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Abstract

It is a common occurrence that a programmer is writing a program, and wishes
to use an abstract datatype. Whether it’s a set, queue or graph, they have
many potential implementations available to them. Deciding which is the most
appropriate for their given use case is difficult. Should they use a simple set
implemented as lists? or is it better to use a more complex binary tree?

We present Rufous. A modern, easy to use tool for automatic data structure
comparison. Centred around the idea of the datatype-usage-graph, or DUG,
Rufous generates many usages and uses them to build a comprehensive picture
of how implementations of an ADT perform. Multiple data structures are
automatically profiled and compared, and a report is compiled for the user
to study, so that they can choose the appropriate data structure for their
program.
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1 Introduction

1.1 Functional Programming

Today Functional Programming is a widely used paradigm. It is well under-
stood why programmers might want to use functional programming languages
for their projects [2]. People have argued for a long time [3] in support of
functional programming.

But these languages have their challenges. Imperative data structures do not
translate well to a functional language. Without mutation and with non-strict
evaluation a, language like Haskell presents an entirely different landscape of
data structures.

1.2 Abstract Data Types

Fundamentally, an abstract datatype does not change in a functional setting.
Programmers still write and use sets, queues, lists, arrays and maps. However
their implementations may be quite different in a functional language, without
the mutable assignment found in their imperative counterparts.

This section will describe, briefly, a few implementations that will serve as
examples throughout the rest of this report.

Functional Queues and amortization One key data structure, used as a run-
ning example throughout this report is the Queue. A First-In First-Out
(FIFO) ordered collection. Functionally we would describe a Queue as having
four main operations:

o empty. To construct new, empty queues.

e snoc. To append a new element to the end of the queue.
e head. To retrieve the first element of the queue.

o tail. To advance the queue forward to the next element.

A naively simple implementation of a Queue is just as a linked-list. This makes
snoc very inefficient, a linear-time operation.

To do better, we can batch the operations up with two lists [4], (f,7) as a
front-rear pair. Storing the rear as a reversed list means that snoc can become



constant-time by pre-pending to . Then only a single linear-time operation
is needed to re-orientate the queue when the front is emptied.

It is even better is to use three lists and rotate elements between the rear and
a working copy of the front. This explicitly spreads the cost of the rotation,
the batched operation, over many subsequent operations [5].

Sets and balancing trees In modern languages and libraries, common set
implementations are often hashmaps [6, 7]. A functional implementation is
going to have to be more subtle.

As with queues, the simplest implementation is once again as a list. When
lists are used, key operations are linear-time. Using ordered lists means that
Set x Set operations can also be made linear-time.

Operations can be made logarithmic-time by using a balanced binary tree. In-
sertion and deletion can be done by simply traversing the tree. Set operations,
like union and intersection, can be done with a divide-and-conquer approach
that re-balances the tree efficiently [8].

1.3 Rufous — Data Structure Selection

If a functional programmer is presented with the choice of which data structure
to use for an ADT they wish to use, there are a few options. They could use
common wisdom, preferring structures with proven better worst-case asymp-
totic complexity. But this is not necessarily the best measure of performance.
The programmer may have a case that performs better than the worst-case
implies. Or maybe they just have a small data structure and the asymptotic
complexity doesn’t apply at all. Another option would be to create or use
small programs (benchmarks) to measure the performance of each implemen-
tation empirically. But this option is also insufficient: these benchmarks may
or may not represent the programmer’s actual program, it can be very hard to
tell how well a benchmark corresponds to the usage of a particular program,
and creating benchmarks that do is a difficult task.

This report presents Rufous, a tool for automatic profiling and selection of
data structures. Given an abstract datatype declaration, and a set of imple-
mentations, Rufous generates a sample set of benchmarks. These benchmarks
represent a fair distribution of the possible usages of a data structure. Rufous
then takes these benchmarks as test cases for the evaluation machinery, where
they are each executed on a series of data structures, implementations of that
ADT. The resulting values from operations, and the time taken to evaluate
them is then collected. Each implementation is compared and the results of
operations checked for consistency. This information is compiled into a report,
which is then presented to the user for inspection.



1.4 Chapter Preview

The remainder of this report is split into five chapters.

Chapter 2 reviews existing literature related to data structure profiling and
selection. Here, we identify the DUG from Auburn [1] as the data structure
that will become central to Rufous’ implementation.

Chapter 3 states, exactly, what the problem Rufous sets out to solve is. This
includes a set of precise requirements that the implementation must meet.

Chapter 4 develops a high-level design of Rufous. Then uses that design to
describe the implementation of Rufous. In doing so, the challenges that arise
are discussed and their solutions presented.

Chapter 5 evaluates how well Rufous met those aims set out in Chapter 3. It
does this by investigating the acceptability, performance and effectiveness of
the solutions presented in this report.

Chapter 6 gives a high-level overview of the work presented in this report, and
suggests potential future work.



2 Related Work

Abstract Data Types (ADTs) have been a much studied part of the Computer
Science literature since at least the 1970’s [9]. Since then, there has been
much research into data structure implementations. Ranging from work in
the late 1970’s for SIMULA-like languages [10], to modern automated tools
for Java [11]. This research has resulted in a handful of tools and techniques for
analyzing, comparing, and selecting appropriate data type implementations.

This chapter will explore literature related to data structure selection and
attempts at automating that process. Particular focus will be on different
representations of ADTs and their usages, and on any aspects that can be
translated into a functional setting.

2.1 Introduction to data structure selection tools

Terminology Each technique and tool has its own terminology for abstract
data types and their implementations. To clarify this, we shall use abstract
data type (or ADT) in the manner described by Liskov and Zilles. As a way
of describing, abstractly, a set of objects without reference to underlying rep-
resentations [9]. The actual representation is often called the data structure
or simply an implementation of the ADT. These two terms for representations
are used interchangeably throughout this report.

2.1.1 History of tools for ADT selection

Low’s tool (1978, University of Rochester (New York)) Some of the ear-
liest work done in the area of data structure selection is by Low [10]. His
tool is designed to select the optimal data structure from a set of available
representations, in a SIMULA-like language.

DAISTS (1981, University of Maryland) DAISTS [12] is a similar but dif-
ferent tool. It was not necessarily a selection tool but rather a testing tool,
designed to test conformance to an ADT specification by a set of implementa-
tions. DAISTS would take as input user-supplied test cases and report whether
all implementations agree with the specification by executing them.



Auburn (2001, University of York) Auburn [13] was primarily designed to
benchmark purely functional data structures written in Haskell. When given
an ADT and a set of implementations Auburn could automatically profile each
implementation and produce a decision process to aide in selection of the most
appropriate data structure.

Perflint (2009, Purdue University) Not all of the tools were designed to be
stand-alone programs. Perflint [14] is a compiler aide. A [linter. It takes the
C++ program a user is editing and notifies them to inefficient usages of data
structures from the C++ standard library.

Chameleon (2009) Chameleon [15] is tool for Java. It is the first tool to
really automate the selection process for modern programs. Given a program
that utilizes Java collections, Chameleon can automatically profile, measure
and update the code, re-compiling with the selected implementation.

Brainy (2011) Brainy [16] is another data structure selection tool but with fo-
cus on hardware features, such as cache misses and branch prediction failures,
when performing selection.

CoCo (2013) CoCo (2013) [11] is much like Chameleon. It takes programs
that implement Java interfaces, profiles them and performs selection. However,
it has one important difference, CoCo updates the code at runtime with the
new selection. This allows the programmer to select the ADT and leave the
representation up to the library to determine. This is much like work done
earlier in SETL [17], where representations were chosen at compile time by
the compiler and not by the programmer.

Common Processes Each of these tools follows a similar process, with many
overlapping steps with respect to data structure selection. Namely, each of
the tools, performs each of these steps:

1. Suitably define the ADT they are operating over (§2.2).

2. Characterize the target program’s usage of the ADT (§2.3) .

3. Measure performance of available implementations (§2.4).

4. Select the optimal data structure for the target program (§2.5).

The rest of this chapter will examine each of these steps in detail and how
each tool approaches them.



public interface Queue<E> extends Collection<E> {
E element();
boolean offer(E e);
E peek();
E poll();
E remove();

Figure 2.1: Example Queue interface in an object-orientated language (Java).

2.2 Abstract Datatype Definitions

Liskov and Zilles defines an abstract datatype as a class of abstract objects
that are defined only by the operations available on those objects [9]. The
tools described here use equivalent definitions, usually in a direct way as a
structure with a set of operations. There are many ways of precisely defining
an ADT for even simple types, broadly separated into 2 categories: Imperative
datatypes and functional ones [5].

2.2.1 Imperative Datatypes

Imperative datatypes are by far the most common, generally represented as
a class or interface. These datatypes typically rely heavily on mutation and
assignment in their implementations [5], and their signatures reflect this by
often being side-effectful like in Figure 2.1.

Typical object-orientated style classes are used by both Low’s tool and DAISTS.
Each class comes with a small number of visible primitives, such as push and
pop for stacks. Multiple implementations of the ADT should be classes with
the same primitives but these tools do not provide any first-class structure
that represents the abstract datatype itself.

For representing the abstract datatype, later tools used interfaces. Chameleon,
CoCo, Perflint and Brainy are all examples that use interfaces as their ADT
representation. Representations are therefore classes that implement the in-
terface. While Brainy and Perflint use interfaces to represent their ADTs, they
do not take arbitrary interfaces as input, instead having a fixed set of abstract
datatypes the tools operate over.

