
Ghost in the Android Shell: Pragmatic Test-oracle Specification of a
Production Hypervisor

Kayvan Memarian1 Ben Simner1 David Kaloper-Meršinjak Thibaut Pérami Peter Sewell

University of Cambridge

1These authors contributed equally SOSP, 2025-10

Idea ­
How can we cheaply and easily improve assurance ?

Write executable-as-test-oracle specs
... but inline, in C!
... and test them!

Making systems code secure remains very challenging: conventional practice
doesn’t suffice, and full functional verification has substantial barriers to use.

We explore a more lightweight approach to building confidence for a production
hypervisor: we specify the desired behaviour in a way that can be used as a test
oracle and check it at runtime. The setting makes that hard: it’s intertwined with the
underlying architecture; it’s concurrent, with nontrivial ownership; the spec must be
loose; the hypervisor runs bare-metal; naive random testing would quickly crash
the whole system; and the hypervisor is written in C.

We show how all of these can be overcome to make a practically useful specifi-
cation and find critical bugs.

This is not at all what conventional developers (nor what formal verifiers) nor-
mally do – but we argue that, with the appropriate mindset, they easily could and
should.

Target: pKVM, Android’s hypervisor

pKVM enforces isolation between the ‘host’ Android
kernel and guest VMs.

�ËProtected VM

Firmware (hardware-specific) EL3

EL2

EL1

EL0

pKVM (hypervisor)

Android Kernel VM

Application Application
svc

hvc

smc

with a limited API for managing guests and memory:
Creation init_vm init_vcpu
Memory host_share_hyp host_unshare_hyp

host_map_guest guest_share_host
guest_unshare_host

Destruction teardown_vm host_reclaim_page
Context switching vcpu_run

Communication host_mem_abort handle_pvm_entry_dabt

Checking Specs Dynamically — Specifying a Production Hypervisor

(1) — Computing an Abstraction
We define abstraction functions ...

We do this for all data structures defining the hypervisor state:
B pKVM’s own page table (µ).
B The Android guest page table (µ).
B Each guest page table (µ).
B The set of VMIDs (µ), the guest VM metadata (µ),

and the vCPUs (µ+).
B Thread-local register state.

... by defining a mathematical abstraction of
the implementation state ...

e.g. the page tables in memory encode a simple
mathematical function representing the

translation.
Concretepgt Abstract

{va_slice(x) 7→ page}

[Cartoon of the abstraction of a page table.]

... and computing it at runtime, in C.

1 void _interpret_pgtable(mapping *mapping_out, kvm_pte_t *pgd,
2 ghost_stage_t stage, u8 level,...)
3 { ...
4 for (u64 idx = 0; idx < 512; idx++) {
5 u64 va_offset_in_region = idx * nr_pages * PAGE_SIZE;
6 u64 va_partial_new = va_partial | va_offset_in_region;
7 u64 pte = pgd[idx];
8 enum entry_kind ek = entry_kind(pte, level);
9 switch(ek) {

10 case EK_BLOCK: {
11 u64 oa = pte & PTE_FIELD_OA_MASK[level];
12 u64 attr = pte & PTE_FIELD_ATTRS_MASK;
13 struct maplet_target_mapped m =
14 parse_mapped(stage, mair, level, oa,
15 nr_pages, attr, next_level_aal);
16 struct maplet_target t =
17 maplet_target_mapped(va_partial_new, nr_pages, m);
18 extend_mapping_coalesce(mapping_out, stage,
19 va_partial_new, nr_pages, t);
20 break;
21 }
22 ...

(2) — Specifying a hypercall
Define partial abstract states
The abstractions of each of the data structures partitioned by the
ownership discipline form the whole abstract state, but may only be
partially known at runtime:

pKVM

loaded vcpu pgt regs

Android
pgt regs

VM0 VM1 ...

meta

VCPU

VCPU

recorded post ghost state diff from recorded pre:
host.share +ipa :...101b18000 phys:101b18000 SO RWX M
pkvm.pgt +virt:8000c1b18000 phys:101b18000 SB RW- M
regs -r0=......c600000d r1=........101b18
regs +r0=.............0 r1=.............0

[Cartoon of a partial abstract state, with only pKVM and host
pagetables (the rest of the state is absent in this view) and an ex-
ample runtime diff over that partial state.]

