*pal = 0;

y = paz;

identity 0x1000 with code;

Initial state:
0:PSTATE.EL=0b00
0:PSTATE.SP=0b0
0:RO=desc3(z,page_table_base)
0:R1=pte3(x,page_table_base)
1:PSTATE.EL=0b00O
1:PSTATE.SP=0b0

1:R1=x

1:R2=0b1

1:R3=y

1:VBAR_EL1=0x1000
2:PSTATE.EL=0b00O
2:PSTATE.SP=0b0

2:Rl=y
2:R3=pte3(x,page_table_base)
Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]

DSB SY

STR X2, [X3]

Thread 2

LDR X0, [X1]

DSB SY

LDR X2, [X3]

threadl ell handler
0x1400:

MOV X0, #1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 1:Re=1 & 2:Re=1 & ~2:R2=0

____Initial State

179

—{Thread 1

iThread 0

iThread 2

a: str x0, [x1]: W s1:I3pte(x) = OLHL, al: T sl:3pte(x) w 22: 1dr x0, [x1]: Fault ‘ ~~—

co

d: Idr x0, [x1]: R pa2 = Ox1

Pl f: Idr x2, [x3]: R sl:l3p&e(x) = mkdesc(addr=page(pal))

|

[d:strx2, [x3]: W pa2 = 0x1

Model Result
Base WRC.TfRR+dsbs forbidden (0 of 2) 3850ms
ETS wRC.TfRR+dsbs forbidden (0 of 2) 5423ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.18 Test: WRC.TfRR-+po+dsb forbid

Note that the translation-fault to store ordering is preserved (See CoTfW.inv-+po).

A Arch64 WRC.TfRR+po-+dsb

Page table setup:
physical pal pa2;
X — pal;
X ?-> invalid;
*pal = 0;

y — paz2;

identity 0x1000 with code;

Initial state:
:PSTATE.EL=0b00
:PSTATE . SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x, page_table_base)
:PSTATE . EL=0b00
:PSTATE.SP=0b0

:R1=x

:R2=0b1

:R3=y

:VBAR_EL1=0x1000
:PSTATE.EL=0b00O

:PSTATE. SP=0b0

:R1=y

N N NN P B B B H R0 0 o

:R3=pte3(x, page_table_base)

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
STR X2, [X3]

Thread 2

LDR X0, [X1]
DSB SY
LDR X2, [X3]

threadl ell handler

0x1400:

MOV XO,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:rRe=1 & 2:R0=1 & ~2:R2=0

<o

- Initial State

180

iThread 0 —{Thread 1

iThread 2

a: str x0, [x1]: W sL:i3pte(x) = OL{—L—{ al: TsLiBpte(x) |4f

a2 1dr x0, [x1]: Fault__ |

c: Idr x0, [x1]: R pa2 = Ox1

of

e: Ildr x2, [x3]: R s1:I3pte(x) = mkdesc(addr=page(pal))

.
l c: strx2, [x3]: W pa2 = 0x1

Model Result
Base WRC.TfRR+po+dsb forbidden (0 of 2) 3508ms
ETS

WRC.TfRR+po+dsb forbidden (0 of 2) 3727ms

A VMSA litmus tests
A.8. Multi-copy atomicity

A.8.1.19 Test: WRC.TfRR+pos allow

A Arch64 WRC.TfRR+pos

Page table setup:

physical pal pa2;
X — pal;
X ?-> invalid;

*pal = 0;

y — pa2;

Initial state:
:PSTATE . EL=0b00
:PSTATE . SP=0b0
:RO=desc3(z,page_table_base)
:R1=pte3(x, page_table_base)
:PSTATE . EL=0b00
:PSTATE.SP=0b0

:R1=x

:R2=0b1

:R3=y

:VBAR_EL1=0x1000
:PSTATE.EL=0b00

:PSTATE. SP=0b0

:R1=y

N N N N P B FH B H P00 0 o

:R3=pte3(x, page_table_base)

identity 0x1000 with code;

Thread 0

STR X0, [X1]

Thread 1

LDR X0, [X1]
STR X2, [X3]

Thread 2

LDR X0, [X1]
LDR X2, [X3]

threadl ell handler

0x1400:

MOV X0, #1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: 1:Re=1 & 2:R0=1 & ~2:R2=0

co

¢ Initial State

/

181

iThread 0 __——{Thread 1

a: str x0, [x1]: W s1:I3pte(x) = 0x0 - }—L»I al: T sl:I3pte(x)

hl"/o"[a2: Idr x0, [x1]: Fault ‘

[c: strx2,

[x3]: W paz = Ox1

Model Result

Base WRC.TfRR+pos allowed (1 of 2) 5616ms
ETS WRC.TfRR+pos allowed (1 of 2) 7637ms

A VMSA litmus tests

A.9. Multi-address-space support with ASIDs 182

A.9 Multi-address-space support with ASIDs

To support systems software with multiple address spaces, such as operating systems with many
concurrently executing processes, Arm provide two features that allow the hardware and software
to manage the translation tables for these processes more effectively:

§A.9.1 A TTBR (“Translation Table Base Register”), which can be changed to point to a new
translation table.

§A.9.2 ASIDs (“Address Space Identifiers”), which are used to tag TLB entries with their pro-
cess/address space, to reduce TLB maintenance burden.

A.9.1 TTBRs

The translation tables are stored in normal memory in a hierarchical tree structure. In order
for the processor to know where the root of this tree is, it reads a register called the TTBR (or
“Translation-Table Base Register”). Each translation regime has its own base register:

- TTBRO_EL1: for Stage 1 translations in the ‘low’ (positive) portion of the address map, from
EL1&0.

TTBR1_EL1: for Stage 1 translations in the ‘high’ (negative) portion of the address map,
from EL1&0.

TTBRO_EL2: for Stage 1 translations from EL2.

- VTTBR_EL2: for Stage 2 translations from accesses from EL1&0.

A VMSA litmus tests

A.9. Multi-address-space support with ASIDs

A.9.2 ASIDs

A.9.2.1 Test: CoWinvTal.l}dsb-tlbiasidis-dsb-eret forbid
In this test, a virtual address is unmapped, and only ASID #1 is cleaned; since the thread
uses that ASID, the TLB invalidation affects all translations in that thread, and so the final

outcome is forbidden.

A Arch64 CoWinvTal.l+dsb—tlbiasidis—dsb—eret

Page table setup:
physical pal;

X — pal;
X ?-> invalid;

identity 0x1000 with code;

Initial state:

ELR_EL1=L0O:

PSTATE.EL=0b01

RO=0b0O

Rl=pte3(x,page_table_base)

R3=x

R4=asid (0x1)

SPSR_EL1=0b00000
TTBRO_EL1=ttbr(asid=0x0001, base=pagq
VBAR_EL1=0x1000

Thread 0

STR X0, [X1]

DSB SY

TLBI ASIDE1IS, X4
DSB SY

ERET

LO:

LDR X2, [X3]

threadO ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: o:R2=0

183

_table_base)

A VMSA litmus tests

A.9. Multi-address-space support with ASIDs 184

f2: 1dr x2, [x3]: R pal = 0x0

1le)

/ b: dsb sy
o a

| tfr / v §

trf\‘\ c: tibi asidelis, x4: asid=0x1 |

| d: dsb sy §

.~ same-asid :

\ spme-vmi !
B Moo S

| ‘
§ fl: T sl:I3pte(x)

Model Result
Base CoWinvTal.1l+dsb-tlbiasidis-dsb-eret forbidden (0 of 2) 7638ms
ETS cowinvTal.l+dsb-tlbiasidis-dsb-eret forbidden (0 of 2) 99884ms

A VMSA litmus tests

A.9. Multi-address-space support with ASIDs

A.9.2.2 Test: CoWinvTa2.1+dsb-tlbiasidis-dsb-eret allow
Same as previous, but invalidating the ‘wrong’ ASID.

A Arch64 CoWinvTa2.1-+dsb—tlbiasidis—dsb—eret

Page table setup:
physical pal;

X+ pal;
X ?-> invalid;

identity 0x1000 with code;

Initial state:

ELR_EL1=L0O:

PSTATE.EL=0b01

RO=0b0

Rl=pte3(x,page_table_base)

R3=x

R4=asid (0x2)

SPSR_EL1=0b00000
TTBRO_EL1=ttbr(base=page_table_base,
VBAR_EL1=0x1000

Thread 0

STR X0, [X1]

DSB SY

TLBI ASIDE1IS, X4
DSB SY

ERET

LO:

LDR X2, [X3]

threadO ell handler

0x1400:

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: o:R2=0

asid=0x0001)

185

A VMSA litmus tests

A.9. Multi-address-space support with ASIDs 186

; 7 : A g
/ b: dsb sy
| tﬁ{ c: tlbi asidelis, x4: asid=0x2 |
| | / d: dsb sy |
| . same-vmid :
ir ”””””””””” \V\; ’”;/7/’/ ””” i
| fl: T sl:3pte(x) s f2: 1dr x2, [x3]: R pal = 0x0 |
Model Result

Base CoWinvTa2.1+dsb-tlbiasidis-dsb-eret allowed (1 of 2) 55920ms
ETS coWinvTa2.1l+dsb-tlbiasidis-dsb-eret allowed (1 of 2) 9894ms

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10 Additional tests, as-yet unsorted

A.10.0.1 Test: MP.RT.inv+dmb+addr-po-msr-isb forbid
This exercises the ctxob edges via

speculative ; [MSR] +

[ContextChange] ; po ; [CSE] +

[CSE] ; instruction-order

A Arch64 MP.RT.inv+dmb+addr—po—msr—isb

Initial state:

0:RO=mkdesc3(oa=pal)
0:R1=pte3(x,page_table_base)
0:R2=0b1
0:R3=y
1:PSTATE.EL=0b0O1
1:PSTATE.SP=0b0
Page table setup:

1:R1l=y

physical pal pa2 pa3; 1:R3=x

)) 1:R5=0x1000

X +— invalid;

x ?7-> pal; LRz
1:VBAR_EL1=0x1000

y — pa2; 1:VBAR_EL2=0x2000

Z>pa3; Thread 0

xpal = 1; STR X0, [X1]

xpa2 = 0; DMB SY

*pa3 = 0; STR X2, [X3]
Thread 1

identity 0x1000 with code;

identity 0x2000 with code; LDR X2, [X1]
EOR X6,X2,X2

LDR X7, [X8,X6]
MSR ELR_EL1,X5
ISB

LDR X4, [X3]

threadl ell handler

0x1400:

MOV X4,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV X4,#0

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final state: 1:R2=1 & 1:R4=0

Model Result

Base MP.RT.inv+dmb+addr-po-msr-isb forbidden (0 of 2) 4687ms
ETS MP.RT.inv+dmb+addr-po-msr-isb forbidden (0 of 2) 3356ms

187

A VMSA

litmus tests

A.10. Additional tests, as-yet unsorted

A.10.0.2 Test: MP.RT.inv+dmb-+addr-po-isb allow
A Arch64 MP.RT.inv+dmb+addr—po—isb

Page table setup:

physical pal pa2 pa3;

x> invalid;
x ?7-> pal;

y > pa2;
z +—> pa3;
*pal = 1;

*pa2
*pa3

nwon o
o o

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
:RO=mkdesc3(oa=pal)
:R1l=pte3(x,page_table_base)
1R2=0b1

:R3=y
:PSTATE.EL=0b0O1
:PSTATE.SP=0b0
:Rl=y

:R3=x

:R8=z
:VBAR_EL1=0x1000
:VBAR_EL2=0x2000

e = T = B = R B S > Y - B > I o)

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
EOR X6,X2,X2
LDR X7, [X8,X6]
ISB

LDR X4, [X3]

threadl ell handler

0x1400:

MOV X4,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV X4,#0

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final state: 1:R2=1 & 1:R4=0

Model Result
Base MP.RT.inv+dmb+addr-po-isb forbidden (0 of 2) 3366ms
ETS

MP.RT.inv+dmb+addr-po-isb forbidden (0 of 2) 3223ms

188

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.3 Test: MP.TR.inv+dmb-+msr allow

A Arch64 MP.TR.inv+dmb-+msr

Initial state:
:RO=0b1

:R1=x
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b0O1
:PSTATE. SP=0b0
:Rl=y

:R3=x

:R5=0x1000
:VBAR_EL1=0x1000
:VBAR_EL2=0x2000

Page table setup:

physical pal pa2;
X > pal;

y — invalid;
y 7-> pa2;

L s s s e = B > T > R > B)

*pal = 0;

pa2 = 1; Thread 0

identity 0x1000 with code;
identity 0x2000 with code;

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
MSR ELR_EL1,X5
LDR X4, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final state: 1:R2=1 & 1:R4=0

[

189

{Thread 0

_ Initial State

Thread 1

a: str x0, [x1]: W pal =‘d;<1 e

c2: Idr x2, [x1]: R pa2 = Ox1

\ | cl: TsLispte(y) |l

- <
~ trf T ™

[diidrx4, D3l Rpal = 0x0 |

l c: str x2, [x3]: W s1:I3pte(y) = mkdesc(addr=page(pa2))

Model Result
Base MP.TR.inv+dmb+msr allowed (1 of 2) 6174ms
ETS MP.TR.inv+dmb+msr allowed (1 of 2) 6987ms

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.4 Test: MP.TR.inv+dmb-isb allow
AArch64 MP.TR.inv-+dmb-+isb

Page table setup:

physical pal pa2;
X+ pal;

y — invalid;
y ?-> pa2;

*pal = 0;
*pa2 = 1;
identity 0x1000 with code;
identity 0x2000 with code;

Initial state:
RO=0b1

R1=x
:R2=mkdesc3(oa=pa2)
R3=pte3(y,page_table_base)
PSTATE.EL=0b01
PSTATE.SP=0b0
Rl=y

R3=x
VBAR_EL1=0x1000
:VBAR_EL2=0x2000

H B R B PR R © © © O

Thread 0

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
ISB
LDR X4, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final state: 1:R2=1 & 1:R4=0

_ Initial State

190

{Thread 0

] Thread 1

H\ﬁcl: TsLiBpte(y) |al c2:1drx2, [x1]: R pa2 = 0x1

l c: str x2, [x3]: W sl:I3pte(y) = mkdésc(addr=page(pa2))

e: Idr x4, [x3]: R pal = 0x0

Model Result
Base MP.TR.inv+dmb+isb forbidden (0 of 2) 2406ms
ETS MP.TR.inv+dmb+isb forbidden (0 of 2) 3016ms

A VMSA

litmus tests

A.10. Additional tests, as-yet unsorted

A.10.0.5

Test: MP.TR.inv+dmb-+msr-isb forbid
A Arch64 MP.TR.inv+dmb-+msr—isb

Initial state:
:RO=0b1

:R1=x
:R2=mkdesc3(oa=pa2)
:R3=pte3(y,page_table_base)
:PSTATE.EL=0b01
:PSTATE. SP=0b0
:Rl=y

:R3=x

:R5=0x1000
:VBAR_EL1=0x1000
:VBAR_EL2=0x2000

Page table setup:

physical pal pa2;
X > pal;

y — invalid;
y 7-> pa2;

L e e s e = T > T > B > B)

*pal = 0;

pa2 = 1; Thread 0

identity 0x1000 with code;
identity 0x2000 with code;

STR X0, [X1]
DMB SY
STR X2, [X3]

Thread 1

LDR X2, [X1]
MSR ELR_EL1,X5
ISB

LDR X4, [X3]

threadl ell handler

0x1400:

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

threadl el2 handler

0x2400:

MOV X2,#0

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final state: 1:R2=1 & 1:R4=0

__Initial State

191

iThread 0

co____—
Thread 1

c: str x2, [x3]: W s1:I3pte(y) = mkdésc(addr=page(pa2)) ‘

\ [c1: T siii3pte(y) kel c2:1drx2, x11: R pa2 = 0x1

e: Idr x4, [x3]: R pal = 0x0

Model Result
Base MP.TR.inv+dmb+msr-isb forbidden (0 of 2) 4042ms
ETS MP.TR.inv+dmb+msr-isb forbidden (0@ of 2) 4240ms

A VMSA litmus tests 199
A.10. Additional tests, as-yet unsorted
A.10.0.6 Test: SwitchTable.different-asid-+eret forbid

If the page the page table root is changed, together with an unused ASID, then a new
translation has to read-from a page table entry from the new page table.

Model Result
Base no result for SwitchTable.different-asid+eret
ETS no result for SwitchTable.different-asid-+eret

A VMSA litmus tests 193
A.10. Additional tests, as-yet unsorted
A.10.0.7 Test: SwitchTable.same-asid-+eret allow

If the page the page table root is changed, together with an already-used ASID, then a new
translation can read-from a page table entry from the old page table.