Example 2.2.1. Figure 2.1 gives an example ADT definition in Java. It is
defined in a typical imperative way. It is an object-orientated structure, an
interface. It defines impure methods for the operations: remove and offer do
not return Queue type objects.



empty :: Queue a

snoc :: Queue a = a -+ Queue a
head :: Queue a -+ a
tail :: Queue a - Queue a

Figure 2.2: Example Queue ADT in Haskell [1].

2.2.2 Functional Datatypes

Functional data structures are generally quite different to their imperative
counterparts. Representations of functional structures are void of mutation
and assignment, so have the property that they are generally persistent. Up-
dating a persistent structure does not alter the old version: it remains available
for further processing. Imperative structures are generally not persistent but
ephemeral [5].

Auburn’s ADT representation is equivalent to the imperative definitions used
by other tools, formally they are just a pair (C, M) of a type constructor,
and a set of functions (also known as methods). M has the constraint that all
signatures must be first-order. Auburn further characterizes the operations of
the ADT into three groups: Generators, Mutators and Observers.

e Generator functions are those that create a version from non-version
arguments.

e Mutators are those that modify a version argument to produce a version
result.

e Observers take version arguments and produces a non-version result.

Example 2.2.2. Figure 2.2 gives an Queue ADT, equivalent to the one in
Figure 2.1, as Haskell type signatures. It has no impure functions, they all
return a new version of the data structure and no operation modifies a version
in-place.

There is only one generator, empty. It takes no version arguments but produces
a version result. There are two mutators: snoc and tail. There is only one
observer, head.

2.3 Characterizing Application of ADTs in Programs

Not all programs use the same ADTs in the same way. Some may only use a
subset of the available operations whereas some may use all of them but with
different frequencies. Each tool has a way of capturing this information, and
more, about the usage of a particular ADT in a program.

The most common way of doing this is with a set of usage statistics. These cap-
ture information about how each operation is used, how often, and any other



information the technique or tool decides important. For example, Chameleon
chooses to record heap information whereas Auburn only uses trace statistics.

Usually this is done with a dynamic profiling step, such as in Chameleon. This
is achieved with library instrumentation, that records the calls to each ADT
operation capturing information such as: the maximum size of objects; total
number of calls to each operation; total number of objects in heap. CoCo and
Perflint also profile at runtime to generate their usage statistics.

CoCo, being an “online” tool that makes decisions as the code is running
must be careful to ensure that the profiling overhead is small. This is because
CoCo must make the characterisation at runtime, and so must make any
measurements of the program at runtime. It does this by sampling only a
small selection of the calls, and by not sampling during the collections “start-
up” phase [11], only recording once something is removed from the collection.

Dynamically collecting these statistics isn’t the only way, Low’s tool uses a
dataflow anaylsis step to collect the required information about how the data
structure is used in the application.

2.3.1 Auburn’s approach: The DUG

Auburn takes a different approach. Instead of simply defining usage statistics,
it instead defines a model of how the program uses the data structure. Auburn
called this model a datatype-usage-graph, or DUG.

Definition 2.3.0. Auburn defines, a DUG as a 4-tuple (G,n,0,7). Where G
is a directed graph, 7 is the labelling function, ¢ is the evaluation ordering
function and 7 is the argument ordering function, for determining the order
of input versions to the function.

Example 2.3.1. A simple DUG is given in Figure 2.3.

This DUG was extracted from the following Haskell program:
vO = empty

vl = add 1 vO

v2 = add 2 vO

v3 = union vl v2

ol = member 1 v2
02 = member 2 v2

main = print ol >> print o2

Nodes are labelled as v; : n(v;). The component o gives v0 < vl < v2 < v3 <
0l < 02. Arguments ordered by 7 are represented as numbered labels next to
edges.



v0: empty

vl: Ads->add 1s v2: As->add 2s
G ) G 5)
(N M
<V3: AsO s1 -> union s0 sl) (02: As -> member 2 SD

(ol: As -> member 1 s)

Figure 2.3: Example DUG of a small set program.

DUG Profile Since DuGs can grow very large, Auburn defines a condensed
form of usage statistics called a profile. A profile captures the essence of the
DUG.

Definition 2.3.1. Profiles are triples (G, M Oy, m,pmf,pof):

Where G, and MO, are mappings of the ratios of generator and observer
operations in the DUG. The component m is the mortality, the ratio of nodes
in the DUG that are never mutated. Persistence is captured by the pm f and pof
components, which are the ratio of applications of mutations or observations
that are persistent.

Example 2.3.2. Figure 2.3 has the profile:

o Only one generator is used, empty, so G, = {empty — 1}.

e MO, is also simple since only one mutator or observer is used, cons, so
this property is just {cons — 1}.

o There are five versions, of which, two are not mutated. So m = 2/5.

o Of the three applications of cons, just one is persistent. So pmf = 1/3.

e There are no observers, so pof = 0.

2.4 Measuring Performance of ADT Implementations

Profiling representations of datatypes is not as simple as just timing the ex-
ecution of each implementation. The performance may change drastically
depending on how the datatype is used. It is therefore important to know
not just how the implementation performs for a given input, but how the
performance relates to the characteristics of the program that uses it.

Most tools cannot do this automatically and so require some amount of expert
intervention. More generally there are two approaches: deriving a cost for each
implementation abstractly or by generating a series of usages and profiling
them empirically.



Representation Set non-empty

Linked List 23+ 13\/2+ 27w
AVL Tree 32 4 8871 + 20 * LOG2(\)
Array 42

Figure 2.4: A selection of cost functions for set.remove in Low’s tool.

2.4.1 Static cost function derivation

The most common way is by defining some cost metric over the implementa-
tions. This is the approach Low and Perflint take: with a set of pre-determined
cost functions for possible representations. These cost functions describe the
performance overhead of using a particular representation for each operation.

Example 2.4.1. Figure 2.4 gives a cost function for the set.remove function,

as given by Low’s tool [10]. Tt says that the cost of performing a set .remove on

a Linked List for example is 23 + 13*size0fSet/2 + 27*averageTimeItemInSet.
It is these parameters that Low’s tool tries to discover when measuring per-
formance.

2.4.2 Static Rule Engine

Another approach is by using rules. CoCo and Chameleon define selection
rules between representations, rather than a cost for each individual represen-
tation. These rules encode the same information as cost functions, and are
discussed more in §2.5.

2.4.3 Dynamic cost model derivation

Brainy also uses cost models, much like Perflint, but instead of having a fixed
set of them, it generates them. This is done by generating many applications,
and then profiling them. It does this with a simple function dispatch loop; a
program that loops, selecting an operation and some data at random, and then
calling it. Features in the cost model for Brainy are also quite different, with
Brainy focusing on the architecture it collects not only the usage statistics as
described in other tools but also hardware features [16].

Auburn also derives cost models in a similar way to Brainy, by generating
many usages of the data structure and profiling them. Auburn does this by
generating DUGs. Given a profile Auburn can generate many DUGs which
conform to it, and then evaluate them to measure the execution time. Auburn
would then take these times and feed them into a dynamic selection process,
described in §2.5.

10



2.5 Selection of appropriate ADT representations

Finally, each tool must take the programs usage of the data structure (§2.3), a
set of representations and their costs (§2.4), and decide which representation is
the most appropriate for that program. This is where the tools vary the most.
There are broadly two methods used by the tools discussed here to automate
the selection process: replacement rules and optimization techniques.

2.5.1 Rule-based selection process

The simplest of the two methods is by using a rule engine to decide the appro-

priate representation based on usage statistics gathered beforehand. Chameleon
and CoCo use rules as the basis of their selection mechanism, when determin-

ing whether to replace one structure with another. Chameleon uses rules in

a straightforward manner: for each pair of possible replacements there is a

boolean predicate that determines whether the replacement should be made

or not.

Example 2.5.1. Figure 2.5 gives an example for such a set of rules for
various set-like representations in Chameleon. These rules specify how the
tool should decide a replacement data structure. For example, they specify
that if the current data structure is a HashSet, and has a size of at most X,
then suggest a replacement with an ArraySet instead.

Type Condition Replacement
ArrayList #contains > X A maxSize > Y LinkedHashSet
LinkedList #get(int) > X ArrayList
HashSet maxSize < X ArraySet

Figure 2.5: A selection of rules from Chameleon.

Users can add their own replacement rules to Chameleon. This means it can
be extended to work with many different interfaces, not just a pre-defined
selection the tool is compiled with. After profiling these rules get applied by
a rule-engine, and a replacement decision is entirely made by the tool.

Run-time replacement The rules do not need to be compile-time options.
Instead of re-compiling the source with a different implementation, CoCo gen-
erates glue code that performs the replacement decisions at runtime. Although,
it cannot generate the replacement code itself from the rules, the user must
manually program them [11].

11



2.5.2 Optimisation techniques

The remaining tools use a variety of selection mechanisms, primarily variants
of machine learning techniques to perform selection. The simplest optimisation
is a hill-climbing algorithm, used in Low’s tool, which seeks to minimize the
total space-time product and choose the representation that yields the minimal
value. More complex, Brainy uses an artificial neural network, taking the set
of features described earlier in this chapter and the cost model they generated
and chooses the data structure that yields the best performance, that is, the
lowest cost.

