Precise Exceptions in Relaxed Architectures

Ben Simner! Alasdair Armstrong! Thomas Bauereiss! Brian Campbell?
Ohad Kammar? Jean Pichon-Pharabod? Peter Sewell!

..in collaboration with Arm

University of Cambridge 2University of Edinburgh *Aarhus University
2025-06

sequential definition
incompatible?
w/ relaxed architectures (e.g. Arm)

Precision (a la Hennessy & Patterson):
exceptions appear to execute between instructions

Relaxed memory — Observably out-of-order on Arm .. s

(Initial state: ©:X1=x, 0:X3=y,
1:X1=y, 5=z
1:X8=x, *x=0, *y=0 : 1 1
Arm, RISC-V, and POWER allow observable out- T o
.I: d d | H H SBipos AArch64 o xo o, [xuiconz xo 1200 bWy dW et
of-order and speculative execution T oy 311 L Wyt awes
Thread 0 Thread 1 0 5TR X2, [X3] 5
[y reassh SR TR e
Thread states o rea s Storage state Coh X3 XA X9 X o LoR X' 18] addr
[[Allowed: 0:X2=0, 1:X2=0 b:R y=0 d'R x=0 [Allowed: 1:X0=1, 1:X4=1 1:X7=0 £R %20
-*I:I*I:I*D-*:(D:(E responses W 0x0000 = 0x17 MP-+dmb.stsotrl AArch64
b:W 0x0010 = 0x78 (Initial state: @:X1=x, 0:X3=y,
|:|_>|:| 1:X1=y, 1:X3=x, +x=0, +y=0 M
= ciW 0xc058 = 076 7UVT"X'E§°;: A Viogs 10600 ot 8
TR X X1][CBNZ X0,LC00 rea rea
[1 partially and tentatively executed instruction b t]E c00: LDRWXBGOXI \LDKX;{X1]\
I B
I completely executed and committed instruction [Atowed ﬁxng, x2=0 [plowed: 0:X0-1, 1:X0=1
[A tree of partially and completely executed fetch-decode-execute in-
stances, on a single hardware thread, in real-hardware or operational-model
execution.]
Precision: not just a fence?
 out-of-order execution across exceptions? « external aborts: might-raise-exception?

+ speculation? * interrupts? ...and the GIC?

« store forwarding?
how to specify all this, w.r.t. the architectural intent, hardware
» context synchronisation? behaviour, and system-software requirements?

Contributions
Testing hardware: Custom test harness with over 60 hand-written litmus tests.

rpi5 $./harness_kvm SB+svc-erets -n500k -q
a:W x=1 eWy=1 ESE Sstvc-erets Allowed Name m6g m7g m8g odroid m2 pi3 pid pi5
lpo lpo 223723 >0:X2=1:1:X2=1: MP+dmb+ctrl-svc Siw lam Saw Vmm Lwm O im mon e
b: SVC £ SVC 95467:>0:X2=0; i 1X2=1; ' MP+dmb+ctrlelr 1en am Vo zem sm mem % 1zen
: ’ 174771:>0:X2=1;1:X2=0; MP+svc-eret+addr Yo 1em o U 1w MK nen /36w o ow U/ 0em 12/ 136
po po 2:>0:X2=0;1:X2=0; MP.EL1+dmb+dataesrsvc ®/ien ®/am ®/1m °/1en e /m S fom
¢ ERET g: ERET ‘?v?tnesses S+dmb+svc 99 1em U aam U 1w U/ somm "seem %/am "/20m U/ 10m
po lpo Positive: 2 Negative: 499998 ::+gmg+e;§t - ﬁzlm Z:;zm sz B:zjazsn JZW Zei:;um S‘ZM mji;loom
Observation SB+svc-erets Sometimes 2 499998 +amb+rfisvc-aaar 164 241 124 3284 3604 30m 316M 1284
d:Ry=0 h:R x=0 Time SB+svc-erets 214.449 MP+dmb+fault o 1en am Sw um Mo fwm Swn e

[Selected results. Observations/total runs. ¥ =Allowed-but-unseen.]

A Model for Arm: OoO over exceptions.

“Arm-A exceptions” else TE hob | ctxob | asyncob)+
| if "FEAT_ExS" & ~"EOS" then 0 | [dsb]; po
include “cos.cat" else ERET (* Internal visibility requirement
include “arm-common. cat* (+ contextually-ordered-before +) -
. . . (* observed by *) let ctxob = acyclic po-lo e as
Runnable in the Isla symbolic evaluator for Sail: (- mignt-ve specutatively executen Lei'ans < rre | T | o specttative; [1SRICsE)
ISR
let specula()ve = (* dependency-ordered-before +) } {csE% no (* External visibility requirement
let dob = *
$ isla-axiomatic [...] -model exn.cat SB+svc-erets.litmus. toml | Jf S‘EA R then IRI; po else 0 (* async-ordered-before) e o on @l
SBrsvc-erets allowed (1 OF 1) 2785MS .o...vovrerenneennnnnns | if "SEA W then (W]: po else 6 s e o
(» atomic-ordered-before) speculative; [Takelnterrum] (+ Atomic: Basic LDXR/STXR
(= context-sync-events +) let aob | [TakeInterrupt]; constraint to forbid intervening
let CSE = writes
1sB (Ordered before *) empty rmw & (c as atomic
| if "FEAT_EXS® & ~*EIS" then @ (* barrier-ordered-before +) e (e] atih || & o
Tet bob =

Acknowledgements We thank Richard Grisenthwaite (Arm EVP, Chief Architect, and Fellow), Martin Weidmann (Director of Product Management, Arm Architecture and Technology Group), and Will Deacon (Google) for detailed discussions about
the Arm architecture. We thank Ben Laurie and Sarah de Haas (Google) for their support. We thank Jonathan Woodruff and others at the CL for their insightful discussions. This work was funded in part by Google. This work was funded in part by
Arm. This work was funded in part by an AUFF starter grant (Pichon-Pharabod). This work was funded in part by two Amazon Research Awards (Pichon-Pharabod; Sewell and Simner). This work was funded in part by UK Research and Innovation
(UKRI) under the UK government’s Horizon Europe funding guarantee for ERC-AdG-2022, EP/Y035976/1 SAFER. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 789108, ERC-AdG-2017 ELVER). This work is supported by ERC-2024-POC grant ELVER-CHECK, 101189371. Funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. This work was supported in part
by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme
Big Specification, where work on this paper was undertaken. This work was supported by EPSRC grant EP/Z000580/1. This work was funded in part by a Royal Society University Research Fellowship. One of the authors has received funding from the
UK Advanced Research and Innovation Agency (ARIA) as part of the project Qbs4Safety: Core Representation Underlying Safeguarded Al.