Model Result
Base no result for SwitchTable.same-asid+eret
ETS no result for SwitchTable.same-asid-+eret

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.8 Test: WDS-+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret forbid

Write to Different Stages.

194

If two stages of translation are updated, then both stages need to be invalidated, in the right
order, to be guaranteed to see the new mapping.

A Arch64 WDS+po—dsb—tlbiipa—dsb—tlbiis—dsb—eret

Page table setup:

physical pal;
intermediate ipal;

X +— ipal;
X ?-> invalid;

ipal — pal;
ipal ?-> invalid;

*pal = 0;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:

ELR_EL2=L0O:

PSTATE.EL=0b10

RO=0b0O
Rl=pte3(ipal,s2_page_table_base)
R2=0b0
R3=pte3(x,page_table_base)
R5=x

R6=page(x)
SPSR_EL2=0b001600
VBAR_EL1=0x1000
VBAR_EL2=0x2000

Thread 0

STR X0, [X1]

STR X2, [X3]

DSB SY

TLBI IPAS2E1,X6
DSB SY

TLBI VMALLELIS
DSB SY

ERET

LO:

LDR X4, [X5]

threadO ell handler

0x1200:

MOV X4,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

threadO el2 handler lower exc

0x2400:

MOV X4,#2

MRS X20,ELR_EL2
ADD X20,X20,#4
MSR ELR_EL2,X20
ERET

Final state: 0:R4=0

A VMSA litmus tests

A.10. Additional tests, as-yet unsorted 195

iThread 0

) A
’ b: str x2, [x3]: W s1:I3pte(x) = 0x0 \

| // -
| s A

Y

trf | /[d: tibi ipas2el, x6: page=page(ipal)

tfr

i3: Idr x4, [x5]: R pal = 0x0

Model Result
Base WDS+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret forbidden (0 of 6) 186945ms

ETS wpS+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret forbidden (0 of 6) 576750ms

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.9 Test: WDS+po-dsb-tlbiipa-dsb-eret allow
A Arch64 WDS+po—dsb—tlbiipa—dsb—eret

Page table setup:

physical pal;
intermediate ipal;

X — ipal;
X ?-> invalid;

ipal — pal;
ipal ?-> invalid;

*pal = 0;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:

ELR_EL2=L0O:

PSTATE.EL=0b10

RO=0b0
Rl=pte3(ipal,s2_page_table_base)
R2=0b0
R3=pte3(x,page_table_base)
R5=x

R6=page (x)
SPSR_EL2=0b00100
VBAR_EL1=0x1000
VBAR_EL2=0x2000

Thread 0

STR X0, [X1]

STR X2, [X3]

DSB SY

TLBI IPAS2E1,X6
DSB SY

ERET

LO:

LDR X4, [X5]

threadO ell handler

0x1200:

MOV X4,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

threadO el2 handler lower exc

0x2400:

MOV X4,#2

MRS X20,ELR_EL2
ADD X20,X20,#4
MSR ELR_EL2,X20
ERET

Final state: 0:R4=0

196

A VMSA litmus tests

A.10. Additional tests, as-yet unsorted 197

V. ’ a: str x0, [x1]: W s2:I13pte(x) = 0x0 ‘j

e v

/) A
/| ’ b: str x2, [x3]: W s1:13pte(x) = 0x0

trf \| . Y
\ C: dsb sy
: tfr - |
trf:/’ d: tlbi ipas2el, x6: page=page(ipal)
i

VLN

same-vmigd
| same-ipa-page

g3: Idr x4, [x5]: R pal = 0x0 ‘ f

Model Result
Base WDS+po-dsb-tlbiipa-dsb-eret allowed (1 of 6) 267478ms

ETS WDS+po-dsb-tlbiipa-dsb-eret allowed (1 of 6) 25136ms

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.10 Test: WDS+dsb-tlbiipa-dsb-eret-po
A Arch64 WDS+dsb—tlbiipa—dsb—eret—po

Page table setup:

physical pal;
intermediate ipal;

X — ipal;
X ?-> invalid;

ipal — pal;
ipal ?-> invalid;

*pal = 0;

identity 0x1000 with code;
identity 0x2000 with code;

Initial state:

ELR_EL2=L0O:

PSTATE.EL=0b10

RO=0b0
Rl=pte3(ipal,s2_page_table_base)
R2=0b0
R3=pte3(x,page_table_base)
R5=x

R6=page (x)
SPSR_EL2=0b00100
VBAR_EL1=0x1000
VBAR_EL2=0x2000

Thread 0

STR X0, [X1]

DSB SY

TLBI IPAS2E1, X6
DSB SY

ERET

LO:

STR X2, [X3]

LDR X4, [X5]

threadO ell handler

0x1200:

MOV X4,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

threadO el2 handler lower exc

0x2400:

MOV X4,#2

MRS X20,ELR_EL2
ADD X20,X20,#4
MSR ELR_EL2,X20
ERET

Final state: 0:R4=0

198

A VMSA litmus tests

A.10. Additional tests, as-yet unsorted 199

,,, e SO e
iThread 0 / Y :
5) a: str x0, [x1]: W s2:I13pte(x) = 0x0 ‘ . |
- A A
/ b: dsb sy
trf tfir / v /
| c: tibi ipas2el, x6: page=page(ipal)
trf/| ,
‘\ v /

sa“me-vmid @E co

same-ipa-pag
| same-ipa-pa
‘ same-vAi

‘f’ Eﬁ T s2:13pte(x) Hiio g3: Idr x4, [x5]: R pal = 0x0 ‘ f

Model Result
Base WDS+dsb-tlbiipa-dsb-eret-po allowed (1 of 6) 59690ms
ETS WDS+dsb-tlbiipa-dsb-eret-po allowed (1 of 6) 216640ms

A VMSA litmus tests
A.10. Additional tests, as-yet unsorted

A.10.0.11 Test: WDS+dsb-tlbiipa-dsb-po-eret
A Arch64 WDS+dsb—tlbiipa—dsb—po—eret

Page table setup:

physical pal;
intermediate ipal;

X +— invalid;
X ?-> ipal;

Initial state:

ELR_EL2=L0O:

PSTATE.EL=0b10
RO=mkdesc3(oa=pal)
Rl=pte3(ipal,s2_page_table_base)
R2=mkdesc3(oa=ipal)
R3=pte3(x,page_table_base)
R5=x

R6=page (x)
SPSR_EL2=0b00100
VBAR_EL1=0x1000
VBAR_EL2=0x2000

ipal+— invalid;
ipal ?-> pal;

Thread 0

*pal = 0;

identity 0x1000 with code;
identity 0x2000 with code;

STR X0, [X1]

DSB SY

TLBI IPAS2E1,X6
DSB SY

STR X2, [X3]
ERET

LO:

LDR X4, [X5]

threadO ell handler

0x1200:

MOV X4,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

threadO el2 handler lower exc

0x2400:

MOV X4,#2

MRS X20,ELR_EL2
ADD X20,X20,#4
MSR ELR_EL2,X20
ERET

Final state: 0:R4=2

Model Result

Base WDS+dsb-tlbiipa-dsb-po-eret forbidden (0 of 6) 61832ms
ETS WDS+dsb-tlbiipa-dsb-po-eret forbidden (0 of 6) 9009ms

200

A VMSA litmus tests

A.10. Additional tests, as-yet unsorted

A.10.0.12 Test: WBM-+dsb-tlbiis-dsb forbid
A Arch64 WBM+dsb—tlbiis—dsb

Page table setup:

physical pal;

X +— pal;

y — pal;

*pal = 0;

X ?7-> invalid;
identity 0x1000 with

Initial state:
:PSTATE.EL=0b01

:RO=0b0O
:R1=pte3(x,page_table_base)
:R2=0x2

:R3=y

:R5=page(x)

:RO=0x1

:R1=x

:VBAR_EL1=0x1000

H =2 2 O O O © o o

code;

Thread 0

STR X0, [X1]
DSB SY

TLBI VAE1IS,X5
DSB SY

STR X2, [X3]

Thread 1

STR X0, [X1]

threadl ell handler

0x1400:

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final state: x=1

_ Initial State

201

/
Thread 1 &rf

§Thread 0

b: dsb sy

a: str x0, [x1]: WsLi3pte(x) = 0x0 " /]

el: T s1:I3pte(x) hﬂﬁ
/

v

e2: str x0, [x1]: W pal = Ox1

sva-page

c: tlbi vaelis, x5: page=page(x)

Co//////

|

C

=
] e: str x2, [x3]: W pal = 0x2

Model Result
Base WBM+dsb-tlbiis-dsb forbidden (0 of 2) 5104ms
ETS wBM+dsb-tlbiis-dsb forbidden (0 of 2) 4658ms

A VMSA litmus tests 902
A.10. Additional tests, as-yet unsorted

A.10.0.13 Test: WBM-dsb-tlbiis-dsb-[dmb]-dmb forbid

Model Result
Base mno result for WBM-+dsb-tlbiis-dsb-[dmb|-dmb
ETS no result for WBM+dsb-tlbiis-dsb-|dmb|-dmb
Write to Broken Mapping.
This is a variant of RBS, but with a write to the invalidated location, instead of the read
from it.

A VMSA litmus tests

A.10. Additional tests, as-yet unsorted

A.10.0.14 Test: CoWTf.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret forbid
AArch64 CoWTf.inv.EL2+dsb—tlbiipa—dsb—tlbiis—dsb—eret

Page table setup:

physical pal;
intermediate ipal;

X — ipal;

ipal+— invalid;
ipal ?-> pal;

*pal = 1;

Initial state:

ELR_EL2=L0O:

PSTATE.EL=0b10
RO=mkdesc3(oa=pal)
Rl=pte3(ipal,s2_page_table_base)
R3=x

R4=page(x)

SPSR_EL2=0b00100
VBAR_EL2=0x2000

Thread 0

identity 0x2000 with code;

STR X0, [X1]

DSB SY

TLBI IPAS2E1,X4
DSB SY

TLBI VMALLELIS
DSB SY

ERET

LO:

LDR X2, [X3]

threadO el2 handler lower exc

0x2400:

MOV X2,#0

MRS X20,ELR_EL2
ADD X20,X20,#4
MSR ELR_EL2,X20
ERET

Final state: o:rR2=0

Model

Result

203

Base CoWTf.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret forbidden (0 of 5) 221283ms

ETS CowTf.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret forbidden (0 of 5) 5688ms

B Full models

204

B Full models

Here we include the entire strong and weak model (Note that the main relations are the same
as those in §5 but may be presented differently).

B.1 Common

The models both include a common core, which defines the shared set of derived relations and

events.

B.1.1 Barriers

First we define a hierarchy of barriers, so that an ordering [el] ; dmb ; [e2] implies

[el]

; ds

b ; [e2].

(x» define a hierarchy of barriers x)

(*
*
*
*
*

*)

e.g.
then

are f

if [el] ; dmbst ; [e2] is forbidden

[el] ; dmbsy ; [e2]
and [el] ; dsbsy ; [e2]
orbidden too

(* we do not model NSH so pretend it’'s SY x*)

let
let
let
let
let
let
let
let
let

B.1.2

Here we

dsbsy
dsbst
dsbld
dsbns
dmbsy
dmbst
dmbld
dmb =
dsb =

include "

= DSB.ISH | DSB.SY | DSB.NSH

dsbsy | DSB.ST | DSB.ISHST | DSB.NSHST

= dsbsy | DSB.LD | DSB.ISHLD | DSB.NSHLD

h = DSB.NSH

= dsbsy | DMB.SY

= dmbsy | dsbst | DMB.ST | DSB.ST | DSB.ISHST | DSB.NSHST
= dmbsy | dsbld | DMB.LD | DSB.ISHLD | DSB.NSHLD

dmbsy | dmbst | dmbld

dsbsy | dsbst | dsbld

Common Core

define all the relations common to both models, as they are given to isla-axiomatic:

barriers.cat"

(* For each instruction, for each read performed by the translation

set
set

T
T_f

table walk ASL code, we generate one translate-read (T) event. If
the translation finds an invalid entry, the translate-read event
will additionally belong to T_f. x)

(* T events which are part of a Stage 1 or 2 walk x*)
set Stagel
set Stage2

set read_VMID
set read_ASID
relation same-translation

(* A write of an invalid descriptor (an even value) is in W_invalid x*)
set W_invalid

(x A write of a valid descriptor (an odd value) is in W_valid x)
set W_valid

B Full models
B.1. Common

205

(* initial writes x)
set is_IW

(x trf is the translate analogue of rf, such that writes are
trf-related to translates that read them. trfl is trf
restricted to stage 1 reads, and trf2 for stage 2 reads x*)

relation trf

relation trfl

relation trf2

relation wco

relation iio
relation instruction-order

(* el speculative e2
* iff e2 was conditionally executed based on the value of el
*)
let speculative =
ctrl
| addr; po
| [T] ; instruction-order

(* po-pa relates all events from instructions in instruction-order to the same PA x)
let po-pa = instruction-order & loc

trf & int
trf \ trfi

let trfi
let trfe

(* likewise, tfr is the translate analogue of fr x)

(* we use overlap-loc not loc here to handle the case where
* multiple translations get merged into a single event x)
relation overlap-loc

let tfrl = (((trfl~-1); co) \ id) & overlap-loc

let tfr2 = (((trf27-1); co) \ id) & overlap-loc

let tfr = tfrl | tfr2

let tfri = tfr & int

let tfre = tfr \ tfri

(* translate and TLBI events with VAs within the same 4K region

* are related by same-va-page, similarly for IPAs and same-ipa-page *)
relation same-va-page

relation same-ipa-page

relation same-asid-internal

relation same-vmid-internal

relation tlbi-to-asid-read

relation tlbi-to-vmid-read

(x for convenience, derive some handy embeddings of program-order into
* some subset of the events x)

(*

* THESE ARE GENERATED BY ISLA

let instruction-order = iio™-1 ; fpo ; iio

let po = [M|F|C] ; instruction-order ; [M|F|C]

let tpo = [T] ; instruction-order ; [T]

*)

(* addr is now derived from the data dependency into the translate-reads
* if a translation exists x)
(*
* THIS IS GENERATED BY ISLA
let _addr =
tdata ; [M]
| tdata ; iio+ ; [R|W]

B Full models

206
B.1. Common

| tdata ; [T_f]
*)

(* CSEs are context-synchronization-events

x that is an ISB, and taking/returning from an exception x*)
(*

let CSE = ISB | TE | ERET

*)

(* Context changing operations

* are those that write to system registers
*)

let ContextChange = MSR | TE | ERET

(x fault events come from reads or writes x)

let Fault = TE (* TakeException, this is overly general x*)

let IsTranslationFault = Fault

let IsPermissionFault = Fault

set IsFromR (* events originating from an Arm LDR instruction x*)

set IsFromW (x events originating from an Arm STR instruction x*)

set IsFromReleaseW (* events originating from an Arm STLR instruction x)

(* Currently we only use same-vmid/same-asid between TLBIs and
* translates, so this relation defines them in a minimal way.
*)

let same-vmid

let same-asid

tlbi-to-vmid-read; [read_VMID]; same-translation
tlbi-to-asid-read; [read_ASID]; same-translation

(* A TLBI barriers some writes, making them unobservable to "future" reads from a
translation table walk.