More direct approaches exist, too. Auburn uses an inductive classification
algorithm to generate decision trees that the user can follow to help select the
appropriate data structure. It does this by taking the profiled DUGs generated
in the performance gathering stage (as described in §2.4)

lookup < 0.3

Figure 2.6: Example Decision Tree from Auburn.

12
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Figure 2.7: Comparison of tools and techniques for automatic data structure
selection.

2.6 Summary of Key Concepts

Seven tools were discussed, relating to data structure selection. Figure 2.7
gives an overview of each of these tools. Auburn is the only tool that operates
on functional data structures discussed here.

Very few of the tools consider the correctness of the implementations they
perform replacement on.

Additionally, none of the tools are fully automated, all require a lot of effort
from the user in at least one step. And only CoCo’s selection step is automated
to the point of being a runtime decision.

2.7 Chapter summary

Many tools exist for data structure selection, with a variety of techniques being
used to achieve it. Auburn is the most pertinent to this report. It being a
tool devoted to benchmarking purely functional data structures — and there
is a distinct lack of literature studying automated empirical analysis of the
performance of functional data structures making Auburn unique.

13



3 Rufous Requirements

3.1 Problem Analysis

Chapter 2 described many approaches to solving the problem of (automated)
selection of data structures, but in doing so raised many potential problems
that a new implementation would face. This chapter sets out to first describe,
concretely, what it is Rufous will do (§3.1.1). Then, use that to build a set of
formal descriptions of exactly how Rufous will function (§3.1.2).

3.1.1 Rufous - Description and Goals

Rufous shall be a simple, modern tool for automatic data structure compar-
ison. It must allow functional programmers to easily, quickly and with little
effort, compare implementations of a common datatype specification. Its im-
plementation should use the core concept of a DUG, as defined in Auburn.
Rufous should generate DUGS, then use those DUGs to profile many data struc-
tures. The timing information and operation results should be extracted and
used to generate a report for the user to inspect.

3.1.2 Requirements Specification

The requirements set out in this section form the minimal set of behaviours
Rufous must satisfy to meet the goals set out in the previous section.

Core Functional Requirements

R1.1 — Rufous must be able to generate a selection of DUGs which conform to
a given profile.

As mentioned in the previous section, core to Rufous is the datatype usage
graph. This data structure will form a major part of the API of Rufous. Any
usage of Rufous will include generating pDucs. To ensure that Rufous can
generate a fair distribution of DUGSs it’s important that Rufous can generate
DUGs with a specific behaviour.

R1.2 — Rufous must be able to extract a Profile from a given input program.
Extracting Profiles is key to being able to use Rufous as a tool for optimisa-
tion: understanding how a particular program uses a datastructure and then
selecting a more optimal structure.

14



R1.3 — Rufous must be able to take a DUG and an implementation and output
the time taken to evaluate the DUG

The primary goal of Rufous will be to output some form of report to help
guide the user to select the data structure based on the time taken to evaluate
a selection of generated DUGS.

R1.4 — All structures output by Rufous should be in a format able to be read
by the tool in subsequent stages.

In an effort to make Rufous as automated as possible (See R4.1), the key
structures, DUGS, Profiles and ADTs should be first-class values. They should
be able to be passed between functions exported by Rufous. This would allow
the user to automatically feed the result from one phase into another, without
manual intervention.

R1.5 - Any inconsistency in evaluating DUGs, where different implementations
give differing results for observations, should be reported to the user.

If a data structure is incorrectly implemented, it may give optimistic timing
information. The user should be informed if a DUG evaluates to different
results on different implementations, as it may indicate a fault in the data
structure.

Data structure representation

R2.1 — Profiles must be a concise summary of datatype usage.
This includes at least storing the count (or a ratio) of the operations in the
DUG, the mortality and the ratio of persistent applications.

R2.2 — Rufous must be able to accept an ADT representation as input.
This includes at least storing the count (or a ratio) of the operations in the
DUG, the mortality and the ratio of persistent applications.

R2.3 — ADT representations must be able to encode pre-conditions over opera-
tions.

Not all operations are valid, and Rufous needs some way to specify what the
pre-conditions on certain operations are. For example, head empty is not a
valid application for a Queue, and Rufous should not bother generating a DUG
that contains it.

Timing Report
Finally, the intended output of Rufous is a collection of reports and a summary.
These reports should contain, at least, some key pieces of information.

R3.1 — Rufous should output a timing report for the evaluated DUGs.
The intended output of Rufous is to be a report of the time taken to evaluate
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a selection of DUGs generated by R1.1. It could be the raw timings or an
aggregate of a selection of DUGS.

R3.2 — Timing reports should report times adjusted for overhead of the eval-
uation engine. Any times output by the tool should take into account any
overhead in the evaluation machinery itself. Either removing it from the tim-
ing, or ensuring the overhead is minimal compared to the true evaluation time.

Non-Functional Aspects of Rufous

Rufous should be much more than just the set of inputs and outputs as de-
scribed.

R/.1 — Rufous should be as automated as possible.

The key feature of Rufous is its level of automation. As a tool for programmers,
it should at least be able to generate DUGs and evaluate them with a single
function call and little effort on the part of the programmer.

R4.2 — Rufous should be implemented in Haskell.

R4.3 — Rufous should not inspect the source of the data structures.

In this sense Rufous should treat the data structures as a black-bozx. So whilst
Rufous should be a tool for Haskell, it need not be useful for only Haskell
programs. Instead, the user could supply a call to a CFFI function as a part
of the data structure, and Rufous should work equally as well.
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4 Rufous Implementation

This chapter will describe the design and implementation of Rufous. Going
from the requirements defined in Chapter 3, to a high-level architecture and
then the reification down to the low-level implementation details — describing
and justifying each major data structure and algorithm.

The remainder of this chapter will be split into sections:
§4.1. High-level design, program flow and module layout.
§4.2. Technical details of key data structures.

§4.3. Technical details of key algorithms.

4.1 Design

Chapter 3 gives a precise set of requirements that any design should aim to
meet. There are many choices for how to design and implement the solution.
This section describes, abstractly, how Rufous operates. Following sections
dive into the technical details and justify all aspects of the implementation.

4.1.1 High-level architecture

Rufous uses a fixed set of four phases through the program. Each designed to
enable a key requirement to be fulfilled.

Program flow Figure 4.1 shows a diagrammatic view of the proposed program
flow through Rufous. It starts with profile extraction. Here the programmer
can supply a program, a Haskell function, and automatically extract the profile
of a particular data structure during execution of that program. The extracted
profile can be output to the user, for manual inspection to compare against
the summary table, or can be automatically passed to the generator.

The next phase, generation, produces many DUGs conforming to a given profile.
Generated DUGs can be output to the user, or passed directly to the evaluator.

During evaluation the time taken to evaluate each observer in the input bua
is measured and recorded. This is done for each implementation, resulting in
an annotated DUG with timing information.

Finally the selection phase takes the DUGs and their timing information from
the previous phase, then generates and outputs the final report for the user.
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Figure 4.1: Control-flow through Rufous.

4.1.2 Module Structure

Each phase of Rufous is split into a Haskell module. These modules are all
related in different ways. Not every module uses DUGs, and the four stages do
not interact directly. Instead, there is a core Test.Rufous module that passes
arguments from one module to the other.

Key datatypes and their operations are split into modules, DUGs, Profiles, and
ADTs each have their own module. Phases are also dedicated a module each.
And one for each phase:

These modules are laid out hierarchically in the Rufous namespace:
Rufous/
| Test.Rufous
Test.Rufous.DUG
Test .Rufous.Profile
Test.Rufous.Signature
Test.Rufous.Stages/
Test.Rufous.Stages.Extract
Test.Rufous.Stages.Generate
Test.Rufous.Stages.Run
Test.Rufous.Stages.Select

Each module exposes key datatypes for use in other modules:
Test.Rufous.DUG The DUGs are stored in a simple module, with only a few
key exports. The DUG type for the DUG itself, and the Node type which wraps

a node in the DUG with information about the arguments and operation type.

The DUG module also exposes the extractProfile :: DUG -> Profile func-
tion, which returns the Profile the DUG corresponds to.

Test.Rufous.Profile Profiles are equally simple storing only the Profile type.

Test.Rufous.Signature The ADT is more complex, it is composed of many
parts: The Signature object is the main ADT representation. It is composed
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of Operations and Implementations. Each Operation has a signature made
of Args. These are described in more detail in Section 4.2.

4.1.3 Rufous’ Phases

Extraction Extracting profiles is very useful for the user. It allows them to
take a program they already have, run Rufous on the ADT signature and then
compare the extracted profile with the set of generated profiles in the final
report. However, extracting the profile from an arbitrary program is not easy.
To do so, Rufous instruments an implementation with a wrapper function
which logs applications to construct a DuG. The programmer would then use
the instrumented version of the implementation, and it would automatically
generate a DUG as the program ran.