Specify hypercalls as a computable function, in C!
Then define functions, in C, from an initial state to an expected final
state, specifying precisely what parts of the state the hypercall must
update and how, but crucially without mentioning parts the imple-
mentation need not touch.

An example hypercall spec

1 static bool compute_post__pkvm_host_share_hyp(
2 struct ghost_state *g_post, struct ghost_state *g_pre,
3 struct ghost_call_data *call)
4 {
5 // Address space conversions
6 u64 pfn = ghost_read_gpr(g_pre, 1);
7 phys_addr_t phys = hyp_pfn_to_phys(pfn);
8 host_ipa_t host_addr = host_ipa_of_phys(phys);
9 hyp_va_t hyp_addr = hyp_va_of_phys(g_pre, phys);

10 int ret = 0;
11

12 // Permissions checks
13 if (!is_owned_exclusively_by(g_pre, GHOST_HOST, phys)) {
14 ret = -EPERM;
15 goto out;
16 }
17

18 // Initialisation of the (partial) post-state
19 copy_abstraction_host(g_post, g_pre);
20 copy_abstraction_pkvm(g_post, g_pre);
21

22 // Construction of abstract mapping attributes
23 bool is_memory = ghost_addr_is_allowed_memory(g_pre, phys);

24 struct maplet_attributes host_attrs =
25 ghost_host_memory_attributes(is_memory, SHARED_OWNED);
26 struct maplet_attributes hyp_attrs =
27 ghost_hyp_memory_attributes(is_memory, SHARED_BORROWED);
28

29 // Update abstract mappings with new targets
30 mapping_update(
31 &g_post->host.shared,
32 g_pre->host.shared,
33 MAP_INSERT_PAGE, GHOST_STAGE2, host_addr, 1,
34 maplet_target_mapped_attrs(phys, 1, host_attrs)
35);
36 mapping_update(
37 &g_post->pkvm.pgt.mapping,
38 g_pre->pkvm.pgt.mapping,
39 MAP_INSERT_PAGE, GHOST_STAGE1, hyp_addr, 1,
40 maplet_target_mapped_attrs(phys, 1, hyp_attrs)
41);
42

43 // Epilogue: update the host register state
44 out:
45 ghost_write_gpr(g_post, 1, ret);
46 copy_registers_to_host(g_post);
47 return true;
48 }

(3) — Checking it
States can be recorded, and specs computed and checked,
at runtime:

(1-6) Compute abstract state on entry and exit to hypervisor, and
µ and b of data structures.

(7-8) Run spec function to compute expected state, and compare
against abstract state of implementation.

­ No fancy tools required.
­ No experts needed.

pKVM (EL2)

Android(EL1)

Enter pKVM
(handle trap)

1
record-pre
call ctxt

host lock

2
record-pre
host state

hyp lock

3
record-pre
hyp state

hyp unlock

4
record-post
hyp state

host unlock

5
record-post
host state

Exit pKVM
(handle trap)

6
record-post
call return

7
compute expected
post state

8 check equality

[Execution of an instrumented pKVM hypercall with spec checking.]

We thank the pKVM development team, especially Will Deacon and Keir Fraser, for extensive discussions, and Ben Laurie and Sarah de Haas for their support. We thank Jean Pichon-Pharabod for the stimulus to write the paper, and for the first part of the title. We thank the reviewers for their helpful comments.
This work was funded in part by Google. This work was funded in part by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee for ERC-AdG-2022, EP/Y035976/1 SAFER. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
789108, ERC-AdG-2017 ELVER). This work is supported by ERC-2024-POC grant ELVER-CHECK, 101189371. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held
responsible for them. This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Big Specification, where work on this paper was undertaken. This work was supported by EPSRC
grant EP/Z000580/1.