*

* tseql relates writes with TLBIs that ensure their visibility
* e.g. ‘a: Wpte(x) ; b: Wpte(x) ; c: Wpte(x) ; d: TLBI x'

* then ‘c ; tseql ; d

* as a, b are no longer visible to translation table walks
*)
let tlb_might_affect =
[TLBI-S1 & ~TLBI-S2 & TLBI-VA & TLBI-ASID & TLBI-VMID] ; (same-va-page & same-
asid & same-vmid) ; [T & Stagell
| [TLBI-S1 & ~TLBI-S2 & ~TLBI-VA & TLBI-ASID & TLBI-VMID] ; (same-asid & same-vmid
) ; [T & Stagell]
| [TLBI-S1 & ~TLBI-S2 & ~TLBI-VA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T &
Stagel]
| [~TLBI-S1 & TLBI-S2 & TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; (same-ipa-page & same-
vmid) ; [T & Stage2?]
| [~TLBI-S1 & TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T &
Stage2?]
| [TLBI-S1 & TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & TLBI-VMID] ; same-vmid ; [T]
| (TLBI-S1 & ~TLBI-IPA & ~TLBI-ASID & ~TLBI-VMID) * (T & Stagel)
| (TLBI-S2 & ~TLBI-IPA & ~TLBI-ASID & ~TLBI-VMID) * (T & Stage2)
(x | (TLBI-ALL * T) =)

let tlb-affects =
[TLBI-IS] ; tlb_might_affect
| ([~TLBI-IS] ; tlb_might_affect) & int

(x [T] -> [TLBI] where the T reads-from a write before the TLBI and the TLBI is to the
same addr
* this doesn’t mean the T happened before the TLBI, but it does mean there could have
been a cached version
* which the TLBI threw away
*)
let maybe_TLB_cached =
([T] ; trf*-1 ; wco ; [TLBI-S1]) & tlb-affects™-1

B Full models
B.1. Common

(* translation-ordered-before x*)

let tob =
(» a faulting translation must read from flat memory or newer x*)
[T_f] ; tfre

(* cannot forward past a DSB x)

| ([T_f] ; tfri ; [W]) & (po ; [dsbst] ; instruction-order)”-1
(* no forwarding from speculative writes x)

| speculative ; trfi

let tlb_barriered =
([T] ; tfr ; wco ; [TLBI]) & tlb-affects™-1

let obtlbi_translate =
(x A S1 translation must read from TLB/memory before the TLBI which
* invalidates that entry happens x)
[T & Stagel] ; tlb_barriered ; [TLBI-S1]
(» if the S2 translation is ordered before some S2 write
then the S1 translation has to be ordered before the subsequent
S1 invalidate which would force the S2 write to be visible

*

this applies to S2 translations during a S1 walk as well
here the Stage2 translation is only complete once the TLBI VA which
invalidates previous translation-table-walks have been complete x)
if the S1 translation is from after the TLBI VA
then the S2 translation is only ordered after the TLBI IPA
)
| ([T & Stage2] ; tlb_barriered ; [TLBI-S2])
& (same-translation ; [T & Stagel] ; trf~-1 ; wco™-1)
(*x if the S1 translation is from before the TLBI VA,
* then the S2 translation is ordered after the TLBI VA

*)
| (

—

* X X X X X X X

([T & Stage2] ; tlb_barriered ; [TLBI-S2]) ; wco? ; [TLBI-S1])
& (same-translation ; [T & Stagel] ; maybe_TLB_cached)

(*x ordered-before-TLBI)
let obtlbi =
obtlbi_translate
(*
* a TLBI ensures all instructions that use the old translation
* and their respective memory events
* are ordered before the TLBI.
*)

| [R|W|Fault] ; iio™-1 ; (obtlbi_translate & ext) ; [TLBI]

(* context-change ordered-before *)
(* note that this is under-approximate and future work is needed
x on exceptions and context-changing operations in general x)
let ctxob =
(* no speculating past context-changing operations x*)
speculative ; [MSR]

207

(* context-synchronization orders everything po-after with the synchronization point

*)
| [CSE] ; instruction-order

(* context-synchronization acts as a barrier for context-changing operations x)

| [ContextChangel]l ; po ; [CSE]
(* context-synchronization-events cannot happen speculatively x)
| speculative ; [CSE]

(*x ordered-before a translation fault x)
let obfault =
data ; [Fault & IsFromW]
| speculative ; [Fault & IsFromW]
| [dmbst] ; po ; [Fault & IsFromW]

B Full models
B.1. Common

208

| [dmbld] ; po ; [Fault & (IsFromW | IsFromR)]
| [A]Q] ; po ; [Fault & (IsFromW | IsFromR)]
| [RIW] ; po ; [Fault & IsFromW & IsFromReleaseW]

(* ETS-ordered-before x)

(* if FEAT_ETS then if E1 is ordered-before some Fault

* then E1 is ordered-before the translation-table-walk read which generated that fault

* (but not xeveryx read from the walk, only the one that directly led to the
translation fault)

* Additionally, if ETS then TLBIs are guaranteed completed after DSBs
* hence po-later translations must be ordered after the TLBI (D5.10.2)
*)
let obETS =
(obfault ; [Fault]) ; iio™-1 ; [T_f]
| ([TLBI] ; po ; [dsb] ; instruction-order ; [T]) & tlb-affects

include "shows.cat"

B Full models
B.2. Strong Model

B.2 Strong Model

"VMSA strong"

include "cos.cat"

include "barriers.cat"

include "aarch64_mmu_common.cat"

(* observed by x)
let obs = rfe | fr | wco
(* observing a write through a fetch or translate
* means the write is now visible to the rest of the system
* aka {instruction, translation}->data coherence x)
| trfe

(* dependency-ordered-before x)
let dob =

addr | data

speculative ; [W]

addr; po; [W]

(addr | data); rfi

(addr | data); trfi

(* atomic-ordered-before x)
let aob = rmw
| [range(rmw)]; rfi; [A | QI

(* barrier-ordered-before x)
let bob = [R] ; po ; [dmbld]
| Wl ; po ; [dmbst]

| [dmbst]; po; [W]

| [dmbld]; po; [R|W]

| [LI; po; [A]

| [A]Ql; po; [R | W]
| [R | WIl; po; [L]

| [F | CI; po; [dsbsy]
| [dsb] ; po

(* Ordered-before x*)
let _ob = obs | dob | aob | bob | iio | tob | obtlbi | ctxob | obfault
let ob = _ob™+

(* Internal visibility requirement x)
acyclic po-loc | fr | co | rf as internal

(x External visibility requirement x)
irreflexive ob as external

(* Atomic: Basic LDXR/STXR constraint to forbid intervening writes. x)
empty rmw & (fre; coe) as atomic

(x Writes cannot forward to po-future translations x)
acyclic (po-pa | trfi) as translation-internal

(x No translations interposing well-bracketed take/return exceptions x*)

(* empty take-to-return & ((ob & int) ; [T] ; (ob & higher-EL)) *)

Figure 20: Strong Model

B.2.1 Translation Faults

209

To correctly implement ETS and TLBI-completion ordering for translation-faults we produce

fault events which exist iio-after the T event which causes them.

To get the correct ETS ordering, we add FromR and FromW sets for faults that originate from

load or store instructions.

Then we duplicate edges from ob which end in a [R] or [W] to also end in [Fault & FromR]
or [Fault & FromW], and those get included in the obfault relation which is included in ob. To

model ETS, we can then simply add [R|W] ; obfault ; [fault] ; iio"-1 ; [T_f] to ob.

See the relevant part of the Arm ARM (D.5.10.2 — Ordering and completion of TLB

maintenance instructions)

A TLB maintenance operation without the nXS qualifier generated by a TLB maintenance

B Full models

B.2. Strong Model 210

instruction is

finished for a PE when:

- ALl memory accesses generated by that PE using in-scope old translation information
are complete.

- All memory accesses RWx generated by that PE are complete.

RWx is the set of all memory accesses generated by instructions for that PE that
appear in program order

before an instruction I1 executed by that PE where all of the following apply:

- I1 uses the in-scope old translation information.

- The use of the in-scope old translation information generates a synchronous Data
Abort.

- If I1 did not generate an abort from use of the in-scope old translation
information, I1 would generate
a memory access that RWx would be locally-ordered-before.

B.2.2 Edges justification
We justify existence of edges in ob with the following tests:
B.2.2.1 obs
o [W] ; trfe ; [T] (CoTRpte.inv+dsb-isb)
o [W] ; trfe ; [T_f] (CoTfRpte+dsb-isb)
B.2.2.2 tob
o [T_f] ; tfr ; [W] (CoRpteTf.inv+dsb-isb)
e [T] ; iio ; [R|W] ; po ; [W] (see also speculative ; [W], S.T-+dmb+po)
e speculative ; trfi (MP.RT.inv+dmb+ctrl-trfi)
B.2.2.3 obtlbi_translate
e tcachel (MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb)

e tcache2 & (same-trans ; [T & Stagel] ; trf=1 ; wcoz1) (WDS+dsb-tlbiipa-dsb-po-
eret)

e (tcache2 ; wco? ; [TLBI S2]) & (same-trans ; [T & Stagel]l ; maybe_TLB_cached)
(WDS+ po-dsb-tlbiipa-dsb-tlbiis-dsb-eret)

B.2.2.4 obtlbi
e obtlbi_translate (see previous)
e [R] ; iio®l ; (obtlbi_translate & ext) (RBS-dsb-tlbiis-dsb)
e [W] ; iio*l ; (obtlbi_translate & ext) (WBM-dsb-tlbiis-dsb)

e [Fault] ; iio=1 ; (obtlbi_translate & ext) (see obfault for relevant tests)

B Full models
B.2. Strong Model

211

B.2.2.5 ctxob These edges are over-approximate compared to the assumed real semantics of
context-synchronizing events.

e speculative ; [MSR] (MP.RT.inv+dmb+addr-po-msr)
e [CSE] ; instruction-order (MP+dmb-+ctrl-isb)
e [ContextChange] ; po ; [CSE] (SwitchTable.different-asidteret)

e speculative ; [ISB] (MP+dmb-ctrl-isb, MP-+dmb+addr-po-isb, MP.TR.inv-+dmb-}isb)

B.2.2.6 obfault
e [R] ; data ; [Fault_W] (S.RTf.inv.EL1-+dsb-tlbiis-dsb+data)
e speculative ; [Fault_W] (S.RTf.inv.EL1+dsb-tlbiis-dsb+-ctrl)
e [dmb] ; po ; [Fault_R] (MP.RTf.inv.EL1-+dsb-tlbiis-dsb+dmb)
e [dmb] ; po ; [Fault_W] (S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb)

e [A|Q] ; po ; [Fault] (MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap, MP.RTf.inv.EL1+dsb-
tlbiis-dsb-+poqp, S.RTf.inv.EL1+dsb-tlbiis-dsb+poap, S.RTf.inv.EL1+dsb-tlbiis-
dsb-+poqgp

e [R|W] ; po ; [Fault_L] (S.RTf.inv.EL1+dsb-tlbiis-dsb+popl, R.Tf.inv.EL1-+dsb-tlbiis-
dsb+popl)

B.2.2.7 obETS
e obfault ; [Fault] ; iio:l ; [T_f] (MP.RTf.inv+dmbs, MP.RTf.inv+dmb+addr)

B.2.2.8 dob These edges ensure that self-satisfying cycles cannot be constructed, which could
otherwise lead to new translation table entries out of thin air.

e addr ; trfi (LB+addr-trfis)

e data ; trfi (LB-+data-trfis)
Note the lack of ctrl ; trfi here does not imply weakness, as tob already covers this.

B.2.2.9 axioms

e acyclic (po-pa | trfi) (CoTWl.inv)

B Full models
B.3. Weak Model

212

B.3 Weak Model

"VMSA weak"

include "cos.cat"

include "aarch64_mmu_common.cat"
include "barriers.cat"

let obs = rfe | fr | wco

let dob
| ctrl; [W]
| (ctrl | (addr; po)); [ISB]
| addr; po; [W]
|

addr | data

(addr | data); rfi
(addr | ctrl | data); trfi

let aob = rmw
| [range(rmw)]; rfi; [A | QI

(* barrier-ordered-before x)
let bob = [R] ; po ; [dmbld]
| [Wl ; po ; [dmbst]
| [dmbst]; po; [W]
| [dmbld]; po; [R|W]
| [L1; po; [A]
| A] Ql; po; [R | W]
| [R | W]; po; [LI]
| [F | Cl; po; [dsbsyl
| [dsb] ; po
| [CSE] ; instruction-order

(* Ordered-before x)
let ob = (obs | dob | aob | bob | ctxob)™+

(*» Internal visibility requirement x)
acyclic po-loc | fr | co | rf as internal

(x External visibility requirement *)
irreflexive ob as external

(* Atomic: Basic LDXR/STXR constraint to forbid intervening writes. x*)
empty rmw & (fre; coe) as atomic

(x Writes cannot forward to po-future translations x)
acyclic (po-pa | trfi) as translation-internal

(* break-before-make S1 x*)
empty
([is_IW | W_invalid] ; co ; [W_valid] ; ob ; [CSE] ; instruction-order ; [T & Stagel
1)
& (ob ; [dsbsy]l ; po ; ([TLBI-S1] ; po ; [dsbsy] ; ob ; [CSE] ; instruction-order ; [
T]) & tlb-affects)
& trf & loc
as bbm

(* break S1 x*)

empty ([is_IW | W] ; co ; [W_invalid] ; ob ; [dsbsy] ; po
; ([TLBI-S1] ; po ; [dsbsy]l ; ob ; [M]; iio”~-1; [T]) & tlb-affects & ext
) & trf & loc
as brkl

empty ([is_IW | W] ; co ; [W_invalid] ; ob ; [dsbsy] ; po
; ([TLBI-S1] ; po ; [dsbsy] ; ob ; [CSE] ; instruction-order ; [T]) & tlb-affects
) & trf & loc

B Full models

213
B.3. Weak Model

as brk2

(* break-before-make S2 x)
empty
([is_IW | W_invalid] ; co ; [W_valid] ; ob ; [CSE] ; instruction-order ; [T & Stage2
1)
& (ob ; [dsbsy]l ; po
; ([TLBI-S2] ; po ; [dsbsy] ; po ;
; ([TLBI-S1] ; po ; [dsbsy] ; ob ; [CSE]; instruction-order; [T]) & tlb-affects
; iio ; [T]) & tlb-affects)
& trf & loc
as bbms2

(* break S2 x*)
empty ([is_IW | W] ; co ; [W_invalid] ; ob ; [dsbsy] ; po
; ([TLBI-S2] ; po ; [dsbsy]l ; po ; ([TLBI-S1] ; po ; [dsbsy]l ; ob ; [M]; iio™-1;
[T]) & tlb-affects & ext
; iio ; [T]) & tlb-affects & ext
) & trf & loc
as brkls2

empty ([is_IW | W] ; co ; [W_invalid] ; ob ; [dsbsy] ; po
; ([TLBI-S2] ; po ; [dsbsy]l ; po ; ([TLBI-S1] ; po ; [dsbsy]l ; ob ; [CSE];
instruction-order; [T]) & tlb-affects
; iio ; [T]) & tlb-affects
) & trf & loc
as brk2s2

B Full models

B.4. Break-before-make detection predicate 214

B.4 Break-before-make detection predicate

; Check for break-before-make violations

; This is set of constraints is satisfiable iff there is a BBM violation
(declare-const BBM_W10 Event)

(declare-const BBM_W11 Event)

(declare-const BBM_W12 Event)

(declare-const BBM_W13 Event)

(declare-const BBM_Wl0_pa (_ BitVec 64))
(declare-const BBM_Wl1l _pa (_ BitVec 64))
(declare-const BBM_Wl2_pa (_ BitVec 64))
(declare-const BBM_W1l3_pa (_ BitVec 64))

(assert (not (= BBM_Wl0_pa BBM_Wll_pa)))
(assert (not (= BBM_Wl1l_pa BBM_Wl2_pa)))
(assert (not (= BBM_Wl2_pa BBM_Wl3_pa)))

(declare-const BBM_Wl0_data (_ BitVec 64))
(declare-const BBM_Wll_data (_ BitVec 64))
(declare-const BBM_Wl12_data (_ BitVec 64))
(declare-const BBM_W13_data (_ BitVec 64))

(declare-const BBM_ia (_ BitVec 36))

(define-fun ia_offset3 ((ia (_ BitVec 36))) (_ BitVec 12)
(concat ((_ extract 8 0) ia) #b000))

(define-fun ia_offset2 ((ia (_ BitVec 36))) (_ BitVec 12)
(concat ((_ extract 17 9) ia) #b000))

(define-fun ia_offsetl ((ia (_ BitVec 36))) (_ BitVec 12)
(concat ((_ extract 26 18) ia) #b000))

(define-fun ia_offset0® ((ia (_ BitVec 36))) (_ BitVec 12)
(concat ((_ extract 35 27) ia) #b000))

(define-fun page_offset ((pa (_ BitVec 64))) (_ BitVec 12)
((_ extract 11 0) pa))

(define-fun table_address ((desc (_ BitVec 64))) (_ BitVec 64)
(concat #x0000 ((_ extract 47 12) desc) #x000))

(assert (= (page_offset BBM_Wl0_pa) (ia_offset® BBM_ia)))
(assert (= (page_offset BBM_Wl1l_pa) (ia_offsetl BBM_ia)))
(assert (= (page_offset BBM_Wl2_pa) (ia_offset2 BBM_ia)))
(assert (= (page_offset BBM_Wl3_pa) (ia_offset2 BBM_ia)))

(assert (tt_write BBM_W10 BBM_W10_pa BBM_Wl0O_data))

(define-fun valid_desc ((desc (_ BitVec 64))) Bool
(= (bvand desc #x0000000000000001) #x0000000000000001))

(define-fun valid_table_desc ((desc (_ BitVec 64))) Bool
(= (bvand desc #x0000000000000011) #x0000000000000011))