This is done using a logging function, which given the operation and the set of
arguments to the function constructs a new function which acts as an identity,
with the side-effect of building up a bUG.

logOperation :: String -> [Arg] -> a -> a

The DUG itself can then be extracted through an extraction function, which
wraps a given program and returns the DUG generated after evaluation.

extract :: ADTSignature -> I0 a -> IO (a, DUG)

Example 4.1.1. Extraction of a given profile can then happen by taking the
target program’s main function, wrapping it in extract and retrieving the
profile:

main = head (snoc 1 empty)

mainWithExtraction = do
(_, dug) <- extract QueueADT main
print ("ExtractedDUG: ", dug)
let profile = extractProfile dug
print ("ExtractedProfile: ", profile)

Generation Generation has a simple API. Given a Signature and a Profile,
the makeDUG function generates a DUG of a given size:

makeDUG :: Signature -> Profile -> Int -> DUG

This function forms the core of Rufous: generating DUGs that conforms to
given profiles. Section 4.3 describes the algorithm in more detail.
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Evaluation For evaluation, the runDUG function takes a DUG and an imple-
mentation. It then evaluates the DUG, forcing evaluation of all observers and
timing the execution time of the DuG. The DUG is then annotated with this
new information and returned.

runDUG :: Implementation -> DUG -> I0 TimingDUG

The only question here is what timing information should TimingDUG contain.
At minimum, they must hold three pieces of information: (1) the value result-
ing from evaluation of each observer. (2) the time, with high granularity, of
how long it took the observers DUG to evaluate. and (3) the implementations
each result was run against.

Selection

Selection does not output a Rufous datatype but instead generates and prints
a report to the user. select takes the annotated timing results from the
Run stage and performs a selection step on them. This involves generating a
report, which contains the profile for each DUG and execution time for each
implementation. It then prints the report for the user to study.

select :: [TimingDUG] -> I0 ()

4.1.4 Rufous API

Directly creating and manipulating the core data structures is not a user-
friendly task. For this purpose Rufous has a top-level Test.Rufous module
which contains the API.

Specifying ADTs Rufous uses Haskell’s typeclass machinery to abstract over
ADTs and allow the programmer to write implementations in a natural way
using Haskell’s own abstractions. Typeclasses are a useful Haskell tool for
representing containers.

For specifying an ADT the programmer would write a (type)class. That class
would define all the operations as simple source-level Haskell. Implementations
are just instances of that typeclass.

To make use of the typeclasses, Rufous provides abstractions over typeclasses.
Since Haskell itself has no abstractions over typeclasses, this is done with a
templating engine, TemplateHaskell [18]. So, Rufous provides the makeADTSignature

template function, which automatically generates the Signature datatype.

Example 4.1.2. Figure 4.2 is an example of such an ADT defined as a type-
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class Sequence s where

nil :: s a
cons :: a ->s a->s a
head :: s a -> a

instance Sequence [] where
nil = []
cons = (:)
head = Prelude.head

makeADTSignature ''Sequence

Figure 4.2: Example typeclass interface in Haskell, with Rufous templating.

class. The makeADTSignature call is the only Rufous-specific thing the pro-
grammer must do in order to create the ADT. They may already have the
Sequence typeclass and its implementations, and need only insert the call to
makeADTSignature to start using it with Rufous. This function just calls into
the templating engine to build a Signature object, making it available as a
top-level name.

Running Rufous Running Rufous is straight-forward: calling mainWith with
the correct arguments. The arguments contain settings for each of the phases,
such as the input profiles, the size of DUG to generate and the number of DUGs
to generate.

mainWith :: RufousArgs -> Signature -> I0 (O

data RufousArgs =

RufousArgs

{ signature :: Signature -- The ADT to operate over

, profiles :: [Profile] -- The profiles to use to generate (default: [])
, dugs :: [DUG] -- The DUGs to evaluate (default: [])

, averageDugSize :: Int -- The average DUG size (default: 1000 nodes)

, numberQOfTests :: Int —-- The number of DUGs to generate (default: 10)
X

The user may wish to automatically pass the results of one phase onto another.
For this purpose, the extractProfile, makeDUG, runDUG and select functions
are also exposed in the top-level Test.Rufous module. For simplicity, the
user needs only call runRufous with the correct argument object. If profiles
or dugs are non-empty, the mainWith function will skip the generation or
evaluation stages, using the arguments from those lists instead.
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4.2 Key Data Structures

This section describes, in detail, the challenges and justification for alternative
decisions that could be made for the key structures introduced in the previous
section. Signatures (§4.2.1), Profiles (§4.2.2), and DUGs (§4.2.3).

4.2.1 ADT Signature implementation

ADT Datatypes The ADT is a core concept datatype in Rufous. The ADT
signature itself is relatively straight-forward. It is a set of implementations,
and a map of operations.

type Signature = ([Implementation], (String -> Operation))

The operations themselves are just a type signature, tagged with the operation
kind. Type signatures are more complex. To simplify Rufous we restrict the
signatures of operations to so-called simple types. The type needs to be ex-
pressive enough to represent the types of common operations over collections,
but not totally unrestricted. Simple types are first-order types, with a single
type-parameter.

data OperationKind = Mutator | Observer | Generator
type Operation = (OperationSignature, OperationKind)

type OperationSignature = [ArgTypel
data ArgType = VersionType | NonVersion NonVersionArgType
type NonVersionArgType = VersionParam | IntArg | BoolArg

Example 4.2.1. Take the Queue ADT from earlier, the type of snoc is a —>

T a > T a, whereT aisa version, a is a version parameter. This gives an en-
coding of ([NonVersion VersionParam, VersionType, VersionTypel, Mutator)
:: Operation.

Implementation types Rufous represents implementations as a map, associat-
ing a Haskell function with each operation. This representation allows Rufous
to “run” an implementation directly: by simply forcing evaluation of the stored
function on the correct arguments. Storing the operation in a type-safe way
would be difficult without dependent types for the restricted (simple) types.
Instead, the templating engine performs the typechecking and then a Dynamic
cell containing the function is stored in the structure. Type-safety is ensured
by tagging the operation with the expected return type, allowing Rufous to
safely unwrap the Dynamic to force evaluation later.

data ImplResultType = forall t. ImplResultType t
data Implementation = Implementation (String -> (Dynamic, ImplResultType))
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data Null a = NullImpl

instance Queue Null where
snoc x0 x1 = NullImpl
empty = NulllImpl
head x0 = throw NotImplemented
tail x0 = NullImpl

Figure 4.3: Generated Null implementation for the Queue ADT.

Overheads and Null implementations For the final report, the times reported
should have overheads of evaluation removed from them. Since the time taken
for the evaluation machinery itself is dependent on the DUG, Rufous must
compute this overhead for each DUG it evaluates. Rufous does this by gener-
ating a Null implementation. This special implementation has no behaviour:
each operation simply ignores its arguments and returns Null, as shown in Fig-
ure 4.3. For observers, it cannot simply return Null. Here Rufous makes use
of Haskell’s exceptions, throwing a NotImplemented exception the evaluator
knows to ignore.

For this to be valid the evaluation machinery must perform the same amount
of work for each DUG, regardless of the strictness of the implementations (See
Section 4.3.3).

Preconditions and shadow implementation Not all applications are valid.
For Queues, head empty is undefined, and the generation machinery should
not generate such applications. To encode this information, Rufous requires
the programmer to provide a secondary structure, the shadow implementation.
The programmer specifies that a particular implementation is the shadow
by prefixing the type constructor’s name with “Shadow”. In all other ways,
shadows are like normal implementations. They are just instances of the
typeclass that specifies the ADT. However, they are only used when validating
applications. Figure 4.4 gives the shadow implementation for a Queue ADT.

Invalid applications are signalled using exceptions. A GuardFailed exception
indicates the precondition failed. Since Shadow structures are not real imple-
mentations, like null implementations they have no way of generating results
for observers. For those situations, Rufous exposes a ShadowUndefined ex-
ception, which is ignored during generation. A undefined shadow represents a
valid application, but one that generates no valid result when run on a shadow
implementation.

Auburn also had shadow structures, with some minor differences. There was
no unified representation for an implementation in Auburn, and so shadow
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data ShadowQueue a = S Int

instance Queue ShadowQueue where
snoc x (Sn) =8 (n + 1)

empty = S 0

head (S n) | n > 0 = shadowUndefined
head (S n) | n <= 0 = guardFailed
tail (Sn) | n>0 =8 (n - 1)

tail (S n) | n <= 0 = guardFailed

Figure 4.4: Shadow implementation for the Queue ADT.

structures were more difficult to write. This was compounded by the fact
Auburn used a more complex pre-condition, instead of returning a boolean
for all arguments instead the programmer had to specify the valid range of
non-version arguments for the set of version arguments. This was noted to be
difficult [1], so Auburn had a method of generating a simple guess at a trivial
shadow.

4.2.2 Profile implementation

In order to meet requirement R2.1, the Profile type has 3 fields:

e 0 : Operation -> Float, the weights of proportion of each operation
of the ADT.

e p : Operation -> Float, the weights of proportion of persistent ap-
plications of each operation of the ADT.

e m : Float, the mortality: the proportion of computed versions that are
not mutated further.

Example 4.2.2. To understand each of these metrics, take a look at Fig-
ure 4.5. It has five versions: [v0, v1, v2, v3, v6], of those, two are not
mutated further: v2 and v6. This gives a mortality of 2/5.

The DUG itself has seven nodes — five versions and two observations. The
weights for those operations are:

o 1/7 empty

e 3/7 snoc

o 1/7 tail

e 2/7 head
For computing p, there are six applications, represented as edges between
nodes. Of the three applications of snoc, just one of them, vO -> v2 is per-
sistent: it occurs after another mutation (in this case, vO -> v1). Here,
“after” is in the sense of “is evaluated after”. Where the order of evaluation is
defined by the node ordering vO < vl < v2 < ... < vN. Persistent applica-
tions of observers are defined similarly, as observations that occur after other
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observations. So, the second component of the profile, p, is as follows:

o snoc persistent: 1/3
o head persistent: 1/2
o tail persistent: 0/1

Generators, such as empty, does not appear here. In general, generators are
not constructed from applications and so cannot be applied persistently.

