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Preface

This dissertation is the result of my own work and includes nothing which is the outcome of work done in
collaboration except where specifically indicated in the text.

It is not substantially the same as any work that has already been submitted, or, is being concurrently
submitted, for any degree, diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the preface and specified in the text.

It does not exceed the prescribed word limit for the relevant Degree Committee.
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Abstract

Computing relies on architecture specifications to decouple hardware and software development. Historically
these have been prose documents, with all the problems that entails, but research over the last ten years has
developed rigorous and executable-as-test-oracle specifications of mainstream architecture instruction sets
and ‘user-mode’ concurrency, clarifying architectures and bringing them into the scope of programming-
language semantics and verification.

However, the system semantics, of address translation and TLB maintenance, instruction-fetch and its
required cache maintenance, and exceptions and interrupts, remains mostly obscure, leaving us without a
solid foundation for verification of security-critical systems software.

We develop precise mathematical models, for those aspects of the Arm A-class architecture. We implement
these models as executable models, in both microarchitectural-flavoured operational and declarative
axiomatic style formats. We validate these models, against currently available hardware through the
production and evaluation of hardware test harnesses and test suites, and against the architectural intent
through discussions with Arm architects. We give a variety of hand-written and machine-generated litmus
tests, exercising parts of the architecture previously unexplored.

We discuss the nature of developing such models, and the challenges that writing specifications of existing
systems entails. We briefly touch on how these models have evolved over time, and how we imagine they
will evolve in the future as the remaining questions are resolved.
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A lay summary

Modern computing devices have become increasingly complex over time, powered by chips with many
interacting components: network controllers; audio and signal processing; graphics processing; memory
controllers; and at the heart is the central processing unit, or CPU. The CPU is the principal director of
the entire machine, in charge of running all the software and coordinating all the components together.
The CPU does calculations, directs data to be read or written, manages connections over the network,
and receives all the input from the outside world to decide how to respond.

Historically, ‘computers’ were mechanical calculators. As time progressed, computers progressed from
mechanical to electronic, and became general computation devices and not just simple calculators. They
moved from manual to automated, not actioning operations as directed by a human but executing programs:
pre-determined sequences of instructions telling the computer which set of operations to perform.

Machines like EDSAC paved the way for the modern computer. Its instructions were few and simple, e.g.:
read a number from the input tape, add or subtract two numbers, load a number from memory, store a
number into memory, go to a particular instruction, display a number to the user, stop the machine and
ring the bell. Computers have advanced much since then, but the interface has not: we still program by
giving the machine a sequence of very simple instructions to perform. Today there are many instruction set
architectures (ISAs), each defining standard collections of instructions. CPUs with Arm, x86 (Intel/AMD),
Power (IBM), and RISC-V ISAs now power billions of devices globally. These ISAs are far bigger than
EDSAC’s meagre ∼20 instructions, with the, comparatively small, Arm ISA defining 402 instructions in
its base architecture alone.

Modern CPUs have advanced in ways other than just having larger ISAs: caches are placed between the
CPU and memory, making data much quicker to access; they have become multicore, placing multiple
CPUs side-by-side on the same chip; and CPU designs have become superscalar, able to perform multiple
operations at the same time by executing instructions in a pipelined fashion.

Superscalar and multicore machines can therefore have multiple instructions touching the same shared
data simultaneously. If the programmer instructs two CPUs to concurrently access the same location,
then the behaviour of the machine is now determined not by the simple description of the individual
instructions, but by the complex interaction of these implementation-specific optimisations. Figuring out
what can happen in that case is the field of relaxed memory, essentially: what happens if the user pushes
two buttons that touch the same data at the same time? That is the object of study of this thesis.

We are interested in those buttons not for the every day programs, but those which give lower-level control
of the machine. These are the instructions used by operating systems to manage many programs at once,
and by hypervisors in the cloud to protect and isolate multiple customers virtual machines from one
another. Understanding the behaviour of those instructions is crucial in order to be able to develop robust
software that uses them and to make credible claims about that software.

In particular, we will investigate three areas of a modern high-performance multiprocessor architecture:
the ability to change the program being executed on the fly (self-modifying code); the machinery used
by systems software to control the access programs have to shared data (virtual memory); and the way
external events interact with a running program, and, in particular, the switch between a program and its
supervisor (exceptions/interrupts).

We do this in three steps. We (1) engage in broad technical discussions with architects and hardware
designers. We guide such discussions with specific software patterns or hardware optimisations in mind,
focusing on small representative experimental programs or litmus tests. We (2) reinforce the results of those
discussions through empirical analysis of existing hardware by building tools and using them to gather
experimental data, which further informs our and the architects’ understanding. Finally, we (3) employ
the tools and techniques from programming language theory to build robust formal mathematical models
giving a clear definition to that interface. All this clarifies the architects’ intent, gives software engineers
a sturdier basis to appeal to, and hopefully will enable richer efforts in certification and verification of
those key pieces of software that we all rely on to perform correctly and to keep our data secure.
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Chapter 1

Introduction

The computers we use every day are complex machines, made of many components, all working together to
execute the software we run on them. These machines act as interpreters for a custom binary programming
language, with commands made up of the instructions of the underlying architecture. These architectures
can be thought of as abstractions of the hardware: programming languages whose syntax is defined by
the binary encoding of the instructions from the Instruction Set Architecture (ISA), and whose semantics
is the composition of the sequential behaviours of the instructions with a machine execution model. The
architecture therefore can be thought of as the interface between hardware and software: defining the
guarantees hardware must give and that software may rely upon.

Over the years much work has gone into defining, mathematically and precisely, the architectures that the
processors we use every day implement. This previous work covers Intel/AMD’s x86 [1, 2, 3, 4], Arm’s
ARMv7-A [5] and Armv8-A [6, 7] architectures, IBM’s Power [8], RISC-V [9], and others. In theory, one
might think that this interface would be straightforward to define. One can give precise formal semantics to
the individual instructions, as Arm does, in its custom Architecture Specification Language (ASL) [10, 11],
and then tie instructions together in a fetch-decode-execute loop. In practice, however, modern industrial
architectures accumulate great complexity and subtlety. The Armv8-A and Intel reference manuals have
11,500 [12], and 4922 [1] pages respectively, covering everything from the individual instructions to the
interactions between those instructions and the way they interact with memory.

The complexity of these interfaces becomes most apparent with the interaction with multiprocessor systems
[13]. When multiple processors are executing concurrently, and communicating through shared memory,
then various hardware optimisations, which are usually invisible to the programmer outside of timing
effects, can become architecturally visible, affecting the semantics of the machine code, that is the values
capable of being read or written to registers or memory by those processors. Over the years, these effects
have been studied as part of the field of ‘relaxed memory’ research, resulting in numerous formal models
for a variety of microprocessor architectures giving precise mathematical semantics to the concurrent
behaviours of ‘userland’ machine code programs [14, 15, 3, 4, 16, 7, 17]. For high-level languages, there is
similar work in understanding their relaxed memory behaviours which arise from both their compilation
to such low-level machine programs and from the compiler’s optimisations [18, 19, 20, 16].

We now seek to expand this work on relaxed memory for the Arm architecture, to cover not just those
parts of the architectures used by userland processes, but the features required by systems software to
function. In this work we will focus on the Armv8-A architecture: the application-class processors that
power a large proportion of modern mobile devices. There are several reasons to focus on Arm: (1) they
are ubiquitous, with over a trillion devices running Arm hardware, (2) Arm has a diverse ecosystem
of implementations, meaning that software must program to this abstract interface much more tightly
than one might for other architectures, and (3) Arm have put a large amount of effort into precisely
and formally defining their ISA in their ASL language, enabling us to give a faithful specification to the
architectural envelope.

Specifically, we will focus on key architectural features required by operating systems and hypervisors,
which are not accessible, or only partially accessible, to userland processes: instruction fetching and cache
maintenance, virtual memory and TLB maintenance, and exceptions.
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1.1 Arm-A architecture overview

In this work we primarily focus on Arm. Arm will serve as an example representative modern microprocessor
architecture, but many of the behaviours and conclusions will also apply to other architectures including
RISC-V, IBM Power, and x86.

Arm produce three major classes of architectures, A-class (Application), R-class (Real-time) and M-class
(Microprocessor). Arm principally make architecture. While Arm do design several implementations,
many of which their partners use in their own designs, a number of partners also design their own
implementations which they use in their own chips. This gives us a large surface of interesting designs to
test, all implementing the same architecture. In particular, we will focus on the Application (A)-class
processors.

Arm’s A-class architecture is intended to support general-purpose high-performance microprocessors, such
as those found in mobile devices, tablets, laptops, and servers. Arm has three A-class architectures which
can currently be found in modern hardware: ARMv7-A, Armv8-A, and Armv9-A. ARMv7-A is 32-bit only.
Armv8-A and Armv9-A have both 32-bit and 64-bit modes, called execution states: AArch64 (for 64-bit
execution) or AArch32 (for 32-bit execution). AArch64 mode uses the A64 instruction set. AArch32
mode can use either the T32 or A32 instruction sets. This is illustrated in Figure 1.1. We will focus here
on the 64-bit architecture, AArch64 and its A64 ISA, as found in Armv8-A and Armv9-A. We use the
term Arm-A to refer to both Armv8-A and Armv9-A interchangeably.

Arm-A

AArch32 AArch64

T32 A32 A64

Architecture

Execution mode

ISA

Figure 1.1: Arm-A structure.

At the time of writing, A64 has 402 ‘base’ instructions and another 1,205 vector, matrix and floating-point
instructions. It has 31 general-purpose registers, accessible through either 32-bit views as w0-w30, or as
64-bit views as x0-x30, as shown in Figure 1.2. It has a dedicated zero register (wzr/xzr), and stack
pointer register (sp). Instructions are fixed-width, with 32-bit opcodes, and in the typical RISC style: with
most instructions reading operands from registers, and writing results back to registers, with only limited
support for immediate values. Execution in AArch64 is split into 4 ‘exception levels’, these demark the
levels of privilege that a process may have, ranging from EL0 (least privileged) to EL3 (most privileged).
Typically userland processes execute at EL0, with very limited access to hardware features; with operating
systems running at EL1, hypervisors running at EL2, and any firmware and secure monitor running
at EL3. There are also secure modes, which we do not consider here. Each CPU has its own bank of
registers; is executing in either AArch64 or AArch32 execution mode; is fetching, decoding and executing
instructions from either the A64, A32 or T32 ISAs; and is executing at at one of EL0, EL1, EL2 or EL3.

08162432404856 715233139475563

GPR#n

Xn

Wn

Figure 1.2: Arm-A W and X register views for a general-purpose register.
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Proc Proc Proc Proc

Kernel Kernel

Hypervisor

Firmware/Secure Monitor

EL0: Userland

EL1: Operating System

EL2: Hypervisor

EL3: Firmware

Least privileged

Most privileged

Figure 1.3: Arm-A exception levels.

1.2 Systems software

The programs we interact with on a day-to-day basis on our computers, our word processors and internet
browsers, are typically unprivileged programs, with restricted access to hardware. Such programs are
often referred to as executing in userland. These userland programs make up the bulk of the applications
we use every day, from spreadsheets, to web browsers, text editors, and so on. They typically execute with
the least privilege (in Arm, this means at EL0, as in Figure 1.3), and with the operating systems and
hypervisors below them restricting the access to memory they have through the use of virtual memory
(see Chapter 7).

Operating systems typically split userland execution into processes: discrete instances of programs, each
with some associated dedicated (virtual) memory [21, p. 85]. It is then the operating system, executing
with more privilege (at EL1), that configures and schedules these processes.

Modern operating systems seek to enforce isolation between these processes primarily through the
application of a virtual memory abstraction [21, pp. 185,194,604][22, p 227] (described in detail in Part II),
with each process behaving as if it had direct access to memory, when in fact the operating system (via
the hardware supporting it) are redirecting the accesses at runtime.

This virtual memory abstraction can be layered, with an extra level of abstraction below the operating
systems controlled by a hypervisor. Hypervisors behave similarly, but instead of controlling many processes
at EL0 they instead can control multiple operating systems at EL1.

Finally, software at EL3 executes any firmware or secure monitor. Generally, the firmware performs
hardware-specific actions, especially during boot (reading and writing implementation-defined configuration
registers and performing any functionality required by the System-on-Chip). The Secure Monitor is a
part of the Arm architecture’s TrustZone security extensions, and we will not discuss these features here.

Figure 1.3 demonstrates a typical setup, with firmware running at EL3, a hypervisor at EL2, which is
controlling a couple of operating systems, each of which has multiple processes under its control.
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1.3 Relaxed memory

Hardware and software are not simply direct implementations of the sequential semantics one might expect
of the languages they implement. Whether they are the machine languages implemented by microprocessors
or software languages implemented by compilers, as time progressed these implementations have acquired
multiple layers of abstraction, made with increasing complexity. Compilers and hardware optimise
programs to be faster, use less space, and be more compact. They propagate and duplicate reads, subsume
or outright eliminate writes, reorder operations in the program, replace one computation with another, or
even just remove entire sections of the program entirely.

These optimisations may be semantics preserving with respect to the simple sequential semantics: aside
from the timing effects they are designed to cause they are invisible to the programmer. This is, however,
not true in all cases, with many highly desirable optimisations not preserving the source program’s
semantics [23].

It is multithreaded programs, and multicore processors, which often breaks the assumptions made by these
optimisations. As an example, take Intel’s x86 microprocessor architecture. It allows its implementations
to perform an innocuous-sounding optimisation: to buffer writes together locally. This store buffering
optimisation is ubiquitous in the hardware world, but it permits multiple cores to have mutually inconsistent
views of memory [23, 3, 4]; where, at the same point in time, different cores see different values for the
same memory address. If the programmer was unaware of these behaviours and the required mitigation
in software, then this could break key invariants of software, leading to critical bugs in synchronisation
primitives [23], data structures, or software more generally [24].

Intel, and their x86 architecture, is not the only example of hardware architectures performing such
optimisations, and store buffering is not the only behaviour hardware exhibits. Arm [12], RISC-V [25],
and IBM’s Power [26] architectures all exhibit their own behaviours, with consequential requirements on
software. Each of these microprocessor architectures comes with its own reference manual, with tens of
thousands of pages attempting to describe these behaviours. These architectures are incomparable: the
behaviours they allow are not subsets of one another. Instead, there are several optimisations that some
architectures allow as observable behaviour, where others do not. Those optimisations include, but are
not limited to, things such as: reordering of instructions, prefetching and caching of data and instructions,
buffering of loads and stores, hierarchical cache layouts, and branch prediction with speculation down
those branches. It is not that some implementations perform these optimisations while others do not, but
that those architectures which allow such behaviours to be observed do not require that the hardware
include relevant hazard checking or invalidations which would recover from ‘bad’ states.

It is not just hardware that has these concerns. A variety of software languages, including C and C++
[27, 28], Java [29, §17.4], Rust [30], and Haskell [31], have comparable behaviours derived both from
similar optimisations done by their compilers and interpreters, but also inherited from the hardware they
run upon.

Over the decades, the community has spent a large amount of effort in understanding the behaviours
the hardware actually exhibits, by empirically observing what extant hardware does, by talking with
architects and hardware designers about what they imagine hardware could do, now or in the future,
and by building precise mathematical models which capture the architectural ‘envelope’ of allowable
behaviours. These models come in many flavours, and in Chapter 2 we will explore two such models for
Arm, and the set of behaviours they are intended to capture.
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1.4 Contributions

In this work, we extend the previous relaxed memory work on Arm into the realm of systems software:
instruction fetch and cache maintenance (Part I), pagetables and TLB maintenance (Part II), and a start
on exception handling (Part III). We produce a microarchitectural-style operational semantics for the first
in the style of Flat [7], and herd-style declarative (‘axiomatic’) semantics [32] for all parts.

In Part I, we produce:

. A set of litmus tests (Ch.3) which cover a variety of phenomena and architectural features, including
self-modifying code and the required cache maintenance, clarifying the architectural intent.

. A microarchitectural-style structural-operational-semantics (Ch.4) which implements that architec-
tural intent as we understand it.

. A formulation as an axiomatic-style declarative semantics (Ch.5), intended equivalent to the
aforementioned operational model, as an extension to the axiomatic model of [7].

. An extension of the litmus7 tool [33], and a set of experimental results from testing against a range
of hardware (Ch.6).

The models cover both the base architecture, as well as the implementation-defined choices for stronger
cache types. The tests represent the architectural intent as we understand it, modulo mixed-size accesses
and open questions where explicitly stated. The base model is thoroughly validated through discussions
with architects and experimental testing of hardware, although at the time of the work the hardware
did not support the stronger cache types. The two models are intended equivalent, and, although no
formal proof-of-equivalence has been done, we have empirically tested their equivalence through the
auto-generation of a large suite of tests with an extension to the diy [34] tool. Since publication of the
work, Arm have extended the official Arm memory model with instruction fetching and cache maintenance,
although we do not believe the architectural intent has changed since this work.

In Part II, we produce:

. A collection of litmus tests for virtual memory and TLB maintenance, for multi-level translation
table walks with both stages (Ch.8), clarifying the architectural intent in many cases or identifying
remaining open problems in others.

. An axiomatic-style declarative semantics (Ch.9), as an extension to the original Armv8 model.

. A new hardware testing harness, and validation of the models by experimentation against hardware,
and through abstraction proofs (Ch.10).

We have a large collection of hand-written litmus tests, covering a substantial portion of the virtual memory
systems architecture of Arm: translation table walks and the respective translation reads, caching in TLBs,
TLB maintenance, virtualisation and multi-stage TLB invalidations, and how these all interact with the
rest of the memory model. We further clarify the architectural intent in many of these areas, although
in some places the architectural intent has further evolved since the original publication of the work;
such places are explicitly stated as such, e.g. for forwarding and enhanced-translation-synchronisation.
Arm has independent, but adjacent, work on virtual memory covering an overlapping set of features but
with a focus on hardware support for access flags and dirty bits as required by KVM; we believe the
architectural intent for the tests presented here has no changed, except where explicitly stated, and the
models correspond on the tests.

In Part III, we produce:

. A set of litmus tests (Ch.11), covering precise exceptions, clarifying the architectural intent around
precision and synchrony with respect to the weak memory model.

. An axiomatic-style declarative semantics for precise exceptions in Arm (Ch.12).

. An extension to the hardware testing harness of Chapter 10 to support hardware testing of exceptions,
and experimental results from running tests on hardware (Ch.13).

We cover the base exception machinery, clarifying the ordering guarantees of precise exceptions, and
exploring how external errors in the system can effect those guarantees. The model presented, to the best of
our knowledge, captures this intent. We have validated the model against some hardware implementations,
although much more is required for high confidence. We are aware of independent work by Arm in the
same area at the time of writing, but do not know its status.
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1.5 Publications and collaborations

The work presented in the three parts were done in collaboration with a variety of other people on different
aspects, resulting in the following publications:

. ‘ARMv8-A system semantics: instruction fetch in relaxed architectures’, in the Proceedings
of the 29th European Symposium on Programming (ESOP 2020), by Ben Simner, Shaked Flur,
Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell
[35].

. ‘Isla: Integrating full-scale ISA semantics, axiomatic concurrency models’, in the Proceed-
ings of the 33rd International Conference on Computer Aided Verification (CAV 2021), by Alasdair
Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell [36].

. ‘Relaxed virtual memory in Armv8-A’, in the Proceedings of the 31st European Symposium
on Programming (ESOP 2022), by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod,
Christopher Pulte, Richard Grisenthwaite, and Peter Sewell [37].

. ‘Isla: Integrating full-scale ISA semantics, axiomatic concurrency models (extended
version)’, in Formal Methods in System Design (May, 2023), by Alasdair Armstrong, Brian
Campbell, Ben Simner, Christopher Pulte, and Peter Sewell [38].

. ‘Precise exceptions in relaxed architectures’, Accepted for publication at the 52nd International
Symposium on Computer Architecture (ISCA 2025), arXiv pre-print, by Ben Simner, Alasdair
Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter
Sewell [39].

Many of the aspects of the work presented in this thesis were done jointly with many of the people listed
above. The Isla tooling was primarily written by Alasdair Armstrong. The work on the litmus and
diy tools was done by Luc Maranget. The production of litmus tests and discussions with architects
and microarchitects was done jointly with Shaked Flur, Christopher Pulte, Ohad Kammar, Thibaut
Pérami, Jean-Pichon Pharabod, and Peter Sewell. The writing of models was done in collaboration with
Christopher Pulte and Shaked Flur (for ifetch); Christopher Pulte and Thibaut Pérami (for VMSA); and
Jean Pichon-Pharabod and Ohad Kammar (for exceptions). Validation of the models, through proof and
hardware testing, was done jointly with Jean Pichon-Pharabod (on the VMSA abstraction proofs) and
Luc Maranget (test generation and hardware testing for ifetch).

Much of the above work was done in collaboration with Arm and their staff, in particular their chief
architect, Richard Grisenthwaite. He is our primary contact within Arm, and we have a close collaboration
with him characterised by discussions on Arm hardware, the requirements of the software that runs on
them, the consequences of the models we propose, and, where relevant, the history of the architecture. In
cases where we present some behaviour and declare that it is ‘allowed by Arm’, it usually means we have
confirmation from the chief architect directly. That said, the Arm architecture and its reference text is
solely the responsibility of Arm, and the architectural intent can change over time. This thesis describes
our current understanding at the time of writing; it is not an Arm publication. We also work closely with
the creator of the original Armv8 memory model, Will Deacon, who maintained the official Arm model
until 2020, and who is a co-maintainer of the Arm port of the Linux kernel. We also engaged in various
discussions with many members of current and former Arm staff: Ian Caulfield, Nikos Nikoleris, Gustavo
Petri, Anthony Fox, Nathan Chong, Martin Weidmann, Jade Alglave, and others, who discussed with us
the models, hardware implementations, and provided feedback individually on many of the aforementioned
publications.
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1.6 Thesis overview

This document starts with an introduction to systems software and relaxed memory (Chapter 1), and
a discussion of the technical details of the ‘usermode’ Arm model (Chapter 2). The remainder of the
document is then split into three parts:

. Instruction fetch (Part I comprising chapters 3-6)

. Virtual memory (Part II comprising chapters 7-10)

. Exceptions (Part III, comprising chapters 11-13)

We end with a short conclusion (Chapter 14), which includes a discussion of the limitations of the work
presented here and some reasonable next steps.

Background Chapter 2 covers the fundamental concepts behind relaxed memory: the idea of litmus
testing as a means to clarify and understand architecture, including a selection of important and useful
litmus tests from the literature; how Arm defines their intra-instruction semantics and how such semantics
compose with a concurrency model; the two kinds of concurrency models we will explore in this thesis,
microarchitectural-style operational semantics and axiomatic-style declarative semantics; and instantiations
of these for Arm-A.

Part I: Instruction fetching We start with a brief overview of the existing prose text in the Arm-A
specification for instruction fetch and the related instruction (and data) cache maintenance operations.
Focusing primarily on self-modifying (and concurrent modification) of code, such as what is required for
just-in-time compilers (JITs), dynamic loaders, and operating systems schedulers, we produce a set of
litmus tests (Ch.3) to capture the key relaxed behaviours that arise from the optimisations found in modern
microprocessors, and clarify where such behaviours were unclear. We produce a microarchitectural-style
operational semantics (Ch.4) based on our discussions with architects and micro-architects. We give an
axiomatic model (Ch.5) intended equivalent to the operational model. We then validate that these models
(Ch.6), confirming they coincide for the litmus tests given in the chapter. We automatically generate a
large test suite of novel tests and check the two models do not diverge on these tests, and additionally
check that they do not forbid behaviours exhibited on hardware by running the test suite on a selection of
modern Arm processors.

Part II: Virtual memory Structured similarly to the instruction-fetching chapters, but independently
of them, we explore the Arm Virtual Memory Systems Architecture or VMSA. We begin with some
background information in the form of an overview of the sequential aspects (Ch.7), describing the
structure and behaviour of the Arm address translation and memory management architecture without
considering concurrency or caching effects. Then, we explore the relaxed behaviours of virtual memory
(Ch.8) by producing litmus tests and discussing the architectural intent. We produce an axiomatic-style
model for relaxed virtual memory (Ch.9), as an extension to the original (user mode) model, using the
whole Arm translation table walk, including multiple stages, and TLB maintenance. Finally, there is a
discussion on the validation of this model (Ch.10) achieved by discussion with the Arm chief architect,
along with some limited testing of current Arm hardware, and some proofs over the axiomatic model for
some expected key abstraction results.

Part III: Exceptions We finish the trio with a short overview of the initial work on relaxed exceptions
in Arm-A. We begin with a discussion on the Arm interpretation of precise exceptions and give litmus
tests which capture the key phenomena (Ch.11); we then give an axiomatic model which capture those
phenomena (Ch.12), and finally produce some preliminary hardware results to support the models (Ch.13).

Conclusion Finally, Chapter 14 presents a short summary of the presented work, its limitations, and
relation to other work in the area. We discuss what was learned, in terms not only of the models produced
but also of the process itself, before finally touching on what remains as potential future work.
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Chapter 2

Modelling Arm: background

Now we turn our attention to the now well-established methods of precisely and formally modelling
relaxed memory behaviours, in the context of Arm-A. In this chapter, we will cover two methods:
microarchitectural-style operational semantics, which mimic the mechanisms seen on hardware; and
axiomatic-style declarative models which succinctly define the validity of whole-program executions.

The idea of litmus testing is central: litmus tests provide a way of succinctly and efficiently describing and
enumerating the behaviours of the underlying architecture that the models should allow or forbid. We
start by looking at litmus testing in general, and some specific litmus tests of interest to the Armv8-A
models, before looking at the models in detail.

2.1 Relaxed behaviours and litmus testing

The foundation of much relaxed memory work has been focused on litmus tests, small, self-contained,
executable, snippets of code. They each capture a simple pattern or shape one may find in software.

Take the classic MP (‘Message passing’) litmus test as an example [23]. The code listing for the AArch64
(Arm-A) variant can be found in Figure 2.1. The ‘MP’ portion of the name captures the shape: the core
pattern (or precisely, the cycle) of events which act as the skeleton of the test. In this case, message
passing is a common software pattern, where one thread writes some data followed by a flag signalling
the data is ready, while another thread concurrently reads the flag in order to further read the data.
Thus, the ‘MP’ shape implies a two-threaded test with two locations (typically named x and y), with one
thread (typically written first) writing to the locations, and another thread reading them in the converse
order. The second half of the name (‘+pos’) designates the variation on the shape, in this case, that
both threads have accesses just program-order after each other with no other barriers or dependencies.
Typically these variations are defined as the sequence of orderings between events (separated by - in the
name) for each thread (separated by +). Thus, we get a whole family of litmus tests based on the basic
MP shape: MP+pos (the one shown here), MP+dmbs (with an Arm dmb memory barrier on each thread),
MP+dmb.st+addr (with an Arm dmb.st memory barrier on the writer thread and an address dependency
on the reader thread), and so on.
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MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+pos AArch64

Allowed: 1:X0=1, 1:X2=0

Figure 2.1: MP test code listing.

The code listing given is totally standard [40]: the top line contains the name of the litmus test (MP+pos),
and the architecture that this variant is for (AArch64); the second section contains the initial register
and memory state; the next section contains the assembly code listing for each thread; and finally at the
bottom is a conjectured outcome (plus its architectural intent, if known) given as a constraint on the final
register and memory state. On Arm, the outcome given in the listing in Figure 2.1 is allowed.

On a sequentially consistent (SC ) machine, whose executions are simply the interleaving of the instructions
of all threads [41], there are many executions of the listed code, each giving rise to (potentially distinct)
final states. To see the highlighted outcome, where Thread 1 reads 1 for y but 0 for x, there is only one
possible combination of reads: that the read of y reads from the write to y, and the read of x reads from
the initial memory state. This combination is not consistent with any of the simple interleavings of the
instructions that a sequentially consistent machine would perform. We represent these executions not
as an interleaving of the instructions, but as a graph of the events of those instructions (the reads and
writes they perform) connected by their implicit orderings. There may be, and in this case, are, multiple
different operational traces that lead to the same execution witness, which we shall explore later. The
execution graph that corresponds to the allowed outcome can be found in Figure 2.2.

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

po porf
fr

Figure 2.2: MP test execution diagram.

The nodes on the left, below the Thread 0 label, correspond to events from executing Thread 0 of the
program. The event labelled a corresponds to the propagation of the first store in Thread 0 (the write
of 1 to x) to memory, and event b corresponds to the write of the second store being propagated. They
are related by program-order (po), indicating that the instruction a came from is earlier than that of b
in the instruction stream of the processor; that is, a comes before b in the control flow of that thread,
as determined by the order the processor fetched and decoded the instructions in. Similarly, below the
Thread 1 label we see the event labelled c: the read event corresponding to the first load, reading the
address y and getting the value 1. The value read came from the write event b, therefore b is related to c
by the reads-from (rf) relation. Finally, the load of x reads from the initial value in memory, so we have
another read event, labelled d, which reads 0. The read d of x read a value from a write to x from before
the event a happened. In this case, that write is the initial write from the ‘Initial state’ of the test, and so
d is related to a by the from-reads (fr) relation.

On Arm, the writes and reads need not execute in the order they appear in the program. So, while this
execution appears to have a cyclic dependency in the order events must have happened in, the cycle can
be broken by re-ordering the execution of either the reads or writes. The execution is therefore allowed,
and we readily observe this outcome on most modern hardware.
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Litmus testing We use litmus tests to explore behaviours: particular patterns in code, or specific
hardware mechanisms that are responsible for allowing or forbidding the test. Many litmus tests exercise
many microarchitectural mechanisms whose composition or confluence leads to the final result, or where
there may be multiple different mechanisms or choices that could each independently lead to the same
result. For example, in the MP+pos test we just saw, there are three well-understood microarchitectural
explanations: that the stores are committed out-of-order (re-ordered within the pipeline, store queue, or
other thread-local storage), that the stores propagate out-of-order (are pushed out-of-order into the shared
memory), or that the loads satisfy out-of-order (either requested out-of-order in the pipeline, or requests
returned out-of-order from the memory subsystem). Any of the above explanations are alone sufficient to
allow the relaxed outcome highlighted by the test. One needs to prevent out-of-order execution on both
sides of the test (through the use of memory barriers, for example) to forbid that relaxed outcome.

Previous work has systematically enumerated these various patterns to produce a large collection of litmus
tests, for a range of architectures, each with an assortment of variations for different intra-thread orderings
(for barriers, dependencies, and so on). This has included obtaining both the architectural intent for
those patterns, as well as extensive testing campaigns on a variety of modern hardware. In some cases,
some outcome may be architecturally allowed, that is, the final state constraint is permitted to occur in
practice, but has not been experimentally observed on any hardware so far. In other cases, there may
be no architecturally allowed execution that permits a particular outcome, but it is still observed on
hardware: these are (or at least imply there exist) hardware errata, more commonly referred to as ‘bugs’.
We will not do an exhaustive review of all the behaviours that are allowed and forbidden in Arm, instead
referring the reader to the existing literature [14, 40, 32, 16, 7, 6, 42]. However, we will briefly look at
some of the behaviours that the reader should be familiar with in order to understand future chapters,
namely coherence, barriers and dependencies, and multi-copy atomicity.

2.1.1 Thread-local ordering

On Arm, instructions need not execute in the order they appear in the program, as we just saw. Reads
and writes are free to be re-ordered with respect to each other, with few restrictions. This is in contrast
to other architectures such as Intel/AMD’s x86, where only writes can be re-ordered with respect to
program-order later reads (through store buffering) [1, 23, 3]. Note that this does not mean that the
hardware is not allowed to re-order the instructions, but that if it does, it must preserve the illusion of
in-order execution to the programmer.

Not all re-orderings are permissible. In particular, Arm requires that single-threaded programs should
behave as if executed sequentially, at least for loads and stores. This means that non-SC executions only
come about through the interaction between multiple threads. We have already seen this with the MP test
earlier. To forbid the outcome of that test we must add barriers or dependencies to enforce thread-local
ordering, preventing the events from being reordered. Two (forbidden) variations of MP can be found in
Figure 2.3.

Dependencies in Arm arise from the intrinsic control and data flow of the program. Usually, they are
categorised into three kinds: address dependencies (addr), from reads to memory events that use that
read in the computation of the address the memory event accesses; data dependencies (data), from reads
to writes, where the value read is used in the computation of the value written; and control dependencies
(ctrl), from reads to events of instructions program-order after a (conditional) branch in the program
where the value of the read was used in the computation of the value used in the condition. Note that these
are not purely dynamic properties of the execution, but rather they are syntactic in that the dependencies
an instruction induces is a statically known property, thus there are no so-called ‘fake’ dependencies: the
values read or written at runtime by an instruction does not matter; only the set of registers it accesses.

Not all dependencies are equal. On Arm, address and data dependencies enforce both read-to-read
and read-to-write ordering, whereas control dependencies enforce read-to-write but not read-to-read
ordering. Speculation allows reads to happen ‘early’, but not writes; this gives an asymmetry where
control dependencies provide strength to a write but not a read. This can be seen in the two tests in
Figure 2.4.
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+dmbs AArch64

Forbidden:
1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb dmbrf
fr

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.3: Two variants of MP with thread-local ordering.
On the left: MP+dmbs with Arm DMB barrier between instructions.
On the right: MP+dmb.st+addr with an address dependency between the reads.

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+ctrl AArch64

Allowed: 1:X0=1, 1:X2=0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]

Thread 0

|LDR X0,[X1]|
CBNZ X0,LC01
LC01:
MOV X2,#1
STR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y, 1:X1=y, 1:X3=x,
*x=0, *y=0

LB+ctrls AArch64

Forbidden: 0:X0=1, 1:X0=1

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st ctrlrffr

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

ctrl ctrlrf
rf

Figure 2.4: Two litmus tests with speculation.
On the left: MP+dmb.st+ctrl with Arm DMB barrier between the writes, but a control dependency between
the reads.
On the right: LB+ctrls, a variant of the classic ‘load buffering’ litmus test, with control dependencies to
both writes.
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MOV X0,#1
STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 1:X1=x, 1:X3=x,
*x=0,

CoRR1 AArch64

Forbidden:
1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
LDR X2,[X3]

Thread 0

Initial state:
0:X1=x, 1:X1=x,
0:X3=x, *x=0

CoWR AArch64

Forbidden: 0:X2=0

W x=1a:

Thread 0

R x=1b:

R x=0c:

Thread 1

po

rf

fr

W x=1a:

R x=0b:

Thread 0

pofr

Figure 2.5: Two coherence litmus tests.
On the left: CoRR1, that two subsequent reads of the same location in the same thread should be consistent
with the coherence order. On the right: CoWR, that a read of a location cannot skip over a newer
program-order earlier write from the same thread.

2.1.2 Coherence

A guarantee provided by most modern microprocessor architectures is coherence: that there is, for each
location, a total order that writes to that location happen in, that all threads agree on [8]. Microarchi-
tecturally, this emerges naturally from the desire to ensure that writes are never dropped by the cache
protocol, and since writes may be of sub-cache-line size (down to individual bytes) the cache protocol
must ensure consistency over whole cache lines at a time.

This property is one that sets processor consistency models apart from those one would find in databases
and other distributed systems, which generally do not require it, such as the classic causal consistency
model for distributed systems [43].

Two of the key litmus tests for coherence can be found in Figure 2.5.

2.1.3 Multi-copy atomicity

Coherence is not sufficient to guarantee that all threads agree on what the most recent write is at the
same point in time.

In particular, while all threads will see the same writes to the same location in the same order, at any
particular moment some threads may not have caught up to the latest write yet. Architectures that have
this property are called non-multi-copy atomic [13].