; For each level, if it is valid, then its parent must be a valid table entry
(assert
(and
(implies (valid_desc BBM_Wl13_data) (valid_table_desc BBM_Wl2_data))
(implies (valid_desc BBM_Wl12_data) (valid_table_desc BBM_Wl1l_data))
(implies (valid_desc BBM_Wll_data) (valid_table_desc BBM_Wl0O_data))))

; If an entry is pointed to by its parent, then it must be actually

B Full models

B.4. Break-before-make detection predicate 215

; represented by a valid page table write at the correct location.
; The alternative is if the parent is invalid, in which case anything
; goes
(assert
(implies (valid_table_desc BBM_Wl0_data)
(and (tt_write BBM_W11l BBM_Wl1l_pa BBM_Wl1l_data)
(= (table_address BBM_Wl0_data) (table_address BBM_Wll_pa)))))

(assert
(implies (valid_table_desc BBM_Wl1l_data)
(and (tt_write BBM_W12 BBM_W12_pa BBM_Wl2_data)
(= (table_address BBM_Wl1l_data) (table_address BBM_W12_pa)))))

(assert
(implies (valid_table_desc BBM_Wl2_data)
(and (tt_write BBM_W13 BBM_W13_pa BBM_W13_data)
(= (table_address BBM_Wl12 _data) (table_address BBM_W13_pa)))))

(declare-const BBM_W1 Event)
(declare-const BBM_Wl_pa (_ BitVec 64))
(declare-const BBM_W1l_data (_ BitVec 64))

(declare-const BBM_W2 Event)

; BBM_W1 and BBM_W2 conflict

(assert (and (tt_write BBM_W1 BBM_W1l_pa BBM_W1l_data) (valid_desc BBM_W1l_data)))

(assert (W_valid BBM_W2))

(assert (not (= ((_ extract 47 12) BBM_Wl_data) ((_ extract 47 12) (val_of_64 BBM_W2)))
))

(assert (= BBM_W1l_pa (addr_of BBM_W2)))

(assert (or
(and (= BBM_W1 BBM_W13) (= BBM_W1l_pa BBM_W1l3_pa) (= BBM_Wl_data BBM_W13_data))
(and (= BBM_W1 BBM_W12) (= BBM_W1l_pa BBM_Wl2_pa) (= BBM_Wl_data BBM_W1l2_data))
(and (= BBM_W1 BBM_W1l1l) (= BBM_W1l_pa BBM_Wl1l pa) (= BBM_W1l data BBM_Wll data))
(and (= BBM_W1 BBM_W10) (= BBM_W1l_pa BBM_Wl0_pa) (= BBM_W1l data BBM_Wl0_data))))

(assert (co BBM_W1 BBM_W2))

(define-fun BBM_sequencel ((S_Wp Event) (S_tlbi Event)) Bool
(and
(wco BBM_W1 S_Wp)
(W_invalid S_Wp)
(implies (= BBM_W1 BBM_W13) (or (= S_Wp BBM_W13) (= S_Wp BBM_W1l2) (= S_Wp BBM_W11)
(= S_Wp BBM_W10)))
(implies (= BBM_W1 BBM_W12) (or (= S_Wp BBM_W1l2) (= S_Wp BBM_Wl1l) (= S_Wp BBM_Wl0))
)
(implies (= BBM_W1 BBM_Wl1l) (or (= S_Wp BBM_Wl1l) (= S_Wp BBM_W10)))
(implies (= BBM_W1 BBM_W10) (= S_Wp BBM_W10))
(wco S_Wp S_tlbi)
(TLBI-VA S_t1lbi)
(= (tlbi_va (val_of_cache_op S_tlbi)) (concat #x0000 BBM_ia #x000))
(wco S_tlbi BBM_W2)))

; If there are no valid BBM sequence between BBM_W1l and BBM_W2, we have a BBM violation
(assert (forall ((BBM_Wp Event) (BBM_tlbi Event))
(not (BBM_sequencel BBM_Wp BBM_tlbi))))

C Relationships between models 216

C Relationships between models

In this appendix, we illustrate how our models support a relatively simple abstraction to higher-
level code. We prove three theorems: that for static injectively-mapped address spaces, any
execution which is consistent in the model with translation, erasing translation events gives an
execution that is consistent in the original Armv8-A model without translation (Theorem 2); that
for any consistent execution in the original Armv8-A model, there is a corresponding consistent
execution in our extended model with translations (Theorem 3); and that our weak model is a
sound over-approximation of our full translation model, i.e., that for any consistent execution
in our full translation model, that same execution is consistent in the weak translation model
(Theorem 1).

C.1 Soundness of the weak model

Theorem 1 The weak model is a sound over-approximation of the strong model.

Proof: The definition of ob in the strong model contains all the clauses of the weak model (and
more).
The extra axioms of the weak model are subsumed by those of the strong model:

We label events with identifiers, write given edges solid, and derived edges dashed.

e bbm

([a:is_IW | W_invalid] ; co ; [b:W_valid]

; ob ; [c:CSE] ; instruction-order ; [d:Tf & Stagell])

&

(ob ; [e:dsb] ; po

; (([f:TLBI-S1] ; po ; [g:dsb]l ; ob ; [h:CSE] ; instruction-order)
& tlb_affects))

& trf & loc
trf
/\ \\\\
. \\\
co 10

atinit| W, —% 5 b:w, ¢:CSE ———— d:Tfs;

e
affeyt/io

(0]
e:dsbsy T f:TLBls; > g:dsbsy - h:CSE

WCO

From [f] ; po ; [gl, we have [f] ; bob ; [g], and from [h] ; io ; [d], we have
[h] ; bob ; [d] Therefore, together with [g] ; ob ; [h], we have [f] ; ob ; [d].
From [c] ; po ; [d], we [c] ; bob ; I[d].

wco relates b and f.

— If [f] ; wco ; [bl, then this is not a BBM violation.

C Relationships between models

217
C.1. Soundness of the weak model

trf

aW, — <2 L pw,

e
WCo _3fﬂ97t/io
o

e:dsbsy £ fTLBls; 1 gidsbsy " h:CSE

From [d] ; tfr ; [bl, we have [d] ; ob ; [b].
Therefore, we have a cycle in ob.
— If [b] ; wco ; [f], then:

/\\

aW—>bW cCSE—>de51

wcol ’ / /ﬁ@o/

(o]
e:dsbsy £ f:TLBlsy 1 g:dsbsy " h:CSE

x If there is another TLBI preventing a BBM violation involving a and b, then
there is another subgraph of the execution that corresponds to the previous case.

* If not, then there is also a BBM violation in the strong model, because they have
the same execution candidate, and use the same BBM check.

e brkl
([a:is_IW | W] ; co ; [b:W_invalid] ; ob ; [c:dsbsy]l ; po

; ([d:TLBI-S1] ; po ; [e:dsbsy] ; ob ; [f:M]; iio™-1; [g:Tl)
& tlb_affects & ext)

& trf & loc
WCOo
co /—_po\ P9
aW —— b:W, c:dsbsy — d:TLBlg; — e:dsbsy f:M

thﬁfects,ext

iio
trf,loc
N
gT

From [a] ; trf ; [g] and [a] ; co ; [b], we have [g] ; tfr ; [b].
wco relates b and d.

C Relationships between models 218
C.1. Soundness of the weak model
— If [d] ; wco ; [b].
then we have [d] ; ob ; [b]
Moreover, from [c] ; po ; [d], in the weak model, we have [c] ; ob ; [d].
From [b] ; ob ; [c] and [c] ; ob ; [d], we have [b] ; ob ; [d].
Therefore, we have a cycle in ob.

— If [b] ; wco ; [d].
From [g] ; tfr ; [bl, [b] ; wco ; [d], and [d] ; tlb-affects™-1 ; [g], we have
[g] ; tlb_barriered ; [d],
and therefore [g] ; obtlbi_translate ; [d].
From [g] ; obtlbi_translate ; [d], [g] ; ext ; [dl, and [f] ; iio~-1 ; [g], we
have [f] ; obtlbi_translate ; [d],
and therefore [f] ; ob ; [d].
Moreover, from [d] ; po ; [el, we have [d] ; bob ; [e], and therefore
[d] ; ob ; [el.
From [d] ; ob ; [e] and [e] ; ob ; [f], we have [d] ; ob ; [f].
Therefore, we have a cycle in ob.

e brk2

([a:is_IW | W] ; co ; [b:W_invalid] ; ob ; [c:dsbsy] ; po

; ([d:TLBI-S1] ; po ; [e:dsbsy] ; ob ; [f:CSE] ; instruction-order ; [g:T])
& tlb-affects)

& trf & loc

co po po io
a:W ——— b:W, c:dsbsy — d:TLBlg; — e:dsbsy f:CSE—— g:T
- x

~

~~___tlb_affects _~

trf loc

From [c] ; po ; [d], we have [c] ; bob ; [d], and therefore [c] ; ob ; [d].
Therefore, as before, by examination of wco, we have [g] ; ob ; [d].

From [d] ; po ; [e], we have [d] ; bob ; [el], and therefore [d] ; ob ; [el.
Moreover, from [f] ; instruction-order ; [g], we have [f] ; bob ; [g].
Therefore, we have a cycle in ob.

e bbms2

([@a:is_IW | W_invalid] ; co ; [b:W_valid] ; ob
; [c:CSE] ; instruction-order ; [d:Tf & Stage2?])
& (ob ; [e:dsbsy] ; po
; ([f:TLBI-S2] ; po ; [g:dsbsy] ; po ;
; ([h:TLBI-S1] ; po ; [i:dsbsy] ; ob ; [j:CSE]; instruction-order; [k:T])
& tlb-affects
; 1io) & tlb-affects)
& trf & loc

C Relationships between models

219
C.1. Soundness of the weak model

trf,loc

Cco

asinit|W; b:W, c:CSE o 4T,
tlb_ affects i

po po po-, : io
e:dsbsy — f:TLBIlg, — g:dsbsy — h:TLBlg; — i:dsbsy J;CSE —— k:T

tlb_affects

From [c] ; instruction-order ; [d], we have [c] ; bob ; [d], and therefore
[c] ; ob ; [d].

From [j] ; instruction-order ; [k], we have [j] ; bob ; [k], and therefore
[j1 ; ob ; [KI.

From [e] ; po ; [f], we have [e] ; bob ; [f].

From [f] ; po [g:dsbsyl ; po ; [h], we have [f] ; bob ; [h].

From [h] ; po ; [i], we have [h] ; bob ; [i].

From [a] ; trf ; [d] and [a] ; co ; [bl, we have [d] ; tfr ; [bl.

From [j] ; instruction-order ; [k] ; iio ; [d], we have [j] ; bob ; [d].

wco relates b and h.

— Assume [h] ; wco ; [b]. Then this is not a BBM violation.
From [d] ; tfr ; [bl, we have [d] ; ob ; [bl].

— Assume [b] ; wco ; [h].

x If there is another TLBI preventing a BBM violation involving a and b, then
there is another subgraph of the execution that corresponds to the previous case.

x If not, then there is also a BBM violation in the strong model, because they have
the same execution candidate, and use the same BBM check.

e brkls2

([a:is_IW | W] ; co ; [b:W_invalid] ; ob ; [c:dsbsy] ; po

; ([d:TLBI-S2] ; po ; [e:dsbsy]l ; po ;
([f:TLBI-S1] ; po ; [g:dsbsy]l ; ob ; [h:M]; iio™-1; [i:T & Stagell)
& tlb-affects & ext

; iio ; [j:T & Stage2]) & tlb-affects & ext

) & trf & loc

C Relationships between models 990
C.1. Soundness of the weak model

k:W _
WCO B .
co po po po po \\\trf,loc
aW, —— b:W,; c:dsbsy — d:TLBlg, — e:dsbsy — f:TLBIlg; — g:dsbsy\ h:M

ffects,ext)
\io

trf,loc

Consider wco:

From [c] ; po ; [d], we have [c] ; bob ; [d], and therefore [c] ; ob ; [d].

From [d] ; po ; [e] and [e] ; po ; [f] we have [d] ; ob ; [f].

Therefore wco must give us [a] ; wco ; [b] ; wco ; [d] ; wco ; [f] otherwise there is
a cycle in ob and the execution is trivially forbidden.

For [d] ; ob ; [el, [e] ; ob ; [f],and [f] ; ob ; [g].

wco relates b and d.

— If [d] ; wco ; [bl, we have a cycle in ob.

— If [b] ; wco ; [d].
From [j] ; tfr ; [bl, [bl ; wco ; [d]l, and [j] ; tlb-affects™-1 ; [d], we have
[j1 ; tlb_barriered ; [d].
Moreover, there must exist k such that [k] ; trf ; [i], and k must be related by
wco to f.

* If [K] ; wco ; [fl:

k:W
weo b
co po po po po \\trf,|OC
aW, —— b:W,; c:dsbsy — d:TLBIlg, — e:dsbsy — f:TLBIlg; — g:dsbsy h:M

trf,loc

Then we have [j] ; tlb_barriered ; [d] and [i] ; maybe_TLB_cached ; [f],
then from third clause of obltbi_translate we get

C Relationships between models 9291
C.1. Soundness of the weak model

[j]1 ; obtlbi_translate ; [f]. From the second clause of obtlbi we have
[h] ; obtlbi ; [f], and so [h] ; ob ; [f], and therefore we have a cycle in ob.

* If [f] ; wco ; [kI:

k:W _
weo .
co po po po po- trilgg
aW, —— b:W,; c:dsbsy — d:TLBls, — e:dsbsy — f:TLBIlg; — g:dsbsy\ h:M

trf,loc

Then [d] ; wco ; [k], and [j] ; tlb_barriered ; [d]. Then from the second
clause of obtlbi_translate we have [j] ; obtlbi_translate ; [d] From the sec-
ond clause of obtlbi we have [h] ; obtlbi ; [d], Which implies [h] ; ob ; [d],
but [d] ; ob ; [h] by bob so we have a cycle in ob.

e brk2s2

([a:is_IW | W] ; co ; [b:W_invalid] ; ob ; [c:dsbsy]l ; po

; ([d:TLBI-S2] ; po ; [e:dsbsy]l ; po ;
([f:TLBI-S1] ; po ; [g:dsbsy]l ; ob ; [h:CSE] ; instruction-order; [i:T & Stagell)
& tlb-affects
; iio ; [j:T & Stage2]) & tlb-affects)

& trf & loc
eee———__ trfloc
k:W Tl
wco
co po po po po io \.* iio .
aW, —— b:W; c:dsbsy — d:TLBIlgy — e:dsbsy — f:TLBlg; — g:dsbsy h:CSE —— i:Ts1 —— j:Ts2
tlb_ affects,ext
tlb_ affects,ext
T tlb_barriered—"

Similar to the previous case, we have [c] ; ob ; [d]l, [d] ; ob ; [el, [e] ; ob ; [f],
[f]l ; ob ; [gl, [h] ; ob ; [il, and [h] ; ob ; [j].

wco relates b and d.

— If [d] ; wco ; [bl, we have a cycle in ob.

— If [b] ; wco ; [d].
From [j] ; tfr ; [bl, [b]l ; wco ; [d]l, and [j] ; tlb-affects”-1 ; [d], we have

C Relationships between models 999
C.2. Virtual address abstraction and anti-abstraction
[j1 ; tlb_barriered ; [d].
Moreover, there must exist k such that [k] ; trf ; [i], and k must be related by
wco to f.

* If [k] ; wco ; [f]:

- _ trfloc
k:W RN
WCO
co po po po po 6% ¥ iio .
aW, —— b:W; c:dsbsy — d:TLBlg, — e:dsbsy — f:TLBls; — g:dsbsy h:CSE —— i:Ts1 —— j:Ts2
tlb_ affects,ext
tlb_ affects,ext
— —
\\ tlb_ barriered—
7 trf,loc
then we have [i] ; maybe_TLB_cached ; [f], and therefore
[j1 ; obtlbi_translate ; [f], and therefore [j] ; ob ; [f] so there is a
cycle in ob.
* If [f] ; wco ; [kI:
|bi- ~translate trf tdoc
k:W ~ -
wco
co po po po po io \? iio .
aW, —— b:W; c:dsbsy — d:TLBlg, — e:dsbsy — f:TLBls; — g:dsbsy h:CSE —— i:Ts1 —— j:Ts2
tlb_ affects,ext
tlb_ affects,ext
— tlb_barriered—"
o trf,loc 7

then we have [j] ; obtlbi_translate ; [d], and therefore [j] ; ob ; [d], so
there is a cycle in ob.

O

C.2 Virtual address abstraction and anti-abstraction

We consider a simple case when the virtual address abstraction ought to hold: under some
conditions, the model with translation and the original model without translations coincide.
Here, we only consider the consistency of the pre-executions, but not how these pre-executions
arise.

