
functional

Evaluated

C
A

V

Artifact A
E
C

Isla: Integrating full-scale ISA semantics and
axiomatic concurrency models

(extended version)

Alasdair Armstrong1, Brian Campbell2, Ben Simner1, Christopher Pulte1, and
Peter Sewell1

1 University of Cambridge, Cambridge, UK
2 University of Edinburgh, Edinburgh, UK

Abstract. Architecture specifications such as Armv8-A and RISC-V
are the ultimate foundation for software verification and the correct-
ness criteria for hardware verification. They should define the allowed
sequential and relaxed-memory concurrency behaviour of programs, but
hitherto there has been no integration of full-scale instruction-set archi-
tecture (ISA) semantics with axiomatic concurrency models, either in
mathematics or in tools. These ISA semantics can be surprisingly large
and intricate, e.g. 100k+ lines for Armv8-A.
In this paper we present a tool, Isla, for computing the allowed be-

haviours of concurrent litmus tests with respect to full-scale ISA def-
initions, in Sail, and arbitrary axiomatic relaxed-memory concurrency
models, in the Cat language. It is based on a generic symbolic engine
for Sail ISA specifications, which should be valuable also for other veri-
fication tasks. We equip the tool with a web interface to make it widely
accessible, and illustrate and evaluate it for Armv8-A and RISC-V.
By using full-scale and authoritative ISA semantics, this lets one eval-

uate litmus tests using arbitrary user instructions with high confidence.
Moreover, because these ISA specifications give detailed and validated
definitions of the sequential aspects of systems functionality, as used by
hypervisors and operating systems, e.g. instruction fetch, exceptions, and
address translation, our tool provides a basis for developing concurrency
semantics for these. We demonstrate this for the Armv8-A instruction-
fetch model and self-modifying code examples of Simner et al.

1 Introduction

A processor architecture should define, for any initial machine state, the set
of all architecturally allowed observable executions — thus specifying the basic
assumptions for programming and for software verification, and the correct-
ness criterion for hardware verification. Architecture specifications have two
main parts: the sequential and relaxed-memory concurrent aspects of instruc-
tion behaviour, each of which have been studied in previous work. For Armv8-
A and RISC-V, Armstrong et al. have established full-scale sequential mod-
els in Sail [10,14], a domain-specific language for instruction-set architecture

2 A. Armstrong et al.

(ISA) specification, that are complete enough to boot real-world operating sys-
tems such as Linux. For Armv8-A this model is automatically derived from
the authoritative Arm-internal specification [23], while for RISC-V it has been
hand-written and adopted by RISC-V International. On the concurrency side,
relaxed-memory semantics can be specified in two main styles: either as abstract-
microarchitectural operational models, characterising observable behaviour with
explicit out-of-order execution and buffering, or as axiomatic models, expressed
as a predicate over complete candidate executions represented as graphs of mem-
ory events. For Armv8-A and RISC-V “user” concurrency, both exist [21,7,1,8],
along with a “Promising ARM” variant [22]. For Armv8-A they have been proved
equivalent [21,20]; the authoritative vendor definition is the axiomatic one.

However, while an architecture should define the set of allowed executions
for arbitrary programs, hitherto there has been no integration of full-scale ISA
definitions with axiomatic concurrency models, either in mathematics or in tools
(for operational models, this has only been done for RISC-V; other operational
models have used small ISA fragments). Research and industry practice for re-
laxed memory semantics rely on making the semantics executable as a test or-
acle: not just a paper definition (in prose or mathematics), but tool-supported
definitions that for small litmus-test examples can compute the set of all al-
lowed executions, that can then be compared against experimental data. Many
tools have been developed for operational and axiomatic architectural concur-
rency models [31,19,29,30,25,18,24,13,16,6,4,8,11,28,27,17], with axiomatic tools
notably including the Herd tool of Alglave and Maranget [6,4,8], that can evalu-
ate litmus tests w.r.t. axiomatic memory models specified in a relational-algebra
style in the Cat language [2]. However, all of these previous tools for axiomatic
models have (at best) used hard-coded ISA semantics that cover only small frag-
ments of the complete architecture. For example, Zhang et al [31] use a SMT
solver based approach for SoC verification, with a user-specified memory model
(TSO or SC), however the instruction level abstractions (ILAs) they use are
much more abstract than the ISA semantics we consider.

In this paper we describe a tool, Isla, that integrates full-scale ISA specifi-
cations, in Sail, with arbitrary axiomatic models, in the Cat language. We first
build a generic symbolic execution library for Sail specifications—which should
also be valuable for other verification tasks. We use this to construct a tool
for symbolically running binary litmus tests for any Sail ISA under any (non-
recursive) Cat axiomatic memory model, using an SMT solver. We equip it with a
web interface to make it widely accessible, and illustrate and evaluate all this for
Armv8-A and RISC-V. Isla is available at https://isla-axiomatic.cl.cam.ac.uk
and https://github.com/rems-project/isla. This is an extended version of the
paper, including appendices showing the main parts of the full Sail/ASL seman-
tics of a sample Armv8-A instruction (add x4, x3, #1); the Armv8-A axiomatic
concurrency model (combining the official Arm specification for user concur-
rency [9,12] with the additions for instruction fetch semantics by Simner et
al. [26]); and examples of the latter.

