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Idea ­
How can we cheaply and easily improve assurance ?

Write executable-as-test-oracle specs
... but inline, in C!
... and test them!

Making systems code secure remains very challenging: conventional practice
doesn’t suffice, and full functional verification has substantial barriers to use.

We explore a more lightweight approach to building confidence for a production
hypervisor: we specify the desired behaviour in a way that can be used as a test
oracle and check it at runtime. The setting makes that hard: it’s intertwined with the
underlying architecture; it’s concurrent, with nontrivial ownership; the spec must be
loose; the hypervisor runs bare-metal; naive random testing would quickly crash
the whole system; and the hypervisor is written in C.

We show how all of these can be overcome to make a practically useful specifi-
cation and find critical bugs.

This is not at all what conventional developers (nor what formal verifiers) nor-
mally do – but we argue that, with the appropriate mindset, they easily could and
should.

Target: pKVM, Android’s hypervisor

pKVM enforces isolation between the ‘host’ Android
kernel and guest VMs.
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with a limited API for managing guests and memory:
Creation init_vm init_vcpu
Memory host_share_hyp host_unshare_hyp

host_map_guest guest_share_host
guest_unshare_host

Destruction teardown_vm host_reclaim_page
Context switching vcpu_run

Communication host_mem_abort handle_pvm_entry_dabt

Checking Specs Dynamically — Specifying a Production Hypervisor

(1) — Computing an Abstraction
We define abstraction functions ...

We do this for all data structures defining the hypervisor state:
B pKVM’s own page table (µ).
B The Android guest page table (µ).
B Each guest page table (µ).
B The set of VMIDs (µ), the guest VM metadata (µ),

and the vCPUs (µ+).
B Thread-local register state.

... by defining a mathematical abstraction of
the implementation state ...

e.g. the page tables in memory encode a simple
mathematical function representing the

translation.
Concretepgt Abstract

{va_slice(x) 7→ page}

[Cartoon of the abstraction of a page table.]

... and computing it at runtime, in C.

1 void _interpret_pgtable(mapping *mapping_out, kvm_pte_t *pgd,
2 ghost_stage_t stage, u8 level,...)
3 { ...
4 for (u64 idx = 0; idx < 512; idx++) {
5 u64 va_offset_in_region = idx * nr_pages * PAGE_SIZE;
6 u64 va_partial_new = va_partial | va_offset_in_region;
7 u64 pte = pgd[idx];
8 enum entry_kind ek = entry_kind(pte, level);
9 switch(ek) {

10 case EK_BLOCK: {
11 u64 oa = pte & PTE_FIELD_OA_MASK[level];
12 u64 attr = pte & PTE_FIELD_ATTRS_MASK;
13 struct maplet_target_mapped m =
14 parse_mapped(stage, mair, level, oa,
15 nr_pages, attr, next_level_aal);
16 struct maplet_target t =
17 maplet_target_mapped(va_partial_new, nr_pages, m);
18 extend_mapping_coalesce(mapping_out, stage,
19 va_partial_new, nr_pages, t);
20 break;
21 }
22 ...

(2) — Specifying a hypercall
Define partial abstract states
The abstractions of each of the data structures partitioned by the
ownership discipline form the whole abstract state, but may only be
partially known at runtime:

pKVM

loaded vcpu pgt regs

Android
pgt regs

VM0 VM1 ...

meta

VCPU

VCPU

recorded post ghost state diff from recorded pre:
host.share +ipa :...101b18000 phys:101b18000 SO RWX M
pkvm.pgt +virt:8000c1b18000 phys:101b18000 SB RW- M
regs -r0=......c600000d r1=........101b18
regs +r0=.............0 r1=.............0

[Cartoon of a partial abstract state, with only pKVM and host
pagetables (the rest of the state is absent in this view) and an ex-
ample runtime diff over that partial state.]

Specify hypercalls as a computable function, in C!
Then define functions, in C, from an initial state to an expected final
state, specifying precisely what parts of the state the hypercall must
update and how, but crucially without mentioning parts the imple-
mentation need not touch.

An example hypercall spec

1 static bool compute_post__pkvm_host_share_hyp(
2 struct ghost_state *g_post, struct ghost_state *g_pre,
3 struct ghost_call_data *call)
4 {
5 // Address space conversions
6 u64 pfn = ghost_read_gpr(g_pre, 1);
7 phys_addr_t phys = hyp_pfn_to_phys(pfn);
8 host_ipa_t host_addr = host_ipa_of_phys(phys);
9 hyp_va_t hyp_addr = hyp_va_of_phys(g_pre, phys);

10 int ret = 0;
11

12 // Permissions checks
13 if (!is_owned_exclusively_by(g_pre, GHOST_HOST, phys)) {
14 ret = -EPERM;
15 goto out;
16 }
17

18 // Initialisation of the (partial) post-state
19 copy_abstraction_host(g_post, g_pre);
20 copy_abstraction_pkvm(g_post, g_pre);
21

22 // Construction of abstract mapping attributes
23 bool is_memory = ghost_addr_is_allowed_memory(g_pre, phys);

24 struct maplet_attributes host_attrs =
25 ghost_host_memory_attributes(is_memory, SHARED_OWNED);
26 struct maplet_attributes hyp_attrs =
27 ghost_hyp_memory_attributes(is_memory, SHARED_BORROWED);
28

29 // Update abstract mappings with new targets
30 mapping_update(
31 &g_post->host.shared,
32 g_pre->host.shared,
33 MAP_INSERT_PAGE, GHOST_STAGE2, host_addr, 1,
34 maplet_target_mapped_attrs(phys, 1, host_attrs)
35 );
36 mapping_update(
37 &g_post->pkvm.pgt.mapping,
38 g_pre->pkvm.pgt.mapping,
39 MAP_INSERT_PAGE, GHOST_STAGE1, hyp_addr, 1,
40 maplet_target_mapped_attrs(phys, 1, hyp_attrs)
41 );
42

43 // Epilogue: update the host register state
44 out:
45 ghost_write_gpr(g_post, 1, ret);
46 copy_registers_to_host(g_post);
47 return true;
48 }

(3) — Checking it
States can be recorded, and specs computed and checked,
at runtime:

(1-6) Compute abstract state on entry and exit to hypervisor, and
µ and b of data structures.

(7-8) Run spec function to compute expected state, and compare
against abstract state of implementation.

­ No fancy tools required.
­ No experts needed.
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[Execution of an instrumented pKVM hypercall with spec checking.]
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