C.2.1 Abstraction

Definition 1 (VA abstraction subcondition) G satisfies the VA abstraction subcondition
when it has no page-table-affecting instructions: no TLBI, no context-changing operations (for
example via writing to registers, for example via MSR TTBR), etc.

Definition 2 (VA abstraction condition) Gtr satisfies the VA abstraction condition when
it satisfies the VA abstraction subcondition, and has a static injective page table.

C Relationships between models 993
C.2. Virtual address abstraction and anti-abstraction

Theorem 2 (VA abstraction) For all (Gtr : concrete execution)

if Gtr is consistent wrt. the model with translation

and respects the VA abstraction condition, then

let Gabs = erase Gtr in

Gabs is consistent wrt. the model without translation.

Proof: First, the builtin addr of the abstract model is assumed to coincide with the derived
addr of the concrete model by the erasure. Showing that the two definitions of pre-executions do
relate in this way is outside of our scope. Given that the definitions addr coincide, the definitions
of all the other derived relations of the abstract model, including ob in the translation model, are
syntactically supersets of their definition in the concrete model, so a cycle in ob in the abstract
model is also a cycle in ob in the concrete model. U

C.2.2 Anti-abstraction

For this direction, we need to be able to put the translation table somewhere.
C.2.2.1 Step 1: Building the candidate execution in the translation model

Definition 3 (translation extension condition) The translation extension condition is the
data of

(Gabs : execution)

such that Gabs is consistent wrt. the model without translation

and has no TLBI, and no MSR TTBR

and

(va_space : va_address -> bool)

such that all the memory accesses of Gabs are in va_space

and

(pt_pa_space : pa_address -> bool)

(pt_initial_state : pa_address -> option (list byte)),

such that the domains of pt_pa_space and pt_initial_state coincide

and

(tr_ctxt : translation_context),

such that id_map_lifted va_space and pt_pa_space are disjoint address spaces

and

(translate : translation_function),

such that translating abstract_va_space translate-reads from within pt_pa_space and gives the
mjective map.

Definition 4 (translation extension) Given the translation extension condition, the trans-
lation extension Gtr of Gabs is constructed by:

e adding all the initial writes for the page tables,

e adding all the translate reads obtained by running the translate function with the tr_ctxt,
e adding the translate reads in iio between the fetch and the explicit event,

e adding tdata to match addr,

e adding trf from the corresponding initial writes to the translates.

Definition 5 (VA anti abstraction condition) Gtr satisfies the VA anti-abstraction condi-
tion when it is derived from a consistent execution which satisfies the VA abstraction subcondition
by the translation extension.

C Relationships between models 994
C.2. Virtual address abstraction and anti-abstraction

Lemma 1 (VA abstraction condition for translation extension) If Gtr satisfies the VA
anti-abstraction condition, then Gtr satisfies the VA abstraction condition.

Proof: The translation extension does not add any extra instructions, and sets up static injective
page tables. O

Lemma 2 (obtlbi-empty) If Gtr satisfies the VA anti-abstraction condition, then obtlbi is
empty.

Proof: obtlbi has
e obtlbi_translate which has

— tcachel
which is [T & Stagel] ; tfr ; tseql
the latter is
[W] ; (maybe_TLB_barriered_by_va & ob) ; [TLBI VA]
which requires a TLBI, so it is empty
— tcache2 & ...
which requires a TLBI, so it is empty
— (tcache2 ; ...) & ...
which requires a TLBI, so it is empty

e [M] ; iio”™-1 ; obtlbi_translate
to which the same reasoning applies

C.2.2.2 Step 2: Consistency

Lemma 3 If Gtr satisfies the VA anti-abstraction condition, then translation-internal is acylic.

Proof: po-pa; [W]; trf is empty
because by the VA anti-abstraction condition there are no non-initial writes to page tables. [
So we only need to show external is acyclic.

Lemma 4 (ob-to-T) IfG satisfies the VA anti-abstraction condition, then, for allm > 1,

imm(ob)”™n ; [T] ==
iio
| imm(ob)”~(n-1) ; trfe
| imm(ob)~(n-1) ; [T] ; iio ; [TI]
| imm(ob)”~(n-1) ; [CSE] ; instruction-order
| imm(ob)~(n-1) ; po ; [ERET] ; instruction-order ; [T]

Proof:

e The addr clause
| tdata ; [T_f]
is empty because there are no translation failures.

e tob does not contribute: there are no faults, and no non-initial writes to page table entries.

e The first clause of ctxob is empty because there are no MSR TTBR. The third and fourth are
also empty, because they do not end in a [T].

C Relationships between models 995
C.2. Virtual address abstraction and anti-abstraction
e Given a static injective mapping, the new | (addr | data | ctrl) ; trfi clause of dob is
empty.

O

Lemma 5 (no-cycle-ob-to-init) If Gtr is well-formed and consistent (in either model), then
there is cycle in ob via the initial writes.

Proof: By well-formedness, wco ; [INIT] = [INIT] ; wco ; [INIT], and wco is acyclic.
By examination of the other edges. O

Lemma 6 (ob-from-T) If Gtr satisfies the VA anti-abstraction condition, then

[T] ; imm(ob) ==
iio
| [T] ; diio ; [M] ; po ; [W]

Proof: By examination of the edges. (]

Lemma 7 (instruction-order-compress)
instruction-order ; [T] ; iio ; [M] ; po C instruction-order

Proof: If we unfold the definitions of instruction-order and po, we have

iio®-1 ; fpo ; iio ; [T] ; iio ; [M] ; [M|F|C] ; iio”™-1 ; fpo ; iio ; [M]|F|C]
which we can simplify into

iio™-1 ; fpo ; fpo ; iio ; [M|F|C]

which means we have

instruction-order. O
Lemma 8 (instruction-order-compress-iio) instruction-order ; iio ; po C
instruction-order

Proof: iio is transitive, and is the RHS of instruction-order. O

Lemma 9 (ob-acyclic-preserved) If G satisfies the VA anti-abstraction condition, if there is
a cycle in translate-ob, then there is a cycle in plain-ob.

Proof:

Consider a minimal cycle in translate-imm(ob) (that is, the transitive closure of the ob of the
model with translation). Let n be its length.
We show that there is a cycle in plain-ob.
Assume, for contradiction, that the cycle contains an edge that is not in plain-ob (that is, the
ob of the model without translation):

e iio
by case split:

— [T1 ; iio; [M]: by Lemma ob-to-T, the ob edge to the left has to be either

* iio in which case, by transitivity of iio, there is a shorter cycle, so we have a
contradiction.
Let us call this Case I[IOtrans.

* trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist.

C Relationships between models 9296
C.2. Virtual address abstraction and anti-abstraction

* imm(ob)~(n-2); [T]; iio; [T]; iio; [M]
then we have imm(ob)~(n-2); [T]; iio; [M], which involves one fewer translate,
so we have a contradiction.

*x imm(ob)”~(n-2) ; [CSE] ; instruction-order
This is similar to IIOtrans.

* imm(ob)”~(n-2) ; po ; [ERET] ; instruction-order ; [T]
This is similar to IIOtrans.

— [T] ; iio ; [TI:
So the whole cycle looks like imm(ob)~(n-1) ; [T] ; iio ; [TI]
By Lemma ob-to-T, we have either

*x imm(ob)”~(n-2) ; iio ; [T] ; iio ; [T]
See Case I1Otrans.

*x imm(ob)”~(n-2) ; trfe
the trfe is from an initial write by the VA abstraction condition,
and by Lemma no-cycle-ob-to-init, the cycle cannot exist.

* imm(ob)”~(n-2); [T]; iio; [TI]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

*x imm(ob)”~(n-2) ; [CSE] ; instruction-order
This is similar to IIOtrans.

* imm(ob)”~(n-2) ; po ; [ERET] ; instruction-order ; [T]
This is similar to IIOtrans.

e tob has

— [T_f] ; tfr
which has a fault, so we have a contradiction.

— ([T_f] ; tfri) & (po ; [dsb.sy] ; instruction-order)”-1
which has a fault, so we have a contradiction.

— speculative ; trfi which is empty, because of the static page table.
e obtlbi, which is empty by Lemma obtlbi-empty.
e ctxob has

— speculative ; [MSR TTBR]
by the VA abstraction condition, there is no MSR TTBR

— [CSE] ; instruction-order
So the whole cycle looks like
[CSE] ; instruction-order ; imm(ob)”(n-1)
Because instruction-order is acyclic, n > 1, so we have
[CSE] ; instruction-order ; imm(ob) ; imm(ob)”~(n-2)
By Lemma ob-from-T, we have either:
*x [CSE] ; instruction-order ; iio ; imm(ob)”~(n-2)
which means that by Lemma instruction-order-compress, we have
[CSE] ; instruction-order ; imm(ob)”(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.
* [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [W] ; imm(ob)”~(n-2)
which means that by Lemma instruction-order-compress, we have
[CSE] ; instruction-order ; imm(ob)~(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

C Relationships between models 997
C.2. Virtual address abstraction and anti-abstraction

— [ContextChange] ; po ; [CSE]
by the VA abstraction condition, there is no ContextChange.

— speculative ; [CSE]
The CSE has to be an ISB, because there are no exceptions, and the speculative
is either in dob in the plain model, so we have a contradiction, or in
[T]; instruction-order.
So the whole cycle looks like imm(ob)~(n-1) ; [T] ; iio ; [M] ; po ; [ISBI
Because po | iio is acyclic, n — 1 has to be > 1, so by Lemma ob-to-T, we have
either

* imm(ob)”~(n-2); iio; [T]; iio; [M]; po; [ISB]

See Case IIOtrans.

x trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist

* imm(ob)”~(n-2); [T]; iio; [T]; iio; [M]; po; [ISB]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

% imm(ob)”~(n-2); [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [ISB]
which means that by Lemma instruction-order-compress, we have
imm(ob)”~(n-2); [CSE] ; instruction-order
so we have a cycle involving one edge fewer,
so we have a contradiction.

* imm(ob)”~(n-2) ; po ; [ERET] ; instruction-order ; [T] ; iio ; [M] ; po ; [ISB]
is similar

— po ; [ERET] ; instruction-order ; [T]
So the whole cycle looks like
po ; [ERET] ; instruction-order ; [T] ; imm(ob)”~(n-1)
Because instruction-order is acyclic, n > 1, so we have
po ; [ERET] ; instruction-order ; [T] ; imm(ob) ; imm(ob)”~(n-2)
By Lemma ob-from-T, we have either:

* po ; [ERET] ; instruction-order ; [T] ; iio ; imm(ob)”"(n-2)
which means that by Lemma instruction-order-compress-iio, we have
po ; [ERET] ; instruction-order ; imm(ob)”(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

* po ; [ERET] ; instruction-order ; [T] ; ([T] ; iio ; [M]; po ;

[Wl) ; imm(ob)”(n-2)
which means that by Lemma instruction-order-compress, we have
po ; [ERET] ; instruction-order ; imm(ob)”(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

e cxtended dob:

— involving trfi from non-initial writes, which contradicts our assumption about static
translation.

— or [T] ; instruction-order ; [W],
so [T] ; iio ; [M] ; po ; [W]
So the whole cycle looks like imm(ob)~(n-1) ; [T] ; iio ; [M] ; po ; [W]
Because po | iio is acyclic, n — 1 has to be > 1, so by Lemma ob-to-T, we have
either

C Relationships between models 998
C.2. Virtual address abstraction and anti-abstraction

* imm(ob)”~(n-2); iio; [T]; iio; [M]; po; [W]
See Case IIOtrans.

x trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist

* imm(ob)~(n-2); [T]; iio; [T]; iio; [M]; po; [W]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

* imm(ob)”~(n-2); [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [W]
which means that by Lemma instruction-order-compress, we have
imm(ob)”~(n-2); [CSE] ; instruction-order
so we have a cycle involving one edge fewer,
so we have a contradiction.

* imm(ob)”~(n-2) ; po ; [ERET] ; instruction-order ; [T] ; iio ; [M] ; po ; [W]
is similar

extended bob, but only involving TLBI, which contradicts our assumption of no TLBI.

extended obs, but only involving trfe, by the VA abstraction condition, the only writes
to page tables are from initial writes, and by Lemma no-cycle-ob-to-init, there are no ob
cycles via initial writes, so there is no cycle.

obfault, which involves a fault, which contradicts our assumptions.

obets, which involves a fault or a TLBI, which contradicts our assumptions.

All the other edges are in plain-ob by definition. O

Theorem 3 (VA anti-abstraction) If the translation extension condition holds, then there
exists a Gtr that satisfies the VA anti-abstraction condition such that Gtr is a stitching of Gabs
with the pt_initial _state according to translate in tr_ctxt and Gtr is consistent wrt. the
model with translation.

Proof: Gtr exists by the translation extension construction,
and it is consistent by Lemma ob-acyclic-preserved. U

D Test results 999

D Test results

D.1 Isla model results

Here v and X indicate whether or not the model allows an execution with satisfying the final-
state constraint given in the test. All these are as intended.

Strong model Ets model
Test Name allow? time allow? time
BBM-+dsb-tlbiis-dsb.............. o v 12702ms v 19328ms
BBM.Tf+dsb-tlbiis-dsb............. ... v 9196ms v 13659ms
Break2newsl......... X 43306ms X 22677ms
CoRRO.aliaS+POo. .o X 2512ms X 1420ms
CoRR2.alias+po. . ..o X 1934ms X 2260ms
CoRT.inv+addr-trfi............ .. . ! 1098ms ! 4778ms
CoRpteTHdsb. ... v 5978ms v 6586ms
CoRpteT+Hdsb-isb v 7347ms v 7604ms
CoRpteT.EL1+4dsb-tlbi-dsb............................. v’ 10293ms v 11815ms
CoRpteT.EL1+dsb-tlbi-dsb-isb X 53579ms X 28345ms
CoRpteTfinv+dsb ... v 5413ms X 2582ms
CoRpteTf.inv4dsb-isb...... ... X 3347ms X 3472ms
CoTRptednv-+dsb ... X 5781ms X 5372ms
CoTRpteinv-+dsb-isb. ... X 4436ms X 5367ms
COoTRPteINV-+PO .ot e v 7044ms v 6839ms
CoTTro+dmb ... v’ 36785ms v 52018ms
CoTT.ro+dsb-isb. ... v’ 88419ms v’ 103258ms
COT T r0HPO et v’ 38533ms v 38279ms
CoTTfinvHdsb-isb........... o X 21525ms X 26198ms
CoT T fanv4pPo. ..o e v’ 51495ms X 29031ms
CoTWILaANV. o X 2597ms X 2714ms
CoTWINV ..o e X 2846ms X 3277ms
CoTfRpte+dsbo X 4134ms X 4433ms
CoTfRpte+dsb-isb......... . X 5543ms X 5852ms
CoTfRpteteret.ovueii e X 2995ms X 4168ms
COTERPEEHPO « v et e X 3872ms X 3740ms
CoTfTHdsb-i8b. oo v' 78905ms v 95644ms
COT T PO e et v’ 71605ms v 72598ms
CoTfW.inv+4dsb-isb ... o X 5572ms X 8392ms
COoTtW.ANVAHPO . ot X 6038ms X 7738ms
CoTIfWLANVHSI. oo ! 220ms ! 227ms
CoWR.alias ... X 977ms X 967ms
CoWRNV . . X 825ms X 1104ms
CoWTal.l.inv-+dsb-tlbiasidis-dsb-eret X 4653ms X 3693ms
CoWTa2.1.inv+dsb-tlbiasidis-dsb-eret X 2833ms X 3180ms
CoWTf.inv+|dmb|-dmb-addr X 3845ms X 5057ms
CoWTfinv4dsb-isb o X 3024ms X 2475ms
CoWTEAnv4po . oo v 4112ms v 4160ms
CoWTfinv+po-ctrl4+po ..o v’ 25871ms v 24818ms
CoWTf.inv+po-ctrl-isb4+po..........oooooiii oL, v 64271ms v 70941ms
CoWTf.inv+poloc-ctrl-isb v 7161ms v 8420ms
CoWTfinv+rfi-addr..........ooo i v 6419ms v 6075ms
CoWTf.inv+rfi-ctrl-isb ... o v 8242ms v 8255ms