https://isla-axiomatic.cl.cam.ac.uk
https://github.com/rems-project/isla

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 3

Our approach has several key advantages, which all follow from the fact that
mainstream industry ISAs are surprisingly large and intricate. The Armv8-A
ISA specification is around 100k lines. It defines the sequential behaviour of the
full instruction set in all its detail, including e.g. instruction decoding, behaviour
at each exception level, register banking, floating-point, vector instructions, sys-
tem registers, exceptions, address translation, virtualisation, security extensions,
and a host of optional architectural features. Simple litmus tests developed to in-
vestigate user concurrency have historically used only very few instructions and
very little of this, and hand-written ISA models have sufficed, but even a ‘simple’
ADD instruction can, in reality, involve surprisingly much of the specification. If
one wants to examine arbitrary compiler-generated code one needs many more
instructions; and to develop systems concurrency semantics, e.g. covering the
concurrency behaviour of instruction fetch, exceptions, or address translation,
one might need any of the specification — and it would be exceedingly laborious
and error-prone to reproduce it by hand in a hard-coded semantics. By handling
the full authoritative Armv8-A ISA, we automatically support litmus tests that
use arbitrary instructions, and we enable research on systems concurrency, with
high confidence that the ISA follows the vendor specification. We demonstrate
this by applying our tool to the model and examples for self-modifying code by
Simner et al. [26], and our integration has also identified several places where the
ISA specification needs modifications to correctly give the intended behaviour in
a concurrent setting, e.g. to remove or enforce additional ordering. Because this
is based on authoritative Arm and RISC-V ISA specifications, the work should
enable relaxed-memory behaviour to be included in the standard test-edit-debug
cycle used in the development of such large and critical specifications.

2 Implementation

Axiomatic relaxed-memory concurrency models, being expressed as logical con-
straints over candidate execution graphs, lend themselves to solver-based tool
implementations. For the instruction-semantics part of such a tool, the most di-
rect approach would be to translate the ISA semantics (for the instructions that
occur in a litmus test) directly into SMT and combine that with the axiomatic-
model constraints, roughly along the lines of Alglave et al. [3]. That approach
was followed by Simner et al. [26], who compiled Sail directly into SMT to test
an axiomatic model for instruction-fetch tests, but using a small handwritten
Arm fragment, rather than the full Sail model derived from the Arm-internal
model. The problem with this direct approach is one of scale: as one covers more
of the Arm semantics, the resulting SMT problem simply becomes too large to
be practicable. For example, for a load instruction, the virtual address must be
translated into a physical address, which is a complex process with a great deal
of configurability—there may be zero, one, or two stages of address translation,
the page size may vary, the number of levels used in the page table may differ,
etc. This approach also required the top level fetch-execute-decode loop to be

4 A. Armstrong et al.

handled specially, as one cannot translate such an unbounded loop directly into
SMT, which imposes significant constraints on the shape of allowable tests.

In contrast, here we build and use a generic symbolic evaluation for Sail def-
initions using the Z3 SMT solver, which lets us compute the possible symbolic
thread-local traces of each instruction, and hence of each thread (treating mem-
ory read values as unknowns, left to the concurrency model constraints). It also
lets us use the same fetch-decode-execute loop that is used for emulation and
co-simulation (which embodies various architecture-specific subtleties).

2.1 Symbolic execution for Sail

Sail is attractive for symbolic execution for several reasons. First, it is an inten-
tionally simple language, lacking many of the features found in general-purpose
languages. Second, it has to support very few programs, just the specifications
of major ISAs, so (unlike tools for conventional programming languages) we can
tune the execution to them. Third, almost all of the loops in these programs are
bounded. Our starting point is the translation of Sail to C, for emulation, by
Armstrong et al [10]. This goes via a simple goto-language intermediate repre-
sentation which is already well-suited for this task.

Static function linearisation Our symbolic execution always creates a new
task when we hit a branch, and we do not ever merge these tasks at join points.
This is a good strategy for instruction semantics, as it simplifies the symbolic
execution engine significantly, but it does mean some code can cause unnecessary
branching. To avoid this we have a static rewrite that can take a function with
if statements and rewrite it into a ‘linear’ form, e.g. as below:

var x = 2;

if undefined {

x = x + 1

} else {

x = x + 2

};

return x

⇒
let x0 = 2;

let b = undefined;

let x1 = x0 + 1;

let x2 = x0 + 2;

let x3 = ite(b, x1, x2);

return x3

This works by translating the body of the function into SSA form, then replacing
the φ-functions with if-then-else (ite) functions that translate into the SMT
ite. This results in a more complex SMT expression, but less branching in the
symbolic execution, so it is a trade-off, but often worthwhile.

Per-thread candidate executions For each litmus-test thread this symbolic
execution will produce a number of candidate executions, each of which is a se-
quence of memory events (memory reads and writes, fences, register accesses, and
so on) with the symbolic values of these events potentially being constrained by

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 5

some SMT formula for the overall execution. For example, consider the Armv8-
A instruction add x4, x3, #1. Its multi-page semantics is given in Appendix A,
from which our symbolic evaluator generates an execution:

(declare-const input (_ BitVec 64))

(read-reg |R3| nil input)

(define-const output (bvadd input #x0000000000000001))

(write-reg |R4| nil output)

where the SMTLIB formula is defined by the declare-const and define-const

statements, with read-reg and write-reg effects indicating which variables in the
SMT formula correspond to the values read and written to registers (which are
otherwise just global variables) by the instruction. We simplify here for brevity,
omitting the negative, zero, carry and overflow flags that the model computes.
For more complex instructions, there are additional effects for memory accesses,
cache maintenance events, barriers, and so on.

2.2 Checking a litmus test

Fig. 1 shows the overall process of checking a litmus test. Tests can be supplied
either in the .litmus format of previous axiomatic and operational tools [5,4,13],
reusing the parser from [4], or as a TOML file (a standard configuration file for-
mat, with libraries available for most languages). We first assemble the test with
a conventional assembler into an ELF binary and load it into the representation
of memory that will be used, before initialising the model with the program
counter set to the entry point for each thread, then we symbolically execute the
instructions in each thread separately, using the Sail semantics for each instruc-
tion, plus the same fetch-execute-decode loop in Sail we would use for emulation,
to produce sets of per-thread traces as above. Treating litmus tests essentially
as binaries, rather than the more-or-less ad hoc fragments of assembly abstract
syntax used by earlier tools, accommodates the fact that the Armv8-A model
does not define an abstract syntax, and reduces the gap between what the tool
evaluates and what is run in experimental testing. Note that the Arm assembly
in Fig. 1, as well as subsequent assembly snippets in this paper, use the standard
Arm convention that x0 and w0 refer to the same register, where w0 refers to the
lower 32-bits of the register, and x0 refers to the full 64-bit width.

