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sequential definition
incompatible?
w/ relaxed architectures (e.g. Arm)

Precision (a la Hennessy & Patterson):
exceptions appear to execute between instructions

Relaxed memory — Observably out-of-order on Arm .. s
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[A tree of partially and completely executed fetch-decode-execute in-
stances, on a single hardware thread, in real-hardware or operational-model
execution.]
Precision: not just a fence?
 out-of-order execution across exceptions? « external aborts: might-raise-exception?

+ speculation? * interrupts? ...and the GIC?

« store forwarding?
how to specify all this, w.r.t. the architectural intent, hardware
» context synchronisation? behaviour, and system-software requirements?

Contributions
Testing hardware: Custom test harness with over 60 hand-written litmus tests.
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[Selected results. Observations/total runs. ¥ =Allowed-but-unseen.]

A Model for Arm: OoO over exceptions.
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