D Test results

D.1. Isla model results 230
CoOWTLANVAHSVE « e v 6843ms v 7037ms
CoWTfinv.EL1+dsb-eret............................... X 2425ms X 2073ms
CoWTf inv.EL14dsb-sve ... X 4906ms X 4442ms
CoWTfinv.ELl1+eret............. v 4684ms v 5627ms
CoWTf.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret X 221283ms X 5688ms
CoWTEinv.EL24po . ..o v 7031ms v 8213ms
CoWTv2.2.inv+dsb-tlbivmidis-dsb-eret X 5223ms X 4592ms
CoWW.alias. ... X 822ms X 849ms
CoWInvRpte+po ..o X 1024ms X 938ms
CoWinvT+dsb-isb............ o v 5292ms v 5212ms
CoWInVTHpo ..o v 5406ms v 5832ms
CoWinvT.EL1+dsb-tlbi-dsb v’ 10117ms v 12882ms
CoWinvT.EL1+dsb-tlbi-dsb-isb......................... x 18380ms X 25267ms
CoWinvT.EL1+dsb-tlbiis-dsb........................... v' 11490ms v 12759ms
CoWinvT.EL1+dsb-tlbiis-dsb-isb X 7548ms X 12986ms
CoWinvT2+dsb-tlbiipa-dsb-eret x 12608ms X 4645ms
CoWinv'T2+dsb-tlbiipa-dsb-tlbivmall-dsb-eret x 114842ms X 196759ms
CoWinvTal.l+dsb-tlbiasidis-dsb-eret X 7638ms X 99884ms
CoWinvTa2.1+dsb-tlbiasidis-dsb-eret v' 55920ms v 9894ms
CoWinvTv1l.2+dsb-tlbivmidis-dsb-eret x 13931ms X 8229ms
CoWinvTv2.2+dsb-tlbivmidis-msrvttbr-dsb-eret v’ 10489ms v 20604ms
B S . X 9590ms X 9297ms
IRIW.TTE. TTfinv+addrs ... X 132223ms X 147911ms
ISA2.RRTf.inv+dsb+addr+addr........................ X 4464ms X 4866ms
ISA2.RRTf.inv+dsb+datat+addr........................ X 5082ms X 5085ms
LBHaddr-trfis ... X 7042ms X 7977ms
LB+data-trfis ..o X 26579ms X 18056ms
LB T T anvApoS. oot X 15481ms X 16545ms
Load.inv. o — — X 3345ms
MP.BBM1-+dsb-tlbiis-dsb-dsb+ctrl-isb.................. x 1068905ms X 571232ms
MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb............... ... X 116116ms ! 182456ms
MP.RT.EL1+dsb-+dsb-tlbi-dsb-+dsb-+dsb-isb............ v’ 146008ms v 208363ms
MP.RT.EL1+dsb-+dsb-tlbiis-dsb-+dsb+dsb-isb X 307568ms X 760981ms
MP.RT.EL1+dsb-shootdown-dsb-+dsb-isb............... X 765865ms X 49466ms
MP.RT.EL1+dsb-tlbi-dsb-+dsb-isb...................... v 10678ms v 87237ms
MP.RT.EL1-+dsb-tlbiis-dsb+dmb X 57372ms X 5360ms
MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb..................... X 348942ms X 16656ms
MP.RT.EL2+dsb-tlbiipa-dsb-tlbiis-dsb+dsb-isb v' 108556ms v 87273ms
MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb v’ 112919ms v' 120764ms
MP.RT.EL2+-dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb........ v 145150ms X 435166ms
MP.RT.EL2+dsb-tlbiis-dsb-tlbiipais-dsb-+dsb-isb........ v’ 146011ms v 97074ms
MP.RT.inv4+dmb-+addr-po-isb X 3366ms X 3223ms
MP.RT.inv+dmb-+addr-po-msr X 3230ms X 3146ms
MP.RT.inv4+dmb+addr-po-msr-isb................... ... X 4687ms X 3356ms
MP.RT.inv+dmb-+addr-trfi............................. — — X 7235ms
MP.RT.inv+dmb-+ctrl-trfi X 6011ms X 6144ms
MP.RT .inv+trfi-data+addr.toml v' 40551ms v 32442ms
MP.RTT.EL1-+dsb-tlbiis-tlbiis-dsb-+dsb-isb X 520042ms x 305092ms
MP.RTf.inv+dmb+addr X 3574ms X 4327ms
MP.RTf.inv+dmb+ctrl-isb.............................. X 5734ms X 5059ms
MP.RTf.inv+dmb+data X 3232ms X 3843ms

D Test results

231
D.1. Isla model results
MP.RTf.inv+dmb+dsb-isb.............. X 5345ms X 3982ms
MP.RTf.inv+dmb+po ... v 5316ms X 2598ms
MP.RTfinv-+dmbs. ... v 5896ms X 3681ms
MP.RTf.inv.EL1+dsb-tlbiis-dsb+addr................... X 3994ms X 3882ms
MP.RTf{.inv.EL1+dsb-tlbiis-dsb+ctrl.................... X 15261ms X 6025ms
MP.RTf.inv.EL1+4dsb-tlbiis-dsb+ctrl-isb x 31160ms X 8117ms
MP.RTf.inv.EL1+dsb-tlbiis-dsb+data................... X 3744ms X 5394ms
MP.RTf.inv.EL1+4dsb-tlbiis-dsb+dmb................... x 10762ms X 5294ms
MP.RTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb X 52965ms X 6204ms
MP.RTf.inv.EL1+dsb-tlbiis-dsb+po..................... x 20910ms X 3710ms
MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap X 75710ms X 3279ms
MP.TR.inv+dmb-+isb............ X 2406ms X 3016ms
MP. TR.inv+dmb+msr. ... v 6174ms v 6987ms
MP.TR.inv+dmb-+msr-isb X 4042ms X 4240ms
MP. TTfinv+dmb-+addr................................ X 12067ms X 16288ms
MP.TTf.inv+dmb-+dsb-isb.............................. X 27192ms X 47972ms
MP.TTfinv+dmb+po ... v’ 52201ms X 9113ms
MP.TTf.inv+dsb+ctrl-isb............................... x 30317ms X 37812ms
MP.TTf.inv+dsb+dsb-isb......... X 29708ms X 22505ms
MP. TTfinv4dsb+pocooi e v’ 42061ms X 23415ms
MP. TTfinv+dsbso v 64484ms X 28800ms
MP.TTf.inv.EL1+dsb-tlbiis-dsb+dmb................... X 235651ms X 81641ms
MP.TTf.inv.EL1+dsb-tlbiis-dsb-+dsb-isb................ X 16436ms X 29491ms
MP.TTf.inv.EL1+dsb-tlbiis-dsb+po X 162552ms X 200958ms
MP. TIR+dmb-+eret X 3508ms X 4473ms
MP.alias3+rfi-data+dmb ... v 1431ms v 1483ms
PPOAA.alias. ... X 2645ms X 3113ms
PPOCA.alias. ... v 4744ms v 4932ms
PPODA RT.ANV. ..o X 5779ms X 6596ms
R.RTf.inv.EL1+dsb-tlbiis-dsb+popl..................... x 13739ms X 4164ms
R.TR.nv+dmb-+trfi......... ... v 8652ms v 9603ms
RNV . . X 1976ms X 2050ms
RBS+dsb-tlbiis-dsb............. X 4158ms X 12912ms
RDW.alias ... X 2972ms X 3317ms
ROT.inv+dmbst.o X 3998ms X 3919ms
ROT.inv+dsb ... X 2805ms X 3202ms
ROTAnvVAHPO oo v 4749ms v 4899ms
RSW.alias v 2765ms v 2609ms
RWC.RTfR.inv+addr+dmb............................. X 3022ms X 3609ms
SHtIbiall4po ..o v 3838ms v 3787ms
S.RT.ro+dsb-tlbiis-dsb-+dsb-isb...................... ... X 36657ms X 80116ms
S.RTW+tlbiall+-addr-po.ooveii i — — v 4452ms
S.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl...................... x 12958 ms X 4463ms
S.RTf.inv.EL1+dsb-tlbiis-dsb+data..................... X 4120ms X 4535ms
S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb..................... X 11481ms X 4349ms
S.RTf.inv.EL1+dsb-tlbiis-dsb+poap X 45733ms X 3117ms
S.RTf.inv.EL1+dsb-tlbiis-dsb+popl..................... X 28716ms X 4266ms
STHAMbHPO . oo X 6152ms X 448bms
S.T.alias+tlbiall4+po. ... — — X 17937ms
SB.TfTf.inv+dmb-ctrl-isbs.............................. x 19569ms X 16904ms
SB.TfTfinv+dsb-isbs........ X 9504ms X 8368ms

D Test results

D.1. Isla model results 232
SB.TfTfinvv+rfi-ctrl-isbs.............. v 34795ms X 15059ms
SwitchTable.same-asid+eret.toml X 1245ms X 1294ms
W o v 663ms v 694ms
W v 3748ms v 10144ms
WBM-+tdsb-tlbiis-dsb X 5104ms X 4658 ms
WDS—+dsb-tlbiipa-dsb-eret-po..................oooa... v’ 59690ms v’ 216640ms
WDS-+dsb-tlbiipa-dsb-po-eret........................... X 61832ms X 9009ms
WDS-+po-dsb-tlbiipa-dsb-eret........................... v’ 267478ms v 25136ms
WDS-po-dsb-tlbiipa-dsb-po-eret v 146279ms v 30736ms
WDS-+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret................. X 186945ms X H76750ms
WRC.RRTf.inv+addrs. ... X 4100ms X 4411ms
WRC.RRTf.inv+dmbs.................................. v 6441ms X 3589ms
WRC.RRTf.inv+dsb-+ctrl-isb........................ ... X 5218ms X 5459ms
WRC.RRTf.inv+dsb+dsb-isb........................... X 5393ms X 5591ms
WRC.RRTfinv-+dsbs. ... v 8964ms X 4568ms
WRC.RRTfANVAPOS . oot v 5334ms v 5239ms
WRC. TRTf.inv+addrs. ... x 10005ms X 11073ms
WRC.TRTf.inv+dmbs. ... v 35492ms X 8559ms
WRC.TRTf.inv+dsb+dsb-isb........................... X 9146ms X 16960ms
WRC. TRTfinv+dsbs. ... V' 48023ms X 8487Tms
WRC. TRTfINVAPOS . v vee e v’ 26642ms X 9414ms
WRC. TTTfinv+addrs.............. X 31851ms X 23959ms
WRC. TTTfinv+data+addr X 49883ms X 40834ms
WRC. TfRR+ctrl-isb+dsb L X 5699ms X 6787ms
WRC.TIRR+dmbs ... X 4533ms X 4800ms
WRC. TfRR+dsb-isb+dsb X 5353ms X 5963ms
WRC.TIRR+ASbS .o X 3850ms X 5423ms
WRC. TfRRHpo+dsb ..o X 3508ms X 3727ms
WRC.TIRRAPOS . oo v 5616ms v 7637ms
WRC.TfRT+dsb-tlbiis-dsb+dsb-isb..................... X 549315ms X 1582501ms
WRC.TfRT+po+dsb-isb. ..., v’ 39075ms v 57628ms

D Test results
D.1. Isla model results

Below are the pKVM tests. The two tests without results timed out after 4 hours.

Strong model

Test Name allow? time
pKVM.create _hyp mappings.inv.2........... X 2493ms
pKVM.create hyp mappings.inv.I3........... X 807ms
pKVM.host handle trap.free table.toml........................ x 15718265ms

pKVM.host handle trap

.stage2 idmap.change block size
pKVM.host handle trap

.stage2 idmap.change block size.change permissions

............................. X 7010271ms

......... X 2370057ms

pKVM.host handle trap.stage2 idmap.l3....................... X 166475ms

pKVM.host handle trap
.stage2 idmap.13.already exists.concurrent
pKVM.host handle trap
.stage2 idmap.13.already exists

pKVM.host handle trap twice.stage2 idmap.3................ X 149172ms
pKVM.switch to new table.......... X 1405ms
PEKVM.vepu run ... X 956ms
pKVM.vcpu_ run.same VIooiiiiiiiiiiiiiiii.. X 3107ms
pKVM.vepu run.update vmid oo X 1817ms
pKVM.vcpu run.update vmid.concurrent....................... X 8604ms

233

D Test results
D.2. Hardware results

D.2 Hardware results

234

Below is a table of our results from running our hand-written hardware tests on the various
machines we have available: a Raspberry Pi 4; a Raspberry Pi 3B+; and an AWS mé6g-metal
instance (claiming to be an A76). Our hardware test harness uses a different form of test to our
Isla tooling; tests with the same name have manually-checked correspondence.