We then generate an SMT problem for every combination of the candidate
executions of each thread. This problem consists of the per-thread SMT formulae
concatenated together (renaming variables as necessary to avoid name-clashes),
combined with the axiomatic memory model (described in more detail below).

Finally, we need to generate some ‘glue’ SMT that connects the per-thread
semantics with the memory model. For every effect in the per-thread SMT se-
mantics we generate an enumeration of events, e.g. for an execution with two
reads and two writes:

(declare-datatypes ((Event 0)) (((R1) (R2) (W1) (W2) (IW))))

6 A. Armstrong et al.

The event IW is a special write event that represents the initial state. We generate
relations such as value-of that relate events to their values as determined by the
effects in the per-thread semantics, so if the second read event R2 read the value
#xABCD, (value-of R2 #xABCD) would be true. We generate syntactic dependency
relations for address, data, and control dependencies, discussed in more detail
in Section 2.3. Finally, there is a constraint on the final state of each test which
specifies values expected in registers and memory after all threads have executed.

The Cat language represents axiomatic memory models as definitions of rela-
tions over the above events, and constraints over those relations, e.g. that specific
relations are irreflexive, acyclic, or empty (or the negation of any of these). Re-
lations are defined in a point-free relation-algebraic style, in terms of standard
relational operators such as composition, intersection and union. The memory
models we consider are all multi-copy-atomic, and all recursion in their defini-
tions can trivially be replaced with (reflexive)-transitive closure. Herd’s let rec
construct computes the least solution to a set of equations [2], which is tricky
to represent in SMT, so we do not support it. We believe even relations such
as Power’s (mutually recursive) preserved program order are nevertheless repre-
sentable as SMT, so this limitation is mostly in our translation from Cat—we
would likely want to use a different syntax to represent these relations for Isla.
The Armv8-A axiomatic model is reproduced in Appendix B for reference.

A satisfiable solution to the overall SMT problem described above thus rep-
resents an execution permitted by the architecture. Parsing the model generated
by the SMT solver allows us to generate a graph of the execution by instantiating
each relation in the model with the various events. If all generated SMT problems
are unsatisfiable for every combination of per-thread candidate executions then
there are no permitted executions. If desired we can repeatedly ask the SMT
solver for additional distinct models until we have all permitted executions.

2.3 Syntactic Dependency Analysis

Axiomatic memory models for relaxed hardware architectures rely heavily on
notions of address, data, and control dependencies between instructions. For
example, consider the following assembly:

ldr w0, [x1] // load 32 bits from address in x1 into x0

cbnz w0, LC01 // compare and branch if non-zero to LC01

LC01:

mov w2, #1 // load 1 into x2

str w2, [x3] // store 32 bit-value in x2 to the address in x3

Here there is a control dependency between the load (ldr) and the store (str), as
the value read by the load is used to determine whether the branch instruction
cbnz that precedes the store is taken or not. This control dependency exists irre-
gardless of whether the branch is taken or not—its existence is purely determined
by the syntactic structure of the above code.

In general, existing ISA descriptions do not cover this aspect of the architec-
ture well, as they are principally developed only to describe the sequential be-

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 7

Thread 0, Candidate 1

Thread 1, Candidate 0

Glue SMT

Axiomatic model SMT

Final state assertion
1:x0 = 1 & 1:x2 = 0

(check-sat)

SMT problem

Initial state: x3 = y, x1 = x

mov w0, #1

str w0, [x1]

mov w2, #1

str w2, [x3]

52800020

b9000020

52800022

b9000062

assemble

Thread # 0

Initial state: x3 = x, x1 = y

ldr w0, [x1]

ldr w2, [x3]

b9400020

b9400062

assemble

Thread # 1

...

...

Generate candidates

T h r e a d # 0 T h r e a d # 1

In i t ia l S ta te

s t r w0, [x1]
W #x600000 (4) : 1

 co

s t r w2, [x3]
W #x600010 (4) : 1

 co
ldr w0, [x1]
R # x 6 0 0 0 1 0 (4) : # x 1 3 2

 rf

ldr w2, [x3]
R # x 6 0 0 0 0 0 (4) : # x 0 3 2

 fr

Parse model and generate graph (if satisfiable)

Litmus test MP.litmus

Fig. 1. Overview of process for checking the allowed executions of a litmus test

haviour. Previous tools have either hand-coded dependency information, which
is acceptable for cut-down ISA models but too laborious and error-prone at
the scale of the ISA models we use, or used a heavyweight taint-tracking in-
terpreter [14]. Our approach avoids both of these. It is similar to the latter,
computing dependencies from the ISA specification, but building the footprint
analysis atop our symbolic execution library requires only around 500 LoC.

To express dependencies, we need to associate each event in our candidate
executions with the syntactic instruction/opcode that generated them. To do this
we use a Sail function __instr_announce(opcode), called in each architecture’s
fetch-decode-execute loop just after fetching an instruction; this adds a special
effect to the candidate execution recording the instruction opcode. We also have
another special effect that delimits each fetch-decode-execute cycle, so each effect
such as read-mem and write-mem that would give rise to an event can be associated
with an opcode, as well as an index in the program order relation for its thread.

For each instruction we also need to know its footprint : data about the
instruction including which input registers it reads, which output registers it
writes, whether it is a branch instruction, and so on. It also contains taint
information—we need to know which registers writes may contain data ‘tainted’
by a memory read performed by a load, or which input registers ‘taint’ data

8 A. Armstrong et al.

written to memory. The Sail ISA specifications do not explicitly describe this
footprint, so we are forced to derive it from the specification.