Arm has a kind of partial multi-copy atomicity, which they term other-multi-copy atomicity. Other-multi-
copy atomicity gives guarantees similar to multi-copy-atomicity, but allows writes to be read by the
writing thread itself earlier than they can be seen by other threads, however, once a write has propagated
to another thread then all threads must see that write or something newer [7]. The hardware mechanism
which motivates this is write forwarding: the processor can satisfy a read from a same-thread same-location
program-order-earlier write, if that write has committed, even before the write has propagated out to
memory. Figure 2.6 contains the classic PPOCA (preserved-program-order–control–address) litmus test,
which shows that writes can be observed locally before being propagated to other threads, even down
speculative branches. Figure 2.7 shows the IRIW (independent-reads independent-writes) litmus test,
which demonstrates the latter point, that writes propagate to all threads simultaneously.
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MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X8,X0,X0
MOV X2,#1
STR X2,[X3,X8]
LDR X4,[X5]
EOR X9,X4,X4
LDR X6,[X7,X9]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x,
1:X3=z, 1:X5=z,
*x=0, *y=0, *z=0

MP+dmb.st+addr-rfi-addrAArch64

Allowed:
1:X0=1, 1:X4=1, 1:X6=0

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]
LDR X4,[X5]
EOR X6,X4,X4
LDR X7,[X8]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=z, 1:X5=z
1:X8=x, *x=0, *y=0

PPOCA AArch64

Allowed: 1:X0=1, 1:X4=1
1:X7=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb st addr

po

addr

rf

rf

fr

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb ctrl

rf

addr

rf

fr

Figure 2.6: Two litmus tests with write forwarding.
On the left: MP+dmb.st+addr-rfi-addr with write-forwarding down a non-speculative branch.
On the right: PPOCA, with write-forwarding down a speculative branch.

MOV X0,#1
STR X0,[X1]

Thread 0

LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 1

MOV X0,#1
STR X0,[X1]

Thread 2

LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 3

Initial state: 0:X1=x, 1:X1=x, 1:X3=y,
2:X1=y, 3:X1=y, 3:X3=x, *x=0, *y=0

IRIW+dmbs AArch64

Forbidden: 1:X0=1, 1:X2=0, 3:X0=1, 3:X2=0

W x=1a:

Thread 0

R x=1b:

R y=0c:

Thread 1

W y=1d:

Thread 2

R y=1e:

R x=0f:

Thread 3

dmb dmb

rf

fr

rf

fr

Figure 2.7: IRIW+dmbs: a classic multi-copy atomicity litmus test.

2.1. RELAXED BEHAVIOURS AND LITMUS TESTING 22



2.2 Intra-instruction semantics

Previous work has, for Arm and RISC-V, established high-fidelity models for the intra-instruction behaviour
of individual instructions. That is, the sequential behaviour of the register and memory accesses, and any
arithmetic over them, the instruction performs.

Arm produces such models as part of their architecture specifications, in their custom ASL (architecture
specification language) programming language [10], which can be found in the manual [12] or otherwise
acquired from Arm [44].

The ASL and Sail specification languages Although this work is focused on Arm-A and Arm use ASL,
the tools we build upon are architecture-agnostic and use the Sail specification language for instruction
semantics [45]. We therefore use the automatically generated ASL-to-Sail translation [45, 46] of the official
Arm specification for most of the examples presented here, except where specified otherwise. Sail and
ASL are very similar languages, and are used for broadly the same purposes, with similar syntax and
semantics; we will not go into depth here into the history or minutiae of them; instead, we will look at just
one aspect of Sail, its primitive effects, as it is important to the function of the tools we will use later on.

Outcomes Sail programs have effects for the interaction between the instruction semantics and the
registers and memory. These effects make Sail programs monadic computations over the Sail effect
datatype (called outcome). Figure 2.8 lists the outcomes defined by the Sail standard library [15], it
contains one pure value (Done), and the other values each represent one step of the intra-instruction
semantics suspended at the interface with the environment, containing a continuation to resume the
execution with the environment’s choice.

Read_mem(read_kind, address, size, read_continuation) Read request
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 2.8: Outcomes (the Sail effect datatype).

An example instruction As an example, take the Arm ‘ADD Xd,Xn,Xm’ instruction, whose Sail code can
be found in Figure 2.10, as translated from the original source ASL code in the Arm manual. It takes
two input registers (Xn,Xm), adds the values stored in them together, and stores the result in the output
register (Xd), updating any flags as it does so.

The calls to X_read and X_set, and (not shown) EndOfInstruction, each generates an effect. Omitting the
outcomes for the flag registers, and the exact arithmetic calculation, executing this code results in the
trace of outcomes shown in Figure 2.9:

Read_reg(n, fun v1 ->
Read_reg(m, fun v2 ->

Write_reg(d, (v1 + v2), Done)
)

)

Figure 2.9: Trace from the Arm ADD instruction.

The set of such traces define the semantics of that instruction, and the concurrency models described
later in this chapter are parameterised over such traces.
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1 function execute_aarch64_instrs_integer_arithmetic_add_sub_shiftedreg (d,
datasize , m, n, setflags , shift_amount , shift_type , sub_op) = {

2 result : bits('datasize) = undefined;
3 let operand1 : bits('datasize) = X_read(datasize , n);
4 operand2 : bits('datasize) = ShiftReg(datasize , m, shift_type , shift_amount)

;
5 nzcv : bits (4) = undefined;
6 carry_in : bits (1) = undefined;
7 if sub_op then {
8 operand2 = not_vec(operand2);
9 carry_in = 0b1

10 } else {
11 carry_in = 0b0
12 };
13 (result , nzcv) = AddWithCarry(operand1 , operand2 , carry_in);
14 if setflags then {
15 (PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv
16 };
17 X_set(datasize , d) = result
18 }

Figure 2.10: Sail pseudocode for the ADD Xd,Xn,Xm instruction.
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2.3 Arm-A operational model

The state of the art multi-copy-atomic operational semantics for Arm is the Flat model [7, 6, 47] by Flur,
Pulte, et al. Flat is a small-step operational semantics, with transitions designed to (abstractly) match
the kinds of actions we see in hardware. It is implemented as an executable-as-a-test-oracle model in the
RMEM tool [48].

RMEM is written in a combination of OCaml, and the Lem [49, 50] language for operational semantics.
It can either be run through a command-line interface, for example to run batches of tests, or can be used
interactively, including through a version compiled to JavaScript which can be run in a web browser [51].

Flat has an explicit flat memory (from which it derives its name), which stores the most recent write that
propagated to memory for each location, and a set of hardware threads, with each thread containing a tree
of concurrently executing instruction instances with explicit out-of-order execution (abstractly modelling
modern microprocessor pipelines).

Figure 2.11 illustrates a snapshot of an example instruction tree from a thread with 10 in-flight instruction
instances. Some instructions (i2, filled-in blue) have finished executing, some (i3, i6, i7, i9, blank/white)
have not begun executing, and some (i0, i1, i4, i8, i5, partly-filled blue) are currently in-progress. Flat has
explicit speculation down branches, and re-ordering of instructions. This can be seen in the diagram:
there is a fork in the tree at i3 (a branch in the program) which has not yet been executed while some
earlier instructions (i0, i1) have not finished (and so it is not yet known whether the program will execute
down branch i4 or i8), but later instructions down both branches have already begun executing.

i0 i1 i2 i3
i4 i5

i6

i7
i8 i9

Figure 2.11: A tree of 10 concurrently executing instruction instances.

Flat is therefore composed of two subsystems: the thread subsystem which contains the pool of threads
with their instruction trees, a storage subsystem which contains a flat array for memory, as sketched in
Figure 2.12.

P0 P1

. . .

Pn

. . .

Flat memory

Figure 2.12: Flat state (diagram).

Thread subsystem More precisely, the thread subsystem has a per-thread tree of instruction instances.
Each node in the tree is an instruction instance, a piece of state representing a single instruction in the
process of being fetched, decoded and executed; its state includes the current pseudocode state (such
states are listed in Figure 2.13), as well as any other ancillary data required by the operational model
(pending addresses and values and so on).

The thread system then has a set of guarded transitions, split into two groups: the local transitions, each
of which calls the continuation contained within the outcome of an instance and updates the instruction
instance state with the new outcome; and, the synchronised transitions which can also update the storage
subsystem state, which typically update the current pseudocode state without calling the continuation.
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Figure 2.14 contains a fragment of the Lem code from RMEM which defines the thread subsystem state
and the relevant transitions (but not their guards).

Plain(next_state) Ready to make a pseudocode step
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store

Figure 2.13: Operational pseudocode states.

1 type threadSubsystem =
2 nat → instruction_tree;
3 type instruction_tree =
4 list (instruction_instance *

instruction_tree);
5 type instruction_instance =
6 <| id: nat;
7 program_loc: address;
8 micro_op_state: micro_op_state;
9 mem_reads: set address;

10 ... |>
11 type micro_op_state =
12 | MOS_plain
13 of outcome
14 | MOS_pending_mem_read
15 of (value → outcome)
16 | MOS_potential_mem_write
17 of outcome
18 type thread_trans =
19 | T_register_read
20 of reg_name * value
21 | T_register_write

22 of reg_name * value
23 | T_satisfy_read
24 of value
25 | T_mem_write_footprint
26 of list write
27 | T_mem_potential_write
28 of list write
29 | T_commit_store
30 | T_complete_store
31 | T_commit_barrier
32 of barrier_kind
33 | ...
34 type sync_trans =
35 | T_propagate_write
36 of write
37 | T_satisfy_read
38 of read_request * value
39 | T_propagate_barrier
40 of barrier_kind
41 | ...

Figure 2.14: Lem fragment of thread subsystem state.

Storage subsystem The Flat storage subsystem is comparatively straightforward: a finite map from
location to the most-recently propagated write to that location. Figure 2.15 contains a fragment of the
Lem sources from RMEM for the (non-mixed-size) Flat storage subsystem.

type flat_storage_subsystem_state = <| memory: nat → write; ... |>

Figure 2.15: Simplified Lem listing of the Flat storage subsystem state from RMEM.

Transitions Flat defines a set of common transitions for all instructions, as well as a set of specific
transitions for stores, loads, and barriers. Below is a complete list of the local and synchronised transitions.

Common transitions Transitions on a Store instruction
.Fetch instruction .Initiate memory writes of store instruction, with their footprints
.Pseudocode internal step .Instantiate memory write values of store instruction
.Register read .Commit store instruction
.Register write .Propagate memory write
.Finish instruction .Complete store instruction (when its writes are all propagated)

Transitions on a Barrier Transitions on a Load instruction
.Commit barrier .Initiate memory reads of load instruction

.Satisfy memory read by forwarding from writes

.Satisfy memory read from memory

.Complete load instruction (when all its reads are entirely satisfied)

Each transition has a guard, a predicate over the state that must be true in order for the transition to be
valid, and an action, a function that updates the whole system state from one configuration to another.
See Appendix B for a full rendering of the Flat model.
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2.4 Arm-A axiomatic model

In contrast to the operational model presented in the previous section, a model with equivalent behaviour
can be given declaratively, in a so-called axiomatic style. Axiomatic models describe the allowed behaviour
of programs by a predicate, typically described by a collection of axioms, constraining the event of the
candidate executions of that program. These candidates are the graphs of events of a single run of the
program, with the events related by a set of intrinsic relations capturing the order of events and their
dependencies.

The model first considers an overapproximate set of such candidates: executions consistent with the
intra-instruction semantics, but where the values used in the program are unconstrained. The model
then has axioms, generally acyclicity or emptiness of relations over the events, which reject some of these
executions as inconsistent. Those that remain are the valid, or consistent, executions of the program.

The model can therefore be used to assert whether some given program can reach a final state satisfying
some constraint. If there is a candidate executions of the program, which is consistent with the axioms
of the model, then the model is said to allow that execution, and if the final state satisfies the given
constraint, that outcome is permitted by the model.

Succinctly, an axiomatic model winnows down a large set of graphs of potential whole-program executions
to a small set of allowed executions by checking that the events of those executions do not violate any of
the axioms of the model.

2.4.1 Arm-A candidate executions

Arm-A candidate executions are composed of two parts: the set of events of the program, which for Arm
these are the memory access and barrier events, labelled with their access type (read or write, or barrier
kind); and the candidate relations over those events, such as program-order and address/control/data
dependencies, amongst others.

It is often useful to split the candidate execution definition into two steps: first, to define a pre-execution
which contains all the events, and the relations which are intrinsic to the program; then to complete these
into a candidate execution with existentially-quantified relations coherence-order and reads-from, which
witness a particular choice of runtime execution order.

More formally, we can define an Arm-A candidate execution as: a set of event IDs (here just assuming
IDs are the natural numbers); a labelling function (from N to Label); a collection of the candidate
relations (CR) satisfying some constraints (described in more detail later on), and a candidate witness
(CW) describing the existentially quantified coherence-order and reads-from relations.

Candidate Pre-Execution ≡ P(N)× (N → Label)× CR

Candidate Execution ≡ Pre-Execution × CW

The candidate relations, and the candidate witness, are sets of named relations over the events of the
pre-execution, subject to some well-formedness constraints (discussed later):

L−→ ≡ N× N
CR ≡ 〈 po−−→, loc−−−→, addr−−−→, ctrl−−−→, data−−−→, rmw−−−→, ext−−−→〉
CW ≡ 〈 co−−→, rf−−→〉
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Events The labelling function maps each event ID to an event label, describing the kind of access and, if
applicable, what data or address it operates over.

A simplified version of the labels, sufficient for the model described here, contains:

1. memory events with location and values, namely reads (R) including acquire reads (A) and weak-
acquire reads (Q), writes (W) including release writes (L); and

2. a set of Arm barriers (DMB, ISB) and their variants.

More precisely, these labels can be described as follows:

Label ≡ Reads ∪ Writes ∪ Barriers
Reads ≡ {R,A,Q} × Loc × Val

Writes ≡ {W,L} × Loc × Val
Barriers ≡ {DMB.LD,DMB.ST,DMB.SY, ISB}

Loc ≡ Bitvec48
Val ≡ Bitvec64

In §2.5.1 we will see a more realistic definition of the event types for a production architecture (Armv9-A),
and their correspondence to the underlying effects of the Sail definition, as used by isla-axiomatic.

Candidate relations The candidate relations capture the relationships and orderings between the events
of the execution. For Arm, the relations in a pre-execution are, with their intended meaning:

. program order: E1 po E2 iff the instruction generating E1 occurs before the instruction generating
E2 in the instruction stream.

. same-location: M1 loc M2 iff the address of M1 is the same location as used by M2.

. address dependent: R1 addr M2 iff the value read by R1 is used in the calculation of the address
M2.

. data dependent: R1 data W2 iff the value read by R1 is used in the calculation of the value written
by W2.

. control dependent: R1 ctrl E2 iff the value read by R1 is used to determine whether or not the
instruction E2 originates from would have executed at all.

. read-modify-write: R1 rmw W2 for the separate read and write events of an atomic update.

. external: E1 ext E2 iff the instructions which generated events E1 and E2 originated from different
hardware threads.

Plus the existentially quantified witness:

. reads-from (rf), from W1 to R2 when R2 reads the value that W1 wrote.

. coherence-order (co), from W1 to W2 where W1 appears before W2 in the coherence order of that
location, (informally, that W1 propagated to memory before W2).

where Rn is a read event, Wn is a write event, Mn is a read or write, and En an event of any type.

Implicit events and ISA-Consistency Candidate executions for Arm contain a limited set of events:
reads, writes, and barriers. In reality, there are many more implicit events, there in principle but typically
excluded from the candidates: register reads and writes, instruction fetches, translation table walks, and
so on. We will (in Parts I, II and III) extend the candidate executions to include some of these implicit
events. For a candidate execution to be consistent with a given architecture’s intra-instruction semantics,
as defined by its ISA, there must be a corresponding execution of that intra-instruction semantics, with
all its implicit events, which corresponds to the set of explicit events seen in the candidate.

It is uncommon to include such events in the axioms and relations directly, and therefore are typically
elided entirely. However, we could imagine that for each candidate execution, one can ‘complete’ the
events to include all the hidden implicit events, such that the events of the candidate correspond exactly
to the Outcome type of the intra-instruction semantics (see Figure 2.8).

Let us say that an execution E′ is a completion of E, for which we will write Completion(E′, E) if the
subgraph of E′ restricted to explicit events is equal to E, and where the events within an instruction are
ordered by an intra-instruction-causality order (iico) consistent with the definition of address/control/data
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dependencies, as in Alglave et al. [14]. We can now define what it means for an execution to be consistent
with an ISA given some intra-instruction semantics: that, roughly, there are a set of implicit events which
complete the candidate such that the groups of events for each instruction correspond to traces from the
intra-instruction semantics.

Formally, we can imagine partitioning the completed execution with its implicit events by program-order,
to get groups of events corresponding to instructions, with traces of events given by iico. Let us call the
set of iico-traces of an execution IICOTraces(E). We can then define ISA-consistency by asking whether
there exist traces in the intra-instruction semantics which correspond to the iico-traces of instructions in
the execution:

SimulatesISA(E : Execution) : ∀t. t ∈ IICOTraces(E) ⇒ t ∈ ISA
ISA-Consistent(E) = ∃E′. Completion(E′, E) ∧ SimulatesISA(E′)

In practice, we generally go the other way: tools produce complete traces from the intra-instruction
semantics defined by the ISA, and then discard or hide some events to obtain a smaller candidate —
thereby producing ISA-Consistent executions by construction.

As an example, take the reader thread of an MP-shaped test, with a barrier between the loads. Figure 2.16
shows a sketch for a completion of that reader thread for Arm, including general-purpose register and
instruction fetch events (but still eliding the voluminous configuration register access and translation table
walk events for brevity) with introduced implicit events in blue.

Rreg(PC,p) Rmem(p,ldr x0,[x1]) Rreg(X1,y) Rmem(y,1) Wreg(X0,1) Wreg(PC,p+4)

R_reg(PC,p) Rmem(p,dmb sy) Barrier(DMBSY) Wreg(PC,p+4)

Rreg(PC,p) Rmem(p,ldr x2,[x3]) Rreg(X3,x) Rmem(x,0) Wreg(X2,0) Wreg(PC,p+4)

po

po

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

iico-addr iico-ctrl iico-ctrl

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

Figure 2.16: Sketch of a completion of reader thread of MP+dmb.sys with implicit events.
Nodes and edges in black are original, the ones in blue are the implicit register or instruction fetch events which are part of

the ISA definition (with implicit events corresponding to system register accesses and translation elided for brevity).

Well-formedness Each of the relations of the candidate relations and witness are subject to some well-
formedness constraints. Well-formedness requires that the candidate relations are all properly constructed:
they have the right type, and satisfy some basic relational properties (symmetry, reflexivity, transitivity
and so on) depending on the relation. Figure 2.17 contains the types and some basic well-formedness
properties of the pre-execution relations.

Note that a well-formed execution does not necessarily correspond to a consistent execution of the
underlying ISA (see ‘Implicit events and ISA-Consistency’).

Relation Type Properties
po E× E transitive, asymmetric, irreflexive

loc M× M transitive, symmetric, reflexive
ext E× E transitive, symmetric, irreflexive

addr,ctrl R× M asymmetric, irreflexive
data R× W asymmetric, irreflexive
rmw R× W asymmetric, irreflexive

Figure 2.17: Non-ISA-dependent well-formedness properties of pre-execution relations.

For the existentially-quantified coherence-order and reads-from relations, they are arbitrary, but subject
to the constraints given in Figure 2.18.
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∀W1, R2. rf(W1, R2) =⇒ loc(W1, R2) read and write must be same location
∀W1, R2. rf(W1, R2) =⇒ r-value(R2) = w-value(W1) value read matches value written
∀W1,W2, R3. rf(W1, R3) ∧ rf(W2, R3) =⇒ W1 = W2 each read reads-from at most one write
∀R2. ∃W1. rf(W1, R2) every read reads from somewhere

∀W1,W2. W1 6= W2 ∧ loc(W1,W2)
=⇒ co(W1,W2) ∨ co(W2,W1) co is per-location total
∀W1,W2,W3. co(W1,W2) ∧ co(W2,W3) =⇒ co(W1,W3) co is transitive
∀W1,W2. co(W1,W2) =⇒ ¬co(W2,W1) co is antisymmetric
@W1. co(W1,W1) co is irreflexive

Figure 2.18: Well-formedness conditions of co and rf.
r-value and w-value extract the Val from a read or write respectively.
(Hand transcribed from the versions used in isla-axiomatic, see §2.5)

We say a candidate execution E is well-formed, for which we will write Well-Formed(E), if all constraints
from Figures 2.17 and 2.18 are satisfied.

Consistency Given an arbitrary pre-execution, that is, a graph with any choice of events and relations,
one can define whether or not such a graph corresponds to a valid execution. This can be done by checking
that: there exists some witness (co and rf) such that that candidate is well-formed; that the candidate is
consistent with the ISA; and, that does not violate any of the axioms of the model.

Axiom-Consistent(E : Execution) = see §2.4.2
Consistent(E : Execution) = Well-Formed(E)

∧ ISA-Consistent(E)

∧ Axiom-Consistent(E)

Consistent(E : Pre-Execution) = ∃co, rf. Consistent((E, 〈co, rf〉))

Program semantics Architecturally there is no such thing as a ‘program’. Instead, there are only whole
machine states. The model then allows us to define what set of configurations are reachable from an initial
one, i.e. a ‘program’. There are primarily two ways of representing the initial state in these models: either
(1) by only considering executions which are co-prefixed by the set of writes corresponding to the initial
memory configuration; or, (2) by including some special initial event which other events can read from.
The choice of representation does not matter, so we arbitrarily pick the first.

Each execution then has a ‘final’ state: the concrete register values for each thread at the end of execution,
and the coherence-final write for each location.

We can then define the outcomes permitted by the model by the set of states reachable from the initial
state of the program: an outcome is permitted iff there exists a consistent execution, prefixed with the
initial writes from the program, whose final state matches that outcome:

State ≡ Memory × (ThreadId → Registers)
Final(E : Execution) = `Final register and memory state of E′

Prefixed(Init : State, E : Execution) = `E has co-initial writes corresponding to the initial state′

Reachable(Init : State, S : State) = ∃E : Pre-Execution, co, rf.
let C = (E, 〈co, rf〉) in
Prefixed(Init, C)

∧ Consistent(C)

∧ S = Final(C)

Giving semantics to an Arm-A program can be done by collecting the set of reachable consistent executions,
from an initial machine configuration (program):

JP : StateK = {S : State | Reachable(P, S)}
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rf
rf

4. Consistent 5. Consistent 6. Not Axiom-consistent

Figure 2.20: Six potential candidate executions for MP+dmb.sy+addr.

(Note that this means J_K is not defined compositionally as a traditional denotational semantics would
be, instead, here we have a whole-program consistency check)

An example Consider the classic MP+dmb.sy+addr litmus test, whose code listing can be found in
Figure 2.19. The test has two threads, with two store instructions separated by a barrier in the first, and
two loads with a syntactic address dependency between them in the second. Thus, it is an instance of the
message-passing shape seen earlier. Figure 2.20 contains six potential candidate executions for this test:

. Candidate 1 is not consistent with the intra-instruction semantics: it has read events in Thread 0,
but the intra-instruction semantics dictate that stores generate write events not read events.

. Candidate 2 has events consistent with the intra-instruction semantics, but the relations are not
consistent with the well-formedness conditions (specifically, rf does not satisfy the ‘read and write
must be same location’ constraint), and so this candidate is not well-formed.

. Candidates 3, 4 and 5, are well-formed, and consistent with the ISA, and consistent with the axioms
of the model (given in §2.4.2).

. Candidate 6 is well-formed, and consistent with the ISA, but not consistent with the axioms.

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.sy+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

Figure 2.19: MP+dmb.sy+addr test code listing.

The four well-formed candidate executions listed in Fig-
ure 2.20 are the only well-formed and ISA-Consistent can-
didates for this test. Executions with other events would
not be ISA-Consistent; those with co and rf other than
those shown would not be well-formed; those with read
or write values other than those shown would also not be
ISA-Consistent, as those values must have arisen from an
execution of the intra-instruction semantics. Only Candi-
date 6 has a final state which satisfies the 1:X0=1,1:X2=0
constraint of the test. Since no candidate satisfying the
final state constraint is consistent with the axioms, the
test is forbidden.
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2.4.2 Arm-A axioms

Axiomatic models define axioms over candidates, primar-
ily as acyclicity requirements over derived relations over
their events. The axioms of the model define which executions are Axiom-consistent. Final states from
consistent executions are those states that are permitted by the model to be observed on hardware.

Historically, axiomatic models were given as a set of constraints over the derived relations of the model
[52, 8]. Contemporary models are described as point-free definitions of relations and acyclicity conditions
over them [32, 42]. The derived relations are constructed composing the candidate relations CR, and the
restricted identity relation (idE , for identity over events with label E), using standard relation operators:
union (|), intersection (&), relation composition (by sequential composition, with ;), transitive closure
(+), and relation inverse (−1). The model is then a set of axioms (acyclicity or emptiness) over relations
defined in this algebra.

We write these models in the Herd model definition language (often commonly referred to as simply
Cat), introduced by Alglave et al. [32]. Cat is a general language that allows one to express first-order
quantifier-free relations, in a relatively concise syntax, using a set of built-in relations and relational
operators. Values in Cat are either sets of events, or relations (sets of pairs of events). Cat lets the user
define either sets of events, or relations over events, using the usual set of set and relational operators,
with some custom syntax, reproduced here for quick reference:

. R+ for the transitive closure (one-or-more repetitions) of R.

. [E] for the identity over events with label E, corresponding to the mathematical relation idE ,

. [E1|E2|...] for the set of events with labels which match E1 or E2 or so on.

. domain(R) and range(R) give the sets of events that are the domain and codomain of a relation R.

. (E1 * E2), is the relation formed by the cartesian product of sets of events with labels E1 and E2,
that is, the mathematical relation range(idE1)×range(idE2). E1 or E2 can be substituted with an
underscore which acts as a wildcard that matches events with any label.

. id for the generalised identity relation over events, which corresponds to id_ ;

. R? as a shorthand for relation option, equivalent to R | id.

The original herdtools Cat language and the isla-axiomatic Cat-like model language have diverged
over time, but the features described in this section remains common to both.

An Arm-A Cat model A reformulation of the original non-mixed-size multi-copy-atomic Armv8-A model
from 2018 [7, 53], can be found in Figure 2.21. The other models presented in this thesis will be extensions
to the one presented here. Note that this particular presentation of the model is slightly different from
the original, with the transitive relations over barriers split into multiple edges explicitly relating events
to barriers, and lifting coi and fri into obs. Although equivalent to the original, this presentation will be
easier to extend, the reason for which will become apparent later on. Additionally, the current official Arm
models have diverged from the original model this one is based on, either through the addition of new
features (mixed-size, memory tagging extensions, and so on), or through iterative refactors of the model
over time [42]. An isla-axiomatic-executable version of the model can be found at https://github.com/
rems-project/system-semantics-arm-axiomatic-models/blob/main/models/aarch64_interface.cat.
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1 (* observed by *)
2 let obs = rfe | fr | co
3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | ctrl; [W]
8 | addr; po; [W]
9 | (ctrl | (addr; po)); [ISB]

10 | (addr | data); rfi
11
12 (* atomic -ordered -before *)
13 let aob = rmw
14 | [range(rmw)]; rfi; [A | Q]
15
16 (* barrier -ordered -before *)
17 let bob = [R] ; po ; [dmbld]
18 | [W] ; po ; [dmbst]
19 | [dmbst]; po; [W]
20 | [dmbld]; po; [R|W]
21 | [ISB]; po; [R]
22 | [L]; po; [A]
23 | [A | Q]; po; [R | W]
24 | [R | W]; po; [L]

25 (* Ordered -before *)
26 let ob1 = obs | dob | aob | bob
27 let ob = ob1+

28
29 (* Internal visibility

requirement *)
30 acyclic po-loc | fr | co | rf

as internal
31
32 (* External visibility

requirement *)
33 irreflexive ob as external
34
35 (* Atomic: Basic LDXR/STXR

constraint to forbid
intervening writes. *)

36 empty rmw & (fre; coe) as atomic

Figure 2.21: Armv8-A multi-copy atomic ‘user’ axiomatic model.

The Cat model relies on a set of built-in event sets and relations, these are:
Events Relations

R Reads po,rmw program-order and read-modify-write
W Writes po-loc po between same-location events
M Explicit memory events (R|W) addr/ctrldata dependencies
A Read-acquire co/rf Witness
L Write-release rfi/coi internal (within thread) rf/co
Q Weak read-acquire rfe/coe external (across threads) rf/co
F Fences (barriers) id identity

ISB Instruction sychronization barrier
dmbXY Memory barrier with kind XY

The axioms The Arm-A model is made up of three axioms: external (line 33), which asserts acyclicity
of a global ordered-before relation, capturing most of the ordering constraints of the Arm memory model;
the internal axiom (line 30), sometimes called ‘SC-per-location’, which ensures that when restricted to a
single location the accesses are consistent with an SC semantics; and, the atomic axiom (line 36) which
asserts that there can be no same-location writes interposing between events of an atomic action.

Ordered-before The main relation, ordered-before (ob), is defined on line 27 as the transitive closure of
the union of a set of auxiliary ordering relations. These auxiliary relations are:

. observed-by (obs, line 2), which orders events after the events they observe the effect of, namely,
writes must happen before other-thread reads which read from them.

. dependency-ordered-before (dob, line 5), which orders events which must not be re-ordered due to
syntactic dependencies in the original source program.

. atomic-ordered-before (aob, line 13) which asserts that the read of an atomic read-modify-write
happens before the write, and that acquire reads of an atomic write are ordered.
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. barrier-ordered-before (bob, line 17) between events where there is an intervening barrier instruction
ordering them.

A candidate execution with a cycle in ordered-before is forbidden. For example, in the following
MP+dmb.st+addr test, whose code listing and event diagram for the forbidden execution can be found in
Figure 2.22.

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.22: MP+dmb.st+addr test code listing and execution diagram.

The interesting candidate execution is the one that has the final state 1:X0=1 ∧ 1:X2=0. It is this
candidate that is shown in Figure 2.22 (right). Being a message-passing (MP) shape, it is characterised
by a po-rfe-po-fre1 cycle. In particular, it has the following cycle:

. a dmbst b

. b rfe c

. c addr d

. d fr a

This cycle is forbidden in the Arm model, as each of the relations are contained in ob, and a cycle in ob is
forbidden by the external axiom:

. ([W]; dmbst; [W]) is in bob, which is in ob.

. rfe is in obs, which is in ob.

. addr is in dob, which is in ob.

. fr is in obs, which is in ob.

Internal and atomic axioms The other axioms of the model forbid behaviours that the ordered-before
acyclicity check does not recognise, such as non-SC behaviours for single locations, or supposedly
atomic actions (such as exclusives or read-modify-writes) which were interrupted by an intervening
write. Figure 2.23 contains two example tests, a coherence test forbidden by the internal axiom and an
LB-shaped atomic increment failure forbidden by the atomic axiom.

Note that this is not the only possible presentation of the model. A separate internal/SC-per-location
axiom is classic, but the current official herdtools version of the Arm model has separate axioms for
each of the forbidden coherence shapes [54]. The external axiom usually considers a partially-ordered
ordered-before relation built from smaller primitive relations, as was presented here, but other formulations
sometimes pick some linearisation of some total order, equivalent to but more operational in presentation
than the one presented here.

2.5 The isla-axiomatic tool

Throughout this work we will use the isla-axiomatic tool [36] to implement executable versions of our
axiomatic models. The isla-axiomatic tool uses the full ASL specification of the Arm ISA, converted to
Sail. The generation of candidates then uses whole machine states, including all instruction fetch and
translation table walks as real memory accesses.

1More precisely a PodWW Rfe PodRR Fre cycle in diyone syntax [34].
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MOV X0,#1
STR X0,[X1]
MOV X2,#2
STR X2,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X1]

Thread 1

Initial state:
0:X1=x, 1:X1=x, *x=0,

CoRR0 AArch64

Forbidden:
1:X0=2, 1:X2=1

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 0

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 1

Initial state: 0:X1=x 1:X1=x
*x=0

LB+po-locxxs AArch64

Forbidden: 0:X3=0, 1:X3=0, *x=1

W x=1a:

W x=2b:

Thread 0

R x=2c:

R x=1d:

Thread 1

po porf

rf

R x=0a:

W x=1b:

Thread 0

R x=0c:

W x=1d:

Thread 1

rmw rmw
fr

fr

Figure 2.23: Two tests forbidden by the other axioms.
On the left, a variation on coherence which relies on po-loc and so is forbidden by the internal axiom.
On the right, an atomic increment that failed to atomically update the location, forbidden by the atomic
axiom.

1 function Step() {
2 if pending interrupts then {
3 TakePendingInterrupt ();
4 };
5
6 let pc = Read_reg(PC);
7
8 let opcode = \
9 Read_mem(

10 ReadKind_IFETCH ,
11 pc , 4);

12 // magic opcode not part of ISA
13 if opcode == 0xfee1dead {
14 EndOfTrace ();
15 };
16
17 let instr = ArmASL_Decode(opcode);
18
19 ArmASL_Execute(instr);
20
21 Write_reg(PC , pc+4)
22 }

Figure 2.24: Extract of the Arm top-level step function.

Using isla-axiomatic allows us to use the Arm ASL definitions which already exist (for instruction
fetching, decoding, and translation table walks in particular), giving us those fundamental executions ‘for
free’ for those features, and enabling us to focus on modelling the concurrent aspects of them.

isla-axiomatic candidates Underpinning the isla-axiomatic tool is isla, a generic symbolic evaluator
for Sail programs [36]. isla-axiomatic uses isla to generate candidate executions, by producing traces
of Sail outcomes for each thread, with concrete control flow but potentially symbolic values for reads
and writes. isla-axiomatic then produces the relevant dependency relations (which it does in an ad-hoc
way), then applies a restriction to the events of the traces (discarding all events except reads, writes and
barriers for the base model), and takes the cartesian product of these restricted traces of events for each
thread; the result is precisely the set of well-formed pre-executions (but with symbolic values).

There is a fetch-decode-execute loop for each thread, which sequentially fetches the next instruction and
runs the Sail (converted from ASL) decode and execute functions, until a pre-determined point is reached
(usually a particular ‘end-of-test’ opcode) which signifies the end of the trace of that instruction. A sketch
of the top-level fetch-decode-execute function from our Arm Sail model1 is given in Figure 2.24.

During symbolic evaluation of the Sail code, when a branch’s condition is symbolic and not constrained to
one of true or false, the symbolic execution forks. This gives a tree of traces of outcomes for each thread,
with concrete opcodes and register names, but with constrained symbolic values.

1https://github.com/rems-project/sail-arm/blob/master/arm-v9.3-a/src/step.sail#L217
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We can then use this as an executable oracle for litmus tests. By taking the well-formed pre-executions
generated from those symbolic traces, isla-axiomatic can produce a single SMT problem for each
candidate whose satisfiability encodes whether the candidate is consistent. It does this by creating SMT
definitions of: the events from the pre-execution with constraints on symbolic values; the candidate
relations (in particular, coherence-order and reads-from); the axioms of the model and any auxiliary
relations from the Cat model; with the final assertion from the litmus test. Giving this SMT problem to
an off-the-shelf SMT solver (such as Z3) allows automatic consistency checking: if the SMT solver can
find a satisfying assignment of the symbolic values, then the execution is allowed; if the SMT solver says
it is unsatisfiable then the execution is either forbidden by the axioms, or does not satisfy the constraint
on the final state. If all executions when compiled to SMT are unsatisfiable then the test as forbidden.