Type Name rpidb rpi3bp graviton2
Total Distribution Total Distribution Total Distribution
pgtable CoRT 964.72K/8M 60.30K /500K + 31.30K/500K 520.06K/3M 86.68K /500K + 13.08K/500K 2.29M/108M 10.61K /500K + 14.22K/500K
pgtable CoRT+dsb-isb 802.86K/SM 50.18K/500K __ + 15.93K /500K 327.02K/3M 54.50K /500K 5.67K/500K 3.41M/108M 15.77K/500K & 30.96K/500K
pgtable CoTR 2.51M/8M 156.63K /500K + 31.44K/500K 0,/3M 21.70M/107.50M 100.92K /500K + 21.38K/500K
pgtable CoTR+addr 0/8M 1/3M 0.17/500K ___F 0.37/500K 0/107.50M
pgtable CoTR+dmb 1/8M 0.06/500K + 0.24/500K 0,/3M 4/107.50M 0.02/500K + 0.14/500K
pgtable CoTR+dsb 2/8M 0.12/500K & 0.33/500K 0/2.50M 5/107M 0.02/500K __ + 0.15/500K
pgtable CoTR+dsb-isb 1/8M 0.06/500K + 0.24/500K 0/2.50M 1/107M 0.00/500K + 0.07/500K
pgtable CoTR. inv 3.63M/6.50M _ 279.43K/500K T 62.37K /500K 0/2.50M 32.28M/43M 33K/500K _ + 91.32K/500K
potable CoTR. inv+dsb-isb 50M 0/2.50M
pgtable CoTR1+dsb-dc-dsb-t1bi-dsb-isb 5.50M 0.15/500K = 0.36/500K 0/2.50M 0.05/500K & 0.21/500K
pgtable CoTR1+dsb-tlbi-dsb-isb 50M 0.15/500K + 0.36/500K 0/2.50M 0.03/500K + 0.18/500K
pgtable CoTRI. tlbi+dsb-isb 50M 0.46/500K =+ 0.93/500K 1/2.50M 0.20/500K __F 0.40/500K 0.34/500K __+ 0.58/500K
pgtable CoTT 50M 0,/2M 0/43M
pgtable Comi 50M 0/1.50M 0/10.50M
pgtable CoWT -50M 289.86K /500K + 19.23K /500K 1.85M/2M 462.33K /500K + 53.82K/500K 22.64M/43M 263.28K /500K + 22.56K /500K
pgtable CowT+dsb 50M__ 289.17K/500K __ + 19.74K /500K 995.06K/2M __ 248.76K/500K __ + 159.86/500K 21.50M/43M __ 250.05K/500K __+ 561.54/500K
pgtable CoWT+dsb-isb -50M 290.59K /500K + 19.12K /500K 995.77K/2M 248.94K /500K + 228.37/500K 21.50M/43M 250.04K /500K + 521.08/500K
pgtable CoWT+dsb-svc-tibi-dsb 5.50M 0/2M 0/42.50M
pgtable CoWT. inv 50M 0.77/500K + 1.42/500K 1.73M/2M 432.85K /500K + 73.79K/500K 169/42.50M 1.99/500K + 3.39/500K
pgtable CoWT. invdmb 0.62/500K =+ 0.92/500K 69.38K/2M 17.35K /500K F 16.32K/500K 42/42.50M 0.49/500K __+ 0.85/500K
pgtable CoWT. inv+dsb 0.08/500K + 0.27/500K 0,/2M 57/42M 0.68/500K + 1.00/500K
pgtable CoWT. inv+dsb-isb 0/2M 0/42M
pgtable CoWT1+dsb-t1bi-dsb 0/2M 0/42.50M
pgtable CoWT1L+dsb-t1bi-dsb-isb 0/2M 0/42.50M
pgtable CoWinvT 320.63K /500K + 98.49K/500K 1.79M/2M 447.54K /500K + 88.94K/500K 26.81M/42M 319.17K/500K + 105.14K /500K
pgtable CoWinvT+dsb-isb 321.95K/500K =+ 97.84K /500K 1.83M/2M __ 458.52K/500K __ F 70.27K/500K 26.80M/42M __ 319.06K/500K __ + 105.27K/500K
pgtable CoWinvT1+dsb-tlbi-dsb 0/2M
potable CoWinvWTL+dsb-t1bi-dsb-dsb-ish 0/2M
pgtable T5A2. TRR+dmb+po+dnb 0/2M
pgtable MP.BBML+[dnb. Ld] -dsb-tlbiis-dsb-isb-dsb-isbrdsb-isb /1.50M
pgtable MP.BBML+[dmb. 1d] - t1biis-dsb-isb-dsb-isb+dsb-isb -50M 0/1.06G
pgtable MP. BBML+[po] -dsb-tbiis-dsb-isb-dsb-isb+dsb-isb _50M 0/1.50M .
pgtable MP.BBM1+dsb-isb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0,/2M 52/135.50M 0.19/500K + 0.43/500K
pgtable MP_BBML+dsb-tlbiis-dsb-dsb+dsb 0.08/500K ___F 0.27/500K 0/2M 50M 0.08/500K __+ 0.31/500K
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb 0,/2M 2/42.50M 0.02/500K + 0.15/500K
pgtable MP_BBML+dsb-tlbiis-dsb-dsb-isb+dsb 0.08/500K = 0.28/500K 0/2M 0/42.50M
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb 0.17/500K + 0.37/500K 0,/2M 3/42.50M 0.04/500K + 0.24/500K
pgtable MP.BBML+po-dsb-t1biis-dsb-isb-dsb-isbrdsb-isb 0/1.50M 9/191.50M 0.02/500K £ 0.15/500K
pgtable MP.BBM1.1id+dsb-tlbiis-dsb-dsb+dsb-isb 0.83/500K + 0.37/500K 2/2M 0.50/500K + 0.50/500K 87/42.50M 1.02/500K + 0.15/500K
pgtable MP_RT+svC-dsb-tlbi-dsb+dsb-isb 0.08/500K = 0.28/500K 0/2M 3/42M 0.04/500K £ 0.19/500K
pgtable MP.RT+svc-dsb-tlbiis-dsb+dsb-isb 0.08/500K + 0.28/500K 0,/2M 3/42M 0.04/500K + 0.19/500K
pgtable MP.RT. inv+dnbraddr 0/2M 0/42M
potable MP_RT. inv+dnb+po 0/6M 6/1.50M 00/500K =+ 2.16/500K 0/42M
pgtable MP_RTL+ [dmb. Ld]-dmb+dsb-isb 715K /6M 595.58/500K = 290.84/500K 986/1.50M 328.67/500K T 464.80/500K 15.01/500K & 32.31/500K
pgtable MP.RTL+[dnb. 1d] -dsb-isb-tlbiis-dsb-isb+dmb 0/1M 0/1M
pgtable MP.RT1+[dmb.1d]-dsb-isb-tlbiis-dsb-isb+dsb-isb 0/1IM 0/1IM
pgtable MP.RTL+[dnb. 1d] -dsb- tlbiis-dsb-isbdnb 0/6M 0/1.50M 0/42M
pgtable MP.RTL+dc-dsb-tlbiall-dsb+dsb-isb 4/6M 0.33/500K =+ 0.47/500K 1/1.50M 0.33/500K __+ 0.47/500K 5/41.50M 0.06/500K __ + 0.24/500K
pgtable MP.RT1+dc-dsb-tlbiall-dsb-isb+dsb-isb 3/6M 0.25/500K + 0.43/500K 0/1.50M 2/41.50M 0.02/500K + 0.15/500K
pgtable MP_RTLtdsb-isb-tibiis-dsb-isbtdsb-isb 0/6M 0/1.50M 4741M 0.05/500K & 0.22/500K
pgtable MP.RT1+dsb-tlbi-dsb+dsb-isb 0/6M 0/1.50M 2/41M 0.02/500K + 0.15/500K
pgtable MP_RTLtdsb-tlbiall-dsb+dsb-isb 5/6M 0.42/500K =+ 0.49/500K 0/1.50M 6/41M 0.07/500K & 0.26/500K
pgtable MP.RT1+dsb-tlbiallis-dsb+dsb-isb 3/6M 0.25/500K + 0.60/500K 0/1.50M 2/41M 0.02/500K + 0.15/500K
pgtable MP.RTL+dsb- tlbiis-dsb+dsb-isb 1/6M 0.08/500K & 0.28/500K 0/1.50M 1/41M 0.01/500K & 0.11/500K
pgtable MP.RT1+dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 1/41M 0.01/500K + 0.11/500K
pgtable MP_RTLtdsb-t1biis-dsb-isb+dsb-isb 0/6M 0/1.50M 1/41M 0.01/500K & 0.11/500K
pgtable MP.RT1+dsb-tlbiis-dsb-tlbiis-dsb+dsb-isb 0/6M 0/1.50M 3/41M 0.04/500K + 0.19/500K
pgtable MP_TT+Winv-dmb-Winv+tpo 4.83K/6M 21.24K/500K __+ 7.81K/500K 114.48K/1.50M 38.16K/500K T 13.77K/500K 170.96K /41M 2.08K/500K & 2.06K/500K
pgtable MP. TT+dmb+dsb-isb 688.65K/5.50M 62.60K /500K + 14.12K/500K 174.78K/1.50M 58.26K /500K + 2.25K /500K 492.98K/41M 6.01K /500K + 6.55K/500K
pgtable MP_TT+dnb+tpo 843.79K/5.50M 76.71K /500K T 12.64K /500K 157.80K/1.50M 52.60K/500K T 5.28K/500K 480.31K /1M 5.86K /500K & 5.24K /500K
potable MP.TT. inv+dmb+dsb-isb 0,/5.50M 0/1.50M 0/41M
pgtable MP.TT. inv+dmb+tpo 0/5.50M 0/1.50M 0/41M
pgtable MP. invRT+dsb+dsb-isb 871.53K/5M 87.15K /500K + 33.34K/500K 101.75K/1.50M 33.91K /500K + 10.14K/500K 1.78M/40.50M 21.99K /500K + 19.45K /500K
pgtable MP. inVRTL+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/5.50M 0/1.50M 1/41M 0.01/500K & 0.11/500K
pgtable MP.invRT1+dsb-tlbiis-dsb+dsb 0/5M 0/1.50M 2/41M 0.02/500K + 0.15/500K
pgtable MP. invRTL+dsb-tlbiis-dsb+dsb-isb 1/4.50M 0.11/500K & /500K 0/1.50M 1/41M 0.01/500K & 0.11/500K
pgtable WRC.AT+ctrl+dsb 128.64K/4.50M 14.29K /500K + 3.29K/500K 77.36K/1.50M 25.79K /500K + 4.61K /500K 214.45K/40M 2.68K /500K + 2.81K/500K
pgtable WRC. TRR+addr+dnb 0/4.50M 0/1.50M 0/40M
potable WRC.TRR. inv+addrs 0/4.50M 0/1.50M 0/40M
pgtable WRC. TRT+addr+dnb 35.28K/4.50M 3.92K/500K & 989.41/500K 32.50K/1.50M 10.83K/500K __ + 5.05K/500K 103.16K/40M 1.29K/500K & 802.83/500K
pgtable WRC. TRT+dmbs 53.60K/4.50M 5.96K /500K + 4.36K /500K 36.76K/1.50M 12.25K /500K + 7.35K /500K 171.51K/40M 2.14K /500K + 1.83K/500K
pgtable WRC.TRT+dsb-isbs 18.80K/4.50M 2.09K/500K ___E 878.54/500K 30.44K/1.50M 10.15K/500K __ + 1.19K/500K 104.62K/39.50M 1.32K/500K & 501.19/500K
potable WRC.TRT. inv+addrs 0/4M 0/1.50M 0/38.50M
pgtable WRC.TRT . inv+dsb-isbs 0/4M 0/1M 0/38M
potable WRC.TRT. inv+po+addr 0/4M 0/1M 0/37.50M
pgtable WRC.TRT . inv+po+dmb 0/4M 0/1M
potable WRC. TRT1+dsb-t1biis-dsb+dnb 0/4.50M 0/1M
pgtable WRC.TRT1+dsb-t1biis-dsb+dsb-isb 0/4.50M 0/1IM
aliasing CoWR.alias 0/6M 0/1.50M
aliasing MP+dnb-data+dnb 0/1.50M
aliasing WP_alias+dnbs 0/1.50M
aliasing MP.alias2+dmb-data+dnb 0/1.50M
aliasing WP aliasZ+dnbs 0/1.50M
aliasing MP.alias2+po-data+dmb 222.60/500K + 44.19/500K 3.17K/1.50M 1.06K /500K + 107.89/500K 5.66K /500K + 1.83K/500K
aliasing MP.alias3+rfi-data+dmb 8.50,/500K + 2.36/500K 16/1.50M 5.33/500K + 2.05/500K 36.35K/19.50M 932.18 /500K + 337.68/500K
aliasing SB.alias+dmbs 0/1M 0/35.50M
aliasing WRC.alias2+addrs 0/43M 0/19M
aliasing WRC.alias2+dmbs 0/43M 0/18.50M
cacheability MP.NC+dsb-dc-dsb-dmb+dmb 8.67K /500K + 1.69K /500K 364.97K/26M 7.02K /500K + 555.37/500K 54.95K/25.50M 1.08K /500K + 1.54K/500K
Cacheability MP.NC+po-dmbdmb 345.33K/7.50M 23.02K/500K T 6.66K/500K 642.90K/25.50M 12.61K/500K £ 1.14K/500K 333.55K/25.50M 6.54K /500K & 1.09K/500K
cacheability MP.NC1+dsb-tlbiis-dsb-dc-dsb-dmb+dmb 0/7.50M 0,/25.50M 0/25.50M
cacheability MP.NC1+dsb-tlbiis-dsb-dmb+dmb 556/7.50M 37.07/500K + 16.14/500K 482/25.50M 9.45 /500K + 3.23/500K 6,/25.50M 0.12/500K + 0.43/500K
cacheability WR.NC+dsb 0/0 0/0 0/0
cacheability WR.NC+po 0/0 0/0 0/0
cacheability WR.WARA-NC+dsb 0/0 0/0 0/0
cacheability WR.WARA-NC+po 0/0 0/0 0/0
Cacheability _ WWR.NC+po-po 0/0 0/0 0/0
pmds. CoWT.L23+dsb-isb 11.45M/13M 440.53K /500K + 17.12K /500K 6.73M/13.50M 249.08K /500K + 384.26/500K 48.94M /84.50M 289.56K /500K + 15.50K/500K
pnds CoWT. L23+po 12.88M/13M 495.27K /500K + 2.43K /500K 13.39M/13.50M 495.87K /500K + 909.80/500K 80.61M/84.50M 476.97K /500K + 42.40K/500K
pnds CoWT1.L23+dsb-t1bi-dsb-isb 0/13M 0/13.50M 0/84.50M
pnds ROT+dsb-dsb 0/13M 0,/13.50M 0/84.50M
prds ROT+po-po 0/13M 0/13.50M 0/84M
pnds ROT1+dsb-dsb-tlbi-dsb 0/13M 0,/13.50M 0/84M
prds ROT1+dsb-dsb-tlbivaa-dsb 0/13M 0/84M
Same_page CoTT+dsb-popage 0/35.50M 0/31M 0/1.12G
same_page CoTT+po-popage 1/47TM 0.01/500K + 0.10/500K 0/43.50M 0/1.20G
Sysreg WR_MAIRI+dsb-1sb-dc-dsb 0/0 0/0 0/0
sysreg WR.MATR1+dsb-isb-po 0/0 0/0 0/0
sysreg WR.MATRI+dsb-t1bi-dsb-isb-dc-dsb 0/0 0/0 0/0
sysreg WR.MATIR1+dsb-t1bi-dsb-isb-po 0/0 0/0 0/0
Sysreg WR_MAIRI+p0-po 0/0 0/0 0/0

References 235

References

1]
2]

13l

4]

15]

6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

Power ISATM Version 2.07. IBM, 2013.

PKVM source. https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/arch/
arm64/kvm/hyp/nvhe/, 2021. Accessed 2021-07-06.

Allon Adir, Hagit Attiya, and Gil Shurek. Information-flow models for shared memory
with an application to the PowerPC architecture. IEEE Trans. Parallel Distrib. Syst.,
14(5):502-515, 2003.

Sarita V. Adve and Mark D. Hill. Weak ordering — a new definition. In Proceedings of the
17th Annual International Symposium on Computer Architecture, ISCA ’90, pages 2-14,
New York, NY, USA, 1990. ACM.

Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter Sewell,
and Francesco Zappa Nardelli. The semantics of Power and ARM multiprocessor machine
code. In Proc. DAMP 2009, January 2009.

Jade Alglave and Luc Maranget. The herd7 tool. http://diy.inria.fr/doc/herd.html/,
2019. Accessed 2019-07-08.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory
models. In Proc. CAV, 2010.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus: running tests against
hardware. In Proceedings of TACAS 2011: the 17th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 41-44, Berlin, Heidelberg,
2011. Springer-Verlag.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM TOPLAS, 36(2):7:1-7:74, July 2014.

Eyad Alkassar, Ernie Cohen, Mark A. Hillebrand, Mikhail Kovalev, and Wolfgang J. Paul.
Verifying shadow page table algorithms. In Roderick Bloem and Natasha Sharygina, edi-

tors, Proceedings of 10th International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2010, Lugano, Switzerland, October 20-23, pages 267-270. IEEE, 2010.

Eyad Alkassar, Ernie Cohen, Mikhail Kovalev, and Wolfgang J. Paul. Verification of TLB
virtualization implemented in C. In Rajeev Joshi, Peter Miiller, and Andreas Podelski,
editors, Verified Software: Theories, Tools, Experiments - Jth International Conference,
VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings, volume 7152 of
Lecture Notes in Computer Science, pages 209-224. Springer, 2012.

ARM Limited. ARM architecture reference manual. ARMvS8, for ARMv8-A architec-
ture profile. https://developer.arm.com/documentation/ddi0487/latest/, March 2017. B.a
Armv8.1 EAC, v8.2 Beta. ARM DDI 0487B.a (ID0331117). 6354pp.

Arm Limited. Arm architecture reference manual. Armv8, for Armv8-A architecture profile.
https://developer.arm.com/documentation/ddi0487/latest/, January 2021. G.a Armv8.7
EAC. ARM DDI 0487G.a (ID011921). 8538pp.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte,
Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for ARMvS&-
A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIGPLAN Symposium on Principles of
Programming Languages, January 2019. Proc. ACM Program. Lang. 3, POPL, Article 71.

https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/arch/arm64/kvm/hyp/nvhe/
https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/arch/arm64/kvm/hyp/nvhe/
http://diy.inria.fr/doc/herd.html/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/

References 236

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell.
Isla: Integrating full-scale ISA semantics and axiomatic concurrency models. In In Proc.
33rd International Conference on Computer-Aided Verification, July 2021. Extended version
available at https://www.cl.cam.ac.uk/~pes20/isla/isla-cav2021-extended.pdf.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jestis Mauricio Chimento, and Carlos
Luna. Formally verified implementation of an idealized model of virtualization. In Ralph
Matthes and Aleksy Schubert, editors, 19th International Conference on Types for Proofs
and Programs, TYPES 2018, April 22-26, 2013, Toulouse, France, volume 26 of LIPIcs,
pages 45—63. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2013.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Formally verifying
isolation and availability in an idealized model of virtualization. In Michael J. Butler and
Wolfram Schulte, editors, FM 2011: Formal Methods - 17th International Symposium on
Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, volume 6664 of Lecture
Notes in Computer Science, pages 231-245. Springer, 2011.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Cache-leakage re-
silient OS isolation in an idealized model of virtualization. In Stephen Chong, editor, 25th
IEEE Computer Security Foundations Symposium, CSE 2012, Cambridge, MA, USA, June
25-27, 2012, pages 186-197. IEEE Computer Society, 2012.

Gilles Barthe, César Kunz, and Jorge Luis Sacchini. Certified reasoning in memory hi-
erarchies. In G. Ramalingam, editor, Programming Languages and Systems, 6th Asian
Symposium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, volume
5356 of Lecture Notes in Computer Science, pages 75-90. Springer, 2008.

M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency.
In Proc. POPL, 2011.

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. Clarifying
and Compiling C/C-++ Concurrency: from C-+-+11 to POWER. In Proceedings of POPL
2012: The 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (Philadelphia), pages 509-520, 2012.

H.-J. Boehm and S. Adve. Foundations of the C++ concurrency memory model. In
Proc. PLDI, 2008.

James Bornholt and Emina Torlak. Synthesizing memory models from framework sketches
and litmus tests. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 467-481. ACM, 2017.

William W. Collier. Reasoning about parallel architectures. Prentice Hall, 1992.

Data61/CSIRO. Frequently asked questions on seli4: The proof. http://sel4.systems/
Info/FAQ/proof.pml, accessed 2019-07-01, 2019.

Will Deacon. The ARMvS8 application level memory model. https://github.com/herd/
herdtools7/blob/master/herd/libdir/aarch64.cat (accessed 2019-07-01), 2016.

