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Precision (à la Hennessy & Patterson):
exceptions appear to execute between instructions

sequential definition
incompatible?

w/ relaxed architectures (e.g. Arm)

Relaxed memory — Observably out-of-order on Arm
Arm, RISC-V, and POWER allow observable out-
of-order and speculative execution

Thread states

partially and tentatively executed instruction

completely executed and committed instruction

Storage state

a:W 0x0000 = 0x17

b:W 0x0010 = 0x78

c:W 0xc058 = 0x76
. . .

reads/writes

responses

[A tree of partially and completely executed fetch-decode-execute in-
stances, on a single hardware thread, in real-hardware or operational-model
execution.]

MOV X0,\#1
STR X0,[X1]
LDR X2,[X3]

Thread 0
|MOV X0,#1|
STR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

SB+pos AArch64

Allowed: 0:X2=0, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

R x=0d:

Thread 1

po pofr
fr

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]
LDR X4,[X5]
EOR X6,X4,X4
LDR X7,[X8]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=z, 1:X5=z

1:X8=x, *x=0, *y=0

PPOCA AArch64

Allowed: 1:X0=1, 1:X4=1 1:X7=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb ctrl

rf

addr

rf

fr

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
LDR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+ctrl AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st ctrlrffr LDR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0
|LDR X0,[X1]|
MOV X2,#1
STR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

LB+pos AArch64

Allowed: 0:X0=1, 1:X0=1

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

po porf
rf

Precision: not just a fence?
• out-of-order execution across exceptions?

• speculation?

• store forwarding?

• context synchronisation?

• external aborts: might-raise-exception?

• interrupts? ...and the GIC?

• how to specify all this, w.r.t. the architectural intent, hardware
behaviour, and system-software requirements?

Contributions
Testing hardware: Custom test harness with over 60 hand-written litmus tests.

W x=1a:

SVCb:

ERETc:

R y=0d:

Thread 0

W y=1e:

SVCf:

ERETg:

R x=0h:

Thread 1

po

po

po

po

po

po

fr
fr

rpi5 $ ./harness_kvm SB+svc-erets -n500k -q
Test SB+svc-erets Allowed
States 4
229760:>0:X2=1;1:X2=1;
95467:>0:X2=0;1:X2=1;
174771:>0:X2=1;1:X2=0;
2:>0:X2=0;1:X2=0;
Ok
Witnesses
Positive: 2 Negative: 499998
Observation SB+svc-erets Sometimes 2 499998
Time SB+svc-erets 214.449

[Selected results. Observations/total runs. U =Allowed-but-unseen.]
A Model for Arm: OoO over exceptions.

Runnable in the Isla symbolic evaluator for Sail:
$ isla-axiomatic [...] -model exn.cat SB+svc-erets.litmus.toml
SB+svc-erets allowed (1 of 1) 2785ms ....................... ?

"Arm-A exceptions"

include "cos.cat"
include "arm-common.cat"

(* might-be speculatively executed
*)

let speculative =
ctrl | (addr;po)

| if "SEA_R" then [R]; po else 0
| if "SEA_W" then [W]; po else 0

(* context-sync-events *)
let CSE =

ISB
| if "FEAT_ExS" & ∼"EIS" then 0

else TE
| if "FEAT_ExS" & ∼"EOS" then 0
else ERET

(* observed by *)
let obs = rfe | fr | co

(* dependency-ordered-before *)
let dob =

...

(* atomic-ordered-before *)
let aob =

...

(* barrier-ordered-before *)
let bob =

...
| [dsb]; po

(* contextually-ordered-before *)
let ctxob =

speculative; [MSR|CSE]
| [MSR]; po; [CSE]
| [CSE]; po

(* async-ordered-before *)
let asyncob =

speculative; [TakeInterrupt]
| [TakeInterrupt]; po

(* Ordered-before *)
let ob = (obs | dob | aob |

bob | ctxob | asyncob)+

(* Internal visibility requirement
*)

acyclic po-loc | fr | co | rf as
internal

(* External visibility requirement
*)

irreflexive ob as external

(* Atomic: Basic LDXR/STXR
constraint to forbid intervening
writes. *)

empty rmw & (fre; coe) as atomic
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