Persistent factors Persistence is an important aspect of the profile for func-
tional programs. Auburn [13] also used the idea of persistence in its profile.
However, it used a combined “persistent mutation factor”. This factor com-
bined the persistent weights of each mutation operation into a single param-
eter. Rufous leaves this parameter as the full mapping for two reasons: (1)
since the user does not manually input profiles in Rufous, it’s okay to have
the profile encode more information, making extracting profiles slightly easier
and (2), to fit the usage better: capturing when some operations are used
persistently and when others are not.

4.2.3 DUG Implementation

The datatype-usage-graph, or DUG, is a key part of Rufous. Auburn could
perform many operations over DUGs and had various different implementa-
tions of them for different purposes.

DUGs as births and deaths Auburn didn’t have a single definition of a DUG.
Instead Auburn chose to use a list of births or deaths as the representation [1].
New nodes being created are births, and a node no longer having a future is
dead. For evaluation, Auburn used a list of births, and for profiling it used
a list of deaths. This made passing DUGs from one stage to another difficult
without an intermediate conversion.

DUGs as Graphs Rufous takes a different approach. DUGs are, fundamentally,
just graphs. So, most of the operations over a DUG are similar to those found
over graphs. There should be ways of constructing dugs: creating empty
DUGSs, inserting new versions, and applying operations to arguments in the
graph to construct new nodes. DUGs have one other key property: there is no
requirement to ever delete versions from DUGS.

Rufous therefore chooses a more unified approach, with a single core DUG type.
That type is parametrized by the annotations, and so as DUGSs progress through
the pipeline they can be annotated with extra information. This approach
works for Rufous for two main reasons: (1) Rufous is more refined and smaller
program than Auburn, and (2) modern GHC and libraries provide a richer
choice of efficient and easy to use implementation options. As such, Rufous
encodes a DUG quite directly: as an adjacency mapping. A good choice here as
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Figure 4.5: Example datatype usage graph for a small queue.

it is fast to insert and lookup from, two operations DUGs do a lot of. Evaluation
order is then encoded implicitly as an ordering over the keys.

data Node n = Node Operation [Arg] n
data DUG n = DUG (Map Int (Node n))

Example 4.2.3. The DUG given in Figure 4.5 is an example DUG of a
Queue ADT. Node vl could be defined Node snoc [NonVersion (IntArg
1), Version v0] () If all nodes are defined similarly the whole DUG could
be defined as as a simple map from ¢ — v;.

dug = DUG (fromList [(O0, vO), (1, v1), (2, v2), (3, v3), (4, v4), (5, vb), (6, v6)]1)
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4.3 Key Algorithms

This section will describe the challenges and justification over alternatives of
the key algorithms used in Rufous: The extraction of profiles from source pro-
grams (§4.3.1), the generation of DUGs that conform to such profiles (§4.3.2),
evaluation of DUGS to measure timing information (§4.3.3), and report gener-
ation (§4.3.4).

4.3.1 Extraction algorithm

Any algorithm to perform extraction must require little to no modification
of the original source. It should not force evaluation of anything the original
program did not evaluate, and it should not evaluate anything in a different
order than the original program did.

DUG Extraction Rufous first extracts a DUG, and then extracts the profile
from the DUG. To extract a DUG the algorithm is fairly straight-forward.
Rufous will store a global set of nodes, the partially built DUG, and each
operation of the ADT will be logged and stored in the set, alongside the list of
arguments it was given.

1. Wrap each ADT operation with logging operation.
2. Run the program with the modified ADT.

3. Retrieve the set of nodes and build the buG from it.

The use of a class for specifying ADTs means Rufous can use TemplateHaskell
to generate an extraction implementation that is indistinguishable from the
underlying implementation as far as the ADT operations are concerned, but
is separate from the non-wrapped version [18]. Logging operations therefore
operate over a wrapped version of the ADT, which stores the name of the
operation, the arguments and the result.

type WrappedADT t a = WrappedADT (OperationName, [WrappedArg t al], WrappedArg t a
type WrappedArg t a = Arg (t a) a

extractVersion :: WrappedADT t a -> t a
extractNonVersion :: WrappedADT t a -> a

Then, for some ADT typeclass, the extractions logging methods look like:

logOperation :: ADT t => OperationName -> [WrappedArg t al -> t a -> Wrapped t a
logObserver :: ADT t => OperationName -> [WrappedArg t a]l] -> t a -> a
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instance QueueADT (WrappedADT []) where
empty =
logOperation "empty" [] empty
Snoc xs x =
logOperation "snoc" [Version xs, NonVersion x] (snoc (extractResult xs) x)
head xs =
logObserver "head" [Version xs] (head (extractVersion xs))
tail xs =
logOperation "tail" [Version xs] (tail (extractVersion xs))

Figure 4.6: Generated WrappedADT for a Queue implementation.

These log functions perform two operations. First, they construct a wrapped
version of the result, and return it. Secondly, they must update the global
extractor state to add the new wrapped version to the set of nodes. Because
these functions are side-effectful, but should be used in pure code, they must
perform this state update in an unsafe way. However, this global update is
completely contained within Rufous’ extractor module, and no other effects
leak out.

logOperation name args v = unsafePerformI0 $ do
let wrapper = Wrapped name args (Version v)
updateExtractorState wrapper
return wrapper

Rufous then uses TemplateHaskell to generate wrapping instances of the ADT
automatically. Figure 4.6 shows an example instance Rufous generated for the
Queue ADT. It is a new implementation of the Queue ADT that wraps a list,
separate from the unwrapped list. This implementation behaves exactly the
same, any program that uses the list implementation should work exactly the
same with this new implementation, with the side-effect of this implementation
silently logging what operations are called.

Alternatives An obvious alternative is to use a wrapper which has no effect
and returns the same type logging the name of the operation: wrap :: String
-> a -> a. This is what Auburn did [1]. The difficulty with this approach
is that the source program needs to be modified to call the new wrapper
functions. Typeclasses mean that the wrapper implementations can be sub-
stituted by the compiler itself, in a way that does not affect the operation of
the program or require any modification to the source.

28



4.3.2 Generation algorithm

The core generation algorithm is given by the sketch below:

1. Create an initial empty DUG.

2. Pick an operation.

3. Try to pick version arguments from the DUG.
4. Try to pick non-version arguments.

5. Try to commit to the DUG.

6. Repeat from step 2 until the DUG is large enough.

This algorithm is similar to the one used by Auburn [13]. We next identify
the main issues and how Rufous approaches them and how the full algorithm
given in Figure 4.7 solves them.

Undefined applications As described in in Section 4.2.1, Rufous uses shadow
datastructures to encode preconditions over applications. During generation,
Rufous builds a shadow DUG as well, containing shadow versions for each node.
Then, before any node is committed to the DUG its shadow is first evaluated.
If evaluation of the shadow fails because of a failing precondition then the
application is invalid and discarded.

Fitting the profile Ideally, Rufous would be able to generate a DUG given any
arbitrary profile which it matches as closely as possible. We could then gen-
erate profiles, and corresponding DUGs, uniformly. Simply generating DUGSs
directly at random would not uniformly match the profile space. There would
be a relatively low proportion of persistent applications. For operation weights
this is fairly easy: when picking an operation, choose one with probabilities
equal to the desired weights of proportion. For persistence this is more chal-
lenging. Choosing the operation before the arguments is good for generating
DUGSs as the profiles are operation-centric. But, persistence is a metric on ap-
plications. Rufous solves this problem by tagging each node in the partially-
built DUG with extra information about its persistence, for both mutations
and observations:

Node persistence state:

— Infant - Not mutated
— Original - Mutated once
— Persisted - Mutated more than once

When generating an operation, Rufous decides whether it should be a persis-
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tent application or not, and chooses versions as arguments accordingly. For
non-persistent applications that means disallowing non-Infant nodes as ar-
guments. To obtain the correct mortality as specified by the profile, Rufous
tracks whether a node should be mutated or not in future. A node that should
no longer be mutated is referred to as a dead node.

Choosing non-version arguments Choosing non-version arguments is more
subtle. For version arguments there is a limited pool to choose from. Non-
version arguments, however, are not restricted. This leaves a tough decision:
the user could specify the set of valid non-version arguments for a fixed set
of version arguments, as in Auburn [1]. But this increases the effort of the
programmer to an unreasonable degree. Additionally non-version arguments
may be of a concrete type such as Int or as a version parameter, such as the
first argument ina -> T a.

Rufous takes the simplest approach, unifying the two previous signatures by
performing a uniform instantiation of a to Int, at least for the generator/eval-
uator. This does not hurt generality too much as Ints are a member of most
common typeclasses, (and so satisfy any constraint a datatype might have over
its inputs) and more complex types could be encoded into an integer in more
extreme circumstances.

This decision also simplifies the generation machinery. A full set of arguments
is passed to the shadow as one to be checked.

Choosing operations before arguments There is only a limited pool of version
arguments to choose from. If Rufous decides to pick an operation before there
are enough valid version arguments, it may not be able to fulfill and commit
the operation. To solve this problem, alongside the partially-built DUG, Rufous
also keeps a buffer of un-committed operations. At each step of the algorithm,
after adding a new operation, Rufous attempts to commit any operations in
this buffer that can now be fulfilled.