To do this we symbolically evaluate each opcode independently in a suitably
unconstrained environment so as to capture all its possible behaviours. This
can be computationally expensive due to the number of possible behaviours
some instructions have, so we build a footprint cache to avoid re-computing this
where possible. It turns out to be hard to distinguish ordinary branches from
instructions that can cause an exception to occur, so we add a special branch
address announce effect, created by a Sail function __branch_address_announce

that we call in branch instructions. This also enables the taint tracking for branch
addresses we need for control dependencies as described above. The taint tracking
is achieved simply by looking at what sub-expressions in the generated SMT
problem contain variables that also appear in the various effects in each trace.

Once we have this footprint information we can analyse it for the opcodes
between each read and write effect and derive the necessary dependency relations
over their events. Note that this dependency relation must be exact. If we under-
approximate, we will allow executions that should be forbidden, and if we over-
approximate we will forbid executions that should be allowed.

In some cases the current Arm-provided ISA specification does not include
enough information to identify the architecturally respected dependencies, and
our dependency analysis would identify a dependency when there should not
be one. To solve this we add some special Sail functions that give fine-grained
control of the dependency calculation. For example, in indirect branches we ig-
nore any dependency between the target register Xn and the link register X30

by including a function in the Sail definition that tells the footprint analysis to
ignore any relation it finds between the two registers.

if branch_type == BranchType_INDCALL then {

ignore_dependency_edge(n, 30);

X(30) = PC() + 4

};

This works by adding a special annotation in the candidate execution trace
which can be used by the footprint analysis—for all other purposes it is a no-op.
This information should properly become part of the architecture specification,
as mistakes in the dependency calculations could be a source of soundness bugs.
The lack of support for this information in existing ISA specifications can partly
be explained by the lack of tooling to properly explore the integration of ISA
specifications with concurrency, something we hope a tool such as ours can ad-
dress.

2.4 Web Interface

Fig. 2 shows the web interface we have developed for our tool, based on the web
interface for the C memory model tool Cerberus-BMC by Lau et al. [15]. This
can either be run locally, or via a website, https://isla-axiomatic.cl.cam.ac.uk.

https://isla-axiomatic.cl.cam.ac.uk

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 9

Fig. 2. Web interface for the tool

3 System Litmus Tests

As mentioned previously, one advantage of our tool is that, because it supports
the full sequential ISA, it enables easy experimentation with tests and models
outside the scope of previous tools, e.g. involving new systems features. For
example, Simner et al. developed semantics for Arm instruction fetch and I/D
cache maintenance [26]. Consider the litmus test in Fig. 3 [26, §3.3], a simple
test involving self-modifying code. In order to run this test and the others in [26]
our tool required only minimal changes: we had to add support for data-cache
and instruction-cache maintenance events and relations for them in our Cat
to SMT translation. Additionally we needed to generalise how we generated
the rf (reads-from) relation to generate both the regular rf relation and the
new irf (instruction-reads-from) relation. Because our tool already runs tests
using a fetch-execute-decode loop, all the instruction fetch events were already
available—we in fact filter them out when running user-mode tests.

When generating candidate executions for a thread we normally do not as-
sume anything about what other threads may be doing, but for self-modifying
code this would clearly be problematic, as it would imply that any other thread
could modify any of this thread’s instructions arbitrarily. We therefore mark the
memory locations that contain instructions that can be modified and provide in
advance all the possible values they might take.

10 A. Armstrong et al.

1 str w0, [x1]

2 dc cvau, x1

3 dsb ish

4 ic ivau, x1

5 dsb ish

6 isb

7 bl f

8 mov w2, w10

9 b Lout

10 f: b l0

11 l1: mov w10, #2

12 ret

13 l0: mov w10, #1

14 ret

15 Lout:

In the initial state register x1 contains the address of the
label f, and register w0 contains the opcode for the branch
instruction b l1. Without the highlighted cache-maintenance
and barrier instructions on lines 2–6, the write of that opcode
to f performed by the store on line 1 may or may not be
observed before the instruction fetch for f, so at the end of
the test the register w2 can contain either 1 or 2, depending
on whether we branched to l1 or l0.
The highlighted instructions on lines 2–6 are a sequence of

data-cache (dc) and instruction-cache (ic) maintenance in-
structions with requisite data and instruction barriers that
must occur to guarantee that the write is observed by the in-
struction fetch, as documented by the Armv8-A architecture
reference manual [7] and captured by the axiomatic model of
Simner et al. [26], which is reproduced in Appendix B
Appendix C shows a screenshot of our tool executing this

test.

Fig. 3. Self-modifying code litmus test SM+cachesync-isb

4 Results and Comparisons

We evaluate our tool for correctness and performance with respect to Herd using
previous corpora of tests.

We select 3798 litmus tests for both Armv8-A and RISC-V to compare be-
tween our tool and Herd—these tests include a representative set of features
such as barriers and atomics, while exercising all of the basic litmus test shapes.
All tests were run on a 2.6GHz Intel Xeon Gold 6240 CPU with 36 physical
cores and 400GB of RAM. The tests are split into rough categories based on
the contents of the tests. We ran 36 concurrent instances of both our tool and
Herd across each set of tests, running Herd with the -speedcheck fast flag which
causes it to stop enumerating executions when it resolves the final assertion in
each test, which is the closest behaviour to how our tool behaves by default.

To assess correctness, we use a set of golden references for these above tests,
for all of which the previous operational RMEM [13] and axiomatic Herd models
and tools agree, and which have been extensively validated against hardware
implementations. We confirm that our tool produces the same expected results
as those models for all the litmus tests, including when run in exhaustive mode.