2.5.1 ISA/concurrency interface

This section is based on in-progress work with Thibaut Pérami, Alasdair Armstrong, Thomas Bauereiss,
and Peter Sewell.

As isla-axiomatic uses the full ISA outcomes, the model should be able to utilise any information
exposed in the Sail outcome type. To achieve this the isla-cat language is extended with the structs and
enums from the Sail definition, and an accessor construct allowing the model writer to define event sets
predicated on the values of fields of the underlying Sail structs.

As previously mentioned, each event in an isla-axiomatic candidate execution corresponds to an outcome

in the trace of the intra-instruction semantics. The outcomes then form the interface between the sequential
ISA semantics and the concurrency model. The current Sail ISA/concurrency interface is defined in
https://github.com/rems-project/sail/tree/sail2/lib/concurrency_interface.

For example, the Arm Sail model contains the sail_barrier outcome1 :
outcome sail_barrier : 'barrier -> unit

Each architecture’s Sail specification can then instantiate the 'barrier type variable with architecture-
specific data. For instance, in Armv9-A the 'barrier type is instantiated with a custom Barrier type2,
given in Figure 2.25, which contains a translation of the Arm barrier kind datatype in the ASL/Sail
specification.

Then the Sail Arm specification can use the sail_barrier outcome to generate events in the trace. For
example, the DataSynchronizationBarrier function is the function which the specification calls on execution
of a DSB instruction. It is an uninterpreted function in the specification. The Sail model implements that
function to output a sail_barrier effect3, which generates a barrier event in the trace when executed:
1 function DataSynchronizationBarrier (domain , types , nXS) = {
2 sail_barrier(
3 Barrier_DSB(
4 struct { domain = domain , types = types , nXS = nXS }
5 )
6 )
7 }

1https://github.com/rems-project/sail/blob/0.18/lib/concurrency_interface/barrier.sail#L75
2https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/interface.sail#L286
3https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/stubs.sail#L105
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1 enum MBReqDomain = {
2 MBReqDomain_Nonshareable ,
3 MBReqDomain_InnerShareable ,
4 MBReqDomain_OuterShareable ,
5 MBReqDomain_FullSystem
6 }
7
8 enum MBReqTypes = {MBReqTypes_Reads , MBReqTypes_Writes , MBReqTypes_All}
9

10 struct DxB = {
11 domain : MBReqDomain ,
12 types : MBReqTypes ,
13 nXS : bool
14 }
15
16 union Barrier = {
17 Barrier_DSB : DxB ,
18 Barrier_DMB : DxB , // The nXS field is ignored from DMBs
19 Barrier_ISB : unit ,
20 Barrier_SSBB : unit ,
21 Barrier_PSSBB : unit ,
22 Barrier_SB : unit ,
23 }
24
25 instantiation sail_barrier with
26 'barrier = Barrier

Figure 2.25: Arm interface: instantiation of barriers.

2.5.2 Extended Cat with Sail interface

The extended isla-cat language is very similar to the original Cat language but with some differences.
Since isla-axiomatic does not support mutually recursive bindings, procedures, or inline function
definitions, we will not use them in our models.

Unlike Cat, isla-axiomatic does not define a large collection of built-in relations and sets. Instead, it
adds accessors: point-free declarations which define functions over events. Accessors can access the fields
of the underlying Sail structures to allow the model author to define their own relations and sets based on
the underlying ISA definitions.

For example, the Armv9-A accessor for barrier access types matches on the Barrier union we saw earlier,
and if it is one of Barrier_DMB or Barrier_DSB it extracts the .types field from its DxB struct, and otherwise
returns the default value for that type. The isla-cat definition of such an accessor is given below:

1 accessor barrier_types: MBReqTypes = .match {
2 Barrier_DMB => .types ,
3 Barrier_DSB => .types ,
4 _ => default
5 }

These accessors can be used in simple function declarations, using the isla-cat define command. For
example, the Armv9-A model defines the F (fence) event type and the various Arm barrier event kinds
(dmb ld,dmb sy, . . . ) with accessors. An extract of the isla-cat definition for Armv9-A1, for the definition
of an example barrier event (dmbld, the event set that includes all barrier events that are at least as
strong as a DMB.LD instruction), is given in Figure 2.26.

1Full definition can be found at https://github.com/rems-project/system-semantics-arm-axiomatic-models/blob/main/
models/armv9-interface/barriers.cat
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1 accessor F: bool = is sail_barrier
2
3 define has_barrier_type(ev: Event , t: MBReqTypes): bool =
4 (barrier_types(ev) == t)
5
6 accessor is_DxB: bool =
7 .match {
8 Barrier_DMB => true ,
9 Barrier_DSB => true ,

10 _ => false
11 }
12
13 accessor is_DMB: bool =
14 .match {
15 Barrier_DMB => true ,
16 _ => false
17 }
18
19 define ArmBarrierRM(ev: Event): bool =
20 is_DxB(ev) & has_barrier_type(ev, MBReqTypes_Reads)
21
22 define DMB(ev: Event): bool =
23 F(ev) & is_DMB(ev)
24
25 define DMBLD(ev: Event): bool = DMB(ev) & ArmBarrierRM(ev)
26
27 define dmbld(ev: Event): bool =
28 (* see full code for definitions of dmbsy and dsbld *)
29 DMBLD(ev) | dmbsy(ev) | dsbld(ev)

Figure 2.26: Arm interface: definition of barrier accessors for an example barrier kind.
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Part I
Instruction fetch

This part is based on: ARMv8-A system semantics: instruction fetch in relaxed architectures [35] by Ben
Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and
Peter Sewell. Published in the proceedings of the 29th European Symposium on Programming (ESOP,
2020).
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Chapter 3

Relaxed instruction fetching

We now describe the main instruction fetch phenomena and architecture design questions for Arm-A. As
usual, this will be done through handwritten litmus tests, which we will use to guide model design later
on.
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3.1 Introduction

Self-modifying code is a software pattern relied on by nearly all software, but only explicitly managed by
few: mostly systems software, such as dynamic loaders, operating system kernels, and hypervisors; and
also some usermode, like just-in-time (JIT) compilers. This software forms part of the security-critical
computing base, currently trusted but not trustworthy, that is especially in need of verification, and which
will require a precise and well-validated definition of the architectural abstraction.

The semantics required for self-modifying code, of instruction fetch and cache maintenance, are areas where
microarchitectural optimisations can have surprising programmer-visible effects, especially in the concurrent
context. Previous work has scarcely touched on this: none of seL4 [55], CertiKOS [56, 57], Komodo [58],
nor the works of Guanciale et al. [59], nor Baudmann et al. [60], address realistic architecture concurrency,
and they use (at best) idealised models of the sequential systems architecture. The CakeML [61, 62] and
CompCert [63] verified compilers target only sequential user-mode ISA fragments, without self-modifying
code. Previous attempts at verification of self-modifying code have typically focused on MIPS or x86,
such as in the works of Cai et al. and Myreen [64, 65]. However, those architectures have a very different
programmer model than Arm presents, not requiring explicit instruction cache maintenance.

In this part we focus on instruction fetch, and its required cache maintenance, for Arm-A. The ability to
execute code that has previously been written to data memory is fundamental to computing: fine-grained
self-modifying code is now rare, and rightly deprecated, but program loading, dynamic linking, JIT
compilation, debugging, and OS configuration, all rely on executing code from data writes. However,
because these are relatively infrequent operations, hardware designers have been able to optimise by
partially separating the instruction and data paths, with distinct instruction caching, which by default may
not be coherent with data accesses. This can introduce programmer-visible behaviour analogous to that
of user-mode relaxed-memory concurrency, and requires specific additional synchronisation to correctly
pick up code modifications. Exactly what these are was not entirely clear in the Arm-A architecture text
at the time this work was done (up to version D.a [66]).

We clarify this situation, developing precise abstractions that bring the instruction-fetch part of Arm-A
system behaviour into the domain of rigorous semantics. We aim thereby to enable future work on
system software verification using the techniques of programming languages research: program analysis,
model-checking, program logics, and so on. At the time of this work Arm intended to officially incorporate
a version of the model into their architecture, [67]. Since then, Arm have developed an instruction fetch
model as part of the official Arm memory model [68, B2.3]. Detailed comparison of that model with the
one presented here will be an important topic for future work, although we do not believe the architectural
intent has changed.

Overview In this chapter, we begin by recalling the informal architectural guarantees that the Arm-A
architecture provides, and the ways in which real-world software systems such as Linux, the JavaScript
and WebAssembly JITs, and other language implementations modify instruction memory. We then survey
the fundamental phenomena and architecture design questions with a series of examples, and explore the
interactions between instruction fetching, cache maintenance and the ‘usual’ relaxed memory stores and
loads, showing that instruction fetches are more relaxed, and how even fundamental coherence guarantees
for data memory do not apply to instruction fetches.

We give an operational semantics for Arm instruction fetch and cache maintenance (Ch.4) in an abstract-
microarchitectural style (following the Flat model of Flur, Pulte et al. [7], cf. §2.3) capturing the
architectural intent as we understand it. We make the operational model executable as a test oracle by
integrating it into the RMEM tool [51], with optimisations that make it possible to exhaustively execute
example litmus tests.

We give a more concise presentation of the model (Ch.5) in an axiomatic style (in the style of Alglave et
al.’s herd models [32], as an extension to the official Armv8 model of Deacon [7], cf. §2.4), and intended to
be extensionally equivalent to the aforementioned operational semantics. We give an executable-as-a-test-
oracle formulation of the model, in an extension to the isla-axiomatic tool, which with Armstrong and
Campbell we extend to support instruction fetching litmus tests.

We validate all this (Ch.6), in two ways: by extensive discussion with Arm staff and systems software
engineers, and by experimental testing of hardware behaviour on a selection of Armv8-A cores designed
by multiple vendors. We run tests on hardware with a mild extension of the Litmus tool [33, 69]. We
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then compare hardware and the two models on a suite of 1456 tests, automatically generated with an
extension of the diy tool [70]. We also check the operational and axiomatic models for regressions against
the sets of previous non-ifetch tests. We found no regressions and no test which distinguishes the models,
and all data was consistent with hardware observations, except for one case where our testing uncovered a
hardware bug on a Qualcomm device.

Caveats and Limitations Our operational semantics are integrated with a substantial fragment of the Sail
Armv8-A ISA (similar to that used for CakeML [71]), but not yet with the full ISA model [45, 10, 11, 72];
this is a matter of additional engineering and is future work. We do not handle the interaction between
instruction fetch and mixed-size accesses, or other variants of the cache maintenance instructions, e.g. those
used for interaction with DMA engines or variants by set or way instead of by virtual address. Finally,
while the equivalence between our operational and axiomatic models is validated experimentally, we do
not have a formal proof of equivalence. A proof of this equivalence will be essential in the long term,
but represents a major step and substantial work itself: the complexity makes mechanisation essential,
but the operational model (in all its scale and complexity) has not yet been subject to mechanised proof.
Without instruction fetch, a non-mechanised proof was the main result of an entire PhD thesis [6], and we
expect the addition of instruction fetch to require global changes to the argument.

3.2 Industry practice and the existing Arm prose

Computer architecture relies on a host of sophisticated techniques for performance, including buffering,
caching, prediction and prefetching, and pipelining. For the normal memory reads and writes of ‘user-mode’
concurrency, the programmer-visible relaxed-memory effects largely arise from store buffering and from
out-of-order and speculative pipeline behaviour, not from the cache hierarchy (though some IBM POWER
phenomena do arise from the interconnect, and from late processing of cache invalidates).

At first sight, one might expect instruction fetches to act like other memory reads. However, writes to
instruction memory are relatively rare, so hardware designers have adopted much more aggressive caching
mechanisms specifically for those accesses. The Arm architecture carefully does not mandate exactly what
these may be, permitting a wide range of possible hardware implementations. For example, a typical
high-performance Arm processor might have per-core separate L1 instruction and data caches, above a
unified per-core L2 cache and an L3 cache shared between cores. There may also be additional structures,
e.g. per-core fetch queues, loop buffers, and caching of decoded micro-ops. Figure 3.1 shows a typical
micro-architectural design: that of the Arm Cortex-A53, with independent per-thread instruction and
data caches, which unify into a global cache before memory. Data flows out of the core into the L1 data
cache, and then from the data cache to the instruction cache or out to memory.
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L1 DCache

L2 Unified
Data&Instruction Cache

Memory

Figure 3.1: Block diagram of the Arm Cortex-A53 [73], with simplified data and instruction flow [74].

Modifying code and maintaining coherence In usermode models the caches are, aside from performance
implications, invisible to the programmer, with the hardware cache protocol managing them automatically.
In contrast, the caching of instruction data exposes details to the programmer that would otherwise be
invisible: such as the cache line size (as caches may cache arbitrarily large ‘lines’ of memory at a time)
and physical hierarchy of the caches.
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This is because instruction caching is not necessarily coherent with data memory accesses1 [66, B2.4.4
(B2-114)]:

the architecture does not require the hardware to ensure coherency between
instruction caches and memory

Hence, programmers must use the explicit cache maintenance instructions [66]:

If software requires coherency between instruction execution and memory, it
must manage this coherency using Context synchronization events and cache
maintenance instructions.

The manual further gives a sufficient sequence [66]:

; Coherency example for data and instruction accesses [...]
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.
STR Wt, [Xn]; Store new instruction
DC CVAU, Xn ; Clean data cache by virtual address (VA) to PoU
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH ; Ensure completion of the invalidations
ISB ; Synchronize the fetched instruction stream

At first sight, this may be entirely mysterious. This and the following chapters establish precise semantics
for each of the above instructions, explaining why each is required. However, a rough intuition for each is:

1. The DC CVAU,Xn cleans this core’s data cache for address Xn, pushing the new write far enough down
the hierarchy for any instruction fetch that misses in the instruction cache to be guaranteed to see
the new value. This point is the Point of Unification (PoU) and is usually the point where the
instruction and data caches become unified (L2 for most modern devices).

2. The DSB ISH waits for the clean to have happened before letting the later instructions execute
(without this, the sequence itself can execute out-of-order, and the clean might not have pushed the
write down far enough before the instruction cache is updated). The ISH makes this specific to the
Inner Shareable Domain: the processor itself, not the system-on-chip. We do not model shareability
domains in this work, so this is equivalent to a DSB SY.

3. The IC IVAU,Xn invalidates any entry for that address in the instruction caches for all cores, forcing
any future fetch to miss in the instruction cache, and instead read the new value from the data
memory hierarchy.

4. The second DSB ISH waits for the cache invalidation to complete.

5. The final ISB flushes this core’s pipeline, forcing a re-fetch of all program-order-later instructions.

Central to this sequence is the concept of cache maintenance. Caches will fetch data automatically, but
may require explicit operations to remove old cached values. Cache maintenance operations can generally
be split into one of two kinds:

. Cleans force a write-back of a cache line, pushing any potential cached copies further down the
cache hierarchy.

. Invalidations remove cached copies of a whole line.

From the programmer’s perspective, invalidations are destructive: if the removed cached line’s data did
not exist further down the cache hierarchy, or in memory, then the data may be lost entirely. However,
cleans push data further out thereby making it more widely visible. For instruction cache maintenance,
only invalidation is provided, but for data cache maintenance the programmer can choose whether to do
a clean, an invalidate, or both; and whether the maintenance takes effect to the Point of Unification or
the Point of Coherency (see §3.10 for an explanation of what the different points mean). Arm therefore
provide a large collection of cache maintenance instructions, of which the most relevant for this part are:

1Version J.a of the Arm architecture reference manual includes the word ‘not’ here, which is a typographical error.
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Instruction Operation
DC CVAU Clean Data&Unified Caches by VA to PoU
DC IVAC Invalidate Data&Unified Caches by VA to PoC
DC CVAC Clean Data&Unified Caches by VA to PoC
DC CIVAC Clean&Invalidate Data&Unified Caches by VA to PoC
IC IVAU Invalidate Instruction Caches by VA to PoU
IC IVAC Invalidate Instruction Caches by VA to PoC
IC IALLU Invalidate Local Instruction Cache to PoU
IC IALLUIS Invalidate All Instruction Caches to PoU

We discuss more about the relationship between these cache maintenance operations in §3.10.2.

Some hardware implementations provide extra guarantees, rendering the DC or IC instructions unnecessary.
Arm allow software to discover this in an architectural way, by reading the CTR_EL0 register’s DIC and IDC
fields, described in more detail in §3.14.

Concurrent modification and instruction fetch require the same sequence, with an ISB on each thread that
executes the new instructions, and the rest of the sequence on the modifying thread [66, B2.2.5 (B2-94)].
Concurrent modification without synchronisation is restricted to particular instructions (B (branch), BL
(branch-and-link), BRK (break), SMC, HVC, SVC (secure monitor, hypervisor, and supervisor calls), ISB, and
NOP), otherwise there could be constrained unpredictable behaviour : ‘any behavior that can be achieved
by executing any sequence of instructions that can be executed from the same Exception level’. All this
gives some guidance for programmers, but leaves the exact semantics of instruction fetch and those cache
maintenance instructions unclear.

Linux has many places where it modifies code at runtime: in boot-time patching of alternatives, modifying
kernel code to specialise it to the particular hardware being run on; when the kernel loads code (e.g. when
the user calls dlopen); and in the ptrace system call, used e.g. by the GDB debugger to patch arbitrary
instructions with breakpoints at runtime. In Google’s Chrome web browser, its WebAssembly and
JavaScript just-in-time (JIT) compilers write new code during execution and modify existing code at
runtime. In the JavaScript JIT, this modification happens inside a single thread and so is relatively
straightforward. The WebAssembly case is more complex, as one thread is modifying the code being
concurrently executed by another.

In practice, software typically does not use the above sequence verbatim. For example, when synchronising
a range of addresses all at once, the software may group the DCs and ICs of different addresses together.
Additionally, the final ISB may be subsumed by other instruction synchronisation e.g. from exception
entry or return. Software threads may also be migrated (by the OS or hypervisor) from one hardware
thread to another, potentially interrupting such an instruction cache maintenance sequence. Moreover, for
security reasoning, we have to be able to bound the possible behaviour of arbitrary code. For all these
reasons, we must consider the effect of each instruction individually and how they compose, and cannot
simply assume a canned sequence.

The problem we face is to give such a semantics that correctly defines behaviour in arbitrary concurrent
contexts, that captures the Arm architectural intent, that is strong enough for software, and that abstracts
from the variety of hardware implementations (e.g. with differing cache structures) that the architecture
intends to allow – but which programmers should not have to think about.

3.3 Modifiable instructions

As was mentioned in §3.2, concurrent modification and execution is only permitted if the original and
modified instructions are concurrently modifiable, which is defined as: simple branches, supervisor/hyper-
visor/secure monitor calls, the ISB (instruction synchronisation) barrier, the BRK (breakpoint) instruction,
and NOP. Otherwise, the architecture permits constrained unpredictable behaviour, meaning that the
resulting machine state could be anything that would be reachable by arbitrary instructions at the same
exception level. Stronger constraints for constrained unpredictable is an area under investigation by Arm.

The following W+F test (Figure 3.2, p.45) illustrates this.
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STR W0,[X1] //modify Thread 1 at l

Thread 0

l: ADD X0,X0,#1 //initial code

Thread 1

Initial state: 0:W0="SUB X0,X0,#1", 0:X1=l
W+F AArch64

Allowed: constrained-unpredictable final state

Figure 3.2: Code listing for test W+F.

In this test, Thread 0 writes to the code that Thread 1 is executing, overwriting the ADD X0,X0,#1
instruction with the 32-bit encoding of the SUB X0,X0,#1 instruction. If the fetch were atomic, the
outcome of this test would be the result of executing either the ADD or the SUB instruction. However,
because at least one of those is not a ‘concurrently modifiable’ instruction (not in the set of atomically-
fetchable instructions given previously), Thread 1 has constrained-unpredictable behaviour and the final
state is very loosely constrained. Note, however, that this is nonetheless much more constrained than the
C/C++ whole-program undefined behaviour in the presence of a data race: unlike C/C++, a hardware
architecture has to define a useful envelope of behaviour for arbitrary code, to provide guarantees for the
rest of the system when one user thread has a race.

Debuggers and breakpoints One challenge in the definition as given by Arm is that it forbids replacing
arbitrary instructions with breakpoints concurrently. Other architectures (such as IBM Power) simply
require that at least one of the instructions is concurrently modifiable, not both.

In practice, debuggers replace instructions with breakpoints (the BRK instruction) regardless. Further
work is required to investigate whether a strengthening could be made to the Arm architecture to permit
this in general.

Conditional branches In version D.a (and earlier) of the Arm architecture reference manual, it made
clear that, for branches with conditions (B.cond) which are overwritten by other B.cond instructions, the
Arm architecture provided a specific non-single-copy-atomic fetch guarantee: that the execution will be
consistent with either the old or new target, with either the old or new condition [66, B2-94]. In version E.a,
this condition was removed entirely, meaning B.cond instructions were not permitted to be concurrently
updated at all [75, B2-112]. In version G.b, B.cond was added to the list of concurrently-modifiable
instructions, once more permitting replacement of (and with) a B.cond instruction [76, B2-130], with the
stronger semantics that one will see either the old instruction or the new instruction entirely.

STR W0,[X1]

Thread 0

l: B.EQ g

Thread 1

Initial state:
0:W0="B.NE h", 0:X1=l

W+F+branches AArch64

Final state: execute "B.NE g"

Figure 3.3: Code listing for test W+F+branches.

For example, the W+F+branches test (Figure 3.3) overwrites a B.EQ g with a B.NE h. Under the D.a
and earlier text, the result could be consistent with executing B.NE g or B.EQ h instead, and thus the test
is allowed. Under the E.a-G.a text, the test has ‘constrained unpredictable’ behaviour. Under the G.b
and later text, the test has well-defined behaviour, but is now forbidden.

To avoid this unfortunate confusion, and any possible constrained unpredictable behaviours due to it, our
examples will be restricted to modifying only NOPs and unconditional branches.

Synchronising branches The Arm architecture does not give branch instructions any instruction synchro-
nisation effects. Instead, the architecture relies on explicit synchronisation instructions (see §3.6). This is
in contrast to other architectures. For example, x86 does not require any explicit cache maintenance or
pipeline flushing when jumping to newly-modified code.
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3.4 Coherence

Data writes and reads are coherent, in Arm and in other major architectures: in any execution, for each
address, the reads of each hardware thread must see a subsequence of the total coherence order of all
writes to that address (see §2.1.2). The plain-data CoRR1 test (Figure 2.5, p.21) illustrates one case of
this: it is forbidden for a thread to read a new write of x and then the initial state for x.

Instruction fetches are not necessarily coherent: an instruction fetch may be inconsistent with a program-
order-previous fetch, and the data and instruction streams can become out of sync with each other.
However, they are not completely incoherent and still must respect some properties, giving rise to three
new forms of coherence:

. Instruction-to-Instruction Coherence: whether fetches of the same location must observe writes to
the same location coherently.

. Data-to-Instruction Coherence: whether fetches and then reads of the same location must observe
writes to the same location coherently.

. Instruction-to-Data Coherence: whether reads and then fetches of the same location must observe
writes to the same location coherently.

These new kinds of coherence describe the relationship between the instruction ‘stream’ with the instruction
and data caches.

3.4.1 Instruction-to-Instruction coherence

Arm explicitly do not guarantee any consistency between fetches of the same location: fetching an
instruction does not mean that a later fetch of that same location will not see an older instruction [66,
B2.4.4]. This is illustrated by the CoFF test (Figure 3.4), which is a variant of the CoRR1 test
(Figure 2.5, p.21) test for coherence discussed earlier, but where the explicit reads of the CoRR shape are
replaced by the implicit reads of fetching the instructions.

STR W0,[X1] //a

Thread 0

BL f
MOV X0,X10
BL f
MOV X1,X10

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f
CoFF AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: YNNNY

write f=B l1a:

Thread 0

fetch f=B l1b:

fetch f=B l0c:

Thread 1

irf
fpo

irf

Figure 3.4: Code listing and execution diagram for CoFF.

Here, Thread 1 makes two calls to address f (recall BL is the branch-and-link ‘call’ instruction), while
Thread 0 overwrites the instruction at that address with the opcode for the instruction B l1 (a branch to
the location labelled l1). Here, and in future tests, we assume some common library code consisting of a
function at address f, which always has the same shape: a branch that might be overwritten, which selects
a block that writes a value to register X10 before returning. This is sometimes duplicated at different
addresses (f1, f2, ...) or extended to g, with three cases. We sometimes elide the common code.

The interesting potential execution of this test is the one in which the first call to f fetches and executes
the newly-written B l1, before the second call fetches and executes the original B l0. The execution shown
in Figure 3.4 is the well-formed candidate execution consistent with the final state of the test. Candidate
executions for self-modifying tests are similar to those of previous axiomatic models, but augmented with
new fetch events, one per instruction, and new edges relating those events.
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As in Chapter 2, we use po and rf edges for the program-order and reads-from relations, together with
new relations:

. fe (fetch-to-execute), which relates the fetch event of an instruction to all the execution events
(memory writes, reads, and/or barriers) of the instruction;

. irf (instruction-read-from), relating a write to all fetches that read from it (analogous to reads-from,
rf); and

. fpo (fetch-program-order), relating fetches of instructions that are in program order (analogous to
program order, po).

As usual, edges from the initial state are shown as originating from a small circle, for example, the irf
edge for event c in Figure 3.4. We discuss these new candidates in more detail later (Chapter 5).

Since we do not modify the code of most locations, or perform any cache maintenance operations over
those locations, we usually omit the fetch events for the instructions at those locations. Instead, we show
only the subgraph of interesting events, as in the CoFF execution diagram in Figure 3.4.

For Arm, this execution is both architecturally allowed and experimentally observed. This is shown in
the test listing in Figure 3.4 in the line underneath the final state beginning with hw-refs. This line is a
condensed table, where each column represents one hardware device and the entry represents whether it
was observed on that device (Y), not observed on that device (N), or whether there are no results for that
device (indicated by -). The final hw-refs line from CoFF (Figure 3.4, p.46), annotated with the names
of the devices (see §6.3 for a more detailed discussion of the hardware testing) is as follows:

h955-a53 openq820 h955-a57 nexus9 s905
N Y Y N N

Where the devices are:
h955-a53 Qualcomm Snapdragon 810 (cluster of 4x Arm Cortex A53)
openq820 Qualcomm Snapdragon 820 (4x Qualcomm Kryo cores)
h955-a57 Qualcomm Snapdragon 810 (cluster of 4x Arm Cortex A57)
nexus9 NVIDIA Tegra K1 (with 2x NVIDIA Denver cores)
s905 Amlogic 905 (with 4x Arm Cortex A53 cores)

3.4.2 Data-to-Instruction coherence

Fetching from a particular write does imply that program-order-later reads of the same address will see
that write, or something newer. This is a data-to-instruction coherence property, illustrated by CoFR
(Figure 3.5). Here, if Thread 1 happens to fetch the newly-written B l1 at f (in the ‘Common’ function
code), then a data read of f cannot see the original B l0 instruction (it can only read the new B l1).

STR W0,[X1]

Thread 0

BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state:
0:W0="B l1", 0:X1=f, 1:X2=f

CoFR AArch64

Forbidden: 1:X0=2, 1:X1="B l0"

hw-refs: NNNNN

write f=B l1a:

Thread 0

fetch f=B l1b:

fetch LDR X1,[X2]c:

read f=B l0d:

Thread 1
irf

fpo

ferf

Figure 3.5: Code listing and execution diagram for CoFR.

This ordering guarantee was not clear in the Arm prose specification at the time of this work [66, 77, 76],
but the architectural intent that emerged during discussion with Arm is that the given execution should
be forbidden. This architectural decision was motivated by microarchitectural design: (1) instructions
decode in order (so the fetch b must occur before the read d), and (2) fetches that miss in the instruction
cache must read from the coherent data storage system, so the instruction cache cannot be ahead of the
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available data. This ensures that observing a write with an instruction fetch implies that all threads are
now guaranteed to read from that write (or another coherence-after it).

This test represents the most fundamental kind of data-to-instruction coherence: that data must become
visible to the coherent data side before instruction accesses. However, it alone gives no guarantee when the
instruction accesses are guaranteed to see it. We shall see later (§3.6) that instruction cache maintenance
will generally be required to guarantee future instruction fetches read from coherence-latest data writes,
but that the hardware may announce that it provides a stronger kind of data-to-instruction coherence
guarantee rendering such cache maintenance unnecessary (§3.14).

3.4.3 Instruction-to-Data coherence

In the other direction, reading from a particular write to some location does not imply that later fetches of
that location will see that write (or a coherence successor), as in the following CoRF+ctrl-isb (Figure 3.6).

STR W0,[X1]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f
CoRF+ctrl-isb AArch64

Allowed: 1:X0="B l1", 1:X1=1

hw-refs: YYYNY

write f=B l1a:

Thread 0

read f=B l1b:

fetch f=B l0c:

Thread 1
rf

ctrl+isb
irf

Figure 3.6: Code listing and execution diagram for CoRF+ctrl-isb.

Here Thread 1 has a control dependency (the CBNZ conditional branch, dependent on the value read by its
load) and an instruction synchronisation barrier (ISB), abbreviated to ctrl+isb, between its load and
the fetch from f. If the latter were a data load, this would ensure the two loads are satisfied in order.
This was also not explicit in the prose [66, 77, 76], but it is what one would expect, and it is observed in
practice. Microarchitecturally, it is easily explained by an out-of-date entry for f in the instruction cache
of Thread 1: if Thread 1 had previously fetched f (perhaps speculatively), and that instruction cache
entry has not since been evicted or explicitly invalidated, then this fetch of f will simply read the old
value from the instruction cache without going out to data memory. The ISB ensures that f is freshly
fetched, but does not ensure that Thread 1’s instruction cache is up-to-date with respect to data memory.

However, even if the instruction cache is empty (e.g. by manually clearing it with appropriate cache
maintenance instructions, see §3.10 and the SM.F+ic test (Figure 3.19, p.55)) the test may still be
observed as the instruction fetches and instruction cache fills need not read-from the coherence-latest
write.

Software must then use cache maintenance operations to achieve such guarantees (§3.6). However,
much like with data-to-instruction coherence, the hardware may announce that it provides a kind of
instruction-to-data coherence guarantee, rendering data cache maintenance unnecessary (§3.14).
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3.5 Cross-thread synchronisation

We now consider modifying code that can be fetched by other threads, by considering variants of the
standard message-passing shape MP+pos (Figure 2.1, p.18). Here, we replace one or both of the reads
by fetches, and ask what synchronisation is required to ensure that the relaxed outcome is forbidden.
Consider first an MP variant where the first write is of a new instruction, and the second is just a simple
data memory flag, with some thread-local ordering ordering the writes on the left-hand thread, and
ordering the read to the fetch on the right-hand side. We call this test MP.RF+dmb+ctrl-isb (Figure 3.7).

STR W0,[X1]
DMB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+dmb+ctrl-isb AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

dmb rf ctrl

isb
irf

Figure 3.7: Code listing and execution diagram for MP.RF+dmb+ctrl-isb.

This test includes sufficient synchronisation on each thread to enforce thread-local ordering of data accesses:
the DMB in Thread 0 ensures the writes a and b propagate to memory in program order, and the control
dependency into an ISB on Thread 1 ensures the read c and the fetch e happen in program order. However,
as we saw in §3.2, this is not enough to synchronise concurrent modification and execution of code in
Arm-A. Thread 0 needs to perform the entire cache synchronization sequence (§3.2), not just a DMB, to
forbid this outcome. Adding that full cache synchronisation sequence gives test MP.RF+cachesync+ctrl-isb
(Figure 3.11, p.51), described in more detail later (§3.6.2).

Synchronisation with memory by fetching Another variant of this MP-shape test, where the message
passing itself is done using modification of code, gives a much stronger guarantee. This can be seen in
MP.FR+dmb+fpo-fe (Figure 3.8), in which Thread 0 writes some data (to x) and then writes to the
code concurrently being executed by Thread 1, as a kind of message pass. If Thread 1 fetches the new
instruction written by Thread 0, then Thread 1 must also see the new value of x.

STR X0,[X1]
DMB ISH
STR W2,[X3]

Thread 0

BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

Initial state: 0:X0=1, 0:X1=x,
1:X2=x, [x]=0,
0:W2="B l1", 0:X3=f

MP.FR+dmb+fpo-fe AArch64

Forbidden: 1:X0=2, 1:X1=0

hw-refs: NNNN-

write x=1a:

write f=B l1b:

Thread 0

fetch f=B l1c:

fetch LDR X1,[X2]d:

read x=0e:

Thread 1

dmb irf fpo

fe

Figure 3.8: Code listing and execution diagram for MP.FR+dmb+fpo-fe.

This was not clear from the architectural prose at the time of the work, but this outcome is intended to be
architecturally forbidden. This is for similar reasons as the previous CoFR test (Figure 3.5, p.47): since
Thread 1 fetched the updated value for f, the value must have reached at least the data caches (since that
is where the instruction cache reads from), and therefore multi-copy atomicity guarantees that a normal
load instruction will observe it.
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3.6 Cache maintenance

As we have seen, instruction fetches satisfy few guarantees, so explicit synchronisation must be performed
when modifying the instruction stream to ensure correct execution of the new instructions.

Test SM (Figure 3.9) shows the simplest self-modifying code case: without additional synchronisation, a
write to program memory can be ignored by a program-order-later fetch.

STR W0,[X1] //a
BL f
MOV X0,X10

Thread 0

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state:
0:W0="B l1", 0:X1=f

SM AArch64

Allowed: 1:X0=1

hw-refs: YYYYY

write f=B l1a:

fetch f=B l0b:

Thread 0

ifr
irf

Figure 3.9: Code listing and execution diagram for SM.

In this execution, the fetch b, fetching the instruction at f, fetches a value from a write coherence-before a,
even though b is the fetch of an instruction program-order after a. We illustrate this with an instruction
from-reads (ifr) edge. This is a derived relation, analogous to the usual from-reads (fr) relation, that
relates each fetch to all writes that are coherence-after the write it read from; it is defined as ifr =
irf−1;co. If the fetch were a data read, this would be a forbidden coherence shape (CoWR). As it is, it
is architecturally allowed, as described explicitly by Arm [66, B2.4.4], and it is experimentally observed
on all devices we have tested. Microarchitecturally, there are a number of possible explanations, each of
which are sufficient to explain the test: fetching b out-of-order with respect to a, fetching b from a stale
entry in the instruction cache, or fetching b from memory after a has propagated but before it reaches the
point the instruction fetch will see it. We will see that to forbid this test, and guarantee fetching the new
instruction, one needs to account for all of those possibilities.

3.6.1 Synchronisation on a single thread

As we described earlier (§3.2), the Arm architecture provides cache maintenance instructions to synchronise
the instruction and data streams: the DC data-cache clean instruction, and the IC instruction-cache
invalidate instruction. To forbid the relaxed outcome of SM, by forcing a fetch of the modified code, the
specified sequence of cache maintenance instructions must be inserted, with an ISB.

STR W0,[X1] //overwrite f with branch
DC CVAU,X1 //clean data cache
DSB ISH
IC IVAU,X1 //invalidate instruction cache
DSB ISH
ISB //flush pipeline
BL f
MOV X0,X10

Thread 0

Initial state: 0:W0="B l1", 0:X1=f
SM+cachesync-isb AArch64

Forbidden: 1:X0=1

hw-refs: NNNNN

write f=B l1a:

ISBb:

fetch f=B l0c:

Thread 0

cachesync

isb
irf

Figure 3.10: Code listing and execution diagram for SM+cachesync-isb.