Using a buffer in this way leads to a process of rounds of inflation and de-
flation. Where the generator’s buffers fill with new operations until a version
becomes available. Then the buffer is emptied as operations are committed,
each creating a new version which the next buffered operation may be able to
use.
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1. Initialise the generator state, s, to the empty DUG and with an empty
buffer, b.

2. To inflate b:
2.1. Pick an operation, o

2.2. Pick a boolean p, which is whether o, should be a persistent appli-
cation or not

2.3. Insert (o,p) into b.

3. To deflate b:
3.1. Remove an operation o from b.

3.2. To fill (o, p), choose each version argument a;:

o If p: Pick a living, infant node n.

e If not p: Pick any living node n.

o If no nodes available: return (o,p) to b and continue with de-
flation loop.

3.3. Pick non-version arguments for o.
3.4. Evaluate o’s shadow on as

3.5. If fails: return (o, p) buffer and repeat loop, picking a new operation

0.

3.6. If succeeds: commit o to s, by:

3.6.1. Update the version argument nodes to the new node-persistent-
state

3.6.2. Create a new DUG node for the operation
3.6.3. Create applications (edges) for each version argument

3.7. Repeat from 3. until no more operations from buffer can be com-
mitted.

4. Repeat from 2. until DUG is large enough.

Figure 4.7: Rufous DUG generation algorithm.
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Example 4.3.1. Let us walk through an example of generating a DUG, using
the algorithm given in Figure 4.7. This will demonstrate the sequences of
inflation and deflation that happen during a typical run.

First, we start with an empty DUG and buffer as the state (s={}, b=[]).
Then, we begin inflation: we pick an operation o, at random, using the weights
from the profile. For example, if we pick o=snoc, and decide p=false, we then
insert (o, p) into the buffer: (s={}, b=[(snoc, false)l).

Next we try deflate: there are no version arguments, and so no work can be
done. So, try inflation again, this time we pick a non-persistent application of
head, now (s={},b=[(snoc,false), (head,false)]).

Next, we try deflation once more, but again there are no version arguments for
each operation, so we skip and go straight to inflation: This time, we choose
empty, and append it to the buffer:

(s={},b=[(snoc,false), (head,false), (empty,false)]).

Now there are nodes, deflation can do work. It first picks the buffered empty
operation, and since it has no arguments to fill, it immediately gets committed
to the DuG: (s={vO=empty}, b=[(snoc,false), (head,false)]). This in-
sertion means the snoc application can now be committed too. For snoc there
is only once choice of version argument: v0, and we arbitrarily pick a non-
version argument: 7. Next, try evaluate snoc’s shadow, it succeeds, and so it
gets added to the puG: (s={vO=empty,vi=snoc 7 v0},b=[(head,false)]

Finally, there’s only head to try commit. We do the same process, pick a
version argument: vO, and try evaluate the shadow. This time, the shadow
fails, so we know the pre-condition failed and try again on a different version:
v1l. This time the shadow succeeds and we can commit this operation to the
DUG, too.

In the end, the state is (s={vO=empty,vi=snoc 7 v0,v2=head v1}, b=[1).

This process is repeated until the DUG s was of the desired size, but we will
stop here for this example.
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4.3.3 Evaluation

Evaluation of a DUG involves taking a DUG and an implementation, and run-
ning the DUG as if it were a standalone program. Forcing evaluation and
collecting the results of each observer, and the time taken to evaluate them.
An initial sketch of the evaluation algorithm is as follows:

1. Convert each node in the DUG into a Dynamic cell

[\

. Dynamically apply each argument to the Dynamic cell
3. Force evaluation of all nodes, recording the result and timing the process.
4. Construct the new timing DUG from the evaluation results.

But this simple algorithm suffers a couple of problems. Each problem is de-
scribed below and how the full algorithm in Figure 4.8 solves them.

Recording results Rufous records the resulting value from evaluating ob-
servers. The observers are the functions that take a version and extract
information from it. Forcing evaluation of any other nodes may make the
implementation do more work, evaluate more of the DUG, than it would have
otherwise.

By instantiating all version parameters to Int, Rufous also ensures that the
results will always be comparable, even for observations that have version
parameter results, such as head.

Strictness Many implementations may have different strictness in their ar-
guments, and so forcing evaluation of all nodes may evaluate more than the
original implementation did. Initially, just forcing evaluation of observers may
seem like it fixes that problem. But, for the null implementation to be a valid
metric of the overhead, the amount of work the evaluator itself does should
not depend on the strictness of the implementation.

To solve this problem, Rufous ensures that while only the observation Dynamics

are unwrapped and evaluation of them forced, every other node is also visited
by the evaluator and unwrapped, but its evaluation is not forced any further.
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1. For each node, n, in order of evaluation, in the input DUG d:
1.1. For each argument in n:

1.1.1. If the argument is a version argument: yield the Dynamic as-
sociated with it.

1.1.2. Otherwise: cast to an Int then create and yield a Dynamic
version.

1.2. d’s operation is converted to a Dynamic, and each operation yielded
in 1.1. is applied in order.

1.3. Annotate n with the new Dynamic.

2. For each observer, o in d:
2.1. Unwrap the annotated Dynamic, v, and force evaluation of v.

2.2. Annotate o with the evaluated value of v.

3. Annotate d with the time taken to force the evaluation of the observers.

Figure 4.8: Rufous DUG evaluation algorithm.
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Figure 4.9: Example summary report output for the alternative Queue
implementations.

4.3.4 Selection

Selection involves generating reports for the user to read.

Summary report The summary table aggregates the details of the timing
DUGSs together into a single digest. It lists each DUG and its profile, along side
the relative performances of each implementation.

This table is the final output of Rufous. The user should take the table, and use
it to decide on the most appropriate implementation for their data structure
based on the size and profiles of the reported DUGs to the performance of the
listed implementations.

As mentioned in the technical discussion on profiles (§4.2.2), storing the per-
sistence as a separate map was good for generation and extraction. However
when displaying to the user, they are cumbersome and contain far too much
information. So, in the summary report Rufous reports the persistence fac-
tors. Like in Auburn, these factors describe the ratio of applications that
are persistent. A high pof, for example, would indicate a large number of
observations being applied persistently.

Example 4.3.2. Figure 4.9 shows an example summary for generating two
DUGSs for the Queue ADT. Both DUGs have 100 nodes, and both were evaluated
over three separate implementations. DUG A has a low pmf, it uses Queues
in a mostly single-threaded way. Generating many applications of snoc and
tail on previous versions in a long chain. Whereas DUG B has a high pmf,
indicating it has lots of branches and many of the versions are shared between
multiple other versions.
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5 Evaluation

This Chapter will explore how well Rufous met the aims set out in Chapter 3.
We will do that in three sections. First, by exploring the key aim of Rufous,
and evaluating its level of automation and ease-of-use (§5.1). Next, this Chap-
ter identifies criticisms over the efficiency of the algorithms from Chapter 4
and the performance of the generated artefact (§5.2). Finally, the effectiveness
of the tool itself, is investigated (§5.2)

5.1 Ease of use of Rufous

Rufous’ primary goal was to be a simple, easy to use tool. Evaluating this
quality will be difficult, it is notoriously hard to quantify “ease of use”. There
are many aspects to a qualitative measure of the usability of the tool: degree
of automation, effort for the functional programmer, skill and difficulty of use,
robustness to mistakes, and how widely applicable the tool really is. This
section will explore all of these aspects, and suggest where Rufous works well,
and where it could be improved.

5.1.1 Automation and Effort - A Step by Step guide to Rufous

The easiest way to evaluate the effort and level of automation is just to run
through examples of typical usage, step-by-step, and evaluate how much work
the programmer actually had to do at each step.

Example 5.1.1. Rufous as an exploration tool.

Say we have an abstract datatype and a list of implementations, and we wish
to understand when to use one implementation over the other. Without a
particular program in mind, we will have to use Rufous to generate many
usages fairly over the profile space and then inspect the results.

Step 1 - Defining the ADT Many implementations may be located in various
forms over multiple files and modules. The first step will be to narrow down
the actual ADT. This process involves fully-specifying the ADT’s operations
and their signatures as a typeclass:
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class Queue g where

snoc :: a ->qa->qa
empty :: q a
head :: qa > a

tail :: ga ->q a

This step is required for all ADTs. Rufous needs to know exactly what the ADT
it is operating over is, and what operations it has. There is very little room
for extra automation here. It may be possible to extract the ADT operations
from source files, but it is not clear how a tool would exactly decide which
operations were a part of the ADT itself, and which are not. Operations that
take versions as arguments are not necessarily part of the ADT specification.
For example, smart constructors are operations over versions, but are not part
of the ADT specification itself.

Step 2 - Specifying Preconditions over Operations There may be pre-conditions
on certain applications. For the Queue, the applications head empty and tail
empty are undefined.

Rufous captures this information with the concept of a shadow implementation
(See Section 4.2.1).

For shadows, the observers such as head xs can not give a sensible result; it
is just a shadow and not a real implementation. For that reason, applications
that are defined in a real implementation may be undefined in the shadow.