To assess performance, the table below gives the total real execution time for
each batch of tests.

Test set Number of tests Isla Herd
Armv8-A basic 2-thread 1377 49s 11s
Armv8-A basic 3-thread 161 11.7s 1.2s
Armv8-A exclusives 23 20.2s 1.5s
Armv8-A DMB/LD 70 7.4s 0.7s
Armv8-A PPO 2020 3m29.3s 16.2s
RISC-V basic 2-thread 36 0.7s 0.2s
RISC-V AMOs 111 2s 0.7s

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 11

In general Herd is faster for nearly all tests, but this is not surprising given
the amount of detail in the full-scale instruction semantics that we are using,
particularly for Armv8-A. Our goal is not to be faster, but to support those
full-scale ISA semantics while remaining fast enough for practical purposes. We
achieve this: most tests take only a second or so to run, which is perfectly usable
interactively. For example, given the Armv8-A basic 3-thread tests, for a single
sequential run of the tests, the shortest took 872ms to run, while the longest took
1231ms. The above batch times are similarly perfectly usable for (e.g.) regression
testing while editing a model.

We also evaluate our tool with respect to that of Simner et al., for the
instruction-fetch tests (which are currently not supported by Herd) in Section 6
of their paper. Our tool returns the expected results for all these tests, includ-
ing the two tests (FOW and SM.F+ic) that were unsupported by their tool;
Appendix C shows a screenshot of our tool executing FOW. In terms of per-
formance, we note that their tool took 30 minutes to run just 90 of the 1377
basic 2-thread tests above, which is awkwardly slow for using a tool in prac-
tice, whereas when limiting our tool to 8 cores (to more closely match their
experimental setup) our tool will execute all 1377 in under 3 minutes. We were
additionally able to provide further validation that the Simner et al. model be-
haves as the standard Armv8-A model for non-self-modifying tests by showing
that it behaves identically for all 3798 of the non-self-modifying tests above.

Acknowledgements This work was partially supported by the UK Government In-
dustrial Strategy Challenge Fund (ISCF) under the Digital Security by Design (DSbD)
Programme, to deliver a DSbDtech enabled digital platform (grant 105694), ERC AdG
789108 ELVER, EPSRC programme grant EP/K008528/1 REMS, an Arm iCASE
award, Arm, and Google. Approved for public release; distribution is unlimited. This
work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contract FA8650-18-C-7809
(“CIFV”). The views, opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

A One “Simple” Arm instruction: add x4, x3, #1

To give a sense for the complexity of the full Armv8-A ISA specification, in
this appendix we give the main parts of the definition for one of the simplest
instructions, add x4, x3, #1, that adds one to the value in register x3 and puts
the result in register x4. Instructions that touch memory are much more complex
than this, e.g. with address translation potentially involving multiple page-table
walks and many access checks (all of which is covered by full ISA specification
that we use).

We give the Sail form of the semantics, which is automatically translated
from the authoritative Arm-internal ASL definition, and which has been inde-
pendently validated against the Arm-internal Architecture Validation Suite. The
Sail and ASL correspond very closely, except that the Sail form has richer type

12 A. Armstrong et al.

information, using a lightweight dependent type system for bitvector length and
integer range types. This instruction is actually an instance of the family of
instructions:

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

C6.2.4 ADD (immediate)
Add (immediate) adds a register value and an optionally-shifted imme-
diate value, and writes the result to the destination register.

A.1 Full ASL/Sail semantics: Decoding, 1/2

First, the following clause of the decode64 function pattern matches against a
32-bit opcode, extracts the opcode fields, and calls addsub_immediate_decode.
From that point on, the ADD (immediate) and SUB (immediate) instructions
are handled together.

val decode64 : bits(32) -> unit

effect {configuration, escape, undef, wreg, rreg, rmem, wmem}

function clause decode64

((_:bits(1) @ 0b0010001 @ _:bits(24) as op_code) if SEE<1066) = {

SEE = 1066;

Rd : bits(5) = op_code[4 .. 0];

Rn : bits(5) = op_code[9 .. 5];

imm12 : bits(12) = op_code[21 .. 10];

shift : bits(2) = op_code[23 .. 22];

S : bits(1) = [op_code[29]];

op : bits(1) = [op_code[30]];

sf : bits(1) = [op_code[31]];

addsub_immediate_decode(Rd, Rn, imm12, shift, S, op, sf)

}

A.2 Full ASL/Sail semantics: Decoding, 2/2

This second phase of decoding converts the opcode fields to the appropriate
types, e.g. computing the mathematical integer corresponding to the immediate-
value opcode field. It also throws a Sail exception in one case where a specific
encoding has been used for a different family of instructions; the top-level handles
that and decodes and executes the opcode as that family if need be. Decoding
ends by calling the addsub_immediate execute function.

val addsub_immediate_decode :

(bits(5), bits(5), bits(12), bits(2), bits(1), bits(1), bits(1))

-> unit

effect {escape, rreg, undef, wreg}

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 13

function addsub_immediate_decode(Rd, Rn, imm12, shift, S, op, sf) = {
__unconditional = true;

let ’d = UInt(Rd); let ’n = UInt(Rn);

let ’datasize = if sf == 0b1 then 64 else 32;

let sub_op = op == 0b1; let setflags = S == 0b1;

imm : bits(’datasize) = undefined : bits(’datasize);

match shift {

0b00 => { imm = ZeroExtend(imm12, datasize) },

0b01 => { imm = ZeroExtend(imm12 @ Zeros(12), datasize) },

0b10 => { throw(Error_See("ADDG, SUBG")) },

0b11 => { ReservedValue() }

};
__PostDecode();

addsub_immediate(d, datasize, imm, n, setflags, sub_op)