Now, the outcome is forbidden. The cache synchronisation sequence DC CVAU; DSB ISH; IC IVAU; DSB ISH
(which we abbreviate to a single cachesync edge) ensures that by the time the ISB executes, the instruction
and data memory have been made coherent with each other for f. The ISB then ensures the final fetch of
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f is ordered after this sequence. The microarchitectural intuition for this sequence was in §3.2. Our §4.1
microarchitecturally-flavoured operational model will describe the semantics of this sequence using that
microarchitectural intuition in a way that gives precise and well-defined semantics to each instruction
individually, such that their composition results in the correct system-wide synchronisation. This will be
discussed in much more detail later (Chapter 4).

3.6.2 Broadcast cache maintenance

The hardware threads writing new instructions, performing the necessary cache maintenance, and finally
fetching the new instructions, may all be distinct. So long as the sequence in its entirety has been
performed by the time the fetch happens, then the instruction stream will have been made consistent
with the data stream for that address.

The simplest example of this is in MP.RF+cachesync+ctrl-isb (Figure 3.11), where the ‘producer’ thread
(Thread 0) writes the new instructions, and performs all the cache maintenance, before writing a flag
informing the ‘consumer’ thread (Thread 1) that the instructions are ready to be fetched. Although the
cache maintenance happened on a different thread to the one that will try fetch the new instructions,
their effect is enforced system wide; the consumer needs only to flush its own pipeline (with an ISB) to be
guaranteed to see the new instructions.

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl-isb AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: NYNNN

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

cachesync rf ctrl

isb
irf

Figure 3.11: Code listing and execution diagram for MP.RF+cachesync+ctrl-isb.

Note the positive observation on this test, despite being forbidden. We return to this in §6.4.1.

In-order fetches One can make both writes of the MP shape be of new instructions. This idiom is quite
common in practice; this was how Chrome’s WebAssembly JIT synchronised its updates to modified code,
up until the code was redesigned to use Arm’s FEAT_BTI (branch-target-identification) feature [78, 79].
Without the full cache synchronisation sequence on Thread 0, this is allowed as in MP.FF+dmb+fpo
(Figure 3.12). Inserting the full cache maintenance sequence on the producer thread forbids the outcome,
see the MP.FF+cachesync+fpo test (Figure 3.13, p.52).

STR W0,[X1]
DMB ISH
STR W2,[X3]

Thread 0

BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+dmb+fpo AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: YYYNY

write f1=B l1a:

write f2=B l1b:

Thread 0

fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

dmb fpoirf

irf

Figure 3.12: Code listing and execution diagram for MP.FF+dmb+fpo.
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STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR W2,[X3]

Thread 0

BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+cachesync+fpo AArch64

Forbidden: 1:X0=2, 1:X1=1

hw-refs: NNNNN

write f1=B l1a:

write f2=B l1b:

Thread 0

fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

cachesync fpoirf

irf

Figure 3.13: Code listing and execution diagram for MP.FF+cachesync+fpo.

This may be surprising at first sight, as there is no synchronisation on the right-hand side (Thread 1), but
the architectural intent is for fetches to appear to be satisfied in-order.

Microarchitecturally, that could be ensured in two ways: either by actually fetching in-order, or by making
the IC instruction not only invalidate all the instruction caches (for this address) but also clean any core’s
pre-fetch buffer stale entries (for this address). Architecturally, this was not clear in the prose at the time
of the work, but, concurrent with this work, Arm were independently strengthening their definition to
guarantee this ordering.

Software thread migration The cache maintenance sequence need not be contiguous, or even all on a
single thread. In general, it may be split up with many instructions between, and be over multiple threads.
This can be seen in the ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb test (Figure 3.14), where Thread 0 performs
a write to f and then only a DC before synchronizing with Thread 1, which performs the IC, while Thread 2
observes the modified code. This can happen in practice when a software thread is migrated between
hardware threads at runtime, by a hypervisor or OS. Thread 0 and Thread 1 may just represent the
runtime scheduling of a single-threaded process, beginning execution on hardware Thread 0 but migrated
to hardware Thread 1 between the DC and IC instructions. In the graph, the dcsync and icsync represent
the DC and IC combinations with their surrounding barriers. The DC does not need a barrier preceding it,
because it is ordered w.r.t. the preceding store to the same cache line.

STR W0,[X1]
DC CVAU, X1
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB ISH
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

LDR X0,[X2]
CBZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 2

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, [x]=0, 1:X4=f, 1:X1=x,
1:X2=1, 1:X3=y, [y]=0, 2:X2=y

ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb
AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: NN---

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

write y=1d:

Thread 1

read y=1e:

ISBf:

fetch f=B l0g:

Thread 2

dcsync icsync ctrl

isb

rf rf

ifr

Figure 3.14: Code listing and execution diagram for ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb.

This works because the IC IVAU is broadcast to all threads [66, B2.2.5p3]. Therefore the IC happening
on a different thread to the DC does not break the sequence, so long as there is ordering between the IC
and DC. Additionally, the DC need not happen on the same thread as the initial store, so long as the DC is
ordered after the store.

The migration and context-switching code needs only contain a DSB and a context-synchronising operation
(such as an ISB, although usually this is performed implicitly by the exception return mechanism itself)
to ensure sufficient synchronisation exists for the sequence to be migrated at any point.
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3.7 Dependencies

Reads, including implicit reads due to an instruction fetch, must have their address become known before
the value can be used. This is a general principle Arm have, that values from reads generally cannot be
observably speculated. For instruction fetches, this address is the program counter.

This means that computations which are used in the calculation of that address give rise to dependencies
in the program. Sometimes these dependencies are hard and must be preserved, and other times, not.

3.7.1 Address dependencies

When the destination of a branch is computed, e.g. with the BR (branch-register) or BLR (branch-and-link-
register) instructions, then the instruction fetch of the target cannot go ahead until after the address is
resolved. This can be seen in the MP.RF+cachesync+addr test (Figure 3.15), where the target of the
branch is dependent on the value of register X2 which comes from the earlier load of x.

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
EOR X2,X0,X0
ADD X2,X2,f
BLR X2
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+addr AArch64

Forbid?: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf addr
irf

Figure 3.15: Code listing and execution diagram for MP.RF+cachesync+addr.

3.7.2 Control dependencies

For branches where the destination is known, but where it is not yet known if the branch will be taken,
then it is permitted for the instruction to be fetched and executed speculatively.

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: YYYYY

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf ctrl
irf

Figure 3.16: Code listing and execution diagram for MP.RF+cachesync+ctrl.
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3.8 Multi-Copy Atomicity

For data accesses, the question of whether they are multi-copy atomic is a crucial one in relaxed
architectures. IBM POWER, ARMv7, and pre-2018 ARMv8-A are non-multi-copy atomic: two writes to
different addresses could become visible to distinct other threads in different orders. Post-2018 ARMv8-
A, Armv9-A, and RISC-V are all multi-copy atomic (or ‘other multi-copy-atomic’ in Arm terminology)
[7, 6, 66]: the programmer can assume there is a single shared memory, with all data-access relaxed-memory
effects due to thread-local out-of-order execution.

The lack of any fetch atomicity guarantee for most instructions (§3.3), and the lack of coherent fetches
for the others (§3.4), means the question of multi-copy atomicity for instruction fetching is not par-
ticularly interesting. Tests are either trivially forbidden (by data-to-instruction coherence, as in test
WRC.F.RR+po+dmb (Figure 3.17)) or are allowed, but only the full cache synchronisation sequence
provides enough guarantees to forbid it, and this sequence ensures all cores will share the same consistent
view of memory.

STR W0,[X1]

Thread 0

BL f
MOV X0,X10
STR X1, [X2]

Thread 1

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 2

Initial state: 0:W0="NOP", 0:X1=f,
1:X1=1, 1:X2=x, [x]=0, 2:X1=x, 2:X3=f

WRC.F.RR+po+dmb AArch64

Forbidden: 1:X0=1, 2:X0=2, 2:X2="B l0"

hw-refs: NN--N

write f=NOPa:

Thread 0

fetch f=NOPb:

write x=1c:

Thread 1

read x=1d:

read f=B l0e:

Thread 2

irf

po rf dmb

fr

Figure 3.17: Code listing and execution diagram for WRC.F.RR+po+dmb.

3.9 More on instruction caches

Test CoFF (Figure 3.4, p.46) showed that fetches can see ‘old’ writes. In principle, there is no limit
to the number of distinct values within the instruction cache: there could be many values for a single
location cached in the instruction memory for each core, even if the data cache has been cleaned. The
MP.RFF+dc-dsb+ctrl-isb-isb test (Figure 3.18) illustrates this, with Thread 0 writing two distinct new
opcodes for g, and Thread 1 able to see all three (both of the new, and the initial) values for g. If the
instruction cache could hold at most one value for each location, then after a DC an instruction fetch could
read at most two values: one from that and one from data memory. Although it is unlikely that hardware
would cache multiple values in the instruction cache, the desire for the simpler and weaker option means
the architectural intent is to allow it, and we follow that in our models.

STR W0,[X2]
STR W1,[X2]
DSB ISH
DC CVAU,X2
DSB ISH
STR X3,[X4]

Thread 0

LDR X0, [X4]
CBNZ X0, l

l:ISB
BL g
MOV X1,X10
ISB
BL g
MOV X2,X10
ISB
BL g
MOV X3,X10

Thread 1

g: B l0
l2:MOV X10,#3

RET
l1:MOV X10,#2

RET
l0:MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g,
0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0, 1:X4=x

MP.RFF+dc-dsb+ctrl-isb-isb AArch64

Allowed: 1:X0=1, 1:X1=3, 1:X2=2, 1:X3=1

hw-refs: NNNNN

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0

read x=1d:

fetch g=B l2e:

fetch g=B l1f:

fetch g=B l0g:

Thread 1

po

dcsync

ctrl+isb

isb

isb

rf

irf

irf

irf

Figure 3.18: Code listing and execution diagram for MP.RFF+dc-dsb+ctrl-isb-isb.
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3.10 Points of Unification and Coherency

Although instruction caches behave incoherently, at some point in the memory hierarchy all the caches
unify, and all agents agree on the value at that point. Arm define multiple such points:

. The Point of Unification (for each shareability domain, see below) is where the data and instruction
caches unify, and an instruction cache fill is guaranteed to see writes beyond.

. The Point of Coherency (for the whole system) is where all agents (CPUs, devices, etc.) memory
accesses unify, and are all guaranteed to see the same writes beyond that point.

Cleaning the data cache, with the DC instruction, forces previous writes to become visible to instruction
fetch, but does not restrict the set of values that could be in the instruction cache. It does this by pushing
the writes past the Point of Unification (the point where the instruction and data caches become unified).

There may be multiple Points of Unification, one for each shareability domain. For example, one for each
individual core, where its own instruction and data memory become unified, and one for each cluster of
CPUs where all the caches eventually unify within that cluster. When a cache maintenance operation is
performed by VA to ‘the’ Point of Unification, the VA is translated and an entry in the translation tables
marks the location as either non-shareable or inner-shareable (see §7.3.2). This determines which Point
of Unification the cache maintenance operation should be performed to.

Fetching a value implies that its write has reached at least that core’s PoU, but not necessarily the PoU of
any wider domain, even if the write originated from a different core. Consider test SM.F+ic (Figure 3.19).

STR W0,[X4]
LDR X2,[X3]
CBZ X2,l

l: ISB
BL f
MOV X1,X10

Thread 0

BL f
MOV X0,X10
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

Initial state: 0:W0="B l1", 0:X4=f,
0:X3=x, [x]=0, 1:X4=f, 1:X2=1, 1:X3=x

SM.F+ic AArch64

Allowed: 1:X0=2, 0:X2=1, 0:X1=1

hw-refs: NNNN-

write f=B l1a:

read x=1b:

ISBc:

fetch f=B l0d:

Thread 0

fetch f=B l1e:

write x=1f:

Thread 1

po

ctrl

isb

irf

icsync

rf

irf

Figure 3.19: Code listing and execution diagram for SM.F+ic.

In SM.F+ic, Thread 0 modifies f, and Thread 1 fetches the new value and performs just an IC and DSB,
before signalling Thread 0 which also fetches f. The IC (without its sibling DC) is not strong enough to
ensure that the write is pulled into the instruction cache of Thread 0.

We have not so far observed this in practice. However, there is a mechanism which gives a compelling
argument to permit this behaviour. The Points of Unification of systems are not necessarily hierarchical:
the write may have passed the Point of Unification for Thread 1, but not the shared Point of Unification
for both threads. In other words, the write might reach Thread 1’s instruction cache without being pushed
down from Thread 0’s data cache. Microarchitecturally this can be explained by direct data intervention
(DDI), an optimisation allowing cache lines to be migrated directly from one thread’s (data) cache to
another [80]. The line could be migrated from Thread 0 to Thread 1, and pushed past Thread 1’s Point
of Unification making it visible to Thread 1’s instruction memory, without ever making it visible to
Thread 0’s own instruction memory. The lack of coherence between instruction and data caches would
make this observable in theory, even on multi-copy atomic machines, if they implemented pre-PoU DDI.
Therefore, the architectural intent is to allow this behaviour.

With insufficient synchronisation of the data caches, there is theoretically no limit to how far back in
time the fetches could read from. Recall that in the MP.RF+dmb+ctrl-isb test (Figure 3.7, p.49), the full
cachesync sequence was required to forbid the ‘bad’ behaviour. Test FOW (Figure 3.20, p.56) is similar
to that MP-shaped test, but writes two new values to the data consecutively rather than one, and has two
threads reading the flag before fetching that address. Here, both threads can see the updated flag, but can
execute different instructions on the instruction fetch of g, even after invalidating the instruction cache.
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STR W0,[X2]
STR W1,[X2]
DSB ISH
IC IVAU, X2
DSB ISH
STR X3,[X4]

Thread 0

LDR X0, [X4]
CBNZ X0, la

la: ISB
BL g
MOV X1,X10

Thread 1

LDR X0, [X4]
CBNZ X0, lb

lb: ISB
BL g
MOV X1,X10

Thread 2

g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g, 0:W1="B l2", 0:X3=1, 0:X4=x,
[x]=0, 1:X4=x, 2:X4=x

FOW AArch64

Allowed: 1:X0=1, 1:X1=2, 2:X0=1, 2:X1=1

hw-refs: NN--N

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0

read x=1d:

fetch g=B l1e:

Thread 1

read x=1f:

fetch g=B l0g:

Thread 2

po

icsync

ctrl+isb ctrl+isbirf

rf

rf

irf

Figure 3.20: Code listing and execution diagram for FOW.

This was not clear in the existing architecture text. It is a case where the architecture design is not very
constrained. On the one hand, it has not been observed, and it is thought unlikely that hardware will ever
exhibit this behaviour: it would require keeping multiple writes in the coherent part of the data caches,
before the Point of Coherency, which would require more complex cache coherence protocols, rather than
a single dirty line. On the other hand, there does not seem to be any benefit to software from forbidding
it. Therefore the architects are forced to make a decision. In this case, the more permissive model is also
the simpler one. It makes it easier for programmers to understand and to provides more flexibility for
future microarchitectural optimisations. Our models therefore allow the above behaviour.

In theory, once a write passes the Point of Unification for the whole system (the point where all caches
eventually unify) then any writes coherence before that write cannot be seen at all by instruction fetches
any more, even without explicit DC instructions. We do not attempt to model this since a general notion
of a Point of Coherency is not required in the models, as it is only distinguished by device memory or
DMA, which we do not model here.

3.10.1 Late unification

There is a final question: can any Point of Unification be after the Point of Coherency? The architecture
says [81, D7.5.8, p.5777]:

Point of Coherency The point at which all agents that can access memory are
guaranteed to see the same copy of a memory location [...]

The question is whether the instruction-fetch-units of a system amount to separate agents in the system
domain. The definition of shareability domains implies not [81, B2.4.2, p.199]:

Shareability [...] Marking a memory location as shareable [...] requires hardware
to ensure [...] the location is coherent for all agents in that domain. [...]

Since the instruction fetch unit is within the same shareability domain, but are not coherent, they must
not be agents for the purpose of coherency. Therefore, writes passing the Point of Coherency would not
guarantee instruct ion fetches to see the writes coherently. We never observed such hardware in practice,
and believe it unlikely hardware would be designed in such a way that the PoC would be before a PoU,
and therefore leave it open to the architects to clarify.
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3.10.2 Promotion

Cache maintenance operations form a partial order, where if one cache operation is sufficient, then a
stronger one is also sufficient. Assuming the PoU is before the PoC (see Late unification) that order is:

DC CVAU ≤ DC CVAC ≤ DC CIVAC

DC IVAC ≤ DC CIVAC

IC IVAU ≤ IC IVAC

IC IVAU ≤ IC IALLUIS

In litmus tests we will use the least operations in this order, typically DC CVAU and IC IVAU.

In a program which uses one of these instructions, that instruction can be promoted: replaced with a
stronger cache maintenance operation. Often software will want to use the least sufficient maintenance as
they are typically the most efficient and give the best performance. However, sometimes operating systems
and hypervisors will ‘trap’ cache maintenance operations to emulate or promote them automatically, either
for virtualisation or as part of the resolution to CPU errata. In those cases, software must ensure it only
promotes cache maintenance consistent with the above ordering.

3.11 Cleans and invalidates are like reads and writes

Recall that we have an asymmetry between the required synchronisation around DC instructions and
IC instructions: IC instructions must have a preceding DSB to order with earlier accesses, whereas DC
instructions do not necessarily need one; DC instructions are ordered by DMB with surrounding memory
accesses, whereas an IC is not.

This is because the clean of the DC is ordered much like a read. However, both the DC and IC are not
guaranteed to have completed their effect until after the subsequent execution of a DSB instruction on the
same thread [81, pp. 5790-5791], and an IC instruction always requires an DSB to order accesses before it
[81, p. 5791].

3.11.1 Cleans are similar to reads

Microarchitecturally, cleans are non-destructive; they push the data further down the cache hierarchy,
without causing the data to be lost. In hardware, these clean operations may be propagated around the
system in much the same way reads are. This gives clean operations the same memory ordering constraints
as data reads. This, in turn, means that DC C_VA_ instructions wait for program-order previous reads
and writes (and other DCs) of the same location just as reads do (or really, within the same cache line
of minimum size, see §3.12), and do not require any other explicit barriers or dependencies between
them. Cleans may be speculated, but otherwise respect dependencies and fences, even with respect to
surrounding non-same-cache-line accesses.

3.11.2 IC invalidates are not quite like writes

Invalidations are destructive: data that was once visible is potentially lost. Data cache invalidations
behave somewhat like writes: they cannot be performed speculatively; and end up existing at some place
within the global coherence order of that location, such that reads after the invalidation cannot read from
writes from before it. IC invalidations behave slightly differently, with some extra requirements about
in-order fetching (see test MP.FF+dmb+fpo (Figure 3.12, p.51)), and without constraining future data
reads, and they do not respect dependencies or barriers other than DSB. This means that, in practice,
every IC requires a DSB between it and any program-order earlier or later memory accesses, in order to
synchronise with them.
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3.11.3 DC and IC address speculation

Normal data load and store instructions (in Arm-A and in other relaxed architectures) respect address
dependencies: reads cannot be satisfied, and writes cannot be forwarded from or committed, until their
addresses are resolved from previous register writes (though those can still be out-of-order or speculative).
In other words, the architecture forbids programmer-visible value speculation of such addresses.

For DC and IC instructions, which are loosely analogous to loads and stores from the specified addresses,
we similarly have to consider whether or not dependencies from the calculation of their addresses are
respected. Test MP.R.RF+addr-cachesync+dmb+ctrl-isb (Figure 3.21) illustrates this for DC. Thread 0
writes to g and performs the full cache synchronization sequence. However, the DC’s address depends
on a detour through Thread 1 which writes an even newer instruction to g. Since the address of the DC
cannot be speculated, this address dependency must be preserved and so the final fetch of g after the
cache synchronization must observe the branch Thread 1 wrote.

This was unclear in the prose at the time of this work, but Arm have since decided the architectural
intent is that it should be forbidden: addresses of cache maintenance instructions should not be visibly
value-speculated, and so these instructions must respect their address dependencies.

LDR X0,[X1]
STR W2,[X3]
EOR X4,X0,X0
ADD X4,X4,X3
DC CVAU,X4
DSB ISH
IC IVAU,X4
DSB ISH
STR X5,[X6]

Thread 0

LDR W0,[X2]
STR W1,[X2]
DMB SY
STR X3,[X4]

Thread 1

LDR X0,[X2]
CBNZ X0,l

l: ISB
BL g
MOV X1,X10

Thread 2

g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:X1=z, 0:W2="B l1", 0:X3=g, 0:X5=1, 0:X6=y,
1:W1="B l2", 1:X2=g, 1:X3=1, 1:X4=z, 2:X2=y, [x]=0, [y]=0

MP.R.RF+addr-cachesync+dmb+ctrl-isb AArch64

Forbidden: 0:X0=1, 1:W0="B l1", 2:X0=1, 2:X1=1

hw-refs: NN--N

read z=1a:

write g=B l1b:

DC gc:

write y=1d:

Thread 0

read g=B l1e:

write g=B l2f:

write z=1g:

Thread 1

read y=1h:

fetch g=B l1i:

Thread 2

po

po

icsync

addr

po

dmb

ctrl+isbrf

rf
rf

irf

Figure 3.21: Code listing and execution diagram for MP.R.RF+addr-cachesync+dmb+ctrl-isb.
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3.11.4 DC might be to same address

Data loads and stores can be ordered by the fact that they might access the same address [40, §12.5].
Arm made it clear in the architectural text that DC is ordered with respect to loads and stores with
addresses in the same cache line, while IC is not [66, D4.4.8]. We therefore have to ask whether DC is
subject to a might-access-same-address restriction in the same way as data loads and stores [40, §10.5].
The MP.RRF+dmb+addr-cachesync-isb test (Figure 3.22) below illustrates this, in which program-
order previous load/store addresses may not be determined when the DC executes. Arm clarified that
the architectural intent (which was not clear from the architectural text at the time of this work) is
that DC should be like loads in this respect too, with the aforementioned test architecturally allowed.
Microarchitecturally, the DC is not required to wait for those addresses to be determined before executing,
but if they end up being to the same address, the DC must be re-issued. Because the read d was not to the
same location, the DC need not be re-issued and so may have happened before the write a to f.

STR W0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X2,X0,X0
LDR X3,[X4,X2]
DC CVAU,X5
DSB ISH
IC IVAU,X5
DSB ISH
ISB
BL f
MOV X6,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f, 0:X2=1,
0:X3=x, [x]=0, 1:X1=x, 1:X4=z, [z]=0, 1:X5=f

MP.RRF+dmb+addr-cachesync-isb AArch64

Allowed: 1:X0=1, 1:X6=1

hw-refs: N-N--

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

read z=0d:

ISBe:

fetch f=B l0f:

Thread 1

dmb rf addr

cachesync

isb

ifr

Figure 3.22: Code listing and execution diagram for MP.RRF+dmb+addr-cachesync-isb.
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3.11.5 DC ordering with respect to other memory accesses

We saw that the DC instruction is ordered with program-order-previous stores to the same address. Normal
‘data’ loads are additionally ordered with respect to other same-location accesses in the same thread. Here
we ask how far we can extend this to data cache maintenance operations.

po-previous loads We extend this to cover all the natural thread-local same-address ordering constraints
as normal ‘data’ loads. For example, DCs are ordered with respect to program-order-earlier same-location
loads as in CoRF+cachesync-isb (Figure 3.23), and may be re-ordered with respect to program-order-later
same-location loads, as in MP+dmb+addr-dc (Figure 3.24).

Note that these have not yet been confirmed with Arm architects; where the test final state has a question
mark, the stated results come from our models and await architectural decision.

STR W0,[X1]

Thread 0

LDR W0,[X1]
DC CVAU, [X1]
DSB ISH
IC IVAU, [X1]
DSB ISH
ISB
BL f

Thread 1

Initial state:
0:W0="B l1", 0:X1=f
1:X1=f

CoRF+cachesync-isb
AArch64

Forbid?: 1:X2=1

hw-refs: -----

write f=B l1a:

Thread 0

read f=B l1b:

DC fc:

IC fd:

ISBe:

fetch f=B l0f:

Thread 1

po

dsb

dsb

isb

rf

ifr

Figure 3.23: Code listing and execution diagram for CoRF+cachesync-isb.

STR X0,[X1] //a
DSB SY
STR X2,[X3] //b

Thread 0

LDR X0,[X1] //c
EOR X5,X5,X0
ADD X5,X5,X3
DC CVAU,X5 //d
LDR X2,[X3] //e

Thread 1

Initial state: 0:X0=1, 0:X1=x
0:X2=1, 0:X3=y
1:X1=y, 1:X3=x

MP+dmb+addr-dc AArch64

Allow?: 1:X0=1, 1:X2=0

hw-refs: -----

write x=1a:

write y=1b:

Thread 0

read y=1c:

DC xd:

read x=0e:

Thread 1

dmb addr

po

rf

fr

Figure 3.24: Code listing and execution diagram for MP+dmb+addr-dc.
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3.12 Same-cache-line ordering

Arm-A has an architected cache line of minimum size. There are two cache line minimum sizes: one for
the data caches, and one for the instruction caches. They are accessible as the DMinLine and IMinLine
bitfields of the CTR_EL0 register, which encode log2 the number of (32-bit) words in the smallest cache-line
size1, for the data and instruction caches, respectively.

Accesses being within the same cache line does not impose additional ordering constraints [16], unless one
of the accesses is a cache maintenance operation. For example, the SB+scls test (Figure 3.25), which is a
variation of the classic store buffering example where the two locations are to the same cache line, is still
allowed as the reads and writes of different locations (even within the same cache line) are not ordered.

In this test, X is an array of size 22+DMinLine bytes, and X is aligned on a cache boundary, therefore X and
X+4 are 32-bit aligned addresses in the same (data) cache line of minimum size.

This is separate to concerns about mixed-size accesses, which we consider in §3.13, where a program writes
to the same location with architected writes of different size.

STR W0,[X1]
LDR W2,[X3,#4]

Thread 0

STR W0,[X1,#4]
LDR W2,[X3]

Thread 1

Initial state:
uint32_t x[DMinLine];
0:X0=1, 0:X1=x, 0:X3=x
1:X0=1, 1:X1=x, 1:X3=x
DMinLine1≥1

SB+scls AArch64

Allow?: 0:W2=0, 1:W2=0

hw-refs: -----

write x=1a:

read x+4=0b:

Thread 0

write x+4=1c:

read x=0d:

Thread 1

scl sclfr
fr

Figure 3.25: Code listing and execution diagram for SB+scls.

DC to same cache line Given two locations f and g in the same cache line of minimum size, performing
the cache clearing sequence for one will also clear the other, as in SM+sclcachesync-isb (Figure 3.26)

STR W0,[X1]
DC CVAU, [X2]
DSB ISH
IC IVAU, [X2]
DSB ISH
ISB
BL f

Thread 0

f: B l0
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state:
0:W0="B l1", 0:X1=f, 0:X2=g

SM+sclcachesync-isb
AArch64

Forbidden: 0:X0=1

hw-refs: -----

write f=B l1a:

DC gb:

IC gc:

ISBd:

fetch f=B l0e:

Thread 0

scl

dsb

dsb

isb

ifr

scl

scl

Figure 3.26: Code listing and execution diagram for SM+sclcachesync-isb.

1Note that, while the encoding allows DMinLine and IMinLine to be zero, this assignment does not make much sense for
hardware, and it is likely no implementation exists with either less than the size of the largest implemented single-copy
atomic access size.
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3.13 Mixed-size instruction fetching

In the tests so far we have always replaced a single instruction with another whole instruction, with a
single write. However, it is easy to imagine code that replaces an instruction byte-by-byte, or perhaps
even only replacing a single field in the instruction encoding.

It is clear that performing individual per-byte writes and then performing the full cache synchronization
sequence, without concurrently attempting to fetch the location, should give the desired result without
unpredictable behaviour.

For example, in the SM8+sclcachesync-isb test (Figure 3.27), a new 32-bit instruction is written byte-by-
byte before performing a full cache synchronisation sequence on a single core. Here, it is not a concurrent
modification of the location, as it is all on a single core and the sequence is complete before the fetch
happens, and so the result is a well-defined forbidden outcome. This pattern can occur in practice, as
code often gets loaded from some other memory by means of some memory copying code, which may copy
bytes using instructions whose accesses are not naturally instruction-sized, before they are executed.

Note that the 32-bit opcode for B l1 differs from that of B l0 only in the last byte (at f[0] since
instructions are always stored little-endian in Arm-A), so all combinations of the writes correspond to
instructions which are in the set of modifiable instructions. One can also delete the final three STRB
instructions (events b-d) from the test, and not affect the result (it is still forbidden).

STRB W0,[X4,#0] //a
STRB W1,[X4,#1] //b
STRB W2,[X4,#2] //c
STRB W3,[X4,#3] //d
DC CVAU, [4] //e
DSB ISH
IC IVAU, [X4] //f
DSB ISH
ISB //g
BL f

Thread 0

f: B l0 // h
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state:
0:<W0,W1,W2,W3>="B l1"
0:X1=f, 0:X2=g

SM8+sclcachesync-isb AArch64

Forbidden: 0:X0=1

hw-refs: -----

write f[0]=B l1[0]a:

write f[1]=B l1[1]b:

write f[2]=B l1[2]c:

write f[3]=B l1[3]d:

DCe:

DCf:

ISBg:

fetch f=B l0h:

Thread 0

po

po

po

scl

dsb

dsb

isb

ifr

ifr

ifr

ifr

scl

scl

scl

Figure 3.27: Code listing and execution diagram for SM8+sclcachesync-isb.

It is less clear in the architectural prose (even as of the most recent version, J.a [81]) what happens
if one were to concurrently modify part of an instruction, either in a single thread without sufficient
synchronisation as in SM+mixed (Figure 3.28, p.63), or across multiple threads as in W+F+mixed
(Figure 3.29, p.63). We do not discuss this in detail, and we are not aware of any software patterns that
rely on it. We leave this question open for the architects to resolve at a later time.
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STRB W0,[X1,#3] //a, b
BL f

Thread 0

f: B l0 // c
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state: 0:W0="B l1"[3], 0:X1=f
SM+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

fetcha: write f[3]=B l1[3]b:

fetch fc:

Thread 0
fe

fpo

Figure 3.28: Code listing and execution diagram for SM+mixed.

STRB W0,[X1,#3] //a

Thread 0

BL f //b

Thread 1

Initial state:
0:W0="B l1"[3], 0:X1=f

W+F+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

write f[3]=B l1[3]a:

Thread 0

fetch fb:

Thread 1

Figure 3.29: Code listing and execution diagram for W+F+mixed.

3.14 Cache type strengthening: IDC and DIC

Implementations may announce that they provide stronger guarantees through two fields in the cache
type identification register (CTR_EL0). They are the IDC and DIC fields. The value of these fields then
inform software whether each of the cache maintenance instructions are required.

IDC is related to instruction-to-data coherence, and requirements on data cache maintenance. DIC is
related to data-to-instruction coherence, and the requirement for instruction cache maintenance. As the
names suggest, these fields are related to the kinds of coherence introduced in Section 3.4.

If implementations choose to advertise that one or other of the cache maintenance operations are not
required, then those cache maintenance instructions simply become hints or NOPs, so defensive cleans and
invalidations will not be harmful to the program.

None of the devices we tested had either strengthening enabled.

3.14.1 IDC

When CTR_EL0.IDC is 1, the DC instruction is not required as part of the sequence [81, p. 201].

Point of Unification When the DC instruction is not required, it means that writes must reach the
Point-of-Unification before being propagated to other threads. This means, under IDC=1, the earlier
SM.F+ic test (Figure 3.19, p.55) is forbidden.

3.14.2 DIC

When CTR_EL0.DIC is 1, the IC instruction is not required as part of the sequence [81, p. 201].

In-order fetching Recall that instruction fetches must either happen in-order, or the IC instruction must
touch the internal fetch queues of the individual threads (§3.5). When DIC=1, the IC instruction is not
required, and this forces fetches to be satisfied from the instruction cache in the order they are fetched into
the fetch queue. This is exactly how our operational model is expressed (which we shall see in Chapter 4).
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3.15 Related Work

Explicit cache maintenance makes these tests, and the models presented in the next two chapters, quite
different to the ‘user mode’ relaxed memory models discussed in Chapter 2.

Previous work on verification, of operating systems, hypervisors, and JITs, has had to work with idealised
models of the underlying hardware.

Myreen’s JIT compiler verification [65] models x86 icache behaviour with an abstract cache that can be
arbitrarily updated, cleared on a jmp.

Cai, Shao, and Vaynberg produce a Hoare-style logic for certifying programs which contain self-modifying
patterns [82], extending a version of Concurrent Abstract Predicates (CAP) [83] for generalised von-
Neumann machines.

Goel et al.’s work on verification of x86 machine code programs [84, 85] includes a system step relation,
based on their idealised x86 instruction models in ACL2. This model fetches instructions from memory,
but avoids the complexity of caches and pipelines [86].

Lustig et al. describe a framework for concurrent models, with relaxed behaviours, for machine code
x86 programs based on stages of hardware micro-operations [87]. They produce some models in this
framework which include instruction fetching and the (data and TLB, not instruction) caches of a specific
hardware implementation. These models explain behaviours seen based on knowledge of the underlying
microarchitecture, but are not intended to be architectural models.

The verification of seL4 [55] included self-modifying patterns, but assumed the correctness of the required
cache maintenance, without producing tight architectural models of the individual instructions.

CertiKOS [56, 57] verifies an assortment of safety and security properties (no code injection, no buffer
overflows, no data races, and so on) for a custom-written kernel, with respect to an underlying concurrent,
but not relaxed, x86 hardware machine model (‘x86mc’) without self-modifying code .

SeKVM [88] similarly verified a custom-written (in this case, for Arm) micro-kernel, with respect to an
underlying concurrent, and somewhat relaxed, hardware model. This model is far less idealised than
those used in earlier verification efforts (but still not an architectural definition by any means), such as
those in the seL4 and CertiKOS projects. The KCore kernel itself does not require self-modifying code,
the contextual refinement did not consider programs with concurrent or self-modifying code, and the
underlying hardware model did not support data or instruction cache maintenance operations.

For architectural models which include cache maintenance, the closest is Raad et al.’s work on non-volatile
memory. They model the required cache maintenance for persistent storage in ARMv8-A [89], as an
extension to the ARMv8-A axiomatic model, and for Intel x86 [90] as an operational model.

There is also some work on address translation and TLB maintenance, which has a very similar flavour to
cache maintenance. We explain the related work on TLBs in more detail later (§8.10).

During this work, Arm informally confirmed they would adopt the model (subject to necessary updates
and changes of architectural intent) [67].

Independent work by Arm, after the conclusion of this work, further extended the herdtools suite of tools,
models, and tests, for instruction fetching and cache maintenance. This work has yet to be published,
although a prose version of the mathematics appears in the latest manuals [68]. It is difficult to give a
comprehensive comparison between the most up-to-date model produced by Arm and the one presented
here without further work to do an in-depth comparison. We do not believe the architectural intent has
changed.
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Chapter 4

Operational instruction fetching

4.1 An Operational Semantics for Instruction Fetch

Previous work on operational models for IBM Power and Arm ‘user-mode’ concurrency (see Chapter 2) has
shown, perhaps surprisingly, that one can capture the architecturally intended envelope of programmer-
visible behaviour while abstracting from almost all hardware implementation details of the memory system
(store queues, the cache hierarchy, the cache protocol, and so on). For Arm-A, following their 2018 shift
to a multi-copy-atomic architecture, one can do so completely: the Flat model of Pulte, Flur, et al. [7]
has a shared flat memory, with a per-thread out-of-order thread subsystem. This out-of-order thread
subsystem abstractly models pipeline effects, which are alone sufficient to explain all the observable relaxed
behaviours — subsuming relaxations which arise from store queues and caches and suchlike.