If there are no restrictions on the ADT operations, this step could be skipped
entirely. However, here capturing just the size of the Queue in the shadow is
sufficient:

newtype ShadowQueue x = S Int

instance Queue ShadowQueue where
snoc x (Sn) =S (n + 1)

empty = S 0

head (S n) | n > 0 = shadowUndefined
head (S n) | n <= 0 = guardFailed
tail S8n) | n>0 =8 (n-1)

tail (S n) | n <= 0 = guardFailed

This step is, potentially, a lot of work for the programmer. They must un-
derstand exactly when operations of the ADT are valid, and when they are
not. Then encode this as a shadow implementation. For operations whose
preconditions depend on the contents of the structure, this may be equivalent
to defining a full reference implementation. There is some opportunity here
for automation above what Rufous gives. Auburn for instance could “guess”
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a size-encoded shadow. Another option would be to use a reference imple-
mentation, and then operations can be partial functions. Invalid applications
could then be detected directly by catching the exception.

Step 3 - Defining the Implementations The programmer then needs to “plug-
in” the implementations as instances of the ADT typeclass. To do this, the
programmer has to create an instance for each implementation and then call
Rufous’ makeADTSignature macro that will generate the Signature object au-
tomatically using TemplateHaskell.

instance Queue [] where
snoc x xs = xs ++ [x]
empty = []
head xs = Prelude.head xs
Prelude.tail xs

tail xs

makeADTSignature ''Queue

This step is straight-forward. It is safe to assume that operations already
exist, with roughly the correct signature, for each implementation.

So, this step is simply just linking the implementation with the typeclass
defined in Step 1. Because of that, all the same automation concerns arise
here, too. If the ADT could be automatically discovered, then potentially the
implementations could be too.

The instance is checked by the compiler’s own typechecker, making it hard to
connect the operations to the instance incorrectly.

Rufous does not inspect the source of the declarations in the instances at
all. This means that the programmer is not restricted in how they write
the implementations, or where they come from. Implementations could be
anything from a pure Haskell function, to a C function called through CFFI.
This versatility means that Rufous can be used for a variety of languages and
data structures that are, at least somewhat, functional.

Step 4 - Running Rufous Finally, the programmer only needs to run Rufous,
passing the Signature object to the main function.

main = mainWith args{signature=_Queue}

Running the compiled program will then generate tables similar to the one in
Table 5.1. The programmer must then manually comb through the results,
and build their own mental picture of the profile space. There is clearly room
for improvement. Firstly, it is easy to misunderstand what the table is saying.
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A lot of data gets displayed at once and there’s no obvious sign for trends and
patterns.

Example 5.1.2. Rufous as a tool for optimisation.

Alternatively, if we have a program that already exists, and wish to improve
its performance, we can use Rufous to help select a more appropriate data
structure. This example is different from the explorative scenario, since this
time we do not want to generate a large distribution of profiles. Instead, we
wish to generate many DUGs of similar profiles. Then use the timing results
to carefully pick a more appropriate structure.

The first three steps are identical in this case, we still have to define the ADT,
its implementations and any shadow implementation that’s required.

Step 4 - FExtracting the Target Program Profile Assuming we have a main
function, or some other entry-point of the program, there are then two changes
that need to made to the program to extract the profile. First, the ADT needs
to be swapped for a wrapped version that logs calls to its operations. Then,
they need to only wrap the main function with an extract function to retrieve
the profile.

As an example, assume we have the following program for the Queue ADT:

main = print ol
where vO :: [Int]
v0 = empty
vl = snoc vO 1
v2 = snoc vl 2
ol head v2

The two changes required would be to the second line, to change the type from
[Int] to WrappedADT [] Int, and adding a wrapper function around main.

main = print ol
where vO :: WrappedADT [] Int

vO0 = empty

vl = snoc vO 1
v2 = snoc vl 2
0l = head v2

mainExtract = do
(_, dug) <- extract main
let profile = extractProfile dug
print ("The extracted profile is: ", profile)
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This step is probably the step that requires the most effort from the program-
mer. Most obviously, they have had to modify their source program to use the
generated logging variants of the ADT. If they already used the typeclasses
in their program, then all they would need to change are the type signatures
on the generators. However, if they do not use typeclasses already, then they
would need to convert their program to use the typeclass ADT defined in Step
1. This could be a big task for large programs.

It is also easy to get this step wrong. Forgetting to change the real implemen-
tation for the wrapped variants, such as leaving the second line as [Int] in the
above program, would go unnoticed. The modified program would continue
to work, only partially extracting the DUG.

Step 5 - Running Rufous Now we’ve extracted the profile, all that’s left to
do is generate the results. This can be done by passing the extracted profile
directly to Rufous’ main function:

mainExtract = do
(_, dug) <- extract main
let profile = extractProfile dug
mainWith args{signature=_Queue, profiles=[profilel}

This step generates tables just like the previous example. This time however,
they are easier to understand. Since there is only one profile, the programmer
only needs to concern themselves with picking the implementation that gives
the best overall performance.

Example 5.1.3. Rufous as a correctness check.

Finally, let’s explore the idea of using a reference implementation to automat-
ically check the correctness of implementations.

If the user has a simple, correct reference implementation of their ADT, they
can simply make it an instance of the ADT typeclass. Then, the programmer
can just follow the steps of Example 5.2.1. This will not only time the reference
implementation (for small DUGs it may be the most appropriate!), but it will
also implicitly perform a correctness check. If any of the observations give
inconsistent results, the tool will notify the user and print the related DUG.

However, Rufous was not designed to do this. Therefore the related DUG is
large, and tracing the error is difficult. Tools like QuickCheck [19] solve this
with a process of shrinking, where the large failing example is shrunk to a
smaller failing example automatically.
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Summary of Ease of Use The effort required by the user to perform most
tasks in Rufous is mechanically quite minimal, with a few exceptions: Cre-
ating shadow structures is a task that is often needed, and could feasibly be
automated. Extracting profiles from a program to compare against is a lot of
effort, and in some cases a great task if the program is not already using a
class-based API. The output tables are often long, and difficult to interpret;
they could be turned into a more automated selection mechanism before being
displayed to the user.

5.2 Performance

An important part of any tool’s usability is its performance, in both time and
space.

All experiments were conducted on the same machine, with a 2.3 GHz i3 CPU,
under the GHC Haskell compiler (version 7.10.3).

Execution time profiling The first experiment is simply to run Rufous, asking
it to generate and evaluate a selection of large DuGs. For an average DUG size
of 10,000 nodes, generating 20 DUGS.

Figure 5.1a shows that Rufous spends approximately twice as much time in
generation as it does in evaluation and selection combined. It is clear from
the chart that Rufous spends the majority of its time on generating DUGS.
Keeping the time taken for generation low is essential to make Rufous a viable
exploratory tool. The implementation provided here can generate DUGs with
many thousands of versions in under a minute.

Time complexity and scalability Another measure of performance is how well
Rufous scales. This experiment then generates many DUGs of different sizes.
If the time grows linearly with the size of the DUG then this would make
Rufous acceptable to scale for larger programs: the user could just leave Rufous
running over a longer period of time.

However, Figure 5.1b shows that the amount of time Rufous spends on gen-
eration increases exponentially as the size of the desired DUGs increases. This
drastically reduces scalability, making it difficult to generate DUGs with more
than a few thousand nodes.

Memory Usage Rufous stores all of its intermediate structures in memory.
Every DUG, and all the operation buffers. Typically the buffers are small.
Phases of inflation during generation are short, and most of the operations
get committed to the DUG after a short period. However, the generated DUGs
only grow, they never shrink.
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Figure 5.1: Performance analysis of Rufous.

In practice however, the compact DUG representation means that this is seldom
an issue. In the performance experiments, many DUGs were generated at once
each with tens thousand nodes and there was no noticeable impact on the
available memory on the machine. After 50 DUGs the memory in use by Rufous
was just under 500MiB. The programmer would need to generate hundreds of
similar sized DUGs before they encountered problems.
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Figure 5.2: Comparison of profile error in DUG generation algorithm

5.3 Effectiveness of Rufous as a Data Structure
Selection Tool

Now, we will explore how effective Rufous actually is as a tool for data struc-
ture selection. This is done in two parts: First, an exploration of the accuracy
in the DUG generation algorithm (§5.3.1). Then, we shall investigate what
Rufous tells us about a selection of example data structures (§5.3.2).

5.3.1 Effectiveness of the DUG Generation Algorithm

The core of Rufous is the DUG generator. Ensuring it generates DUGs that
match the input profile as accurately as possible is key to the usefulness of
the tool. If Rufous does cannot generate a fair distribution of profiles then it
would not be as useful a tool for the task of exploring the profile space.

One measure of effectiveness of this algorithm is the correlation between the
input profile, and the extracted profile of the generated DUGSs.

The Experiment To determine how well the DUG generation algorithm works,
we calculate the mean-squared-error (MSE) between the input profile, and the
profile corresponding to the generated DUG. This is then compared to the
mean-squared-error of randomly generated pairs of profiles. Any significant
improvement would indicate the DUG generation algorithm is generating DUGs
with the correct profile.

Profile space sampling Generating profiles at random, uniformly, would be

insufficient. This would lead to many profiles that were invalid. For example,
profiles with 0 mortality are impossible — since DUGs are acyclic. Additionally,
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there are many profiles that, while valid, are not useful. For example, profiles
that contain zero weight for observers would force no work and is not a useful
profile to generate.