}

A.3 Full ASL/Sail semantics: Execution

The main execute function reads the source register values, calls an auxiliary
AddWithCarry to compute the mathematical result, including new NZCV flag values,
and writes the target register value and (if the opcode requires it) those flag
values. It handles subtraction by negating operand2 and setting carry_in before
doing an addition.

function addsub_immediate(d, datasize, imm, n, setflags, sub_op) = {

result : bits(’datasize) = undefined : bits(’datasize);

let operand1 : bits(’datasize) = if n == 31 then SP() else X(n);

operand2 : bits(’datasize) = imm;

nzcv : bits(4) = undefined : bits(4);

carry_in : bits(1) = undefined : bits(1);

if sub_op then {

operand2 = ~(operand2);

carry_in = 0b1

} else {

carry_in = 0b0

};

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then {

(PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv

};

if d == 31 & ~(setflags) then { SP() = result }

else { X(d) = result }

}

14 A. Armstrong et al.

A.4 Full ASL/Sail semantics: Auxiliary register-access functions

What look like register accesses in the above, e.g. SP() and X(n), are actually
indirected via register getter and setter functions, to handle the fact that in
Armv8-A the stack pointer register SP is banked : there is a different SP register for
each exception level. These functions therefore have to do another register read,
not obvious from the opcode, of the register that holds the current exception
level.

function aset_SP(value) = {

assert(’width == 32 | ’width == 64);

if PSTATE.SP == 0b0 then {

SP_EL0 = ZeroExtend(value)

} else {

match PSTATE.EL {

el if el == EL0 => SP_EL0 = ZeroExtend(value),

el if el == EL1 => SP_EL1 = ZeroExtend(value),

el if el == EL2 => SP_EL2 = ZeroExtend(value),

el if el == EL3 => SP_EL3 = ZeroExtend(value)

}

}

}

val aget_X : forall ’width ’n, 0 <= ’n <= 31 & ’width in {8, 16, 32,

64}).

(implicit(’width), int(’n)) -> bits(’width) effect {rreg}

function aget_X(width, n) =

if n != 31 then slice(_R[n], 0, width) else Zeros(width)

A.5 Full ASL/Sail semantics: Execution auxiliary functions

Finally we come to the actual (pure) arithmetic and computation of flag values,
which is done over mathematical integers.

val AddWithCarry : forall (’N : Int), (’N >= 0 & ’N >= 0).

(bits(’N), bits(’N), bits(1)) -> (bits(’N), bits(4))

function AddWithCarry (x, y, carry_in) = {

let ’unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

let ’signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

let result : bits(’N) = __GetSlice_int(’N, unsigned_sum, 0);

let n : bits(1) = [result[’N - 1]];

let z : bits(1) = if IsZero(result) then 0b1 else 0b0;

let c : bits(1) = if UInt(result)==unsigned_sum then 0b0 else 0b1;

let v : bits(1) = if SInt(result)==signed_sum then 0b0 else 0b1;

return((result, ((n @ z) @ c) @ v))

}

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 15

let iseq = [W]; (wco&scl); [DC]; (wco&scl); [IC] (*1*)

(* Observed-by *)
let obs = rfe

| fr
| wco (*2*)
| irf (*3*)
| ifr; iseq (*4*)

(* Fetch-ordered-before *)
let fob = [IF]; fpo; [IF] (*5*)

| [IF]; fe (*6*)
| [ISB]; fe^-1; fpo (*7*)

(* Dependency-ordered-before *)
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]

(* | [ISB]; po; [R] *) (*8*)
| addr; po; [W]
| (addr | data); rfi

(* Atomic-ordered-before *)
let aob = rmw

| [range(rmw)]; rfi; [A|Q]

(* Barrier-ordered-before *)
let bob = [R|W]; po; [dmb.sy]

| [dmb.sy]; po; [R|W]
| [L]; po; [A]
| [R]; po; [dmb.ld]
| [dmb.ld]; po; [R|W]
| [A|Q]; po; [R|W]
| [W]; po; [dmb.st]
| [dmb.st]; po; [W]
| [R|W]; po; [L]
| [R|W|F|DC|IC]; po; [dsb.ish] (*9*)
| [dsb.ish]; po; [R|W|F|DC|IC] (*10*)
| [dmb.sy]; po; [DC] (*11*)

(* Cache-op-ordered-before *)
let cob = [R|W]; (po&scl); [DC] (*12*)

| [DC]; (po&scl); [DC] (*13*)

(* Ordered-before *)
let ob = (obs|fob|dob|aob|bob|cob)+

(* Internal visibility requirement *)
acyclic (po-loc|fr|co|rf) as internal

(* External visibility requirement *)
irreflexive ob as external

(* Atomic *)
empty rmw & (fre; coe) as atomic

(* Constrained unpredictable *)
let cff = ([W];loc;[IF]) \ ob^-1 \ (co;iseq;ob) (*14*)
(cff_bad cff) = CU (*15*)

Fig. 4. Axiomatic model, as extended by Simner et al. [26]

16 A. Armstrong et al.

B The Armv8-A axiomatic concurrency model

In this appendix we recall the Armv8-A axiomatic concurrency model, which
combines the official Arm specification for user concurrency (from the Armv8-A
manual Issue B.a for Armv8.2-A, ARM DDI 0487B.a [9,12]) and the additions for
instruction fetch semantics by Simner et al [26]. Figure 4 gives the full definition
as presented there.

The model is expressed in terms of axioms of candidate executions, complete
hypothetical executions of the input program, abstracted in terms of memory
events and relations over them. The usual fundamental relations are program
order (po), relating same-thread events in the order of the execution’s control-
flow unfolding; reads-from (rf), relating write events to the read events that
read from them; coherence (co), a total order on memory writes corresponding
to the sequence they propagate to memory; and the derived from-reads relation
(fr = rf−1; co), relating reads to same-address writes that are coherence-after
the write they read from.