For instruction fetch, and the required cache maintenance, it is no longer possible to abstract completely
from the data and instruction cache hierarchy. However, we can still abstract from some of its complexity.
Flat has a fixed instruction memory, and fetches instructions from that fixed instruction memory. This
fetch transition could be taken at any time, for any in-flight (non-finished) instruction, for any address of
a potential (even speculative) program-order successor of that in-flight instruction. We now extend Flat
by removing that fixed instruction memory, enabling instructions to be fetched from the flat memory,
with values written by normal ‘data’ writes, along with adding the additional instruction-fetch related
structures: per-thread fetch queues and instruction caches, and a global data cache, as shown in Figure 4.1.

We call this extended model iFlat. The remainder of this chapter will describe these new structures in
detail, and enumerate the transitions of iFlat. We do so by first describing, informally, iFlat and its
transitions, before giving a more detailed, but still in prose, precise description of the model. These
descriptions are intended equivalent to a version we implement as an executable test oracle in the RMEM
tool which can be found at https://github.com/rems-project/rmem.
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Figure 4.1: Structure of the iFlat state: per-thread fetch queues and instruction caches, with a global
abstracted data cache.
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4.2 iFlat Transitions: a brief summary

To Flat we add new transitions: splitting the atomic ‘fetch next instruction’ transition up into three
distinct steps (a request, a satisfaction, and a decode); transitions which evolve the abstract cache state;
and transitions for the operation of data and instruction cache maintenance.

In particular, these are1:

◦ Fetch request
. Fetch instruction (ifetch)
. Fetch instruction (unpredictable)
. Fetch instruction (B.cond)
◦ Decode instruction
. Begin IC
◦ Propagate IC to thread
. Complete IC
. Perform DC
◦ Add to instruction cache for thread

In addition to these transitions, we modify some existing ones:

. Commit barrier

. Satisfy memory read by forwarding from writes

. Satisfy memory read from memory
◦ Commit store instruction
. Propagate memory write
◦ Complete store instruction (when its writes are all propagated)

Together, these transitions define the lifecycle of each instruction a request gets issued for the fetch, then
at some later point the fetch gets satisfied from the instruction cache, the instruction is then decoded
(in program-order), and then the ISA definition can be executed to produce intra-instruction traces to
continue execution as in original Flat [7].

4.2.1 An example: DC/IC cache synchronisation

Before we describe the iFlat state and transitions in detail, we first give an informal intuition of how it
works, with a walkthrough of the previously seen DC/IC sequence.

Figure 4.2 sketches the sequence of updates to the iFlat state over the cartoon sketch of Figure 4.1. It starts
from a simple state, with an old cached value in the instruction cache and an already-satisfied element in
the fetch queue. It then demonstrates the cache synchronisation sequence of: writing a new instruction,
performing data cache maintenance, then instruction cache maintenance, before finally fetching the new
instruction, in six steps:

1. A write of a new value is propagated to memory. The new write is placed into the abstract data
cache buffer, where it can be seen by data reads but not guaranteed to be seen by instruction fetches.

2. The DC ‘pushes’ the write down, out of the abstract data cache, to memory.
3. The IC removes any cached copy of that location from the abstract instruction cache, for all cores.

Also, it removes any already-satisfied elements in the fetch queue using those cached copies.
4. A spontaneous fill of the instruction cache is now guaranteed to see the new value, and will cache it

in the abstract instruction cache.
5. Program-order later instructions for that location, which have not yet been fetched, can now be

satisfied from the new entry in the instruction cache.
6. Once the satisfied fetch request reaches the end of the queue, it is decoded and appended to the end

of the instruction tree in the thread to be executed.

Note that we do not include the thread-local effects of barriers (DMB, DSB, or ISB) in this sketch, see the
full description of the transitions in §4.4 for further details.

1Items marked with ◦ may be taken eagerly.
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Figure 4.2: Cartoon sketch of DC/IC sequence in iFlat.

4.2. IFLAT TRANSITIONS: A BRIEF SUMMARY 67



4.3 The iFlat state

We extend the original Flat state, to include:

. Per-thread fetch queues (§4.3.1), which store fetch requests permitting out-of-order satisfaction of
instruction fetches.

. Per-thread instruction caches (§4.3.2), which enable threads to keep old (with respect to memory)
copies of instructions which can be used when satisfying instructions in the fetch queue.

. A global abstracted data cache (§4.3.3), which over-approximates the coherent data cache network.

As is usual for an architectural definition, these are all of unbounded size – abstracting from, and thus
overapproximating, the hardware.

The full description of the model state is given in Appendix B.

4.3.1 Fetch queues

We give each thread a dedicated ‘fetch queue’, which buffers the in-flight instruction fetches. Fetch queues
allow the model to speculate and pre-fetch instructions, potentially satisfying them out-of-order.

The thread subsystem fetches instructions by inserting a new entry into the fetch queue. This entry is a
request, containing the address to be fetched. The entries in the fetch queue can then be satisfied from
memory at any point in time, in any order. Entries are removed and decoded in-order from the fetch
queue.

Entries are either a yet unsatisfied (‘unfetched’) request, or, a fetched 32-bit opcode.

The model permits entries to be added to the fetch queue for any arbitrary address; as earlier instructions
become finished, they will discard successor instructions whose program counter value does not match the
one computed from the instruction semantics.

In this way the fetch queues abstract from multiple hardware structures: instruction queues, line-fill
buffers, loop buffers, slots objects, and others.

Out-of-order fetching We believe the out-of-order satisfaction of instruction fetches is not observable on
real hardware (in part due to the general lack of coherence in instruction caches subsuming this behaviour,
see §3.5), and that the model is equivalent to one that fetches in order. However, this presentation of the
model is more consistent with the description in the Arm reference manuals, and we believe has a closer
correspondence with the underlying microarchitecture.

Fetch queues and instruction trees Flat already keeps a per-thread tree of in-flight instructions. There
is a model design choice between constructing an explicit fetch queue as an independent structure in the
iFlat state, or adding a new unfetched state to the instruction instances in the tree and interpreting the
po-suffix of any unfetched entries in the tree as the fetch queue. The latter has the advantage of allowing
model speculation down multiple branches simultaneously, although this does not introduce additional
behaviours.

In principle, the two choices are equivalent and are merely presentational. Here, we give the model
as if there are explicit separate fetch queues tracked in the state for exposition purposes, but in the
executable-as-a-test-oracle implementation in RMEM we simply extend the already existing instruction
tree with an unfetched state.

4.3.2 Abstract instruction caches

We give each thread an abstract instruction cache. The abstract instruction cache implements an over-
approximation of those that may be found in hardware as a set of writes which the fetch queue entries
can be satisfied from. We apply very few restrictions to the abstract instruction cache: it is permitted to
cache any set of writes seen since the last instruction cache invalidation. The abstract instruction cache is
then used to satisfy fetch requests in the fetch queue.
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The instruction cache can contain many possible writes for each location (§3.9), and can be spontaneously
updated with new writes in the system at any time ([66, B2.4.4]), or spontaneously drop entries.

Unlike the flat memory, the instruction caches are not touched on propagating a write. There is no guarantee
values are ever dropped from the instruction cache, unless an explicit instruction cache maintenance
operation is performed.

Invalidations Instruction caches must be maintained by software, through the use of instruction cache
invalidation instructions (IC). An IC instruction sends messages to each core (including its own), requesting
they clear their instruction caches, and then waits for all the cores to reply. Other instructions may
execute out-of-order with respect to these messages, except for DSBs: the requests are only sent after any
program-order earlier DSB instructions are complete, and no program-order later DSB can complete until
all the replies have returned.

To handle this, we keep for each thread a set of addresses yet to be invalidated by in-flight ICs. Threads
can, at any point in time, spontaneously perform any pending cache invalidation for that thread: removing
any writes from the instruction cache or already-satisfied entries in the fetch queue, for that location.
Once all pending cache invalidations have been performed on all cores, the IC instruction can complete.

4.3.3 Global abstract data cache

Above the single shared flat memory for the entire system, we insert a shared buffer of writes. Implemen-
tations may have various topologies of cache hierarchies; we abstract from this by keeping a single large
global buffer of all writes which have not yet passed the Point of Unification – over-approximating any
individual cache topology.

Explicit reads (e.g. those from load instructions) must be coherent, reading from the most recent write
to the same address in the buffer, or memory. Instruction fetches may read from any write of the same
location, from either the buffer or memory (§3.4).

As writes are propagated to memory, they are placed initially into the abstract data cache buffer. At any
point in time, the coherence-earliest write in the buffer for any location can spontaneously flow into the
shared flat memory, making coherence-earlier writes no longer visible to instruction fetches.

In this way, the shared flat memory acts as a system-wide Point of Unification; writes before that point
may or may not be seen by the threads, but once they reach the shared flat memory an instruction cache
fill must see that write, or something coherence newer.

4.3.4 Outcome types

To link the model transitions to the execution of the instructions in the program, the interface’s outcome
types (described in §2.2) must be extended to cope with the new instructions: namely, we must add
outcomes for the two cache maintenance operations, one for the data cache clean, and two for instruction
cache invalidation (for the separation of propagation of messages and completion of the whole invalidation).
The full list of outcomes for the iFlat model can be found in Figure 4.3.

Read_mem(read_kind, address, size, read_continuation) Read request
Perform_IC(address, res_continuation) Propagate an ic ivau
Wait_IC(address, res_continuation) Wait for an ic ivau to complete
Perform_DC(address, res_continuation) Propagate a dc cvau
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 4.3: iFlat outcomes (new outcomes highlighted in blue).
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4.3.5 Pseudocode states

We extend the intra-instruction semantics, and associated pseudocode states, to include the fetch-queue
fetch states, either fetched or unfetched, and ‘pending’ IC instructions, as they do not happen atomically.
Figure 4.4 lists all the pspeudocode states in iFlat, with the new ones highlighted.

Plain(next_state) Ready to make a pseudocode step
Unfetched(pc) Placed into fetch queue but pending satisfaction of the fetch
Fetched(opcode) Fetch satisfied but not yet begun pseudocode execution
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store
Pending_IC(ic_cont) Waiting for completion of an IC IVAU

Figure 4.4: iFlat pseudocode states (new states highlighted in blue).

4.4 iFlat Transitions: in full

We now give full descriptions of the new transitions, as an amendment to the Flat model of [7] recalled in
Chapter 2. A full transcription of the (i)Flat model can be found in Appendix B.

4.4.1 New transitions

Transitions for all instructions:

◦ Fetch request: This transition (perhaps speculatively) requests to fetch the next-instruction address,
as a po-successor of a previous instruction.

. Fetch instruction: Satisfy the fetch request from the instruction cache (split into three variants).
◦ Decode instruction: Decode the instruction.

Cache maintenance instructions:

. Begin IC: Initiate instruction cache maintenance.
◦ Propagate IC to thread: Do instruction cache maintenance for a specific thread.
◦ Complete IC: Finish instruction cache maintenance instruction.
. Perform DC: Clean the abstract data cache for a specific cache line.

Instruction cache updates:

. Add to instruction cache for thread: Update instruction cache for thread with write.

Below gives precise prose descriptions of each of the new transitions’ guard and action.

Fetch request For some instruction i, any possible next fetch address loc can be requested, adding it to
the fetch queue, if:

1. it has not already been requested, i.e., none of the immediate successors of i in the thread’s
instruction_tree are from loc; and

2. either i is not decoded, or, if it has been, loc is a possible next fetch address for i:
(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4);
(b) for a conditional branch, either the successor address or the branch target address1; or
(c) for a jump to an address which is not yet determined, any address (this is approximated in our

tool implementation, necessarily).

Action: add an unfetched entry for loc to the fetch queue for i’s thread.

Note that this allows speculation past conditional branches and calculated jumps.
1In AArch64, all the conditional branch instructions have statically determined addresses.
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Fetch instruction (ifetch) In ifetch mode this transition replaces the original ‘Fetch instruction’ transi-
tion.

For any fetch-queue entry in the Unfetched state, its fetch can be satisfied from the instruction cache,
from write-slices ws, if:

1. the write-slices (parts of writes) ws have the 4-byte footprint of the entry and can be constructed
from a write in the instruction cache.

Action: change the fetch-queue entry’s state to Fetched(ws).

Fetch instruction (unpredictable) For any fetch-queue entry in the Unfetched state, its fetch can be
satisfied from the instruction cache in a constrained-unpredictable way, if:

1. there exists a set of write-slices, each of which can be constructed in the same way as above;
2. that set contains write-slices corresponding to distinct opcodes, and at least one of those is an

instruction that is not B.cond or one of {B, BL, BRK, HVC, SMC, SVC, ISB, NOP}, and they are not all
B.cond instructions.

Action: record the fetch-queue entry as Constrained_unpredictable. When this has reached decode
and the corresponding point in the instruction tree becomes non-speculative, the entire thread state will
become Constrained_unpredictable.

Fetch instruction (B.cond) For any fetch-queue entry in the Unfetched state, its fetch can be satisfied
from the instruction cache, from write-slices ws and ws', with value ws'', if:

1. there exists write-slices ws and ws', each of which can be constructed in the same way as above;
2. ws and ws' correspond to the encoding of two conditional branch instructions b and b';
3. the write-slices ws'' can be constructed as the combination of ws and ws' such that ws'' is the

encoding of the branch instruction with b’s condition and b'’s target.

Action: record the fetch-queue entry as Fetched(ws'').

Decode instruction If the last entry in the fetch queue is in Fetched(ws) state, it can be removed from
the queue, decoded, and begin execution, if all po-previous ISB instructions in the instruction tree have
finished.

Action:

1. Construct a new instruction instance i with the correct instruction kind and state, for i’s program
location, and add it to the instruction tree.

2. Discard all speculative entries in the instruction tree that are successors of i that are now known to
be incorrect speculations.

Note that this transition is a proxy for the point the instructions will be decoded, but that it is the
intra-instruction semantics that actually performs the decoding, with this transition merely starting the
execution of the pseudocode.

Begin IC An instruction i (with unique instruction instance ID iiid) in state Perform_IC(address,

state_cont) can begin performing the IC behaviour if all po-previous DSB ISH instructions have finished.
Action:

1. For each thread tid' (including this one), add (iiid, address) to that thread’s ic_writes;
2. Set the state of i to Propagate_IC(address, state_cont).

Propagate IC to thread An instruction i (with ID iiid) in state Wait_IC(address, state_cont) can
do the relevant invalidate for any thread tid', modifying that thread’s instruction cache and fetch queue,
if there exists a pending entry (iiid, address) in that thread’s ic_writes.

Action:
1. For any entry in the fetch queue for thread tid, whose program_loc is in the same minimum-size

instruction cache line as address, and is in Fetched(_) state, set it to the Unfetched state.
2. For the instruction cache of thread tid, remove any write-slices which are in the same instruction

cache line of minimum size as address.
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Complete IC An instruction i (with instruction instance ID iiid) in the state Wait_IC(address,

state_cont) can complete if there exists no entry for iiid in any thread’s ic_writes.

Action: set the state of i to Plain(state_cont).

Perform DC An instruction i in the state Perform_DC(address, state_cont) can complete if all
po-previous DMB ISH and DSB ISH instructions have finished.

Action:
1. For the most recent write slices wss which are in the same data cache line of minimum size in the

abstract data cache as address, update the memory with wss.
2. Remove all those writes from the abstract data cache.
3. Set the state of i to Plain(state_cont).

Add to instruction cache for thread A thread tid’s instruction cache can be spontaneously updated
with a write w from the storage subsystem, if this write (as a single slice) does not already exist in the
instruction cache.

Action: Add this write (as a single slice) to thread tid’s instruction cache.

4.4.2 Updated transitions

For those transitions where we update the guard or action the full text of the transition is reproduced
here, with the delta highlighted, even where the change is minor.

Commit barrier A barrier instruction i in state Plain(next_state) where next_state is
Barrier(barrier_kind, next_state′) can be committed if:

1. all po-previous conditional branch instructions are finished;
2. all po-previous dmb sy barriers are finished;
3. [ ifetch ] all po-previous dsb sy barriers are finished; and
4. if i is an isb instruction, all po-previous memory access instructions have fully determined memory

footprints; and
5. if i is a dmb sy instruction, all po-previous memory access instructions and barriers are finished;;

and
6. [ ifetch ] if i is a dsb sy instruction, all po-previous memory access instructions, barriers, and cache

maintenance instructions have finished.

Action:
1. Update the state of i to Plain(next_state′);
2. [ ifetch ] If i is an isb instruction, for any instruction instance in this thread’s instruction tree, if that

instruction instance is in the Fetched state, set it to the Unfetched state.

Note that this corresponds to an ISB discarding any already-fetched entries from the fetch queue.

Satisfy memory read by forwarding from writes For a load instruction instance i in state Pend-
ing_mem_reads(k), and a read request, r in i.mem_reads that has unsatisfied slices, the read request
can be partially or entirely satisfied by forwarding from unpropagated writes by store instruction instances
that are po-before i, if the read-request-condition predicate holds. This is if:

1. [ ifetch ] all po-previous dsb sy instructions are finished; and
2. all po-previous dmb sy and isb instructions are finished.

Let wss be the maximal set of unpropagated write slices from store instruction instances po-before i, that
overlap with the unsatisfied slices of r, and which are not superseded by intervening stores that are either
propagated or read from by this thread. That last condition requires, for each write slice ws in wss from
instruction i′:

. that there is no store instruction po-between i and i′ with a write overlapping ws, and

. that there is no load instruction po-between i and i′ that was satisfied from an overlapping write
slice from a different thread.
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Action:
1. Update r to indicate that it was satisfied by wss.
2. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every

non-finished instruction i′ that is a po-successor of i, and every read request r′ of i′ that was
satisfied from wss′, if there exists a write slice ws′ in wss′, and an overlapping write slice from a
different write in wss, and ws′ is not from an instruction that is a po-successor of i, or if i′ was a
data-cache maintenance by virtual address to a cache line that overlaps with any of the write slices
in wss′, restart i′ and its data-flow dependents.

Satisfy memory read from memory For a load instruction instance i in state Pending_mem_reads(k),
and a read request r in i.mem_reads, that has unsatisfied slices, the read request can be satisfied from
memory, if:

1. the read-request-condition holds (see previous transition).

Action:
let wss be the write slices from memory or the abstract data cache, whichever is newer, covering the
unsatisfied slices of r, and apply the action of Satisfy memory read by forwarding from writes.

Note that Satisfy memory read by forwarding from writes might leave some slices of the read request
unsatisfied. Satisfy memory read from memory, on the other hand, will always satisfy all the unsatisfied
slices of the read request.

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes(k),
i can commit if:

1. i has fully determined data (i.e., the register reads cannot change);
2. all po-previous conditional branch instructions are finished;
3. all po-previous dmb sy and isb instructions are finished;
4. [ ifetch ] all po-previous dsb sy instructions are finished;
5. all po-previous store instructionshave initiated and so have non-empty mem_writes;
6. all po-previous memory access instructions have a fully determined memory footprint; and
7. all po-previous load instructions have initiated and so have non-empty mem_reads.

Action: record i as committed.

Propagate memory write For an instruction i in state Pending_mem_writes(k), and an unpropagated
write, w in i.mem_writes, the write can be propagated if:

1. all memory writes of po-previous store instructions that overlap w have already propagated;
2. all read requests of po-previous load instructions that overlap with w have already been satisfied,

and the load instruction is non-restartable; and
3. all read requests satisfied by forwarding w are entirely satisfied.

Action:
1. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every

non-finished instruction i′ po-after i and every read request r′ of i′ that was satisfied from wss′, if
there exists a write slice ws′ in wss′ that overlaps with w and is not from w, and ws′ is not from a
po-successor of i, or if i′ is a data-cache maintenance instruction to a cache line whose footprint
overlaps with w, restart i′ and its data-flow dependents.

2. Record w as propagated.
3. Add w as a complete slice to the abstract data cache.

4.4.3 Auxiliary definition – cache line of minimum size

Cache maintenance operations work over entire cache lines, not individual addresses (§3.12). Each address
is associated with at least one cache line for the data (and unified) caches, and one for the instruction
caches. The data and instruction cache line of minimum size is the smallest possible cache line, for the
data or instruction caches respectively. The CTR_EL0.{DMinLine, IMinLine} register fields describe the
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cache lines of minimum size for the data and instruction caches as log2 of the number of words in the
cache line.

Caches lines are always aligned on their minimum size, and we say a write slice overlaps with a cache line
if the footprint of the write slice overlaps with the 22+DMinLine (or 22+IMinLine for instruction cache lines)
byte slice starting from the beginning of the aligned cache line region.

4.4.4 Handling cache type strengthenings

When CTR_EL0.DIC is 1, and therefore the IC instruction is not required, the following transitions are
modified:

. Fetch instruction:
– Instead of satisfying from the instruction cache, the request must be satisfied from composing

combinations of writes from the abstract data cache buffer and flat memory.
– Fetch requests may be only be satisfied if all po-previous in-flight fetch requests are also satisfied

(no out-of-order satisfaction).
. Fetch instruction (unpredictable) (same modification as previous).
. Fetch instruction (B.cond) (same modification as previous).
. Begin IC:

– Replace action with that of Complete IC.
. Add to instruction cache for thread (removed).

Together these effectively remove the instruction cache from the model, forcing in-order fetching, and
satisfaction of fetch requests from memory (or the abstract data cache).

When CTR_EL0.IDC is 1, and therefore the DC instruction is not required, the following transitions are
modified:

. Propagate memory write:
– Update Action (3) to add w to the flat memory, instead of the abstract data cache buffer.

This effectively removes the abstract data cache buffer from the model, causing all writes to immediately
reach the system-wide Point of Unification on propagation.
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Chapter 5

An axiomatic instruction fetch model

Based on the operational model, we develop an axiomatic semantics, as an extension of the Arm-A
axiomatic model [53, 7] described in Chapter 2. Throughout this chapter, references to the base Arm-A
axiomatic model refer to the one presented in that chapter.

The base axiomatic model is given as a predicate on candidate executions, hypothetical complete executions
of the given program which satisfy some basic well-formedness conditions, defining the set of valid executions
to be those satisfying its axioms.

We now extend this model, extending both the base events and candidate relations, as well as modifying
the axioms over those events. We do this in a way that tries to retain the original model events, relations,
and axioms, as unchanged as is reasonable to do so.

5.1 Candidates for self-modifying programs

We add new events:

. instruction-fetch (IF) events for each executed instruction, corresponding to the read of the 32-bit
opcode from memory during an instruction fetch.

. DC events, corresponding to the propagation of cache maintenance from a DC CVAU instruction.

. IC events, corresponding to the propagation of cache maintenance from an IC IVAU or IC IALLU
instruction.

. DSB events for the data synchronization barrier instruction.

5.1.1 Explicit events and program order

We partition the events into implicit events (in this case, just instruction fetches) and explicit events.
Logically, the explicit events are those that form part of the intensional operation of the instruction:
the primary memory events and general-purpose register accesses; whereas the implicit events are those
accesses which are indirect, part of the execution model of the machine or configuration but not particular
to the behaviour of that instruction. The architecture does not precisely define which events of an
execution belong to which category, but the informal notion of an ‘implicit’ event will still be a useful one.

Program order (po) relates explicit events. These are the explicit memory accesses (non-instruction-fetch),
barriers (including DSBs), and the cache operations (DC, IC).

By adding an instruction fetch event we now potentially have multiple events per instruction. To keep
track of the order of events within a single instruction, and between multiple instructions of the same
thread, we add two new relations:

. fetch-to-execute (fe), which relates the instruction fetch (IF) event with the intra-instruction-ordered-
later explicit memory access, barrier, or cache-op events of the instruction.

. fetch-program-order (fpo), which relates each instruction-fetch (IF) event with all IF events of
program-order later instructions.
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We make fpo the fundamental relation in candidates, instead of po, which we instead derive:

po = fe−1; fpo+; fe

Figure 5.1 shows an example execution graph from a program with three instructions a load, a move, and,
a store; with the implicit fetch events highlighted, illustrating the derivation of po.

a: IF ldr x0,[x1] b: R x=1fe

c: IF mov x2,x0

fpo

d: IF str x2,[x3] e: W y=1

fpo

fe

po

Figure 5.1: An example showing how po is derived from fpo and fe from the implicit fetch events (marked
in blue).

5.1.2 Same-location

We extend loc to relate same-address reads, writes, instruction fetches and IC/DC events.

Cache maintenance operations which affect all addresses, for example the IC IALLU instruction, are related
to all memory and ifetch events.

Same-cache-line Many of the operations now operate not over a single location but an entire cache line.
To handle these operations, we add to the candidate relations a pair of same-cache-line relations, relating
reads, writes, fetches, DC, and IC events to addresses in the same cache line of minimum size.

Since the DC and IC instructions operate over different cache line sizes, we have separate same-dcache-line
and same-icache-line relations, to relate events in the same data or instruction cache line of minimum
size. Note that the same-icache-line and same-dcache-line relations also relate non-cache-op events.

We combine these relations to get a single scl (same cache line), between memory (including ifetch) events
and cache ops, where that memory event is to the same cache line, for that particular cache op:

1 scl0 = [DC]; same -dcache -line | [IC]; same -icache -line | [W]; loc
2 scl = scl0 | scl0−1

5.1.3 Generalised Coherence

We add an acyclic, transitively closed, relation, wco. This is a generalised coherence-order, an extension of
co, with orderings for cache maintenance (DC and IC) events: it includes an ordering (e, e′) or (e′, e) for
any cache maintenance event e and same-cache-line event e′ if e′ is a write or another cache maintenance
event.

Since wco relates events in the same cache line, and is transitively closed, it may end up relating writes
that are not the same location. So [a:W];wco;[b:W] does not imply [a:W];co;[b:W] (although co does
imply wco).

This relation forms part of the witness, and abstractly captures the order that cache maintenance operations
and propagation of writes would happen in the operational model.

5.1.4 Dependencies

We extend the control dependency relation ctrl to include cache operations, but not instruction fetches.
This ensures that ctrl remains a subset of po, and that [a]; ctrl; [b]; po; [c] implies [a]; ctrl; [c].
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We extend addr to include cache operations, so that (e, e′) ∈ addr when e is a read and e′ is a cache
operation (DC or IC) whose address (cache line) is determined by the value read by e.

Since cache operations do not have any data associated with them, the data relation is left unchanged.

5.1.5 Reads-from

We add an instruction-read-from (irf) relation to the witness. It is the analogue of rf for instruction
fetches, relating writes to the IF event that fetches from it. We derive the analogous from-reads relation,
instruction-from-reads (ifr), from a fetch to all writes coherence-after the one it fetched from:

ifr = irf−1; co

Note the use of co not wco.

5.2 Axioms and auxiliary relations

We now make the following changes and additions to the model. The full model is shown in Figure 5.2,
with comments referring to the items in the following explanation.

5.2.1 Arm ifetch events and relations

The arm-common.cat file contains all the Arm-specific event names and relations, as defined in Chapter 2,
and can be found in the full isla sources for these models in [91]. Figure 5.3 lists the events and relations
defined by that file; we elide the full isla-cat definition of these relations here.

Events Relations

R Reads po,fpo program-order and fetch-program-order
IF Instruction-fetch id,loc identity and same-location
W Writes fe fetch-to-execute
M Explicit memory event (R|W) po-loc program-order same-location (po & loc)
A Read-acquire addr,ctrl,data dependencies
L Write-release wco,irf,rf Witness relations
Q Weak read-acquire rfe,rfi rf-external (rf&ext), rf-internal (rf&~ext)
F All fences (barriers) coe,coi co-external, co-internal
C All cache-ops (DC | IC) co coherence-order ([W];wco&loc;[W])

DC Data cache clean ifr instruction-from-reads (irf−1;co)
IC Instruction cache invalidate rmw read-modify-write
ISB Instruction barrier

dmbXY Memory Barrier
dsbXY DSB Barrier

scl same-cache-line
same-dcache-line,same-icache-line same data/instruction cache line

Variants
DIC,IDC Boolean flags for CTR_EL0.{DIC,IDC} identity

Figure 5.3: Arm ifetch events and relations. New and updated are highlighted in blue.

5.2.2 Cache maintenance

We define a derived relation isyncob (instruction-synchronised-ordered-before), relating some instruction
fetch f , in the most general case, to an IC which completes a cache synchronisation sequence (not
necessarily on a single thread) which affects the location fetched. Consequently, any instruction fetch
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1 include "cos.cat"
2 include "arm -common.cat" (*5.2.1*)
3
4 (* might -be speculatively executed *)
5 let speculative =
6 ctrl
7 | addr; po
8
9 (* Fetch -ordered -before *)

10 let fob =
11 [IF]; fpo; [IF] (*5.2.4*)
12 | [IF]; fe (*5.2.4*)
13 | [ISB]; fe−1 ; fpo (*5.2.5*)
14
15 (* Cache -op -ordered -before *)
16 let cob = (*5.2.8*)
17 [R|W]; (po & scl); [DC]
18 | [DC]; (po & scl); [DC]
19
20 (* DC synchronised required after a write *)
21 let dcsync =
22 if IDC
23 then id
24 else [W]; (wco & same -dcache -line); [DC]
25
26 (* IC sync required after a write or DC *)
27 let icsync =
28 if DIC
29 then id
30 else (
31 [W]; (wco & same -icache -line); [IC]
32 | [DC]; wco; [IC]
33 )
34
35 let cachesync =
36 dcsync; icsync
37
38 (* instruction -synchronised -ordered -before *)
39 let isyncob = (*5.2.2*)
40 (ifr; cachesync) & scl−1

1 (* observed by *)
2 let obs = rfe | fr | wco | irf
3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | speculative; [W]
8 | speculative; [ISB]
9 | (addr | data); rfi

10
11 (* atomic -ordered -before *)
12 let aob =
13 rmw
14 | [range(rmw)]; rfi; [A|Q]
15
16 (* barrier -ordered -before *)
17 let bob =
18 [R]; po; [dmbld]
19 | [W]; po; [dmbst]
20 | [dmbst ]; po; [W]
21 | [dmbld ]; po; [R|W]
22 | [L]; po; [A]
23 | [A|Q]; po; [R|W]
24 | [R|W]; po; [L]
25 | [F|C]; po; [dsbsy] (*5.2.6*)
26 | [dsb]; po (*5.2.6*)
27 | [dmbsy ]; po; [DC] (*5.2.7*)
28
29 (* Ordered -before *)
30 let ob1 =
31 obs | dob | aob | bob
32 | fob | cob | isyncob
33 let ob = ob1+

34
35 (* Internal visibility *)
36 acyclic po -loc | fr | co | rf

as internal
37
38 (* External visibility *)
39 irreflexive ob as external
40
41 (* Atomic *)
42 empty rmw & (fre; coe) as

atomic

Figure 5.2: Ifetch Axiomatic model
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must have been satisfied before the completion of any cache maintenance that it is isyncob-ordered before.
Precisely, f isyncob i is defined as:

f isyncob i ⇐⇒ (f, i) ∈ (ifr; cachesync) ∩ scl

That is, f reads-from some write w0, which was coherence-before some other write w, and w is wco-before
by a DC event d to some same-dcache-line address Adc, which is in turn was wco-before by an IC event
i to some address Aic which was same-icache-line as the original f . This general isyncob shape is
shown in Figure 5.4. In operational model terms, this captures traces that propagated w to memory, then
subsequently performed a same-cache-line DC, and then began an IC (and eagerly propagated the IC to all
threads). In any state after this sequence it is guaranteed that w, or a coherence-newer same-address
write, is in the instruction cache of all threads: performing the DC has cleared the abstract data cache
of writes to x, and the subsequent IC has removed old instructions for location x from the instruction
caches, so that any subsequent updates to the instruction caches have been with w, or co-newer writes.
Therefore, the fetch f must have happened before the IC had completed, otherwise it would have been
required to have read from w or something coherence after it.

w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

i: IC Aic

f: IF f

co

wco & scl

wco

irf

scl
isyncob

Figure 5.4: General isyncob shape.

This corresponds to the operational model in the following way: because w0 was coherence-before w, w0

was propagated before w was propagated in the trace, and because w was wco-earlier than the cache
synchronisation sequence, w was propagated before any of the cache maintenance transitions in the trace.
If the fetch transition corresponding to f were to satisfy its fetch in a subsequent state, it would be
guaranteed that w (or a coherence-newer write) would be in the instruction cache, and i would not be
able to fetch from w. Hence, f must have happened before the IC completing the cache synchronisation
sequence.

Cache type strengthening If the IDC or DIC variants are set, then either the DC or IC instruction is not
required. This affects the isyncob in the following way:

. If DIC, then the IC instruction is not required, and therefore f must be ordered before the propagation
of the DC, see Figure 5.5 (top left).

. If IDC, then the DC instruction is not required, and therefore f must be ordered before the propagation
of the IC, without the need of an intervening DC, see Figure 5.5 (top right).

. If both, then f must be ordered before any coherence-later same-location write than w0, as in
Figure 5.5 (below).
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w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

f: IF f

co

wco & scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

i: IC Aic

f: IF f

co

wco scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

f: IF f

co

irf

isyncob

Figure 5.5: Modified isyncob shape, for variants DIC (above left), IDC (above right), and both (below).

To achieve this, the isyncob relation is derived from the composition of two smaller relations:

. dcsync, which broadly captures the ‘data cache’ requirements, either from a write to a same cache
line DC if not IDC, otherwise, from a write to itself, capturing that with IDC that a write is past the
PoU the moment it has propagated.

. icsync, which captures the ‘instruction cache’ requirements, either from a DC (or same-icache-line
write), to a wco-later IC, or, if DIC, back to the DC or write itself.

The sequential composition of these two relations (called cachesync) captures the synchronisation required
from a write to the point sufficient cache maintenance has been performed to ensure a same-cache-line
instruction fetch would see it. We then finally define isyncob between any instruction fetch, and any
cache maintenance operation which is cachesync-after any write coherence-after the one the fetch read
from, that is, a write which has had sufficient cache synchronisation to have made earlier writes invisible
to the fetch machinery.

5.2.3 Coherence

The original model includes co in obs; we instead include the relation wco. Including wco in ordered-before
corresponds to the intuition that wco records the ordering of the Propagate memory write, Begin IC (and
eagerly taking all Propagate IC to thread transitions), and Perform DC transitions in the matching trace.

We also include irf in obs: informally, for an instruction to be fetched from a write, the write has to have
been done before. Correspondingly, in the operational model, a write has to have been propagated before
it can satisfy fetches in the storage subsystem.

5.2.4 Program order

We add a derived relation fetch-ordered-before (fob), which is included in ordered-before.

The fob relation includes fpo, informally requiring fetches to be ordered according to their order in the
control-flow unfolding of the execution. Correspondingly in the operational model: fetch requests for
instructions within the same thread appear to be satisfied in program order.

We also include the fe fetch-to-execute relation in fob, capturing the idea that an instruction must be
fetched before it can execute. In the operational model, a read can only be satisfied, a write can only
propagate, a barrier can only commit, and so on, after its instruction’s fetch is satisfied.

5.2. AXIOMS AND AUXILIARY RELATIONS 80



5.2.5 Instruction synchronisation (ISB)

We include the edge [ISB];fe−1;fpo in fetch-ordered-before (fob), ordering the fetch of any instruction
program-order-succeeding an ISB instruction after the ISB event.

Operationally, a decoded ISB instruction prevents any program-order-later instructions from being removed
from the fetch queue and decoded, and when an ISB is executed, it returns all entries in this thread’s
fetch queue (so any program-order-later instructions) to the Unfetched state, forcing the satisfaction of
the instruction fetch for those instructions to happen after the ISB completes.

The rule [ISB];po;[R] in dob is no longer required, as the combination of rules in fob (in particular
[ISB];fe−1;fpo and [IF];fe) subsume it.