Generating valid profiles by construction is difficult, whether a profile is valid
or not is dependent on the ADT specification. For the Queue ADT, the mortality
must be at least the sum of the generator weights (m > o(empty)); This is
not true for ADTs with operations that have multiple version arguments such
as sets.

So, instead of constructing valid profiles, we define a sufficient condition for
profiles. If satisfied, the profile is certainly valid. Then only sample profiles
that satisfy that condition. We generate profiles that are reasonable descrip-
tions of real-world usage. This means, typically low mortality (< 0.1) and
low persistence (< 0.1). Finally, we add the extra constraint from earlier that
for the Queue ADT, m > o(empty).

Results It’s expected that the error between input and output profile would
be very low. This result would be the ideal: it would indicate Rufous generates
DUGs with exactly the desired profile where possible. For randomly generated
profiles, it would be expected to be much higher, with a mean of approximately
0.2.

Figure 5.2 gives the results of the experiment. It is clear that Rufous performs
very well, with a mean of 0.07. However, there are some data points with
a high error. Figure 5.3 shows that this high error is caused mostly by a
mismatch in the operation weights themselves, with high correlation in the
mortality and persistence.
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Table 5.1: Summary table for three Queue implementations for 20 DuGs for 5
K-means chosen clusters.

5.3.2 Profiling Example Data Structures

To see how well Rufous captures the usage of datatypes, we will run the tool
on a selection of programs To really understand how well Rufous works, it’s
best to just try run Rufous to profile some data structures.

Queues Take three implementations of Queues, a simple linked-list imple-
mentation, batched queues [4], and the rotating “Physicist’s” queues [5]. Both
batched and Physicist’s methods can be constructed in Haskell with amortized
O(1) operations [5]. However, the Physicist’s Queue’s will yield slightly better
performance in Haskell [5]. Rufous should be able to detect this.

Using Rufous to generate 20 DUGs we get a table of results. If we manually
take these results and apply a K-Means clustering, with five means, we get
the the summary given in Table 5.1.

This table shows that Rufous did manage to discover this. bua Clusters B, and
E have relatively high persistences. They both have the Physicist’s Queues,
the RQueue, outperforming the other implementation on average. Cluster C
demonstrates that in the presence of a large number of snoc applications,
where many are persistent, the Batched Queue implementation is very ineffi-
cient.
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Table 5.2: Summary table for two Set implementations over 20 DUGs with 4
K-means chosen clusters.

Functional Sets Table 5.2 is example output from Rufous on the two func-
tional set implementations given in Chaper 1, which is then run through a
K-means clustering algorithm to find five clusters, and then takes the means
of each cluster.

This example clearly shows the difference operation weights have on the ap-
propriate structure. If the DUG is small, as in C, then the simple ListSet
implementation beats the binary tree. As the DUG gets larger, the balanced
binary tree starts to become more efficient. It also shows that for highly
persistent usages, as in D, neither implementation is particularly efficient.

5.4 Chapter Summary

This chapter has investigated how well suited Rufous is to the task of data
structure selection. It investigated the automation and ease of use (§5.1),
concluding that Rufous performs well for the primary task of defining the
ADT and running Rufous, but is substantially less user-friendly in the extrac-
tion phase. This chapter then ran experiments to explore the performance of
Rufous (§5.2). The performance was good for small DuGs (less than 10,000
nodes), but Rufous struggles with larger examples with poor memory efficiency
and an exponential time generation algorithm. Finally, the effectiveness of Ru-
fous as a data structure selection tool was tested more directly (§5.3). The
experiments revealed that Rufous’ generation algorithm performs very well,
accurately capturing the desired properties in the generated DUG, and that
Rufous was able to discover (with some work by the user) some interesting,
non-trivial (and already known) performance characteristics of implementa-
tions of a few common data structures.
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6 Conclusions and Future Work

This chapter will first draw conclusions on how effective Rufous is at the goal
it was set out to achieve (§6.1), then suggests possible future extensions to
Rufous (§6.2).

6.1 Conclusions

This report has detailed what Rufous is (Chapter 1); discussed related work
on data structure selection (Chapter 2); laid out and justified requirements
(Chapter 3); discussed challenges during implementation and proposed solu-
tions (Chapter 4); and evaluated the solution for performance, effectiveness
and acceptability (Chapter 5).

This section discusses Rufous as a tool, describing what parts worked well,
and which parts did not. Conclusions will be drawn on four separate topics:
(1) the typeclass API, designed in Section 4.1.4. (2) the timing reports Rufous
generates, (3) the DUG representation and (4) the DUG generation algorithm
presented in Section 4.3.2.

Typeclass APl One core criticism of Auburn was the fact it was not user-
friendly [1]. We solve this problem with a typeclass-based API for the speci-
fication and implementations of ADTs. Typeclasses for the ADT specification
turn out to be both good in some circumstances, and bad in others. For
writing the ADT specification, the typeclass API makes it much easier. Sec-
tion 5.1 describes, in detail, how simple the ADT definition becomes with a
typeclass. However, this very decision makes extraction incredibly difficult in
some circumstances.

Using a typeclass to define the ADT specification is typically a very useful as-
pect of Rufous, it means that the compiler can typecheck both the specification
and implementations. It also means that instances of the typeclass can auto-
matically be promoted to implementations of the ADT, even if they already
existed. It means that defining reference implementations, or precondition
checking shadows is all a uniform API, you just write an instance.

Rufous Output — Timing Reports Rufous’ primary output is a summary ta-
ble. This table contains all the timing data for each buc. Whilst at first
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it would seem like all a programmer would need to begin using Rufous, Sec-
tion 5.1.1 demonstrated that this is not enough.

When generating many DUGS, the user needs to then manually comb through
the results trying to group the output by profile to get an effective measure of
how an implementation performed. Section 6.2 discusses a few alternatives to
just outputting the raw timing data.

DUG Representation Rufous uses a very different representation of DuGs to
Auburn. This was mostly a beneficial change.

The unified DUG type meant that DUGs can be freely passed between the
evaluator, generator and extractor without conversions between intermediate
representations. Additionally, encoding the DUG as a functional graph directly
made the representation very compact and efficient (See Section 5.2). The
ability to use the DUG to annotate nodes abstractly also made evaluation very
simple.

DUG Generation Algorithm Section 4.3.2 describes an algorithm for generat-
ing DUGs that conform to a given profile. Evaluation shows that this algorithm
is very effective (§5.3.1). However, it also shows that the algorithm lacks op-
timisations to make it performant (§5.2).

With a few improvements and optimisations the algorithm could be made
faster, such improvements are discussed in Section 6.2.

Final Remarks Building upon the work done in Auburn [1], we built Rufous.
A tool for profiling purely functional data structures.

Using Rufous to guide optimisation of an existing program is very ineffective.
Extracting the profile from an existing program can be difficult and easy to
get wrong, and may require a lot of modification to the source program to use
the typeclass ADT instead. Even if the user did manage to extract a profile,
Rufous is very inefficient at generating very large DUGs.

However, Rufous performs very well as a tool for exploring the profile space.
With only a small amount of user input, Rufous performs many otherwise
laborious tasks. It can generate many, DUGs, each with tens of thousands
of nodes, in only a few minutes. It quickly, and efficiently profiles each im-
plementation, performing a correctness check as it does so. The user is then
presented with the dataset and is able to see how the performance of each
structure changes as the profile of the bua does.
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6.2 Future Work

Many areas for future work have been identified.

Extending the ADT signatures Rufous heavily restricts the signatures of ADT
operations. There are two primary constraints that cause problems.

Rufous does not accept ADTs with higher-order signatures. These are common
operations that programmers often want their data structures to do, such as:

map :: (a -> b) -> List a -> List b
fold :: (a -=>b ->b) ->b -> [a] > Db

Rufous does not accept ADTs with non-version arguments other than a, Int
or Bool. This could be relaxed to allow operations such as:

elements :: Set a -> [a]

Improved Selection Mechanism Simply printing timing data in tables is in-
sufficient as a method of selection. Chapter 2 covered many other techniques
for selection, including on-line ones and Auburn’s decision-tree generation.
Even a simple, automated, K-means clustering as was done manually in Sec-
tion 5.3 would improve usability here greatly.

Shadow Guessing Defining shadow implementations may be a lot of redun-
dant work for the user. Auburn could guess a shadow implementation based
on how operations affect the size. Rufous could do something similar to reduce
the burden on the programmer for defining simple shadows.

Correctness checking The approach of using a reference implementation to
check correctness of the implementations was discussed in Section 5.1.1. Im-
provements could be made to make this a full feature of Rufous. Currently
any inconsistency is simply printed to the user with the DUG it came from. To
make the inconsistency easier to trace, Rufous could run a shrinking process
similar to QuickCheck [19] to produce smaller, easier to understand DUGs.

Performance Improvements One key problem with Rufous is its inefficient
generation of large DuGs. Rufous could improve performance by restricting
the size of the buffers, or by only considering version arguments from a subset
of the generated DUG. These would bound the amount of work Rufous does
for each generated node.

Profile Extraction Using the typeclass specification for ADTs was great for

usability for defining ADTs. However, when a program already exists and it
does not use Rufous or a typeclass specification for its ADTs then extracting
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the usage from that program is very difficult. The programmer either has to
manually extract the profile, or convert their entire program to use the new
classes. Rufous needs some way of augmenting a pre-existing implementation
with a logging side-effect to build a DUG, in a way that does not force the
programmer to alter their existing program’s source.
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