
Precise Exceptions in Relaxed Architectures
Ben Simner1 Alasdair Armstrong1 Thomas Bauereiss1 Brian Campbell2

Ohad Kammar2 Jean Pichon-Pharabod3 Peter Sewell1

...in collaboration with Arm
1University of Cambridge 2University of Edinburgh 3Aarhus University

2025-06

Precision (à la Hennessy & Patterson):
exceptions appear to execute between instructions

sequential definition
incompatible?

w/ relaxed architectures (e.g. Arm)

Relaxed memory — Observably out-of-order on Arm
Arm, RISC-V, and POWER allow observable out-
of-order and speculative execution

Thread states

partially and tentatively executed instruction

completely executed and committed instruction

Storage state

a:W 0x0000 = 0x17

b:W 0x0010 = 0x78

c:W 0xc058 = 0x76
. . .

reads/writes

responses

[A tree of partially and completely executed fetch-decode-execute in-
stances, on a single hardware thread, in real-hardware or operational-model
execution.]

MOV X0,\#1
STR X0,[X1]
LDR X2,[X3]

Thread 0
|MOV X0,#1|
STR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

SB+pos AArch64

Allowed: 0:X2=0, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

R x=0d:

Thread 1

po pofr
fr

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]
LDR X4,[X5]
EOR X6,X4,X4
LDR X7,[X8]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=z, 1:X5=z

1:X8=x, *x=0, *y=0

PPOCA AArch64

Allowed: 1:X0=1, 1:X4=1 1:X7=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb ctrl

rf

addr

rf

fr

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
LDR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+ctrl AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st ctrlrffr LDR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0
|LDR X0,[X1]|
MOV X2,#1
STR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,

1:X1=y, 1:X3=x, *x=0, *y=0

LB+pos AArch64

Allowed: 0:X0=1, 1:X0=1

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

po porf
rf

Precision: not just a fence?
• out-of-order execution across exceptions?

• speculation?

• store forwarding?

• context synchronisation?

• external aborts: might-raise-exception?

• interrupts? ...and the GIC?

• how to specify all this, w.r.t. the architectural intent, hardware
behaviour, and system-software requirements?

Contributions
Testing hardware: Custom test harness with over 60 hand-written litmus tests.

W x=1a:

SVCb:

ERETc:

R y=0d:

Thread 0

W y=1e:

SVCf:

ERETg:

R x=0h:

Thread 1

po

po

po

po

po

po

fr
fr

rpi5 $./harness_kvm SB+svc-erets -n500k -q
Test SB+svc-erets Allowed
States 4
229760:>0:X2=1;1:X2=1;
95467:>0:X2=0;1:X2=1;
174771:>0:X2=1;1:X2=0;
2:>0:X2=0;1:X2=0;
Ok
Witnesses
Positive: 2 Negative: 499998
Observation SB+svc-erets Sometimes 2 499998
Time SB+svc-erets 214.449

[Selected results. Observations/total runs. U =Allowed-but-unseen.]
A Model for Arm: OoO over exceptions.

Runnable in the Isla symbolic evaluator for Sail:
$ isla-axiomatic [...] -model exn.cat SB+svc-erets.litmus.toml
SB+svc-erets allowed (1 of 1) 2785ms ?

"Arm-A exceptions"

include "cos.cat"
include "arm-common.cat"

(* might-be speculatively executed
*)

let speculative =
ctrl | (addr;po)

| if "SEA_R" then [R]; po else 0
| if "SEA_W" then [W]; po else 0

(* context-sync-events *)
let CSE =

ISB
| if "FEAT_ExS" & ∼"EIS" then 0

else TE
| if "FEAT_ExS" & ∼"EOS" then 0
else ERET

(* observed by *)
let obs = rfe | fr | co

(* dependency-ordered-before *)
let dob =

...

(* atomic-ordered-before *)
let aob =

...

(* barrier-ordered-before *)
let bob =

...
| [dsb]; po

(* contextually-ordered-before *)
let ctxob =

speculative; [MSR|CSE]
| [MSR]; po; [CSE]
| [CSE]; po

(* async-ordered-before *)
let asyncob =

speculative; [TakeInterrupt]
| [TakeInterrupt]; po

(* Ordered-before *)
let ob = (obs | dob | aob |

bob | ctxob | asyncob)+

(* Internal visibility requirement
*)

acyclic po-loc | fr | co | rf as
internal

(* External visibility requirement
*)

irreflexive ob as external

(* Atomic: Basic LDXR/STXR
constraint to forbid intervening
writes. *)

empty rmw & (fre; coe) as atomic

Acknowledgements We thank Richard Grisenthwaite (Arm EVP, Chief Architect, and Fellow), Martin Weidmann (Director of Product Management, Arm Architecture and Technology Group), and Will Deacon (Google) for detailed discussions about
the Arm architecture. We thank Ben Laurie and Sarah de Haas (Google) for their support. We thank Jonathan Woodruff and others at the CL for their insightful discussions. This work was funded in part by Google. This work was funded in part by
Arm. This work was funded in part by an AUFF starter grant (Pichon-Pharabod). This work was funded in part by two Amazon Research Awards (Pichon-Pharabod; Sewell and Simner). This work was funded in part by UK Research and Innovation
(UKRI) under the UK government’s Horizon Europe funding guarantee for ERC-AdG-2022, EP/Y035976/1 SAFER. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 789108, ERC-AdG-2017 ELVER). This work is supported by ERC-2024-POC grant ELVER-CHECK, 101189371. Funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. This work was supported in part
by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme
Big Specification, where work on this paper was undertaken. This work was supported by EPSRC grant EP/Z000580/1. This work was funded in part by a Royal Society University Research Fellowship. One of the authors has received funding from the
UK Advanced Research and Innovation Agency (ARIA) as part of the project Qbs4Safety: Core Representation Underlying Safeguarded AI.

1