5.2.6 Data synchronisation (DSB)

For DSB instructions we include po to and from DSB in the standard barrier-ordered-before relation (bob).

We do this in three ways: (1) by extending the barrier hierarchy relations dmbst and dmbld to cover
the memory barrier effects of a DSB; (2) by adding [F|C];po;[dsbsy] to capture DSBs waiting for the
completion of fences and cache-ops, when using DSBs affecting both reads and writes; and (3) by adding
[dsb];po to capture the remaining completion fence properties that program-order later events cannot go
ahead until the DSB is complete.

Importantly, DSB events do not order IF (ifetch) events in either direction.

5.2.7 Data cache maintenance (DC) is ordered like a read

Barrier-ordered-before also includes the relation [dmbsy];po;[DC], ordering DC events after program-order-
preceding DMB SYs. Correspondingly, in the operational model, a DC can only be performed when all
preceding DMB SY are finished.

5.2.8 Cache maintenance operations and cache lines

We include the relation cache-op-ordered-before (cob) in ob. This relation contains the edge [R|W];(po&
scl);[DC], ordering DC events after program-order-preceding same-dcache-line read and write events.

Operationally, a DC will be restarted by a program-order-preceding same-cache-line load if it was performed
before the load was satisfied, and by a program-order-preceding same-cache-line store if it was performed
before the store propagated its write.

Moreover, cob contains the edge [DC];(po&scl);[DC], ordering two same-cache-line, same-thread DC events
in program-order. In the operational model, a DC can only be performed when program-order-preceding
same-cache-line DC instructions have been performed.
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5.2.9 Constrained Unpredictable

We do not give precise semantics to programs that exhibit constrained unpredictable behaviour. Instead,
we add a mechanism to flag such programs.

1 (* include base ifetch model *)
2 include "aarch64_ifetch.cat"
3
4 (* could -fetch -from *)
5 let cff =
6 ([W]; loc; [IF])
7 \ ob−1

8 \ (isyncob−1 ; ob)
9

10 (* cmodx(opcode) is True
11 * if it is in the list of

concurrently modifiable
instructions

12 *)
13 define cmodx(v: bits (32)): bool =
14 ...

1 define cff_bad(
2 ev1: Event ,
3 ev2: Event ,
4 ev3: Event
5 ): bool =
6 W(ev1) & IF(ev2) & W(ev3)
7 & ~(ev1 == ev3)
8 & cff(ev1 , ev2) & cff(ev3 , ev2

)
9 & (~cmodx(ev1.value)

10 |~cmodx(ev3.value))
11
12 (* assert CU *)
13 assert exists
14 ev1: Event ,
15 ev2: Event ,
16 ev3: Event
17 =>
18 cff_bad(ev1 , ev2 , ev3) :named

CU

Figure 5.6: Constrained unpredictable check model (ifetch).

We do this through the definition of an auxiliary could-fetch-from (cff) relation, capturing, for each fetch
i, the writes it could have fetched from (including the one it did fetch from), as the set of same-address
writes that are not ordered-after i, and which are not overwritten by coherence-newer writes that were
followed by a cachesync sequence ordered-before i. Operationally, this captures writes that could have
been in the instruction cache of i’s thread: writes that did not happen after i in the trace, and excluding
writes cleared by earlier cache synchronisation sequences.

We then add an axiom, asserting the existence of a bad pair of writes (w1, w2) which i could have fetched
from, where at least one of w1 and w2 are not in the list of concurrently-modifiable instructions (as
described in §3.2). We identify these (i, w1, w2) triples with a ternary relation (cff_bad(w1,i,w2)), whose
non-emptiness implies the existence of such a triple. This gives us an extended ‘checker’ model, where
executions which are allowed in the checker model, are also allowed in the original ifetch model, but also
exhibit constrained unpredictable behaviour, and so the test should be flagged and any results discarded.
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Chapter 6

Validating the ifetch models

We gain confidence in the models presented in the previous chapters by validating those models against
the Arm architectural intent, against each other, and against a selection of real hardware.

6.1 The models correctly captures the architectural intent

This property is an important one, but not one that can be objectively demonstrated.

We ensure that the models reflect the architecture, to the best of our understanding, by engaging in
detailed and robust discussions with the Arm chief architect, as well as microarchitects involved in the
design of individual processors.

This process is an iterative one, where we produce litmus tests, discuss whether they are allowed or
forbidden (and by which mechanisms), build models that capture those described mechanisms, and produce
more litmus tests that show edge cases or interactions. This process is not necessarily terminating, but it
usually results in reaching a natural fixed point, for a core set of architectural features.

The structure of the operational model presented in Chapter 4 is based on our discussions with Arm;
it carefully includes structures which capture the behaviour they described, and has limits where the
architects decided no reasonable hardware could exploit.

The axiomatic model, presented in Chapter 5, is also a product of the discussions with Arm.

6.2 Correspondence between the models

We experimentally test the correspondence between the operational and axiomatic models. We do this by
making the models executable as test oracles, and running a suite of hand-written and autogenerated
litmus tests, checking that both models give the same result in all cases.

To automatically generate families of interesting instruction-fetch tests, Luc Maranget (a co-author of
this work) extended the ‘diy’ test generation tool [70] to support instruction-fetch reads-from (irf) and
instruction-fetch from-reads (ifr) edges, in both internal (same-thread) and external (inter-thread) forms,
and the cachesync edge. We used this to generate 1456 tests involving those edges together with po,
rf, fr, addr, (but no data), ctrl, ctrlisb, and dmb.sy. diy does not currently support bare DC or IC
instructions, locations which are both fetched and read from, or repeated fetches from the same location.

6.2.1 Making the operational model executable as a test oracle

To make the operational model presented in Chapter 4 executable, that is, capable of computing the set of
all allowed executions of a litmus test, we must be able to exhaustively enumerate all possible traces. For
the model as presented, doing this naively is infeasible: for each instruction it is theoretically possible to
speculate any of the 264 addresses as the address of a potential successor instruction, and the interleaving
of the new fetch transitions with others leads to an additional combinatorial explosion.
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We address these with two new optimisations. First, we extend the fixed-point optimisation in RMEM,
which incrementally builds the set of possible branch targets by repeated exhaustive searches [7], to track
not only the indirect branch instructions but the successors of every program location. Additionally, we
track during a test which locations were both fetched and modified during the test, and eagerly take fetch
and decode transitions for all other locations. As before, the search then runs until the set of branch
targets and the set of modified program-locations reaches a fixed point.

Confluence

We also take some transitions eagerly when they cannot remove behaviour to reduce the search space:
‘Propagate IC to thread’, ‘Complete IC’, ‘Fetch request’, and ‘Add to instruction cache for thread’.

Taking ‘Add to instruction cache for thread’ eagerly is ok, as this always increases the visible behaviours:
adding a write to an instruction cache does not hide writes that were visible before. ‘Complete IC’ and
‘Fetch request’ are also safe to take eagerly, as these advance thread-local state in a way that makes
further transitions available without preventing any others.

Taking ‘Propagate IC to thread’ eagerly is more subtle; this transition updates the state of another thread
and potentially removes transitions it had available to it. If we take an arbitrary trace, containing a
propagation of an IC to some thread, then it is safe (by the aforementioned logic) to immediately fill
that icache back in. If we have a trace with two IC propagations, to separate threads, from the same
instruction, with propagations of writes and DCs in between, then we know that the second ‘Propagate IC
to thread’ must have been an available transition when taking those write and DC propagation transitions,
and therefore there must have been another trace where those write and DC propagations happened after
the second IC propagation, and where the icache is filled immediately after each of those writes.

. . .
Propagate IC to X on Thread 1
Write to X
Propagate DC to X
Write to X
Propagate IC to X on Thread 2
. . .

⇒
. . .
Propagate IC to X on Thread 1
Propagate IC to X on Thread 2
Write to X
Eagerly fill icache
Propagate DC to X
Write to X
Eagerly fill icache
. . .

This new trace groups the propagation of instruction cache invalidations together as early as possible,
maximising the visible behaviour. Therefore, it we perform all the invalidates at once, atomically.

6.2.2 Making the axiomatic model executable as a test oracle

We give the axiomatic model in the isla-cat memory modelling language (see §2.4.2).

As isla-axiomatic already executes a fetch-decode-execute loop, defined by the Arm intra-instruction
semantics, the changes required of the ISA definition are only minor; we need only create outcomes for
the fetch memory accesses, and pass them as events to the axiomatic model.

This is sufficient for making the test executable, but exhaustive enumeration becomes intractable, as
the fetch events in the candidates should, in theory, be totally unconstrained. To support exhaustive
enumeration we must reduce the set of candidates we are required to check. Even permitting the fetch
part of the loop to be entirely symbolic (in location and opcode) would lead to far too many candidate
executions. Even if the vast majority of them would be dismissed quickly, with trivially unsatisfiable irf
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constraints they would still take time to generate and discharge. To avoid this, we instead require the user
to provide the possible set of program-counter values, and the sets of opcodes those locations’ values can
be. This ensures that while generating candidates we only need to generate those that actually contain
the control-flow and instruction opcodes that are interesting for the test.

Figure 6.1 contains the isla-axiomatic-compatible sources for the earlier SM.F+ic test (Figure 3.19, p.55)
as an example. Lines 7-13 define the self-modifiable locations used in the test (for this test that is only
label ‘f:’), and the fully-concrete opcodes those locations may be; recall that all isla traces are a single
control-flow path with fully concrete opcodes for each instruction.

1 arch = "AArch64"
2 name = "SM.F+ic"
3 hash = "de102a920be43ce10482e59700a7c976"
4 stable = "X10"
5 symbolic = ["x"]
6
7 [[ self_modify ]]
8 address = "f:"
9 bytes = 4

10 values = [
11 "0x14000001",
12 "0x14000003"
13 ]
14
15 [thread .0]
16 init = { X3 = "x", X4 = "f:", X0 = "0x14000001" }
17 code = """
18         STR W0 ,[X4]
19         LDR W2 ,[X3]
20         CBZ W2 , l
21 l:
22         ISB
23         BL f
24         MOV W1 ,W10
25         B Lout
26 f:
27         B l0
28 l1:
29         MOV W10 ,#2
30         RET
31 l0:
32         MOV W10 ,#1
33         RET
34 Lout:
35 """
36
37 [thread .1]
38 init = { X3 = "x", X2 = "1", X1 = "f:" }
39 code = """
40         BLR X1
41         MOV W0 ,W10
42         IC IVAU , X1
43         DSB SY
44         STR W2 ,[X3]
45 """
46
47 [final]
48 expect = "sat"
49 assertion = "1:X0 = 2 & 0:X2 = 1 & 0:X1 = 1"

Figure 6.1: Test SM.F+ic isla-axiomatic compatible version.
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6.3 Equivalence of the models

Ideally, one would have a formal proof that the operational and axiomatic models coincide, or at least a
detailed proof of some properties we expect the operational model to have: that the model is equivalent
to one that fetches in-order, that the transitions we take eagerly are safe to do so, that the fixed-point
calculation is not unsound for the model, and so on. However, this represents a large undertaking, as any
detailed proof above the actual definitions of the microarchitectural-flavoured operational semantics have
historically been very resource intensive, up to being the subject of entire Ph.D. theses [6]. Therefore, we
— sadly — defer such formal proof to future work.

In lieu of such formal proof, we compare the models empirically. First, to check for regressions, we ran
the operational model on all the 8950 non-mixed-size tests used for developing the original Flat model
(without instruction fetch or cache maintenance). The results are identical, except for 23 tests which did
not terminate within two hours. We used a 160 hardware-thread POWER9 server to run the tests.

We also ran the axiomatic model on the 90 basic two-thread tests that do not use Arm release/acquire
instructions (not supported by the ISA semantics used for this); the results are all as they should be. This
takes around 30 minutes on 8 cores of a Xeon Gold 6140.

We experimentally tested the equivalence of the operational and axiomatic models on the 52 hand-written
and the 1456 diy-generated tests, checking that the models give the same sets of allowed final states.

6.4 Validating against hardware

To run instruction-fetch tests on hardware, we extended the litmus tool [69]. The most significant extension
consists in handling code that can be modified, and thus has to be restored between experiments. To that
end, we make litmus execute copies of the code, which reside in mmap’d memory with execute permission
granted. Copies are made from ‘master’ copies, which are, in effect, C functions whose contents consist
of gcc extended inline assembly. Of course, such code has to be position independent, and explicit code
addresses in test initialisation sections (such as in 0:X1=l in the test of §3.3) are specific to each copy. All
the cache handling instructions used in our experiments are all allowed to execute at exception level 0
(user-mode), and therefore no additional privilege is needed to run the tests.

6.4.1 Results from hardware

We ran both the hand-written instruction-fetch litmus tests, and the 1456 auto-generated ones, on a
variety of hardware implementations. A short table of results can be found in Figure 6.2.

Our testing revealed a hardware bug in the Qualcomm Kryo cores of the Snapdragon 820: an illegal
outcome was exhibited by MP.RF+cachesync+ctrl-isb (Figure 3.11, p.51) in 84/1.1G runs (not shown
in the table), which we have reported. We have also observed an anomaly for MP.FF+cachesync+fpo
(Figure 3.13, p.52) on an Arm-designed core, although this core had (in previous work) been discovered to
suffer a read/read coherence violation. Apart from these, the hardware observations are all allowed by our
models.

As is expected, hardware does not make full use of the architectural envelope: some tests are architecturally
allowed, but never observed on hardware. There are broadly two reasons why this may be: the architecture
must be robust to future designs one might imagine but are not typically implemented (such as the
direct-data-intervention explanation of SM.F+ic (Figure 3.19, p.55)); in other cases, the architects must
make decisions to avoid ambiguity in the model, and where unconstrained by hardware designs or software
requirements we choose the simpler programming model (as in FOW (Figure 3.20, p.56)).

We therefore draw high confidence that the presented models correctly capture the architectural intent,
and are consistent with existing hardware. There were no existing hardware with either cache type
strengthening at the time of the work, and so, while we believe the models consistent with the architectural
intent, we are unable to give the same level of confidence in those aspects of the model. However, overall
we believe the models are strong enough to forbid the key behaviours guaranteed by hardware, and relied
on by software, while still being loose enough to be consistent with expected potential future designs.
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Test Arch. Intent H/W Obs.
CoFF allow 42.6k/13G
CoFR forbid 0/13G
CoRF+ctrl-isb allow 3.02G/13G
SM allow 25.8G/25.9G
SM+cachesync-isb forbid 0/25.9G
MP.RF+dmb+ctrl-isb allow 480M/6.36G
MP.RF+cachesync+ctrl-isb forbid 0/13G
MP.FR+dmb+fpo-fe forbid 0/13G
MP.FF+dmb+fpo allow 447M/13G
MP.FF+cachesync+fpo forbid F2.3k/13G
ISA2.F+dc+ic+ctrl-isb forbid 0/6.98G
SM.F+ic allow U0/12.9G
FOW allow U0/7G
MP.RF+dc+ctrl-isb-isb allow U0/12.94G
MP.R.RF+addr-cachesync+dmb+ctrl-isb forbid 0/6.97G
MP.RF+dmb+addr-cachesync allow U0/6.34G

Figure 6.2: Instruction-fetch hardware results
The hardware observations are the sum of testing seven devices: a Snapdragon 810 (4x Arm A53 + 4x Arm
A57 cores), Tegra K1 (2x NVIDIA Denver cores), Snapdragon 820 (4x Qualcomm Kryo cores), Exynos
8895 (4x Arm A53 + 4x Samsung Mongoose 2 cores), Snapdragon 425 (4x Arm A53), Amlogic 905 (4x
Arm A53 cores), and Amlogic 922X (4x Arm A73 + 2x Arm A53 cores). U: allowed but unobserved. F:
forbidden but observed.
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Part II
Virtual memory

This part is based on: Relaxed virtual memory in Armv8-A [37] by Ben Simner, Alasdair Armstrong,
Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell, published in the
proceedings of the 31st European Symposium on Programming (ESOP, 2022). The summary of the Arm
virtual memory architecture is based on Chapter D5 of the Arm Architecture Reference Manual DDI
0487H.a [12].
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Chapter 7

Pagetables and the VMSA

7.1 Introduction

Modern computers heavily rely on virtual memory to enforce security boundaries: hypervisors and
operating systems manage mappings from virtual to physical addresses in order to restrict the access
individual processes and guest operating systems have to the underlying physical memory, and to memory-
mapped devices. With the endemic use of memory-unsafe languages, even for critical infrastructure,
understanding and verifying the programs which manage virtual memory mappings is more vital than
ever, driving current interests in hypervisors.

This chapter continues with a brief overview of Arm’s virtual memory systems architecture, in enough
detail to understand the subsequent chapters, but does not present new contributions or novel research.
The rest of this part then describes the relaxed behaviours of virtual memory (Chapter 8), gives an
axiomatic semantics that capture these behaviours (Chapter 9), and validates that model against hardware
and the architectural intent (Chapter 10).

7.2 Virtual Memory

Arm’s virtual memory system architecture (VMSA) defines the virtual memory and virtualisation features
of the Arm architecture. It is described, in detail, in the Arm Architecture Reference Manual [81].

Conventionally, memory is imagined as a flat array of bytes, indexed by physical addresses. Larger
‘application’ class processors rely heavily on virtual memory: interposing one or more layers of indirection
between the accesses of a program (using virtual addresses) and the ‘true’ physical addresses of memory.
This indirection allows systems running on those processors to:

1. Partition the physical resources between different programs, giving access to only those resources
that each program needs, and protecting those resources from other programs that do not need to
access them;

2. Indirect accesses through specific ranges of addresses with convenient numeric values or different
permissions e.g. to obfuscate the true allocation of resources or to split permissions of a resource for
compartmentalisation.

3. Update those indirections at runtime to add, remove, or otherwise modify, the mappings to physical
memory, to support techniques such as copy-on-write and paging.

Typically, operating systems split individual programs into distinct processes, where each process is
associated with its own virtual to physical mapping. Such a mapping corresponds to a partial function,
from that process’s own (virtual) addresses to the real hardware physical addresses, with some permissions:

translate : VirtualAddress ⇀ PhysicalAddress× 2{Read,Write,Execute}

Note that this is a simplification. See The Arm translation table walk (§7.4) for a more detailed description
of the access permissions, memory types, and other attributes.
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Typically operating systems create one such mapping for each process, thereby partitioning the physical
memory into distinct subsets of physical addresses (which become the range of the translate function),
and would allocate some convenient numeric values to be the virtual addresses the process interacts with
(which become the domain of the translate function). Having this separation allows the processes to be
given conveniently aligned contiguous chunks of virtual address space even if the underlying physical
resources are highly fragmented, or, in the case of paging, perhaps not present at all. Additionally,
operating systems can provide many processes with mappings to the same physical resource (such as
memory-mapped devices) and control which processes have access to such devices at any point in time.

P0

0

P1

0

RAM

0

virt phys

Figure 7.1: Example virtual and physical address spaces for two processes.

The mapping defines an address space: the range of virtual addresses a program has access to, and what
they correspond to. The diagram in Figure 7.1 illustrates an example for two processes. The diagram
represents the mappings:

. For P0:
– virtual addresses in pages 1, and 3 are unmapped.
– virtual addresses in pages 2 and 4 map to physical addresses in physical page 8.
– virtual addresses in page 0 map to physical addresses in physical page 5.

. For P1:
– virtual addresses in pages 0 and 4 are unmapped.
– virtual addresses in page 1 map to physical addresses in physical page 1.
– virtual addresses in page 2 map to physical addresses in physical page 2.
– virtual addresses in page 3 map to physical addresses in physical page 4.

For example, with a page size of 4k, if process P0 reads or writes the address 0x2305 it will actually access
physical location 0x8305, since virtual page 2 was mapped to physical page 8 in P0’s address space, and
the offset within a page is preserved.

Each address space corresponds to a distinct translation function. These mappings may be: non-injective
(contain aliasing of multiple virtual addresses to the same physical address); partial (where some virtual
addresses do not map to a physical address at all); or overlapping with other processes’ address spaces, in
either the domain or the range or both.

Large application-class processor architectures provide hardware support in the form of the memory
management unit (MMU), which, once configured by software, will perform the translation from virtual to
physical addresses and any checking of permissions automatically. Software then needs only manage a set
of translation functions, in whichever encoding the architecture prescribes (see §7.3 for the encoding used
by Arm), switch between translation functions on a context switch, and handle any processor exceptions
generated by the MMU.

7.3 Arm Translation Tables

On Arm, as with most architectures, software can configure the MMU through the creation and modification
of sets of translation tables (also referred to as page tables).
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level 0 …

ttbr

level 1 … … …

level 2 … …

level 3 …

1GiB block 1GiB block

2MiB block

4KiB page

Figure 7.2: Schematic view of an example tree of translation tables. There are seven individual translation
tables, over four levels, which defines an address space that maps four separate spans of virtual addresses
to spans of physical addresses. In this example, the 2 megabyte block at level 2 encodes the mapping
– the output address, permissions, and memory type – for addresses in the range 0x8140200000 up to
0x81403fffff inclusive, which is determined from the highlighted path in the tree: it is the second level 2
(2M span) entry, for the 6th level 1 (1G span) entry, for the second level 0 (512G span) entry, from the
root.

The translation tables form an in-memory tree data structure which encode a translation function. Software
creates and maintains these trees, and controls which tree the MMU uses at runtime. On each memory
access, the hardware reads from this tree structure to perform the translation, or from one of the various
caching structures (described in §7.7).

A pointer to the root of the tree is stored in a TTBR (“Translation table base register”), which is one of a
family of related registers (see §7.6) that determines which tree of translation tables is currently in use by
that processor.

Each node in the tree is a page-aligned chunk of memory whose interpretation is an array of 64-bit entries,
where each entry controls the mapping for a particular span of the domain, defining whether the virtual
addresses in that span are defined for that process, and, if so, what the output physical address is and
what permissions the process has for that memory. The root table controls the entire address space. The
tree may recursively split spans into sub-trees. The width of the span mapped by each entry depends on
its ‘level’, which increases with depth. Typically, the root is at level 0, and the tree has maximum depth
of 4 (up to level 3) with a page size of 4 KiB. Thus, each pagetable contains 512 entries, with entries
in the root table each corresponding to a 512 GiB span. Note that Arm is highly configurable and this
merely represents one common configuration.

Figure 7.2 shows a view of an example set of translation tables, with four mapped regions defined in a tree
of seven tables. Each rectangular array represents one contiguous page-aligned block of memory, made
up of 512 64-bit entries. The base register points to the start of the level 0 table (the ‘root’ table). The
second, seventh, and eleventh, indexes in the root table contain pointers to subsequent (level 1) tables,
and so on. The exact format of these entries is described in the next section (see §7.3.1).
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7.3.1 Translation table format

Arm’s virtual memory system architecture is highly configurable. Writing to the SCTLR (“System control
register”) and TCR (“Translation control register”) system registers allow the programmer to configure the
processor with a variety of options. To give just a flavour of this configurability, some of those options
include: the size of virtual addresses; the number of levels in the tree; the starting level; the size of a single
page (or in Arm terminology, the size of the translation granule); the number of address space identifiers
(ASIDs and VMIDs, used for indexing the caches, see §7.7); alignment requirements; memory attributes
for hardware walks; enabling hardware management of access flags and dirty bits; write-execute-never
permissions; and so on.

To simplify the examples we suppress this complexity, and concretise down to just one common instance:
the one currently used by the Linux kernel; this gives a tree of translation tables with maximum depth 4,
with 4KiB pages, and 48-bit addresses. In this configuration, each node is a table of 512 64-bit entries, in
one 4096-byte block of memory.

Each page table entry is one of:

1. An invalid entry, which indicates that this slice of the domain is unmapped.
2. A table entry, pointing to a next-level table (a child tree) which recursively maps this slice of the

domain.
3. A page (last-level) or block (non-last-level) entry which defines a single fixed-size mapping for this

slice of the domain.

Invalid entries An invalid entry is defined by the least-significant bit of the entry being 0. The top 63
bits of an invalid entry are ignored by hardware, and software is free to use those bits to store metadata.
Invalid entries may exist at any level in the tree.

0

0
63 1

ignored

Block or page entries Block and page entries are similar to each other: both create a mapping for a
contiguous slice of the domain mapped by the entry, encoded as an output address (OA) of the base address
of the slice, with some metadata describing access permissions, memory type, and some software-defined
bits.

The OA is aligned to the size of the slice of the domain being mapped. For page entries, the OA is aligned
on a page boundary. A block entry’s OA at level 2 would be 2MiB aligned, and a block entry’s OA at
level 1 would be GiB aligned. This corresponds to the hardware reserving bits[n:12] of the entry to be
0 depending on how deep the entry is: at level 1, n==30; at level 2, n==21; and at level 3, n==12.

Block entries can exist at levels 1 and 2. Page entries can only exist at level 3.

For block entries, bit[1] is 0, for page entries, bit[1] is 1.

Metadata (access permissions, shareability, memory type) are encoded into the attrs bits, described more
in §7.3.2.

0

1
1
p

11 2

attrs
n-1 12

ignored
47 n

output address
48

0
49

0
63 50

attrs

Table entries A table entry contains a page-aligned pointer to a child table, but can also contain
similar metadata as the block or page entry, including access permissions (read/write/execute), which are
combined with any permissions from the child table.

Table entries are allowed only at levels 0–2.
0

1
1

1
11 2

Res01
47 12

table pointer
48

0
49

0
63 50

attrs

1The Arm architecture requires these bits are 0 and are reserved for future use.
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7.3.2 Attributes

The encoding of the attributes are split into upper and lower attribute fields:
1 011 2

Lower attrs
49 12

…
63 50

Upper attrs

These fields can be further split (see the Arm ARM D8.3.2 for a more comprehensive breakdown) [81]:

5051

DBM

52

Contiguous

5354

XN

58 55

Reserved

62 5963
Upper attributes (block/page)

014 2

AttrIndx

57 6

AP[2:1]

9 8

SH[1:0]

10

AF

16 11
Lower attributes (block/page)

58 51

Ignored
5960

XNTable

6261

APTable

63
Upper attributes (table)

0116 2

ignored

Lower attributes (table)

Figure 7.3: Upper and lower attribute encodings for Stage 1 pagetable entries for the 4KiB granule.

Some fields are elided, either because they are for out-of-scope features or otherwise uninteresting, leaving
just the following fields of interest:

. XN/XNTable: Execute-Never; when set, this mapping (or child mappings if XNTable) does not have
execute permissions.

. Contiguous: allows software to inform hardware that a sequence of entries point to contiguous
blocks of output memory, to enable more efficient TLB packing.

. DBM/AF: Dirty bit modifier and access flag; these bits allow software to monitor accesses to locations,
which are are out-of-scope for this work.

. SH: Shareability; how ‘far’ into the system the memory must be kept coherent for, e.g. memory
marked non-shareable need not be coherent for multiple cores. We do not model shareability domains
here, so always assume ‘Inner Shareable’.

. AP/APTable: Access permissions; described below in ‘Access permissions’.

. AttrIndx: Memory attribute; described below in ‘Memory Attributes’.

Access permissions

Once the walk is complete, and the final output address calculated, the MMU checks to see whether the
requested access is permitted. Each level of the table can contain some access permissions which are
combined at the end to calculate the final permissions.

For data accesses (reading and writing), table entries have an APTable field (bits[62:61]), and block/page
entries have an AP[2:1] 1 field (bits[7:6]). These fields can be decoded using the following table:

Field When set (1) When unset (0)
AP[2] Read-only Read&Write
AP[1] Allow at EL1&0 Allow at EL1 only
APTable[1] Force read-only No effect on permissions.
APTable[0] Force forbid access at EL0 No effect on EL0 permissions.

For executable permissions, which permit or forbid instruction fetching from some region of memory,
there are no dedicated encodings of the access permission bits. Instead, all mappings are executable by

1Block/page entries do not store the entire AP field but only AP[2:1]. AP[0] is not present in AArch64.
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AP
Ta
bl
e[
1:
0]

AP
[2
]

AP
[1
]

EL1 EL0
R W X R W X

00 0 0 X X X × × X
0 1 X X × X X X
1 0 X × × × × X
1 1 X × X X × ×

01 0 0 X X X × × X
0 1 X X × ×† ×† X
1 0 X × × × × X
1 1 X × X ×† × ×

10 0 0 X ×† X × × X
0 1 X ×† × X ×† X
1 0 X × × × × X
1 1 X × X X × ×

11 0 0 X ×† X × × X
0 1 X ×† × ×† ×† X
1 0 X × × × × X
1 1 X × X ×† × ×

Figure 7.4: Merging Access Permissions (Stage 1, EL1&0).
Entries with a † highlight differences from the APTable=00.

default, unless one of the following applies: the region is mapped writeable at EL0, as writeable EL0
regions are never executable at EL1; a global WXN (‘Write-execute-never’) configuration bit is set, and the
entry was writeable; or, when one of the various translation table entry XN (‘Execute-never’) bits are set.
For simplicity, we assume the execute-never bits are always disabled.

To combine access permissions from the whole walk, the MMU takes the bitwise union of each of the
APTable fields from each table entry, and then intersects the result with the final AP[2:1] field to produce
a final set of permissions. Figure 7.4 contains a decoding table for a given table and leaf access permissions,
for testing whether a requested access is permitted. If the requested access is not permitted, then the
MMU generates a permission fault, which is reported back to the processor.

Memory Attributes

The processor does not know what is located at any physical address. It may be dynamic random-
access memory (DRAM, what one would generally consider ‘memory’), but there may also be other
memory-mapped devices, non-volatile memory, other peripherals, or possibly nothing at all.

To tell the hardware, and to prevent it from performing unsafe optimisations such as speculatively
attempting to read from a device, software must mark regions of memory as one of either device memory,
normal cacheable memory, or normal non-cacheable memory, using the translation tables.

The desired memory type is determined from the AttrIndx field (bits[4:2]) in block and page entries.
Instead of being directly encoded into this field, Arm chose to have the actual attributes stored in a
separate register: the MAIR (“Memory attribute indirection register”) register. The MAIR stores an array of
eight 8-bit fields each of which contains an encoding of a memory type. The AttrIndx field in the entry is
an integer in the range 0–7, which is used as to index the fields in the MAIR register.

This indirection means that the final result of translation depends not only on the value of the final leaf
entry in memory, but on the value of certain system registers, such as the MAIR.

Below are the three most common encodings for a MAIR field, and the ones that will be useful later when
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discussing tests:

. 0b0000_0000: device memory.

. 0b0100_0100: normal non-cacheable memory.

. 0b1111_1111: normal cacheable memory, inner&outer write-back non-transient, read&write-allocating.

Memory locations marked as device tell the hardware that reads or writes to those locations may have
side-effects. This means hardware treats those locations differently: there will be no speculative instruction
fetches, reads, or writes to those locations; writes to those locations will not gather into larger writes;
reads and writes to those locations will not re-order with respect to others; those locations generally will
not get cached; and other thread-local optimizations get disabled. Note that Arm define a wide range of
device memory types, allowing the systems programmer to selectively re-enable some of the previously
described behaviours to enable better performance where they deem it safe to do so.

For normal memory, the software can choose between cacheable or non-cacheable memory. Arm provide a
range of different options for the cacheability:

. non-cacheable

. write-back cacheable

. write-through cacheable

As with other features, there is a wide scope for configuration: separately configuring inner (L1, L2) and
outer (L3) caches, and adding cache allocation hints (allocating on reads, writes or both).

7.4 The Arm translation table walk

When the processor executes an instruction which takes an address, such as a load or store, the (virtual)
address is converted to a physical address by the MMU. Without a previously cached result (see §7.7),
the MMU must perform a hardware translation table walk.

To do this walk, the MMU reads the relevant TTBR to get the currently in-use tree of translation tables,
and performs a walk of the tree. The hardware walker first slices up the input virtual address into chunks:
the most-significant bit (the sign) is used to determine which base register to use (see §7.6); the next 15
bits are required to be zero; and the rest of the address is split into 9-bit fields which here we call a—d,
with the remaining bits as field e. Fields a—d are used for indexing into the tables; and field e is the
offset in the page, which is always preserved.

Input address (VA)

11 0

e
20 12

d
29 21

c
38 30

b
47 39

a
62 48

Reserved0
63

s

Figure 7.5 gives a simplified algorithm for the hardware walk the MMU does on Arm-A, fixed to the
configuration we consider here, eliding the permissions check and hierarchical attribute calculations.

Reading the TTBR The base address register contains three fields: the higher bits store the ASID (see
§7.7), or the VMID if for the second stage of a two-stage regime (see §7.5,§7.6); bits 47-1 contain bits 47-1
of the physical address of the root of the translation tables; the final bit is the ‘Common not Private’
(CnP) bit, which is used to indicate when a cluster of processors share the same address space and base
address, which enables further performance optimisations.

TTBR

0

CnP
47 1

baddr[47:1]
63 48

ASID/VMID

7.4. THE ARM TRANSLATION TABLE WALK 95



1: procedure TranslateAddress(VA, isRWX) . Input address, and access kind (read/write/execute)
2: t← read_TTBR().base_address . See §7.6, and Reading the TTBR below
3: attrs← 0
4: for i = 0, . . . , 3 do . Iterate down the levels of the tree
5: s← Bitslice(VA, 47− 9i, 47− 9i− 9 + 1) . Slice out fields a—d depending on index
6: entry← Mem[t+ 8s] . Access entry in table
7: if entry[0] = 0 then . Invalid entry
8: return TranslationFault(VA, Invalid) . See Faults below
9: else if entry[1] = 1 ∧ i < 3 then . Table entry

10: t← entry.table_pointer
11: attrs← attrs | entry.attrs
12: else if entry[1] = 0 ∧ (i = 0 ∨ i = 3) then
13: return TranslationFault(VA, Reserved encoding)
14: else . Block/page entry
15: attrs← attrs | entry.attrs
16: offset← Bitslice(VA, 47− 9i− 9, 0)
17: OA← entry.output_address :: offset . See Computing the final output address below
18: if !CheckPermissions(attrs, isRWX) then . See §7.3.2 ‘Access permissions’ above
19: return TranslationFault(VA, Permission error)
20: else
21: return OA
22: end if
23: end if
24: end for
25: end procedure

Figure 7.5: Simplified single-stage translation table walk for a 4K pagetable.

Computing the final output address The output address (OA) of the final descriptor is the start of the
range mapped by the entry. The offset into the range must be added to the start, in order to compute the
final output address of the translation.

To compute this address, the MMU takes the OA field from the entry, and the level in the tree the entry
is at, and ‘completes’ the address by bitwise appending the remaining fields to create the complete 48-bit
output address. Recall that the OA field of the block mappings gets wider the deeper in the tree you are,
and so for a 1GiB entry the OA field is only 18 bits wide, but for a 4KiB page entry its OA field is the full
36 bits.

. For a 1GiB (level 1) block entry; PA = OA::c::d::e

. For a 2MiB (level 2) block entry; PA = OA::d::e

. For a 4KiB (level 3) page entry; PA = OA::e

Note that this process means that the least-significant 12 bits of the input VA are unchanged and remain
the same in the final output PA, regardless of how the translation function is configured.

Faults The MMU may emit one of several fault types during a translation table walk (these are referred
to by Arm as the MMU fault types):

. Translation fault.
These are generated when the mapping in the translation table is invalid, either because bit[0]
was 0, or because the descriptor encoding was reserved-as-invalid. Translation faults also result
from trying to translate an address that is outside the 48-bit input address range (i.e. the bits
reserved-as-zero in the address were set).

. Permission fault.
Generated when the mapping was valid, but the access permissions do not permit the requested
access (for example, trying to write to a read-only address).

. Access flag fault.
These are generated when hardware management of access flags is disabled and the access flag bit is
set.