Will Deacon. Virtualization for the masses: Exposing KVM on Android. https://www.
youtube.com/watch?v=wY-u6n75iXc, November 2020. KVM Forum Talk.

Ulan Degenbaev. Formal specification of the x86 instruction set architecture. PhD thesis,
Saarland University, 2012.

https://www.cl.cam.ac.uk/~pes20/isla/isla-cav2021-extended.pdf
http://sel4.systems/Info/FAQ/proof.pml
http://sel4.systems/Info/FAQ/proof.pml
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://www.youtube.com/watch?v=wY-u6n75iXc
https://www.youtube.com/watch?v=wY-u6n75iXc

References 237

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Ulan Degenbaev, Wolfgang J. Paul, and Norbert Schirmer. Pervasive theory of memory.
In Susanne Albers, Helmut Alt, and Stefan Né&her, editors, Efficient Algorithms, Essays
Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, volume 5760 of Lecture
Notes in Computer Science, pages 74-98. Springer, 2009.

Jake Edge. KVM for Android. https://lwn.net/Articles/836693/, November 2020.

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: Concur-
rency and ISA. In Proceedings of POPL: the 43rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, 2016.

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,
Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. Mixed-size concurrency: ARM,
POWER, C/C++11, and SC. In The 44st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Paris, France, pages 429-442, January 2017.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and Mark D. Hill.
Programming for different memory consistency models. J. Parallel Distributed Comput.,
15(4):399-407, 1992.

Shilpi Goel. Formal Verification of Application and System Programs Based on a Validated
286 ISA Model. PhD thesis, University of Texas at Austin, 2016. https://repositories.
lib.utexas.edu/handle/2152/46437.

Shilpi Goel, Warren A. Hunt Jr., and Matt Kaufmann. Engineering a formal, executable
x86 ISA simulator for software verification. In Provably Correct Systems, pages 173-209.
2017.

Kathryn E. Gray, Gabriel Kerneis, Dominic Mulligan, Christopher Pulte, Susmit Sarkar,
and Peter Sewell. An integrated concurrency and core-ISA architectural envelope definition,
and test oracle, for IBM POWER multiprocessors. In Proc. MICRO-48, the 48th Annual
IEEE/ACM International Symposium on Microarchitecture, December 2015.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjoberg, and David Costanzo. CertiKOS: An extensible architecture for building certi-
fied concurrent OS kernels. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 653—669,
2016.

Roberto Guanciale, Hamed Nemati, Mads Dam, and Christoph Baumann. Provably secure
memory isolation for linux on ARM. J. Comput. Secur., 24(6):793-837, 2016.

Naorin Hossain, Caroline Trippel, and Margaret Martonosi. Transform: Formally specifying
transistency models and synthesizing enhanced litmus tests. In 47th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2020, Valencia, Spain, May 30
- June 3, 2020, pages 874-887. IEEE, 2020.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1-2:70, February 2014.

Rafal Kolanski. Verification of programs in virtual memory using separation logic. PhD
thesis, University of New South Wales, Sydney, Australia, 2011.

Mikhail Kovalev. TLB virtualization in the context of hypervisor verification. PhD thesis,
Saarland University, 2013.

https://lwn.net/Articles/836693/
https://repositories.lib.utexas.edu/handle/2152/46437
https://repositories.lib.utexas.edu/handle/2152/46437

References 238

[43]

|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. Formally verified
memory protection for a commodity multiprocessor hypervisor. In Michael Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 3953-3970. USENIX Association, 2021.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. A secure and
formally verified Linux KVM hypervisor. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 839-856, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

Arm Limited. https://developer.arm.com/architectures/cpu-architecture/a-profile/
memory-model-tool, 2022. Accessed 2022-02-23.

Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to the ARM and
POWER relaxed memory models. Draft available from http://www.cl.cam.ac.uk/~pes20/
ppc-supplemental/test7.pdf, 2012.

Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In
Proceedings of TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674, pages
391-407, 2009.

Christopher Pulte. The Semantics of Multicopy Atomic ARMv8 and RISC-V. PhD thesis,
University of Cambridge, 2019. https://doi.org/10.17863/CAM.39379.

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
Simplifying ARM Concurrency: Multicopy-atomic Axiomatic and Operational Models for
ARMVS. In Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, January 2018.

Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung Hwan Lee, and Chung-
Kil Hur. Promising-ARM/RISC-V: a simpler and faster operational concurrency model. In
Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoeniz,
AZ, USA, June 22-26, 2019, pages 1-15. ACM, 2019.

Azalea Raad and Viktor Vafeiadis. Persistence semantics for weak memory: Integrating
epoch persistency with the tso memory model. Proc. ACM Program. Lang., 2(OOPSLA),
oct 2018.

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget,
Jade Alglave, and Derek Williams. Synchronising C/C++ and POWER. In Proceedings
of PLDI 2012, the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation (Beijing), pages 311-322, 2012.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Under-
standing POWER multiprocessors. In Proceedings of PLDI 2011: the 32nd ACM SIGPLAN
conference on Programming Language Design and Implementation, pages 175-186, 2011.

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas
Braibant, Magnus Myreen, and Jade Alglave. The semantics of x86-CC multiprocessor
machine code. In Proceedings of POPL 2009: the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages 379-391, January 2009.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. x86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89-97, July 2010. (Research Highlights).

https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.17863/CAM.39379

References 239

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard
Grisenthwaite, and Peter Sewell. Relaxed virtual memory in Armv8-A. In Proceedings
of ESOP 2022: 31st FEuropean Symposium on Programming, held as part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2022.

Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod,
Luc Maranget, and Peter Sewell. ARMvS8-A system semantics: instruction fetch in re-
laxed architectures (extended version). In Proceedings of the 29th European Symposium on
Programming, April 2020.

Hira Syeda and Gerwin Klein. Reasoning about translation lookaside buffers. In LPAR-
21, 21st International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Maun, Botswana, May 7-12, 2017, pages 490-508, 2017.

Hira Taqdees Syeda. Low-level program verification under cached address translation. PhD
thesis, University of New South Wales, Sydney, Australia, 2019.

Hira Taqdees Syeda and Gerwin Klein. Program verification in the presence of cached
address translation. In Interactive Theorem Proving - 9th International Conference, ITP
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings, pages 542-559, 2018.

Hira Taqgdees Syeda and Gerwin Klein. Formal reasoning under cached address translation.
J. Autom. Reason., 64(5):911-945, 2020.

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and Ronghui Gu. Formal
verification of a multiprocessor hypervisor on arm relaxed memory hardware. In SOSP
2021: Proceedings of the 28th ACM Symposium on Operating Systems Principles, October
2021.

Hendrik Tews, Marcus Volp, and Tjark Weber. Formal memory models for the verification
of low-level operating-system code. J. Autom. Reason., 42(2-4):189-227, 20009.

Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. Tricheck: Memory model verification at the trisection of software, hardware, and
ISA. In Yunji Chen, Olivier Temam, and John Carter, editors, Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, pages 119-133. ACM,
2017.

Andrew Waterman and Krste Asanovié, editors. The RISC-V Instruction Set Manual Vol-
ume I: Unprivileged ISA. December 2018. Document Version 20181221-Public-Review-draft.
Contributors: Arvind, Krste Asanovi¢, Rimas Avizienis, Jacob Bachmeyer, Christopher F.
Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston Briggs, Christopher Celio,
Chuanhua Chang, David Chisnall, Paul Clayton, Palmer Dabbelt, Roger Espasa, Shaked
Flur, Stefan Freudenberger, Jan Gray, Michael Hamburg, John Hauser, David Horner,
Bruce Hoult, Alexandre Joannou, Olof Johansson, Ben Keller, Yunsup Lee, Paul Loewen-
stein, Daniel Lustig, Yatin Manerkar, Luc Maranget, Margaret Martonosi, Joseph Myers,
Vijayanand Nagarajan, Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Albert Ou, John
Ousterhout, David Patterson, Christopher Pulte, Jose Renau, Colin Schmidt, Peter Sewell,
Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Caroline
Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs, Andrew Water-
man, Robert Watson, Derek Williams, Andrew Wright, Reinoud Zandijk, and Sizhuo Zhang.

References 240

[66] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Automatically
comparing memory consistency models. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 190-204. ACM, 2017.

[67] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Nemos: A frame-
work for axiomatic and executable specifications of memory consistency models. In 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), CD-ROM /
Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA, 2004.

	Introduction
	Background: A crash course on virtual memory
	Virtualising addressing
	The translation-table walk
	Multiple stages of translation
	Caching translations in TLBs

	Concurrency architecture design questions
	Coherence with respect to physical or virtual addresses
	Relaxed behaviour from TLB caching
	Relaxed behaviour of translation-walk non-TLB reads
	Further issues

	Virtual memory in the pKVM production hypervisor
	Switching to another guest
	pKVM.vcpu_run
	pKVM.vcpu_run.update_vmid
	pKVM.vcpu_run.update_vmid.concurrent
	pKVM.vcpu_run.same_vm

	Data Aborts
	pKVM.host_handle_trap.stage2_idmap.l3
	pKVM.host_handle_trap.stage2_idmap.already_exists
	pKVM.host_handle_trap.stage2_idmap.change_block_size

	Initialisation
	pKVM.switch_to_new_table
	pKVM.create_hyp_mappings.inv.l2
	pKVM.create_hyp_mappings.inv.l3

	Model
	Strong model
	Weak Model

	Metatheory: relationships between models
	Isla-based model evaluation
	Experimental testing of hardware
	Related work
	Acknowledgments
	VMSA litmus tests
	Test Format
	Naming Convention
	Test Listing
	Pagetable setup
	Initial and final state

	Execution witness
	Isla output
	Example

	Aliasing
	Coherence
	Test: CoRR0.alias+po
	Test: CoRR2.alias+po
	Test: CoWR.alias

	Write-Forwarding
	Test: PPOCA.alias

	Out-of-order reads
	Test: RSW.alias
	Test: RDW.alias
	Test: CoWW.alias
	Test: MP.alias3+rfi-data+dmb

	Writing new entries
	Translation tables as data memory
	Test: CoWR.inv

	Making a new entry
	Test: CoWTf.inv+po
	Test: CoWTf.inv+dsb-isb

	Creating a new entry for another core
	Test: S.T+dmb+po
	Test: MP.RTf.inv+dmb+dsb-isb
	Test: MP.RTf.inv+dmbs
	Test: MP.RTf.inv+dmb+ctrl-isb
	Test: MP.RTf.inv+dmb+addr
	Test: MP.RTf.inv+dmb+po
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+po
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+dmb
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+addr
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+data
	Test: MP.RTf.inv+dmb+data
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl-isb
	Test: MP.RTf.inv.EL1+dsb-tlbiis-dsb+poap
	Test: LB.TT.inv+pos
	Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+data
	Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+ctrl
	Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+dmb
	Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+popl
	Test: S.RTf.inv.EL1+dsb-tlbiis-dsb+poap

	Coherence
	Test: CoTW1.inv
	Test: CoTTf.inv+dsb-isb
	Test: CoTTf.inv+po
	Test: CoTfT+dsb-isb
	Test: CoRpteTf.inv+dsb-isb
	Test: CoRpteTf.inv+dsb
	Test: CoRpteT+dsb-isb
	Test: CoRpteT.EL1+dsb-tlbi-dsb-isb
	Test: CoRpteT.EL1+dsb-tlbi-dsb
	Test: CoTRpte.inv+dsb-isb
	Test: CoTfRpte+dsb-isb
	Test: CoTfRpte+po
	Test: CoTfRpte+eret
	Test: CoTfW.inv+dsb-isb
	Test: CoTfW.inv+po
	Test: PPODA.RT.inv

	Write-forwarding
	Test: MP.RT.inv+dmb+ctrl-trfi
	Test: MP.RT.inv+dmb+addr-trfi

	Address dependencies
	MP.RTf.inv+dmb+addr

	Data dependencies
	MP.RTf.inv+dmb+data

	Unmapping memory and TLB invalidation
	Same-thread unmap
	Test: CoWinvT+dsb-isb
	Test: CoWinvT.EL1+dsb-tlbi-dsb
	Test: CoWinvT.EL1+dsb-tlbiis-dsb
	Test: CoWinvT.EL1+dsb-tlbiis-dsb-isb
	Test: MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb
	Test: RBS+dsb-tlbiis-dsb

	More TLB invalidation
	TLBI-pipeline interactions
	Test: MP.RT.EL1+dsb-tlbiis-dsb+dmb

	Thread-local TLBIs
	Test: CoWinvT.EL1+dsb-tlbi-dsb-isb
	Test: MP.RT.EL1+dsb-tlbi-dsb+dsb-isb
	Test: MP.RT.EL1+dsb-shootdown-dsb+dsb-isb

	Multiple locations
	Test: MP.RTT.EL1+dsb-tlbiis-tlbiis-dsb+dsb-isb

	Stage 1 Re-mapping and break-before-make
	Break-before-make
	Test: BBM+dsb-tlbiis-dsb
	Test: BBM.Tf+dsb-tlbiis-dsb
	Test: MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb
	Test: MP.BBM1+dsb-tlbiis-dsb-dsb+ctrl-isb

	Translation-table-walk ordering
	Inter-instruction ordering
	Test: MP.TTf.inv+dsb+po
	Test: MP.TTf.inv+dsbs
	Test: MP.TTf.inv+dsb+dsb-isb
	Test: MP.TTf.inv+dsb+ctrl-isb
	Test: MP.TTf.inv+dmb+dsb-isb
	Test: MP.TTf.inv+dmb+po
	Test: MP.TTf.inv.EL1+dsb-tlbiis-dsb+po
	Test: MP.TTf.inv.EL1+dsb-tlbiis-dsb+dsb-isb

	Multi-level translations
	Test: ROT.inv+dsb
	Test: ROT.inv+dmbst
	Test: LB+data-trfis
	Test: LB+addr-trfis
	Test: WRC.TfRT+po+dsb-isb
	Test: WRC.TfRT+dsb-tlbiis-dsb+dsb-isb

	Multi-copy atomicity
	MCA translation-table-walk
	Test: CoWTf.inv+po-ctrl-isb+po
	Test: WRC.TRTf.inv+dsb+dsb-isb
	Test: WRC.TRTf.inv+addrs
	Test: WRC.TRTf.inv+dsbs
	Test: WRC.TRTf.inv+dmbs
	Test: WRC.TRTf.inv+pos
	Test: WRC.TTTf.inv+addrs
	Test: WRC.TTTf.inv+data+addr
	Test: WRC.RRTf.inv+dsb+dsb-isb
	Test: WRC.RRTf.inv+dsb+ctrl-isb
	Test: WRC.RRTf.inv+dsbs
	Test: WRC.RRTf.inv+dmbs
	Test: WRC.RRTf.inv+pos
	Test: WRC.RRTf.inv+addrs
	Test: WRC.TfRR+dsb-isb+dsb
	Test: WRC.TfRR+ctrl-isb+dsb
	Test: WRC.TfRR+dsbs
	Test: WRC.TfRR+po+dsb
	Test: WRC.TfRR+pos

	Multi-address-space support with ASIDs
	TTBRs
	ASIDs
	Test: CoWinvTa1.1+dsb-tlbiasidis-dsb-eret
	Test: CoWinvTa2.1+dsb-tlbiasidis-dsb-eret

	Additional tests, as-yet unsorted
	Test: MP.RT.inv+dmb+addr-po-msr-isb
	Test: MP.RT.inv+dmb+addr-po-isb
	Test: MP.TR.inv+dmb+msr
	Test: MP.TR.inv+dmb+isb
	Test: MP.TR.inv+dmb+msr-isb
	Test: SwitchTable.different-asid+eret
	Test: SwitchTable.same-asid+eret
	Test: WDS+po-dsb-tlbiipa-dsb-tlbiis-dsb-eret
	Test: WDS+po-dsb-tlbiipa-dsb-eret
	Test: WDS+dsb-tlbiipa-dsb-eret-po
	Test: WDS+dsb-tlbiipa-dsb-po-eret
	Test: WBM+dsb-tlbiis-dsb
	Test: WBM+dsb-tlbiis-dsb-[dmb]-dmb
	Test: CoWTf.inv.EL2+dsb-tlbiipa-dsb-tlbiis-dsb-eret

	Full models
	Common
	Barriers
	Common Core

	Strong Model
	Translation Faults
	Edges justification
	obs
	tob
	obtlbi_translate
	obtlbi
	ctxob
	obfault
	obETS
	dob
	axioms

	Weak Model
	Break-before-make detection predicate

	Relationships between models
	Soundness of the weak model
	Virtual address abstraction and anti-abstraction
	Abstraction
	Anti-abstraction
	Step 1: Building the candidate execution in the translation model
	Step 2: Consistency

	Test results
	Isla model results
	Hardware results