The extended Arm model has four axioms. The internal axiom is a stan-
dard per-location-SC/coherence axiom; atomic specifies the atomicity guarantees
given by load/store exclusive pairs and atomic memory operations. The axiom
external is the “main” axiom. It essentially requires that the ordering induced
by the interaction across threads, captured by the obs (“observed by”) relation,
is compatible with the thread-internal ordering fob|dob|aob|bob|cob. Here:

– fob is instruction-fetch-related ordering,
– dob ordering resulting from dataflow and control-flow dependencies,
– aob ordering around exclusive instructions and atomic memory operations,
– bob barrier ordering, and
– cob ordering due to cache maintenance operations.

Finally, the fourth axiom (15), related to instruction fetching, is explained below.
The main additions for instruction fetching were:

– The candidate execution has additional data:
• events for instruction fetches (IF) and cache maintenance operations (DC

and IC);
• the CU bit, indicating constrained unpredictable executions; and
• the relations irf, relating a write with instruction fetches that read from

it; wco, extending the co coherence relation to include cache maintenance
operations; fpo, the program order relation between instruction fetch
events; fe, relating instruction fetches with any event originating from
the execution of the fetched instruction; and scl, relating same-cache-line
events.

– obs includes the extended coherence order wco (2), and orders any instruction
fetch to be after the write it read from (3) and before any from-reads-related
write that is sufficiently synchronised (4 and 1);

– fob orders fetches in fetch-program-order, (5), fetches before the instruc-
tion’s execute event (6), and instruction fetches after program-order earlier
ISBs (7);

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 17

– bob contains ordering created by dsb.ish (9 and 10) and ordering of DC

instructions with respect to dmb.sy barriers (11);
– the model defines cff, the could-fetch-from relation, that for a given instruc-

tion fetch captures the writes the fetch could have read from, including the
one it did read from (14); and

– specifies that certain executions have constrained unpredictable behaviour (15):
if this set contains more than one write and if one of these is the write of an
instruction that is considered to be not concurrently modifiable:

cff_bad cff = ∃i ∈ IF. |{w|(w, i) ∈ cff}| > 1 ∧
∃w.(w, i) ∈ cff ∧ ¬concurrently-modifiable (val w).

C Instruction-fetch litmus test examples

The screenshot below shows our tool evaluating the SM+cachesync-isb test
from [26], showing the allowed execution where the instruction fetch at f ob-
serves the earlier write—the blue line in the is an irf edge from the write to the
instruction fetch at f.

18 A. Armstrong et al.

The screenshot below shows our tool evaluating the FOW test from [26],
which demonstrates how each thread can observe different values for the same
instruction, despite cache invalidation. This is one of the tests Simner et al’s
axiomatic tool was unable to handle, as it features one thread jumping into
another thread’s code where an instruction can be modified.

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 19

References

1. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document
Version 20191214-draft. https://riscv.org/technical/specifications/ (Jul 2020), ac-
cessed 2020-09-23. 238 pages

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak consistency
model specification language cat. CoRR abs/1608.07531 (2016), http://arxiv.
org/abs/1608.07531

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Computer Aided Verification - 25th
International Conference, CAV. pp. 141–157 (2013). https://doi.org/10.1007/978-
3-642-39799-8_9, https://doi.org/10.1007/978-3-642-39799-8_9

4. Alglave, J., Maranget, L.: The diy7 tool. http://diy.inria.fr/, accessed 2021-01-28
5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-

ware. In: Proceedings of TACAS 2011: the 17th international conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 41–44. Springer-
Verlag, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_5

6. Alglave, J., Maranget, L., Tautschnig, M.: Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM TOPLAS 36(2), 7:1–7:74 (Jul
2014). https://doi.org/10.1145/2627752

7. Arm: Arm Architecture Reference Manual: Armv8, for Armv8-A architecture pro-
file. https://developer.arm.com/documentation/ddi0487/fc (Jul 2020), accessed
2020-09-23. 8248 pages.

8. Arm: Memory model tool. https://developer.arm.com/architectures/
cpu-architecture/a-profile/memory-model-tool (2020), accessed 2021-01-26

9. ARM Ltd.: ARM Architecture Reference Manual (ARMv8, for ARMv8-A architec-
ture profile) (2017), ARM DDI 0487B.a (ID033117), https://developer.arm.com/
documentation/ddi0487/b/?lang=en

10. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS (Jan
2019), http://www.cl.cam.ac.uk/~pes20/sail/

11. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 467–481.
ACM (2017). https://doi.org/10.1145/3062341.3062353, https://doi.org/10.1145/
3062341.3062353

12. Deacon, W.: The ARMv8 Application Level Memory Model. https://github.com/
herd/herdtools7/blob/master/herd/libdir/aarch64.cat (2016)

13. Flur, S., French, J., Gray, K., Pulte, C., Sarkar, S., Sewell, P.: RMEM. www.cl.
cam.ac.uk/~pes20/rmem/ (2020), accessed 2021-01-28

14. Gray, K.E., Kerneis, G., Mulligan, D., Pulte, C., Sarkar, S., Sewell, P.: An in-
tegrated concurrency and core-ISA architectural envelope definition, and test
oracle, for IBM POWER multiprocessors. In: Proc. MICRO-48, the 48th An-
nual IEEE/ACM International Symposium on Microarchitecture (Dec 2015).
https://doi.org/10.1145/2830772.2830775

15. Lau, S., Gomes, V.B.F., Memarian, K., Pichon-Pharabod, J., Sewell, P.: Cerberus-
BMC: A Principled Reference Semantics and Exploration Tool for Concurrent and
Sequential C. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. pp.
387–397. Springer International Publishing (2019)

https://riscv.org/technical/specifications/
http://arxiv.org/abs/1608.07531
http://arxiv.org/abs/1608.07531
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
http://www.cl.cam.ac.uk/~pes20/sail/
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
www.cl.cam.ac.uk/~pes20/rmem/
www.cl.cam.ac.uk/~pes20/rmem/
https://doi.org/10.1145/2830772.2830775