. TLB Conflict aborts.
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. Alignment fault.
Generated when an operation requires an aligned memory address, but is given a misaligned one.

. Address size fault.
Generated when the OA, or TTBR, has a value that is out of the physical address range.

. Synchronous external abort on a translation table walk.
These are external aborts (that come from the system not from the MMU) that happen due to
accesses that the MMU generated. For example, if the next-level table field pointed to an address
for which there was no memory or device, the system-on-chip would return a fault to the processor.

These faults lead to processor exceptions. The fault type is stored in the ESR (“exception syndrome
register”) register, in its EC (“exception class”) field, and any supplementary information is stored in its
ISS (“instruction specific syndrome”) field (such as which level in the tree the fault came from, whether
the originating instruction was a read or a write, and so on). Exception handling code can read the
ESR register to determine the fault type and cause, and can read the FAR (“fault address register”) to
determine the virtual address which triggered the fault, and handle the fault appropriately.

7.5 Virtualisation

So far, this chapter has focused on operating systems and processes. However, modern systems isolate
not just processes within an operating system, but entire operating systems from one another within a
hypervisor.

To achieve, hardware adds another layer of virtual memory, in addition to the existing one, creating
two stages of translation. Processes use virtual addresses, which are converted to intermediate physical
addresses (IPAs, also sometimes known as guest-physical addresses) using the operating system’s configured
translation tables. These then go through another stage of translation, typically controlled by the
hypervisor, converting those IPAs into physical addresses.

Software manages both sets of translation tables: operating systems manage Stage 1 tables to convert VAs
to IPAs; and hypervisors manage Stage 2 tables to convert those IPAs to PAs. This gives two separate
translation functions, which the hardware composes together at runtime:

translate_stage1 : VirtualAddress ⇀ IPA× Permissions× MemoryType
translate_stage2 : IPA ⇀ PhysicalAddress× Permissions× MemoryType

Hypervisors (running at EL2) configure the second-stage translation in much the same way as operating
systems configure the first stage: by creating a tree of translation tables, with an almost identical format
as before, and storing a pointer to the root of this tree in the VTTBR (“Virtualization translation table
base register”). The hardware reads the VTTBR to perform a second-stage translation to convert an IPA to
a PA, and will do the translation table walk over that tree in much the same way as described earlier for
(what we can now call) the first-stage translation.

This results in two address spaces, a virtual address space and an intermediate-physical address space.
Figure 7.6 contains an example layout of these address spaces for a machine running three processes (P0,
P1, P2) in two operating systems (OS0, OS1). As with the earlier diagram in Figure 7.1, each column is a
(set of) address spaces, with transformations between them defined by their respective translation functions.
On the left-hand side are the virtual address spaces of the various processes, whose virtual addresses
are translated (using the translation tables pointed to by the TTBR register) into intermediate-physical
addresses in the central address spaces (for the respective OS). Those IPAs are then translated (using the
VTTBR) into physical addresses.

Concretely, if P1 reads from address 0x1001, it will be translated into the IPA 0x3001, in OS0’s address
space. This IPA is then is then translated again into the physical address 0x6001, by a second stage of
translation controlled by the hypervisor, and the processor will actually read from the RAM at location
0x6001.
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Figure 7.6: Example virtual, intermediate physical, and physical address spaces for three processes running
on two operating systems.
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Figure 7.7: Attribute encodings for Stage 2 pagetable entries for the 4KiB granule [81, D8.3].

Field When set (1) When unset (0)
S2AP[1] Writeable not Writeable
S2AP[0] Readable not Readable

Figure 7.8: S2AP field encoding.

Stage 2 attributes encoding Stage 2 translation table entries are encoded similar to their stage 1
counterparts, as illustrated in Figure 7.7, with some minor differences:

. Stage 2 table entries do not have any additional attributes, and so do not have an APTable field.

. The Stage 2 AP field (called S2AP) has a slightly different (and simpler) format, see Figure 7.8.

. Stage 2 block and page entries do not have a MemAttrIndx field but rather encode the memory type
directly into the MemAttr field bits[5:2] (see the full description in the Arm ARM [12, D5-4874]
for all possible encodings):

– 0b0000: Device memory.
– 0b0101: Normal non-cacheable.
– 0b1111: Normal write-back inner&outer cacheable.

These are interesting as they mean that the stage 1 and stage 2 attributes (permissions and memory types)
must be combined in order to produce the final output. This combination is not just a case of letting
stage 2 overrule the stage 1 settings, but rather that both stages get a veto: if stage 1 sets the memory
type to be device or non-cacheable then it overrules what stage 2 sets. Similarly, if stage 1 permissions
forbid an access then the stage 2 permissions cannot overrule that.

Second-stage translations during a first-stage walk There is a complication with the story so far. The
stage 1 tables are created by the operating system, which is using an intermediate physical address space,
not a physical one. The writes the OS does to the tables will be translated, as they are normal data
writes. But, the tables themselves contain references to other tables, and those entries will be intermediate
physical addresses, and so, they must also be translated, including the value of the TTBR itself.

In our assumed configuration of 4KiB pages and 4 levels of translation, this leads to a maximum of 24
memory accesses to perform the translation: 4 reads of stage 1 translation tables, 16 reads of stage 2
translation tables during those stage 1 walks, and a final 4 reads of the stage 2 translation tables to
translate the output IPA into the final PA. Below we will see an example of the accesses performed during
a typical store instruction, as illustrated in Figure 7.9.

Figure 7.10 then gives a simplified algorithm for a two-stage translation-table-walk, with some detail
elided: the permissions combining and checking, determining current regime, routing of exceptions, and
so on. Arm give a full and precise definition of the translation table walk as part of the ASL defining the
intra-instruction semantics.

An example Consider the Arm STR Xn,[Xt] instruction. It writes data stored in register Xn to an
address stored in register Xt. Figure 7.9 is an example trace of one execution of the aforementioned
store instruction. It is just as the Arm intra-instruction semantics would generate when executed at
EL0 in the two-stage EL1&0 regime, in the worst case setting where the address is mapped by last level
entries, in both the stage 1 and stage 2 pagetables. Each node represents an event in the trace (a memory
or register access), and the arrows between them represent control flow within the intra-instruction
semantics. The events in the dotted region come from the translation table walk (calls to the Arm
AArch64.TranslateAddress pseudocode function).

Translation starts by reading the base address for the stage 1 walk, from the relevant TTBR, and performing
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Rreg(Xn)=va

Rreg(Xt)=data

Rreg(TTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR)

R S2 L0 R S2 L0 R S2 L0 R S2 L0

R S2 L1 R S2 L1 R S2 L1 R S2 L1

R S2 L2 R S2 L2 R S2 L2 R S2 L2

R S2 L3 R S2 L3 R S2 L3 R S2 L3

R S1 L0 R S1 L1 R S1 L2 R S1 L3

R S2 L0

R S2 L1

R S2 L2

R S2 L3

W [pa]=data

AArch64.TranslateAddress

Figure 7.9: Memory and register accesses during a ‘STR Xt,[Xn]’ instruction.

a second-stage translation (the events marked as R S2 Li) to get the physical address of the stage 0 level 0
table. It proceeds to read from that table (the event R S1 L0), repeating the process again, once for each
level in the stage 1 table. Once the final result from the stage 1 walk is obtained (from the event R S1
L3), the final stage 2 walk is done to calculate the final physical address to be accessed. When the full
walk is complete, and the pseudocode returns from the walk, it performs the actual memory access (the W
[pa]=data event in the diagram).
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1: procedure Walk(Stage, IA, isRWX) . IA is now input address, which may be VA or IPA.
2: if Stage = 1 then
3: t← read_TTBR().base_address . See §7.6
4: else
5: t← VTTBR_EL2.base_address
6: end if
7: attrs← 0
8: for i = 0, . . . , 3 do
9: s← Bitslice(IA, 47− 9i, 47− 9i− 9 + 1) . Slice out fields a—d depending on level

10: addr ← t+ 8s . Address of entry in the table
11: if IsInTwoStageRegime() ∧ Stage = 1 then
12: addr ←Walk(Stage 2, addr,R) . Do a stage 2 walk to get physical address
13: if addr is TranslationFault then . . . . which may fail
14: return TranslationFault(IA, Stage 2 during Stage 1)
15: end if
16: end if
17: entry← Mem[addr]
18: if entry[0] = 0 then . Invalid entry
19: return TranslationFault(IA, Stage, Invalid)
20: else if entry[1] = 1 ∧ i < 3 then . Table entry
21: t← entry.table_pointer
22: attrs← attrs | entry.attrs
23: else if entry[1] = 0 ∧ (i = 0 ∨ i = 3) then
24: return TranslationFault(IA, Stage, Reserved encoding)
25: else . Block/page entry
26: attrs← attrs | entry.attrs
27: offset← Bitslice(IA, 47− 9i− 9, 0)
28: OA← entry.output_address :: offset
29: if !CheckPermissions(Stage, attrs, isRWX) then . See Stage 2 attributes encoding above
30: return TranslationFault(IA, Stage, Permission error)
31: else
32: return PA
33: end if
34: end if
35: end for
36: end procedure
37:
38: procedure TranslateAddress(VA, isRWX)
39: if IsInSingleStageRegime( ) then
40: PA_or_Fault←Walk(Stage 1, VA, isRWX)
41: return PA_or_Fault
42: else
43: IPA_or_Fault←Walk(Stage 1, VA, isRWX)
44: if IPA_or_Fault is TranslationFault then
45: return IPA_or_Fault
46: end if
47: IPA← IPA_or_Fault
48: PA_or_Fault←Walk(Stage 2, IPA, isRWX)
49: return PA_or_Fault
50: end if
51: end procedure

Figure 7.10: Simplified two-stage translation table walk for a 4K pagetable.
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Figure 7.11: Translation regimes that apply to execution at EL0, EL1, and EL2.

7.6 Translation regimes

As mentioned earlier, there are multiple translation table base registers. Each of them defines a translation
function, pointing to the root of the tree of translation tables which define it. These translation functions
are then composed together into various translation regimes, each defining the set of translation functions
(and therefore which translation table base registers) which will be used for translations done by the
processor.

Arm define a set of these translation regimes. Figure 7.11 gives an overview of three of the most common
regimes, which are:

. EL1&0 (two-stage)
– For programs executing at EL0 or EL1 when virtualisation is enabled.
– VAs with the high bit set are translated into IPAs using the EL1-configured register, TTBR1_EL1.

VAs are typically split into ‘high’ and ‘low’ regions with different translations, primarily used
for separate kernel and user address spaces.

– VAs without the high bit set are translated into IPAs using the EL1-configured register,
TTBR0_EL1.

– IPAs are translated to PAs using the EL2-configured VTTBR_EL2 register.
. EL1&0 (single-stage)

– For programs executing at EL0 or EL1 when virtualisation is disabled.
– VAs with the high bit set are translated into PAs using the EL1-configured register, TTBR1_EL1.
– VAs without the high bit set are translated into PAs using the EL1-configured register,

TTBR0_EL1.
. EL2

– For programs executing at EL2.
– VAs without the high bit set are translated into PAs using the EL2-configured register,

TTBR0_EL2.
– VAs with the high bit set are always unmapped.

Which translation regime is being used is defined by various system registers and the current system state.

. Translations at EL1 or EL0 use one of the EL1&0 regimes.

. Translations at EL2 use the EL2 regime.

. TCR_EL2 (set at EL2) determines whether the EL1&0 is a single-stage or two-stage regime.

. TTBR0_EL1, TTBR1_EL1 determine the stage 1 of the EL1&0 regimes, and can only be set at EL1 or
higher.

. TTBR0_EL2 determines the stage 1 of the EL2 regime, and can only be set at EL2 or higher.

. VTTBR_EL2 determines the stage 2 of the EL1&0 regime, and can only be set at EL2 or higher.

Arm define a wide range of other regimes which we do not cover here, including for EL3, secure mode,
and the virtualised host extension (FEAT_VHE); see the Arm ARM [81, §D8.1.2] for more information.

1EL2 is always a single-stage regime. Note that there is a two-stage EL2&0 regime, which is not discussed here.
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7.7 Caching in TLBs

It would have an unacceptable performance penalty to simply perform the (up to) 24 additional memory
accesses for every instruction-fetch, read, or write. Therefore, the hardware does not do this. Instead, the
results of previous translations of the same address are cached in specialised structures called Translation
Lookaside Buffers (TLBs). These TLBs can store whole translation results, or the separate virtual and
intermediate-physical mappings, or individual translation table entries, or a mix of the above, which we
will explore more in the next chapter.

When the processor translates a virtual address, it first looks for it in the TLB. If there is no entry, then
this is called a TLB miss and a translation table walk must be performed. The results of this walk are
typically then cached in the TLB, so future translations of the same address can directly grab the physical
address, memory attributes, and permissions, without needing to do another translation table walk. This
process and the various microarchitectural structures are explored more in §8.3.1. If there is an entry, this
is referred to as a TLB hit. In this case, the result can be taken directly from the TLB.

Under normal circumstances, the TLB is invisible to userspace programs. However, unlike normal data
caches, TLBs are not kept coherent by the hardware automatically. Therefore, systems code is expected
to manage the TLBs manually, using a set of instructions which Arm provide specifically for this purpose:
the family of TLBI TLB-maintenance instructions. When context switching, the systems software must
manually manage the TLB, invalidating stale entries for old mappings out of the cache. The behaviours
that arise from reading from potentially stale TLB entries are explored in detail in §8.5.

Address space identifiers TLB maintenance operations, and the TLB cache misses they subsequently
create, impose additional performance penalties on the software using them. To reduce this burden, Arm
provide a mechanism to permit multiple processes’ address spaces to be loaded into the TLB at the same
time, by allowing the software to mark each address space with a numeric label. Arm call these address
space identifiers (ASIDs), for Stage 1 address spaces, and virtual machine identifiers (VMIDs), for Stage 2
address spaces. Entries in the TLB are tagged with the current ASID and VMID, and only that address
space will see entries in the TLB with that combination.

The current identifier is encoded in the high-order bits of the current TTBR. During a context switch, the
system software needs only switch to the new translation tables for the new address space of the other
process. It is not necessary to do TLB maintenance, so long as it ensures the identifiers are distinct.

As there are only finitely many identifiers available (typically it is an 8-bit field), eventually TLB
maintenance is required in order to re-use a previously allocated identifier, for a new address space.
But, this typically happens far less frequently than context switches between pre-existing address spaces.
The provided TLB maintenance instructions can target specific ASIDs or VMIDs, avoiding the need to
over-invalidate other cached address space translations, preventing a cascade of TLB misses in other
processes, further improving the runtime performance for a small amount of additional effort on the
software side.

TLB maintenance Recall that on a TLB miss, any translation table entries read during any hardware
translation table walk can be cached in the TLB, tagged with the current context: the translation regime,
the ASID and VMID, the VA/IPA being translated, and so on. TLB maintenance instructions remove
cached copies of those entries in the TLB.

A single TLB maintenance instruction which cleared the entire TLB would be prohibitively expensive,
and often unnecessary; instead, Arm define a large family of instructions for targeted removal of particular
entries, under the TLBI mnemonic.

A simplified format for a TLBI mnemonic is a product of fields:
1 TLBI <type ><regime >{<broadcast >}{,<Xn >}
2
3 <type > =
4 ALL | VMALL | ASID | VA{A}{L} | IPAS2{L}
5 <regime > =
6 E1 | E2
7 <broadcast > =
8 IS
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The type selects which kinds of cached entries will be affected:

. ALL affects all (Stage 1 and 2) entries.

. VMALL affects all (Stage 1 and 2) entries, for a particular VMID.

. ASID affects all Stage 1 entries, for a particular ASID.

. VA affects Stage 1 entries which were cached for translations of the given virtual address. This
affects only the ASID provided, or can optionally appended with A, to affect entries for any ASID.
Appending L makes the TLB maintenance only affect cached last-level entries (only page, not block).

. IPAS2 affects Stage 2 entries which were cached for translations of the given intermediate-physical
address, including for cached entries of a Stage 1 walk during a Stage 2 walk. Appending L makes
the TLB maintenance only affect cached last-level entries (only page, not block).

The regime selects entries by the tagged translation regime:

. E1 only removes cached entries for walks for the EL1&0 regime.

. E2 only removes cached entries for the EL2, or the EL2&0 regime, whichever is currently enabled.

Finally, the optional broadcast flag determines which (set) of CPUs the TLB maintenance should affect:

. IS (‘Inner-Shareable’) broadcasts the TLB maintenance to all cores in the same Inner Shareable
domain, and the TLBI does not finish until all cores have completed their maintenance.

The most common, and the ones that will be discussed in the following chapters, are as follows:

. TLBI VAE1,Xn: Invalidate this CPU’s cached copies of entries used to translate the virtual address
in register Xn, for the EL1&0 regime, for the current ASID and VMID.

. TLBI VALE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the
virtual address in register Xn, for the EL1&0 regime, for the current ASID and VMID.

. TLBI VAAE1,Xn: Invalidate this CPU’s cached copies of any entries used to translate the virtual
address in register Xn, for the EL1&0 regime, for the current VMID, for any ASID.

. TLBI VAE1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the virtual address
in register Xn, for the EL1&0 regime, for the current ASID and VMID.
(. . . and equivalent TLBI VAE2, TLBI VALE2, TLBI VAE2IS instructions for virtual addresses in the
EL2 regime)

. TLBI IPAS2E1,Xn: Invalidate this CPU’s cached copies of entries used to translate the intermediate
physical address in register Xn, for the EL1&0 regime, for the current VMID.

. TLBI IPAS2E1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the intermediate
physical address in register Xn, for the EL1&0 regime, for the current VMID.

. TLBI VMALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the current
VMID.

. TLBI VMALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for the current
VMID.

. TLBI ALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for any ASID or
VMID.

. TLBI ALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for any ASID or
VMID.
(. . . and equivalent TLBI ALLE2, and TLBI ALLE2IS instructions for the EL2 regime)

. TLBI ASIDE1IS,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the
ASID specified in register Xn.
(Note that the EL2 regime does not have ASIDs)

This is not an exhaustive list, see the full description in the Arm manual for a more complete description
[12, D5-4915], but covers all those that appear in the following chapters.
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Chapter 8

Relaxed virtual memory

Now, we introduce the main concurrency architecture design questions that arise for virtual memory in
Arm. As usual, the architecture defines the envelope of behaviours which hardware must guarantee and
on which software may rely. This envelope must be tight enough to give the guarantees software needs to
function, but still loose enough to admit the range of existing and conceivable microarchitectures whose
optimization techniques are necessary for performance.

This chapter discusses both the relevant microarchitecture as we understand it, and also the behaviours
which software relies upon. The discussion will touch on points of several kinds: some which are clear
in the current Arm prose documentation; some where Arm are in the process of architecting a change;
some that are not documented but where the semantics is (perhaps, after discussion with Arm) clear or
constrained by current hardware or software practice; and, some where their modelling raised questions
for which the architecture is not yet well-defined and Arm must make an architectural decision.

Ideally, we would be able to specify which points belong to which kind. In practice, things are not so
simple. In some places, there is no clean separation between aspects there are clearly defined in the
architecture reference, and those that are not; the manual sometimes has a shallow covering, with some
but not all, of the key details. In other places, the reference may have been updated or changed over
the course of the work, clarifying parts of the architecture. While such updates may have happened
concurrently with discussions with Arm, the reference text itself is solely the responsibility of Arm. In
§8.9 we will return to this, and more directly address the kinds of each point discussed.

Chapter overview The body of this chapter will explore a sequence of key behaviours, some of which the
architecture permits, and some that it does not. Each contains a description of the behaviour, including
whether software relies on it or known hardware guarantees it; a short discussion of the architectural
intent as we understand it; and any associated litmus tests.

This chapter will discuss a variety of interesting behaviours. In an attempt to make this chapter more
approachable, it is broken down into a logical progression: slowly building up from the most simple and
fundamental parts of the architecture, to increasingly more complex cases.

We first discuss (in §8.2) how translation affects the prior usermode tests covered in previous work,
primarily for the case where locations are aliased. Then, we explore how translation entries may be cached
(§8.3) and the fundamental behaviours which arise from translation and the walk (§8.4). Building upon
that, we will see how those caches affect the discussed behaviours (§8.5). Then, we will explore how the
various kinds of TLB maintenance interact with those cached translations (§8.6), and other translation
table walks. Finally, we touch on how all of the above fit together with system registers, and other context
changing and synchronising operations (§8.7).
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8.1 Virtual memory litmus tests

As we explore deeper into the systems semantics, we are exposed to more and more of the microarchitectural
machine state; understanding that state is integral to understanding the behaviour of the machine. Virtual
memory poses its own specific challenges, but is fundamentally no different than the other fragments
of Arm we have seen. As such, exploring the architectural intent is best done through the creation,
discussion, and evaluation of, small test programs which are representative examples of common software
patterns or interesting hardware behaviours. Therefore, litmus tests exploring those behaviours must
include information about not only the memory locations of the test, but also the setup of the pagetables
which map them. This is best demonstrated by an example.

A virtual memory litmus test Much as in usermode (and ifetch, see Chapter 3) we examine litmus
tests containing a relatively small amount of code corresponding to some interesting behaviour we wish
to investigate. To illustrate this, Figure 8.1 contains the test listing for a simple (but non-trivial)
virtual-memory litmus test, MP.RTf.inv+dmb+po.

STR X0,[X1]
DMB ST
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1,
y |-> pa2, 0:X0=desc3(z), 0:X1=pte3(x), 0:X2=1, 0:X3=y,
1:X1=y, 1:X3=x

MP.RTf.inv+dmb+po AArch64

Allowed: 1:X0 = 1 & 1:X2=0

Figure 8.1: Test MP.RTf.inv+dmb+po: code listing.

This test is a variant of the classic message-passing test, but where one of the reads in the relaxed cycle
of events is an implicit read due to a translation table walk. More specifically, the second read in the
right-hand thread is the implicit read of the last-level entry of the stage 1 translation table walk, which in
this case was initially invalid and so the interesting executions results in a translation fault. The test is
explained in more detail below. In general we can take each of the classic usermode litmus test shapes,
and re-imagine them in a virtual memory context, replacing one or more of the explicit memory events
in the cycle with implicit ones from one or more translation table walks, and typically making some of
the writes be writes to pagetables. We can then assign a relatively lightweight naming scheme for such
litmus tests: for example, in MP.RTf.inv+dmb+po, the name can be broken down into separate fields
representing the shape (family), which of the events are replaced by implicit ones, and whether the initial
state for those implicit accesses are valid or invalid:

MP RTf inv dmb po. . + +

Family
(A message-passing shape)

Variant
(Read then Translation-fault)

Initial state
(invalid)

Thread-local ordering
(Left thread)

Thread-local ordering
(Right thread)

Not all litmus tests follow this convention: some do not correspond to a shape from the suite of usermode
litmus tests, and others are derived from virtual-memory-specific patterns which arise in software or from
discussion with architects.

In detail, this test mimics the usual message-passing pattern, with two locations x and y, with one thread
reading the locations sequentially, in the inverse order, reading the ‘flag’ y first, then the ‘data’ x second.
However, in this case, the data is not a value in a memory location, but the mapping of the memory
location itself. This can be seen in the ‘Initial State’ part of the code listing (Figure 8.1), which contains
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not only the usual initial register and memory location values for the test, but also a terse description of
the initial mappings of those locations: x is invalid, so any access results in a translation fault; z maps to
physical address pa1 which initially holds 1; and y maps to pa2, which holds zero. The initial register
state now also can reference parts of the pagetable: register X1 in Thread 0 contains the value pte3(x)
which is the address of the last-level (level 3) entry which is responsible for mapping x; and X0 contains
the value desc3(z), which is the initial value of the entry responsible for mapping z.

The test then begins in Thread 0 by copying the entry which maps z into the entry which maps x,
effectively making x an alias of z, before passing a message to Thread 1 via y. Thread 1 then reads y, and
then attempts to read x. The second load will either be translated using the new translation, in which
case it reads from pa1 and get 1, or be translated from the initial value and result in translation fault.
In the case where the second load faults, execution jumps to the ‘Thread 1 EL1 Handler’ block, which
writes 0 to X2 and advances the program counter to the next instruction1. The final state corresponds
to an execution in which the first load receives the message, and so reads 1, but the second fails with a
translation fault reading from a stale translation table entry.

The interesting relaxed execution can be seen as a set of events with some relations which witness the
order the events happened in. This test’s events diagram is shown in Figure 8.2.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb stb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iiorf

po

po

po

po

Figure 8.2: Test MP.RTf.inv+dmb+po: execution diagram

These diagrams are much like the ones drawn for usermode tests, but with a few key differences:

. The implicit reads due to translation table walks are included in the execution, labelled with T (for
T ranslate), and ordered within an instruction by iio (intra-instruction-order), with each other and
with the associated explicit events of the instruction.

. Memory accesses are annotated with both their virtual and physical addresses, e.g. event d: R
y/pa2 = 0x1 denotes the read for a virtual address y, and read from the physical address pa2.

. We introduce a notation whereby some addresses and values can be written using symbolic func-
tions, e.g. a: W s1:l3pte(x) = mkdesc(addr=page(pa1)) denotes the write is to the stage 1 level 3
pagetable entry which maps x, with a value that is a 64-bit descriptor whose output-address field is
for pa1’s page.

. Accesses which fault generate a Fault event, annotated with the access kind (read/write/execute).

We elide translation read events, physical address labels, and other uninteresting and extraneous details.

Symbolic helper functions These symbolic functions are implemented as part of the isla-cat language,
accepted by isla-axiomatic. Here are the helpers used by most of the tests in this section. Entries listed
as f<N> mean a family of functions f1, f2, f3 and so on, where N is typically the level.

. pte<N>(va): The (intermediate) physical address of the level N entry in the default translation
tables that maps va.

. desc<N>(va): The 64-bit descriptor from the initial state of the level N entry that maps va (the
value of pte<N>(va) in the initial state).

. page(va): The page number that va is in (equivalently: va >> 12).

. mkdesc<N>(oa=pa): A 64-bit descriptor for a valid leaf entry at level N where the output address is
given by the oa parameter.

. mkdesc<N>(table=pa): A 64-bit descriptor for a valid table entry at level N where the next-level-table
address is given by the table parameter.

1The ELR_ELx (Exception-link-register) defines the return address of an exception to ELx. Translation faults, by default,
return to the instruction that generated them.
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STR X0,[X1]
LDR X2,[X3]

Thread 0

Initial state: x |-> pa1,
y |-> pa1, *pa1 = 0,
0:X0=1, 0:X1=x, 0:X3=y

CoWR.alias AArch64

Forbidden: 0:X2 = 0

W x/pa1 = 0x1a:

R y/pa1 = 0x0b:

Thread 0

rf po

This test is a variation on the standard write-read coherence test, CoWR, but where the VA is
replaced with two distinct VAs, which both alias to the same PA.
The initial state is a configuration with two virtual addresses, x and y, which are both mapped
to the physical address pa1, whose initial value is 0. The thread then stores 1 to x, then loads
y. It is then forbidden for this load to read 0.
The Armv8-A architecture reference manual describes data caches as being physically-indexed
[12, D5.11.1 (p4931)] and so accesses via the same PA are ‘fully coherent’. Further discussions
with Arm clarify that this implies not just this coherence test, but that all prior data memory
behaviours previously examined still apply when subjected to aliasing.

Figure 8.3: Test CoWR.alias

8.2 Aliased data memory

Much of the previous work on relaxed memory has been concerned with what we shall call ‘data memory’:
the weak behaviour of concurrent loads and stores to memory, in the usermode fragments of the ISA. For
Arm, we shall see that these previous models were implicitly assuming that all locations in the test were
virtual addresses, with well-formed, constant, and injective, address translation mappings, which mapped
all locations as readable, writable, and executable, normal cacheable memory.

Consider a non-injective mapping. Such mappings give rise to aliasing: the situation where two distinct
virtual addresses in the same address space map to the same output physical address. This section will
explore how the behaviours of those data memory tests change in the presence of aliasing.

8.2.1 Virtual coherence

For data memory accesses, one of the most fundamental guarantee that architectures provide is coherence:
in any execution, for each memory location, there is a total order of the accesses to that location, consistent
with the program order of each thread, with reads reading from the most recent write in that order.
Hardware implementations provide this, despite their elaborate cache hierarchies and out-of-order pipelines,
by a combination of coherent cache protocols and pipeline hazard checking, identifying and restarting
instructions when possible coherence violations are detected.

For Arm, coherence is with respect to physical addresses [12, B2.3.1 (p157)][12, D5.11.1 (p4931)]. This
means that if two virtual addresses alias to the same physical address, then:

. A load from one virtual address cannot ignore a program-order previous store to the other, as seen
in the CoWR.alias test (Figure 8.3).

. A load from one virtual address cannot ignore the write that a program-order previous load of the
other address saw (CoRR0.alias+po (Figure 8.4, p.110), CoRR2.alias+po (Figure 8.5, p.110)).

. A load from one virtual address can have its value forwarded from a store to the other, and
similarly on a speculative branch (MP.alias3+rfi-data+dmb (Figure 8.6, p.111), PPOCA.alias
(Figure 8.6, p.111)).
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STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=1, 0:X1=x, 1:X1=x,
1:X3=y

CoRR0.alias+po AArch64

Forbidden: 1:X0=1 & 1:X2=0

W x/pa1 = 0x1a:

Thread 0

R x/pa1 = 0x1b:

R y/pa1 = 0x0c:

Thread 1

rf

rf

po

This test is a variation of the data memory CoRR0 test, where one of the loads has been
replaced with a load of a distinct virtual address which aliases to the same underlying physical
address. Note that, like the original test, it is forbidden to read from the initial state in the later
load, as this would violate coherence: exactly what the earlier text from the manual explicitly
forbade.

Figure 8.4: Test CoRR0.alias+po

STR X0,[X1]

Thread 0

STR X0,[X1]

Thread 1

LDR X0,[X1]
LDR X2,[X3]

Thread 2

LDR X0,[X1]
LDR X2,[X3]

Thread 3

Initial state: u |-> pa1, v |-> pa1, w |-> pa1, x |-> pa1, y |-> pa1,
z |-> pa1, *pa1 = 0, 0:X0=1, 0:X1=u, 1:X0=2, 1:X1=v, 2:X1=w, 2:X3=x,
3:X1=y, 3:X3=z

CoRR2.alias+po AArch64

Forbidden: 2:X0=1 & 2:X2=2 & 3:X0=2 & 3:X2=1

W u/pa1 = 0x1a:

Thread 0

W v/pa1 = 0x2b:

Thread 1

R w/pa1 = 0x1c:

R x/pa1 = 0x2d:

Thread 2

R y/pa1 = 0x2e:

R z/pa1 = 0x1f:

Thread 3

co

rf

rf

rf

rf

po po

This test is a variation of the data memory CoRR2 test. Here, there are many options for considering
aliasing; we present here the maximally aliased version where each individual store and load uses a distinct
virtual address, but where all those virtual addresses alias to the same physical one. This gives us a classic
coherence shape, where it is forbidden for different threads to observe writes to the same physical location
in different orders.

Figure 8.5: Test CoRR2.alias+po
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STR X0,[X1]
LDR X2,[X3]
STR X2,[X5]

Thread 0

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa2,
z |-> pa1, *pa1 = 0, *pa2 = 0, 0:X0=1,
0:X1=x, 0:X3=z, 0:X5=y, 1:X1=y, 1:X3=x

MP.alias3+rfi-data+dmb AArch64

Allowed: 1:X0 = 1 & 1:X2 = 0

STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
STR X2,[X3]
LDR X4,[X5]
EOR X8,X4,X4
LDR X6,[X7,X8]

Thread 1

Initial state: w |-> pa1, x |-> pa1, y |-> pa2,
z |-> pa3, *pa1 = 0, *pa2 = 0, *pa3 = 0, 0:X0=1,
0:X1=z, 0:X2=1, 0:X3=y, 1:X1=y, 1:X2=1, 1:X3=x,
1:X5=w, 1:X7=z

PPOCA.alias AArch64

Allowed: 1:X0 = 1 & 1:X4 = 1 & 1:X6 = 0

W x/pa1 = 0x1a:

R z/pa1 = 0x1b:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

dmb sye:

R x/pa1 = 0x0f:

Thread 1

rf

rf

data

rf

po

po

W z/pa3 = 0x1a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

W x/pa1 = 0x1e:

R w/pa1 = 0x1f:

R z/pa3 = 0x0g:

Thread 1

rf

rf

po

po ctrl

addr

rf

These tests are variations of the standard PPOCA and MP+rfi-data+dmb tests, but with some aliasing.
Both are examples of forwarding: thread-locally reading from a write before it has been propagated to

memory. These two tests, determined to be allowed architecturally from our discussions with Arm, show
that the processor can forward from a write even if the read was for a different virtual address so long as

the physical addresses match, even down a speculative path.

Figure 8.6: PPOCA.alias and MP.alias3+rfi-data+dmb: forwarding tests with aliasing.
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8.2.2 Aliasing different locations

In the previous section, we explored taking tests over a single location, and rewriting the test to use many
locations, which all alias to the same address. One can also take a test that has multiple locations and
make some of them alias to the same address.

Multi-location data memory tests, which are architecturally allowed, may become forbidden in the presence
of aliasing. For example, starting from the traditional MP+pos test, aliasing the two locations to the
same physical address gives the forbidden MP.alias+pos test (Figure 8.7). This new test is, essentially,
equivalent to the old CoRR0 test: coherence with two writes and two reads to the same location.

STR X0,[X1]
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=1, 0:X1=x, 0:X2=1,
0:X3=y, 1:X1=y, 1:X3=x

MP.alias+pos AArch64

Forbidden: 1:X0 = 1 & 1:X2 = 0

W x/pa1 = 0x1a:

W y/pa1 = 0x1b:

Thread 0

R y/pa1 = 0x1c:

R x/pa1 = 0x0d:

Thread 1

rf

rf

co po

Because x and y alias to the same physical address pa1, the two loads (c and d) read the same
location, and so cannot read different writes out-of-order.

Figure 8.7: Test MP.alias+pos

8.2.3 Might be same (physical) address

There is a corner case that we now should consider. For load and store instructions, when the last register
used in the calculation of the address is read, the address becomes known. In Flat, this may permit some
program-order-later instructions to know they operate over disjoint footprints and begin execution early.

With the introduction of address translation, however, the point where instructions know the footprints of
previous instructions happens much later, after the whole translation table walk is performed. Between
the read of the register and the completion of the translation table walk, other instructions may perform
some part of their functionality. This may include reading from a different virtual address, before the
physical address of a program-order-previous instruction is known, but after the virtual address is known.

8.2.4 Must not be same physical address

One might expect that, when deciding whether to propagate a store, if the offset within the page of virtual
memory is distinct to that of the in-flight program-order earlier instructions, then the write could go ahead
early, knowing that the access could not be to the same physical address as any of those instructions. This
is, perhaps surprisingly, not the case: although the accesses definitely will not access the same physical
address, the program-order earlier access may still fault, meaning the write will not be reached. This
means that writes must wait for program-order-earlier translations to finish (or at least, be known to not
fault) before they can be propagated to other threads.

8.3 What can be cached in TLBs

As was described in §7.7, Arm hardware can have TLBs, caching previously seen translations. This
caching is, however, restricted, both in what information a TLB must cache when it does so, but also in
what kind of information it is not permitted to cache at all.

We explore this by first examining the structure of a concrete implementation’s MMU, before abstracting
away details to produce an abstract model, which we then use to explain the behaviours throughout the
rest of the chapter.
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Figure 8.8: Block diagram of the Arm Cortex-A53 memory-management-unit [73].