20 A. Armstrong et al.

16. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,
Alur, R., Martin, M.M.K., Sewell, P., Williams, D.: An axiomatic memory model
for POWER multiprocessors. In: Proceedings of the 24th International Conference
on Computer Aided Verification. pp. 495–512 (2012). https://doi.org/10.1007/978-
3-642-31424-7_36

17. Martonosi Research Group: Check research tools and papers. https://check.cs.
princeton.edu/, accessed 2021-01-28

18. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO.
In: Proceedings of TPHOLs 2009: Theorem Proving in Higher Order Logics,
LNCS 5674. pp. 391–407 (2009). https://doi.org/10.1007/978-3-642-03359-9_27,
10.1007/978-3-642-03359-9_27

19. Park, S., Dill, D.L.: An executable specification and verifier for re-
laxed memory order. IEEE Trans. Computers 48(2), 227–235 (1999).
https://doi.org/10.1109/12.752664, https://doi.org/10.1109/12.752664

20. Pulte, C.: The Semantics of Multicopy Atomic ARMv8 and RISC-V. Ph.D. thesis,
University of Cambridge (2018), https://www.repository.cam.ac.uk/handle/1810/
292229

21. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
Concurrency: Multicopy-atomic Axiomatic and Operational Models for ARMv8.
In: POPL 2018: Proceedings of the 45th ACM SIGPLAN Symposium on Principles
of Programming Languages (Jan 2018). https://doi.org/10.1145/3158107

22. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.H., Hur, C.K.: Promising-
ARM/RISC-V: A simpler and faster operational concurrency model.
In: PLDI 2019: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Jun 2019).
https://doi.org/10.1145/3314221.3314624

23. Reid, A.: Trustworthy specifications of ARM v8-A and v8-M system level architec-
ture. In: FMCAD 2016. pp. 161–168 (October 2016), https://alastairreid.github.
io/papers/fmcad2016-trustworthy.pdf

24. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI 2011: the 32nd ACM SIG-
PLAN conference on Programming Language Design and Implementation. pp.
175–186 (2011). https://doi.org/10.1145/1993498.1993520, http://doi.acm.org/10.
1145/1993498.1993520

25. Sarkar, S., Sewell, P., Zappa Nardelli, F., Owens, S., Ridge, T., Braibant,
T., Myreen, M., Alglave, J.: The semantics of x86-CC multiprocessor ma-
chine code. In: Proceedings of POPL 2009: the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages. pp. 379–
391 (Jan 2009). https://doi.org/10.1145/1594834.1480929, http://doi.acm.org/10.
1145/1594834.1480929

26. Simner, B., Flur, S., Pulte, C., Armstrong, A., Pichon-Pharabod, J., Maranget, L.,
Sewell, P.: Armv8-a system semantics: instruction fetch in relaxed architectures.
In: ESOP 2020: Proceedings of the 29th European Symposium on Programming
(Apr 2020), http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf

27. Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: Full-
stack memory model verification with tricheck. IEEE Micro 38(3), 58–68 (2018).
https://doi.org/10.1109/MM.2018.032271062, https://doi.org/10.1109/MM.2018.
032271062

28. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D. (eds.) Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1007/978-3-642-31424-7_36
https://check.cs.princeton.edu/
https://check.cs.princeton.edu/
https://doi.org/10.1007/978-3-642-03359-9_27
10.1007/978-3-642-03359-9_27
https://doi.org/10.1109/12.752664
https://doi.org/10.1109/12.752664
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://doi.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/1993498.1993520
https://doi.org/10.1145/1594834.1480929
http://doi.acm.org/10.1145/1594834.1480929
http://doi.acm.org/10.1145/1594834.1480929
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf
https://doi.org/10.1109/MM.2018.032271062
https://doi.org/10.1109/MM.2018.032271062
https://doi.org/10.1109/MM.2018.032271062

Isla: Integrating full-scale ISA semantics and axiomatic concurrency models 21

Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 190–204. ACM
(2017), http://dl.acm.org/citation.cfm?id=3009838

29. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Analyzing the intel ita-
nium memory ordering rules using logic programming and SAT. In: Geist, D.,
Tronci, E. (eds.) Correct Hardware Design and Verification Methods, 12th IFIP
WG 10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila,
Italy, October 21-24, 2003, Proceedings. Lecture Notes in Computer Science,
vol. 2860, pp. 81–95. Springer (2003). https://doi.org/10.1007/978-3-540-39724-
3_9, https://doi.org/10.1007/978-3-540-39724-3_9

30. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In: 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004),Santa
Fe, New Mexico, USA (2004). https://doi.org/10.1109/IPDPS.2004.1302944, http:
//dx.doi.org/10.1109/IPDPS.2004.1302944

31. Zhang, H., Trippel, C., Manerkar, Y.A., Gupta, A., Martonosi, M., Ma-
lik, S.: ILA-MCM: Integrating memory consistency models with instruction-
level abstractions for heterogeneous system-on-chip verification. In: 2018 For-
mal Methods in Computer Aided Design (FMCAD). pp. 1–10 (2018).
https://doi.org/10.23919/FMCAD.2018.8603015

http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/978-3-540-39724-3_9
https://doi.org/10.1007/978-3-540-39724-3_9
https://doi.org/10.1007/978-3-540-39724-3_9
https://doi.org/10.1109/IPDPS.2004.1302944
http://dx.doi.org/10.1109/IPDPS.2004.1302944
http://dx.doi.org/10.1109/IPDPS.2004.1302944
https://doi.org/10.23919/FMCAD.2018.8603015

	Isla: Integrating full-scale ISA semantics and axiomatic concurrency models(extended version)