8.3.1 Microarchitectural TLBs

Here we make a clear distinction between the actual microarchitectural translation caching one may
encounter inspecting hardware, and the architectural model being discussed here.

While there are possibly many different ways to describe the same architectural intent, we carefully choose
one which will make building tooling, extending the model, discussions with architects, and explaining
individual tests easier. We will first look at a specific example to pin down terminology and gain some
intuition for hardware, before giving a model MMU and TLB that abstracts away from the details.

Microarchitectural MMU – A53 Let us explore more closely how the actual hardware fill and walk
works on a modern microprocessor. The Arm Cortex A53 is an Arm-designed application class processor.
Previous relaxed memory work included exercising this core design extensively during litmus testing
validation of the models, finding it to be relaxed, exhibiting many relaxed behaviours, but not aggressively
so. This makes the A53 a good candidate as a demonstrator of an average relaxed processor design. While
other processors by Arm are more aggressive in their optimisations, the MMU and TLB layout of the A53
seems typical: other cores generally have comparable TLB configurations [92, 93, 94, 95, 96].

The Arm A53 Technical Reference Manual (TRM) describes, in detail, the structure of the memory
management unit [73, 5-2] of the A53, and its constituent parts. Figure 8.8 contains a block diagram
representing the key structures in the A53’s memory management unit.

Each core has its own MMU, and each MMU contains:

. the walker, which actually does the translation table walk;

. one instruction micro-TLB (denoted i-µTLB in the diagram);

. one data micro-TLB (d-µTLB);

. one unified TLB;

. one walk cache; and,

. one IPA cache.

The microarchitectural TLBs store translations: virtual to physical mappings, plus permissions and so-on,
tagged with their translation context: the translation regime, ASID, VMID, virtual or intermediate-
physical address, and so on. The TLBs are arranged hierarchically, with small, 10-entry, micro TLBs for
instruction and data streams separately, and one large 512-entry unified TLB. On a TLB miss, the MMU
performs a translation table walk using the walker.

When it begins this walk, the MMU first checks the walk cache. Walk caches store mappings from virtual
address to the physical address of the last level translation table – commonly seen in modern MMUs.
When the walk cache has an entry, the walker can skip over most of the walk and directly read the leaf
entry out the last-level table.

If a second stage of translation is required during the walk, the IPA cache is used (and may be used many
times during the same walk). The IPA cache stores mappings from intermediate physical to physical
memory — without an associated virtual address — which can be used during both the final stage 2 walk,
and any intermediate stage 2 walks during a stage 1 walk.

The MMU is free to save the result of any translation table walk into these structures, including for walks
due to speculation, prefetching, or architectural execution. This allows the MMU to perform a walk for
any arbitrary VA or IPA, at any point in time.

8.3. WHAT CAN BE CACHED IN TLBS 113



8.3.2 Model MMU

To abstract away from any specific microarchitecture, we imagine modelling the MMU as if it were a
separate asynchronous unit, one for each thread, each with its own TLB.

Later, we will see tests that justify and ground this particular choice of abstraction, and we will explore
the consequences of this model in more rigorous detail. For now, we can imagine this model MMU as a
set of (concurrently) executing translation table walks, and a cache of translation table entries.

Model TLB entries In general, the architecture permits hardware to cache whatever information from
the translation process the hardware sees fit. This may include the output of whole translation table
walks (complete virtual to physical mappings) or individual translation table entries, or even the result of
partial walks (the address of the last-level table, for example).

It would not be feasible to enumerate all the possible shapes of TLBs, and the kinds of information they
can cache. Instead, we define a model TLB. This model TLB acts as a cache of writes of translation table
entries, each tagged with some context. This allows the model to cache any combination of valid entries
in a translation table walk: weak enough to allow all currently known TLB implementations, but strong
enough to not break any of the guarantees software requires. These guarantees are explored, in detail, in
§8.4 and §8.5.

Each entry in the model TLB contains the information about the write itself: the physical address of the
entry, and the cached 64-bit entry. Each entry must also be tagged with some contextual information.
This contextual information is required for two distinct purposes, and so we split into two parts: an
architectural context which defines the scope of a cached translation table entry, that is, for which
translations the cached value is permitted to be used; and an extended model context, which serve as tags
for TLB maintenance operations to target.

This contextual information is:

. the architectural context, used for matching entries in the TLB:
– the translation regime;
– the VMID;
– the ASID (or a ‘global indicator’);
– and the virtual address, intermediate physical address, and/or physical address of the translation.

. the model context, used for targeted TLB maintenance:
– the translation stage and level at which the write was used;
– the system register values used in the translation (those which can be cached);
– and, for an entry used for a Stage 1 translation, whether it has been invalidated at both stages.

Operationally, one can imagine performing a translation using the model MMU by doing a full translation
table walk, but being able to optionally satisfy any read during that walk from a matching entry in the
model TLB which matches the architectural context and input address. Any behaviour exhibited by a
specific micro-architectural MMU and TLB configuration, and therefore all the litmus tests in this chapter,
should be consistent with this model.

TLB fills Hardware has a variety of mechanisms which may lead to a translation table walk: direct
architectural execution of instructions, pre-fetching of data or instructions, and speculation down branches.
These translation table walks may result in TLB misses, and those misses then result in reads from
memory and the MMU ‘filling’ the TLB with a copy of the information it can use in future.

Arm does not enumerate all the possible speculation machinery or prefetchers, so instead we opt for a
model that defines a wide envelope of behaviour, weak enough to permit a range of plausible hardware
implementations: at any point in time, any thread’s MMU can spontaneously perform a translation table
walk for any virtual or intermediate-physical address for the current architectural context (VMID, ASID,
etc, as in ‘Model TLB entries’), and any reads that the translation table walk performs can either read
from other TLB entries, or perform a non-TLB read of memory and then potentially cache a copy of the
write it reads from in the TLB, tagged with the context information from the walk. The behaviour of
those non-TLB reads is explored more in §8.4.
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8.3.3 Invalid entries

It is architecturally forbidden to cache information from attempted translations which result in translation
faults, access flag faults, or address size faults (note that a translation table walk may give rise to other
faults as well, as discussed in §7.4, such as permission faults and alignment faults, which do not impose
restrictions on TLB caching). More specifically, a TLB entry cannot be a write of a translation table
entry which is the direct cause of such a fault. In particular, the TLB cannot cache translation table
entries whose valid bit is not set.

This is important, as it gives software a mechanism in which it can safely write a new mapping without
potentially having multiple entries in the TLB for the same virtual address, as can be seen in the tests in
§8.4, which forms a key part of the software pattern for Arm to update a previously-valid pagetable entry:
break-before-make, discussed in §8.6.5.

8.4 Reads not from TLB

The requirement that invalid entries are not cached in the TLB gives us a way to directly observe the
behaviour of non-TLB reads: translation table reads which directly result in a translation fault must not
have come from a TLB read. We will see that these reads have some important properties that software
can rely on, but that some of those properties will depend on certain architecture features being enabled
(namely ‘Enhanced Translation Synchronisation’, FEAT_ETS, see §8.4.3).

In this section we will explore the properties these reads have, and the guarantees software can rely on.
We will see that these reads are affected by thread-local re-ordering, to an even greater extent than data
memory reads, and explore the synchronization that recovers the sequential semantics. We will further see
how these reads from the translation table walk relate to data memory reads, with respect to coherence,
multi-copy atomicity, write forwarding and so on. Finally, we will see how the FEAT_ETS architectural
feature can change the required synchronization software needs to perform.

8.4.1 Out-of-order execution

First, let us consider whether reads that do not come from the TLB (non-TLB reads) preserve the original
program order. One of the simplest questions one can ask is whether a translation-table-walk non-TLB
read can ignore a program-order previous store. This scenario is captured by the CoWTf.inv+po test
(Figure 8.9, p.116). Starting with a VA (‘x’) initially invalid at level 3, which therefore cannot have its
level 3 entry cached in any TLB (directly or indirectly), the test overwrites the invalid entry with a new
valid entry pointing to the physical address pa1. Program-order later, the thread then attempts to read
x. The question is whether the read of x can read-from the old translation table entry, generating a
translation fault. This result is architecturally allowed, and readily observed on hardware.

One explanation that suffices to allow this outcome is that the instructions can be locally re-ordered;
the translation table walk of the later load instruction can happen much earlier than the program-order
previous store, and satisfy its read from memory first. Similarly, the reads of a translation table walk
can be locally re-ordered with respect to program-order earlier loads of the translation table entry, as
demonstrated in the CoRpteTf.inv+po test (Figure 8.10, p.116).

A translation table walk read may not, in general, be re-ordered past program-order-later stores. This is
consistent with the description in §8.2.3, as the program-order later store might not architecturally happen
if the translation table walk read were to fault. So, the later writes are speculative until the translation
has finished, preventing the write from propagating until then. This forbids both the re-ordering of the
propagation of the write to other threads (LB.TT.inv+pos (Figure 8.11, p.117)) with program-order
earlier translation table walks, and translations reading from program-order later writes (CoTW1.inv
(Figure 8.12, p.117)).
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STR X0,[X1]
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+po AArch64

Allowed: 0:X2 = 0

Thread local re-ordering lets the
translation (b1) of the load instruc-
tion happen earlier than the write
to the translation table (a). This
allows the load to trigger a data
abort (a translation fault, b2).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

T s1:l3pte(x)b1: Fault (R)b2:

eretc:

Thread 0

trf
iio

po

po

Figure 8.9: Test CoWTf.inv+po

STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+po AArch64

Allowed: 1:X0 = desc3(y) & 1:X2=0

The translation read (event c1)
can be re-ordered with respect to
the program-order previous load of
l3pte(x) (b), even though the load
read the new translation table en-
try, for the same location the trans-
lation reads from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf
iio

rf

po

po

Figure 8.10: Test CoRpteTf.inv+po

8.4. READS NOT FROM TLB 116



MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

Thread 0

MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1
Handler

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> invalid, *pa1 = 1,
0:X1=x, 0:X2=mkdesc3(oa=pa1), 0:X3=pte3(y), 1:X1=y,
1:X2=mkdesc3(oa=pa1), 1:X3=pte3(x)

LB.TT.inv+pos AArch64

Forbidden: 0:X0 = 1 & 1:X0=1

T s1:l3pte(x)a1: R x/pa1 = 0x1a2:

W s1:l3pte(y)b:

Thread 0

T s1:l3pte(y)c1: R y/pa1 = 0x1c2:

W s1:l3pte(x)d:

Thread 1

iio iio

trf

trf

po po

The writes to the translation tables (b and d) are forbidden from propagating to other threads before
the program-order earlier translations (a1 and c1) are satisfied.

Figure 8.11: Test LB.TT.inv+pos

LDR X0,[X1]
STR X2,[X3]

Thread 0

MOV X0,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X1=x, 0:X2=desc3(y),
0:X3=pte3(x)

CoTW1.inv AArch64

Forbidden: 0:X0 = 1

The store to the translation table
(b) cannot be re-ordered with the
program-order earlier translation
table walk (a1), preventing that
walk from reading from the store.

T s1:l3pte(x)a1: R x/pa1 = 0x1a2:

W s1:l3pte(x) = mkdesc(addr=page(pa1))b:

Thread 0

iio

trf

po

Figure 8.12: Test CoTW1.inv
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STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+dsb-isb AArch64

Forbidden: 0:X2 = 0

The write to the translation table
(a) is ordered before the non-TLB
read of the entry (d1) because of
the intervening DSB;ISB sequence,
creating local order. This ordering
ensures that the non-TLB read re-
spects the coherence order up to
the point of the write a, prevent-
ing the non-TLB read from reading
from a write coherence-before a.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dsb syb:

isbc:

T s1:l3pte(x)d1: Fault (R)d2:

erete:

Thread 0

trf
iio

po

po

po

po

Figure 8.13: Test CoWTf.inv+dsb-isb

8.4.2 Enforcing thread-local ordering

Since non-TLB reads do not necessarily preserve the program order, it appears that there are no coherence
guarantees one can make about them. However, by introducing some thread-local ordering constructs, we
can recover some of the strong guarantees we are used to, e.g. to ensure that program-order later accesses
use the new translations.

To force a non-TLB read to happen after some program-order earlier event, we can insert the two-
instruction sequence DSB SY ; ISB between them. The DSB (‘Data Synchronization Barrier’) waits for all
loads to satisfy and for all stores to have finished and be visible to translation table walkers, then the
ISB (‘Instruction Synchronization Barrier’) ensures that program-order later instructions begin execution
(including translation table walks) after the completion of the DSB, and therefore the earlier stores.

Locally-ordered-previous writes If we introduce this sequence into the previous CoWTf.inv+po test
(Figure 8.9, p.116), we obtain the CoWTf.inv+dsb-isb test (Figure 8.13), which is forbidden by Arm.
This is because the non-TLB reads, in the absence of non-coherent TLB caching structures (discussed
more in §8.6.1), will read from the coherent storage subsystem, and so will be required to see the new
write, or something coherence-after it.

Locally-ordered-previous reads If a program-order-previous load has already seen some other-thread
write, either through a translation (CoTTf.inv+dsb-isb (Figure 8.14, p.119)), or through a normal data
load of the translation table (CoRpteTf.inv+dsb-isb (Figure 8.15, p.119)), then translation table non-TLB
reads which are ordered after that read must also see that write, or a write coherence-after it. These tests
use the DSB; ISB sequence previously described, but any ordering to the translation table walk (described
in §8.4.3) suffices.

Microarchitecturally, this is because translation table walkers behave as separate ‘observers’ [68, p.14726].
Essentially, the MMU is a sibling element to the processor, accessing memory through the same coherent
mechanism as the primary CPU. This ‘separate observers’ principle may seem a reasonable model at first,
however, we will see later on in §8.4.4 where it breaks down as an architectural model.
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STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+dsb-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

The second translation-table non-
TLB read of x (e1) is locally or-
dered after the first translation ta-
ble walk (b1) because of the in-
tervening dsb; isb sequence, and
so cannot see a write coherence-
before the write the earlier (b1)
translation-read read from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

dsb syc:

isbd:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf

iio

iio

trf

po

po

po

po

Figure 8.14: Test CoTTf.inv+dsb-isb

STR X0,[X1]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+dsb-isb AArch64

Forbidden: 1:X0 = desc3(y) & 1:X2=0

The final translation table walk of
x (e1) cannot be re-ordered with
the program-order previous load of
pte3(x) (b), because of the inter-
vening DSB;ISB sequence. The non-
TLB translation read of pte3(x)
(e1) therefore must read from the
same write as the earlier load, or
something coherence-after it.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

dsb syc:

isbd:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iio

rf

po

po

po

po

Figure 8.15: Test CoRpteTf.inv+dsb-isb
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STR X0,[X1]

Thread 0

MOV X0,#0
LDR X0,[X1]
EOR X4,X0,X0
CBNZ X4,LC00

LC00:
ISB
MOV X2,#0
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+ctrl-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

Control-ISB locally-orders the later
translation table walk (d1) after the
resolution of the control flow, which
happens only after the satisfaction
of the read b2.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

isbc:

T s1:l3pte(x)d1: Fault (R)d2:

erete:

Thread 1

trf

iio

iio

trf

po

po

ctrl

Figure 8.16: Test CoTTf.inv+ctrl-isb

Instruction synchronisation barrier and control dependencies The ISB instruction naturally orders all
translation table walks of program-order later instructions with the ISB itself. This is because the ISB
effectively restarts all program-order later instructions, including any translations they do.

However, an ISB is not naturally ordered with respect to program-order earlier instructions. That is why
we introduced a DSB in the previous tests, without which they would be allowed. A control-dependency to
the ISB would also work (CoTTf.inv+ctrl-isb (Figure 8.16)).

Address dependencies In previous work, address dependencies were assumed fundamental. Now we can
define what an address dependency is: dataflow into the translation table walk. Address dependencies
remain a strong way to order events. Arm does not permit observable speculation of the values or addresses
of explicit reads and writes to memory. This means that a translation table walk will not start until
after its address dataflow-dependent registers are fully determined. Note, that this does not mean that
pre-fetching and caching of the walk cannot happen: it’s just that the architectural translation table walk
must retrieve any cached values after it is known what the address will be. Therefore, non-TLB translation
reads are locally-ordered-after any read whose value flows into that non-TLB read, as demonstrated in
CoRpteTf.inv+addr (Figure 8.17, p.121).

Memory barriers Much of the earlier work in relaxed-memory concurrency was dedicated to the behaviour
of barriers. The Arm data memory barrier (DMB) creates ordering between memory events program-order
earlier than the barrier, and memory events program-order after the barrier.

We will see that this applies to explicit memory events only: the principal reads and writes that load and
store instructions perform, not the implicit reads and writes they do during translations (or instruction
fetching, see Part I).

Ordering of the explicit memory events does not, automatically, induce ordering between those explicit
events and any reads due to translation table walks performed by those instructions. In the next subsection,
we will see how FEAT_ETS (§8.4.3) extends the architecture to include more orderings between translations
and other memory events in the same thread.
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STR X0,[X1]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+addr AArch64

Forbidden: 1:X0 = desc3(y) & 1:X2=0

The address dependency from the
load b to the second load, orders
the reads due to the translation ta-
ble walk of that load (in particular,
c1) after b. Since c1 is a non-TLB
read, it cannot read from a write
coherence-before the write b read
from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf
addr

iio

rf

po

po

Figure 8.17: Test CoRpteTf.inv+addr

Figure 8.18 shows a simple coherence test, with a data memory barrier between a store to the translation
tables and a load whose translation table walk might read from that. We see that the DMB does not enforce
that the translation table walk sees the update to the translation tables. From the previous tests, we
know this means that the translation table walk happened (microarchitecturally) before the store was
propagated to memory.

The Arm DMB vs DSB instructions Arm provides two memory barrier instructions: DMB (‘data memory
barrier’) and DSB (‘data synchronisation barrier’). The base intent is that DMB orders explicit memory
accesses, whereas DSB is a strictly stronger barrier also ordering some implicit accesses, and other barriers
and cache maintenance (including TLB invalidation). This means that, for any litmus test with a DMB,
a DSB of the same access kind could be substituted, and the resulting test is no weaker. Over time, the
architectural intent around how barriers order implicit events has changed, and is still subject to change.
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STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+dmb AArch64

Allowed iff not ETS 0:X2 = 0

The non-TLB read c1 is not locally
ordered after the write a, despite
the intervening dmb sy barrier (b).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 0

trf
iio

po

po

po

Figure 8.18: Test CoWTf.inv+dmb
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8.4.3 Enhanced Translation Synchronization

Note: since this work there have been further extensions including FEAT_ETS2 and
FEAT_ETS3. See the discussion at the end of the section for more details.

Recent versions of the Arm architecture require support for FEAT_ETS: Enhanced Translation Synchroniza-
tion. This feature does not change the ISA directly, but instead requires implementations to enforce extra
ordering.

When an instruction takes a translation fault, it is permitted (without ETS) to commit to taking that
fault immediately. However, there may have been some thread-local dependencies or ordering into that
instruction with the intent to order any explicit memory access (which do not happen if the instruction
faults). The early committal to the fault effectively breaks such dependencies, allowing the handler to be
executed before the dependency would have been resolved. This means, for example, if software were to
create new translation tables and publish them, ‘later’ translations may have already committed to taking
a fault, which software would observe as a spurious fault. This is what ETS tries to resolve.

The Arm Architecture Reference Manual says the following [12, D5.2.5 (p4802)]:

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second
memory access RW2, then RW1 is also Ordered-before any translation table walk
generated by RW2 that generates any of the following:

. A Translation fault.

. An Address size fault.

. An Access flag fault.

This prose description is phrased confusingly with reference to a seemingly non-existent event RW2, so
requires some clarification: the scenario being described here is a case with two instructions, I1 and I2,
each either a load or store. Imagine I1 and I2 both executing to completion, without generating any
translation, address size, or access flag faults. Then, each instruction would have generated one or more
explicit memory events. For example, a store might generate up to 8 separate write events (one for each
byte). Call those events Eij for the jth explicit event of instruction Ii.

Each explicit event Eij would have required a translation table walk, generating translation read events
which we can call Tijk for the kth translation-table-walk read for the jth explicit memory event for
instruction Ii.

Then, if in some execution: I2 generates a translation fault, address size fault, or access flag fault; E1n
would have been locally-ordered-before E2,m in an execution without the fault; and FEAT_ETS is enabled;
then, E1n is locally-ordered-before any translation table read T2,m,_ in the execution with the fault. That
is, we can imagine that in the execution with the fault there is a ‘ghost’ event corresponding to the fault in
the place the explicit event would have occurred with the same ordering into it. This scenario is illustrated
in Figure 8.19.

The intuition here is that, microarchitecturally, on implementations that support FEAT_ETS, when an
instruction takes an exception, the access that caused it is re-tried once the prefix of instructions is
non-restartable. This reduces spurious aborts by ensuring faults cannot come from an out-of-order read of
(what is now) a stale value from memory.

T100 T101 E10: R x

T200 Tf201 E20: Fault (W)

iio iio

iio iio

addrob

I1:

I2:

Figure 8.19: ETS Ghost events example: A load instruction (I1) followed followed (in program order)
by a store instruction (I2), which faults. The address dependency means that the read event E10 is
syntactically ordered-before the (ghost) write event E20, and so the read event is ordered before the reads
of the translation table walk for I2 read from the TLB or memory (represented by the dashed ob line).
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Other effects The architecturally desired effect of FEAT_ETS seems to be that no additional context-
synchronisation should be required to prevent spurious aborts, and that simple local orderings (barriers,
dependencies) should be enough. To make this so, ETS must implicitly enforce more than just the
aforementioned ordering constraints.

Specifically, TLBI instructions must have stronger thread-local orderings to translation-table walks (de-
scribed in more detail later); translation table walks must be (other) multi-copy atomic; and, translation
table walk reads must be coherent and single-copy atomic.

non-ETS fragment There is a question here as to whether we should consider the non-ETS behaviours
of the architecture. On the one hand, hardware in use today is from a pre-ETS version of the architecture
and so we cannot assume that the behaviour of those devices are consistent with ETS. On the other hand,
ETS is a feature that is widely assumed by software, even if not present on hardware.

In particular, Linux assumes implementations are ETS compatible even when they are not. Building
models that capture the full extent of the non-ETS fragment would have questionable benefits as one
would have to assume an ETS model when verifying software. Additionally, as ETS is becoming a
mandatory feature, the concerns over non-ETS hardware will diminish over time. Finally, the semantics
of this non-ETS fragment is still unclear; there are numerous questions, especially around forwarding and
multi-copy atomicity generally, which are grey areas in the non-ETS fragment which Arm have yet to
explicitly decide one way or another.

For these reasons we will assume FEAT_ETS is present and enabled, unless explicitly stated otherwise.

Ordering to the translation table walk We can now define which constructs give rise to local ordering
into a translation table walk. Address dependencies, and locally-ordered context-synchronisation (in
particular, the DSB; ISB sequence) always give rise to ordering to the translation table walks. Control
dependencies, on their own, never give rise to such ordering. If using FEAT_ETS, then a plain DSB orders
translation table walks of program-order later instructions after it. Other barriers may give ordering to
the translation table walker, if using FEAT_ETS and the translation results in a translation fault, and those
barriers would have ordered the event that would have happened otherwise.

ETS2, ETS3, and the future of ETS Since this work was done, Arm have further refined the architecture;
there are now two further extensions to ETS: FEAT_ETS2, which extends the behaviour described above to
include ordering from all instructions program-order before the fault [68, D8.2.6.1]; and FEAT_ETS3, which
extends this to all MMU faults [97, D8.2.6.1].

FEAT_ETS, as described in this document, no longer exists. The memory model since developed by Arm, as
found in the Arm architecture reference manual, describes the latest state of ETS [97, B2.3]. FEAT_ETS3 is
now mandatory from Armv9.5.

8.4.4 Forwarding to the translation table walker

Note: our understanding of the architectural intent for forwarding to translation
table walks has changed over time. See the discussion at the end of the section for
more details.

Writes take time to propagate out to memory to other cores. One common performance optimization is
gathering: collecting multiple writes together in a store buffer, to propagate them together. To maintain
uniprocessor semantics, the core reads from its own store buffer, in effect, allowing it to read from writes
before they’ve been propagated out to other cores. This behaviour is referred to as write forwarding.

Although the translation table walker is described as a ‘separate’ observer, it is also part of the core that
hosts it, and is allowed to read from that core’s store buffer, effectively allowing writes to be ‘forwarded’
to the walker, as shown in the R.TR.inv+dmb+trfi test (Figure 8.20, p.125).

Changes to the architectural intent Since this work was completed, the architectural intent has been
further clarified: non-TLB reads, except with FEAT_nTLBPA, must be multicopy atomic with respect to
data accesses.
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

STR X0,[X1]
MOV X2,#1
LDR X2,[X3]

Thread 1

LDR X0,[X1]
LDR X2,[X1]

Thread 2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: w |-> invalid, x |-> pa1, *pa1 = 0, 0:X0=2, 0:X1=x, 0:X2=2,
0:X3=pte3(w), 1:X0=mkdesc3(oa=pa1), 1:X1=pte3(w), 1:X3=w, 2:X1=pte3(w)

R.TR.inv+dmb+trfi AArch64

Allowed: 1:X2=0 & 2:X0=2 & 2:X2=mkdesc3(oa=pa1)

W x/pa1 = 0x2a:

dmb syb:

W s1:l3pte(w) = 0x2c:

Thread 0

W s1:l3pte(w)d:

T s1:l3pte(w)e1: R w/pa1 = 0x0e2:

Thread 1

R s1:l3pte(w) = 0x2f:

R s1:l3pte(w)g:

Thread 2

rf
iio

rftrf
co

rfpo

po po po

The write of the new valid entry (d) can be forwarded locally to the translation of w (e1) allowing the
read of w (e2) to satisfy early. Thread 2 is an observer thread, witnessing that the write d happens after c.

Figure 8.20: Test R.TR.inv+dmb+trfi

8.4.5 Speculative execution

To facilitate out-of-order pipelines, the machine begins fetching and executing the next instruction before
earlier instructions are finished. However, those earlier instructions may change the flow of execution
through the program. Executing later instructions before those earlier instructions are finished means
that those later instructions are being executed speculatively: the predicted control flow, or assumptions of
independence between instructions, may turn out to be incorrect. When the control flow is mispredicted,
or a speculative access leads a coherence violation, the speculated effects must be discarded.

When executing down a speculative path like this, there are additional restrictions that the core must
adhere to. For example, stores should not be propagated out to memory, although they can still be read
from by program-order-later reads in the same thread.

Since reads and writes can be performed speculatively, their associated translations must also be permitted
to be performed speculatively. This is what permits tests such as MP.RTf.inv+dmb+ctrl (Figure 8.21, p.126)
to see an old value for the translation table entry down a speculative path.

However, forwarding from a speculative write to the translation table walker is disallowed. Reads from
normal memory have no side effects, but other locations, such as devices, are read sensitive: reads
may effect the device state. Software protects such locations by marking them as device memory in
the translation tables, or leaving them unmapped altogether. A still-speculative write could update
the translation tables arbitrarily, including allowing reads to read-sensitive locations, so it must be
forbidden for a translation read to read from still-speculative writes. The MP.RT.inv+dmb+ctrl-trfi test
(Figure 8.22, p.126) demonstrates this, requiring that the translation table walk on the speculative path
cannot read from the still-speculative store to the translation tables.

Instruction restarts A related, but separate, concept is that of instruction restarting. In the usermode
memory model a read might be satisfied early, out-of-order with respect to program-order previous
instructions, even before those instructions’ accesses addresses are known. If such an earlier access turned
out to be to the same address, and the later access is not a read of the same write, then the later access
must be restarted to avoid coherence violations.
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1,
y |-> pa2, 0:X0=desc3(z), 0:X1=pte3(x), 0:X2=1, 0:X3=y,
1:X1=y, 1:X3=x

MP.RTf.inv+dmb+ctrl AArch64

Allowed: 1:X0 = 1 & 1:X2=0

The non-TLB read in Thread 1 (e1)
is not locally ordered after the ear-
lier load (d), despite the control
dependency. This is because the
processor can speculatively perform
the translation table walk, before
the earlier read is satisfied.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iiorf

po

po

po

ctrl

Figure 8.21: Test MP.RTf.inv+dmb+ctrl

STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBZ X0,LC00

LC00:
STR X2,[X3]
LDR X4,[X5]

Thread 1

MOV X4,#2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: w |-> invalid, x |-> pa1, *pa1 = 0,
y |-> pa2, 0:X0=1, 0:X1=x, 0:X2=1, 0:X3=y, 1:X1=y,
1:X2=mkdesc3(oa=pa1), 1:X3=pte3(w), 1:X5=w

MP.RT.inv+dmb+ctrl-trfi AArch64

Forbidden: 1:X0 = 1 & 1:X4=0

The non-TLB read of the transla-
tion table entry (f1) cannot read
from a forwarded thread-local write
(event e) when on a speculative
path, requiring that f1 be ordered
after d.

W x/pa1 = 0x1a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

W s1:l3pte(w) = mkdesc(addr=page(pa1))e:

T s1:l3pte(w)f1: R w/pa1 = 0x0f2:

Thread 1

rf
iio

rf

trfpo

po ctrl

po

Figure 8.22: Test MP.RT.inv+dmb+ctrl-trfi
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STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
LDR X2,[X3]

Thread 1

MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 EL1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+po AArch64

Allowed: 1:X0 = 1 & 1:X2=0

The translation-table-walks of the
two same-address loads of x can ex-
ecute out-of-order, even when the
later translation table read (c1)
reads from a different write than
the program-order-earlier one (b1).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf

iio

iio

trf

po

po

Figure 8.23: Test CoTTf.inv+po

Translation table walk reads, while they are reads, are not required to be restarted to recover coherence,
do not do this hazard checking. This is most obvious in the CoTTf.inv+po (Figure 8.23, p.127), where
the two translations for the two same-address loads in Thread 1 are performed out-of-order.

8.4.6 Single-copy atomicity

In the base memory model, there are two key guarantees on the atomicity of reads and writes: single-copy
atomicity and multi-copy atomicity.

Recall that single-copy atomic reads always read the maximum they can from another single-copy atomic
write; in particular a 64-bit atomic read never partially reads from another 64-bit atomic write.

Translation table walk reads are 64-bit single-copy-atomic reads of memory. This means that each of the
reads generated by a translation table walk will read the entire descriptor in one shot. This causes the
CoWroW.inv+dsb-isb test (Figure 8.24, p.128) to be forbidden, disallowing reading the output address
obtained from one write, and access permissions from another.

8.4.7 Multi-copy atomicity

Multi-copy atomicity is a guarantee that requires any update to memory to propagate to all other threads
simultaneously. This is one of the core guarantees Arm and RISC-V give, but earlier versions of Arm and
IBM’s Power architectures do not. On Arm, threads can observe their own writes early, through write
forwarding, giving a weaker form of multi-copy atomicity referred to as other-multi-copy atomicity by
Arm.

Microarchitecturally, a thread can only read another thread’s write by reading from a global coherent
storage subsystem. This ensures that after the thread reads from that write, any other thread must also
see that write, or something coherence after it. While this is a property that the base model seems to
have, whether it is true for accesses during translation table walks is a separate question.

The non-TLB reads during a translation table walk respect other-multi-copy-atomicity: if one other
thread has observed a write through a translation table walk, then future translation table walk non-TLB
reads by other threads will also observe that write (or something newer). Axiomatically, if one thread
translation-reads-from a write, then all translation-table-walk reads locally-ordered after another memory
event, which is itself ordered after the other thread’s translation-table-walk read, will be ordered after
that translation-table-walk read.
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STR X0,[X1]
DSB SY
ISB
STR X2,[X3]

Thread 0

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, *pa1 = 0,
0:X0=mkdesc3(oa=pa1, AP=3), 0:X1=pte3(x),
0:X2=1, 0:X3=x

CoWroW.inv+dsb-isb AArch64

Forbidden: *pa1=1

The translation table walk of the second store must read from the entire write from the earlier store, or
not at all, forbidding its translation walk from reading a mix of both the initial state and the earlier write.
This means there should be no way the final store can happen, as it must either be invalid or read-only.
Note that isla does not generate candidates with non-atomic reads which are supposed to be single-copy

atomic, so there is no generated events diagram for this test.

Figure 8.24: Test CoWroW.inv+dsb-isb

There are three combinations of multi-thread reads of interest, where a weaker architecture (with split
pagetable and data memory storage) might have mixed non-multi-copy atomic behaviours. The first
of these is the most basic: translation-read to translation-read, that is, the pagetable accesses are
multi-copy atomic, and this is what forbids reading the old translation table value in Thread 2 in
the WRC.TRTf.inv+po+dsb-isb test (Figure 8.25, p.129). The other two are combinations of read-to-
translation-read and translation-read-to-read; these show us that translation accesses and explicit data
accesses are architecturally unified: information about the memory state learned through one kind of access
applies to accesses of the other. This is what forbids the WRC.RRTf.inv+dmb+dsb-isb (Figure 8.26, p.130)
and WRC.TRR.inv+po+dsb (Figure 8.27, p.130) tests from reading the old value from memory at the
end.

8.4.8 Translation-table-walk intra-walk ordering

All the tests so far have been concerned with changes to at most one of the translation table entries during
a single walk. However, as we saw in Chapter 7, each translation table walk performs many reads, as
many as 24, for a single translation.

The ASL for the translation table walker performs each translation, in order, starting with the root,
and ending with the leaf entry. While reads in a thread can be executed out-of-order, translation-reads
within a translation table walk cannot, as this would require the hardware to do value speculation on the
next-level table address, but as discussed in §8.4.5, using speculative values in a walk is forbidden.

Requiring the translation reads from a translation table walk to be satisfied in translation walk order has
an observable effect. For example, in the ROT.inv+dsb test (Figure 8.28, p.131), the translation table
walk of the read in Thread 1 must see the writes to the translation table done by Thread 0 in the order
they were propagated out to memory, and so reading from the old level 3 entry is forbidden.

8.4.9 Multiple translations within a single instruction

Some instructions generate multiple explicit memory events, for example, the ‘load pair’ and ‘store pair’
instructions, misaligned accesses, and read-modify-writes. When there are multiple explicit memory events,
there will be a dedicated translation for each of them, with its own translation table walk.

Here, the architecture as it is written today is overly sequentialised: the ASL for these cases performs
each translation (and the respective access) in some order, but the architectural intent is that the separate
translations should be unordered with respect to each other.

Misaligned accesses, and the load pair and store pair instructions, should generate explicit memory events
and associated translations which are unordered with respect to each other.
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STR X0,[X1]

Thread 0

LDR X0,[X1]
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 2

MOV X0,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 EL1 Handler

MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread2 EL1 Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1, y |-> pa2, 0:X0=desc3(z),
0:X1=pte3(x), 1:X1=x, 1:X2=1, 1:X3=y, 2:X1=y, 2:X3=x

WRC.TRTf.inv+po+dsb-isb AArch64

Forbidden: 1:X0=1 & 2:X0=1 & 2:X2=0

W s1:l3(x)a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

W y/pa2 = 0x1c:

Thread 1

R y/pa2 = 0x1d:

dsb sye:

isbf:

T s1:l3pte(x)g1: Fault (R)g2:

ereth:

Thread 2

trf

iio

iio

trf

rfpo

po

po

po

po

The translation-read of x (g1) is ordered after another translation-read of the same address x (b1), so
by multi-copy-atomicity g1 may not read from an older write than b1 did.

Figure 8.25: Test WRC.TRTf.inv+po+dsb-isb
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STR X0,[X1]

Thread 0

LDR X0,[X1]
DSB SY
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 2

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread2 El1
Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1,
y |-> pa2, 0:X0=desc3(z), 0:X1=pte3(x),
1:X1=pte3(x), 1:X2=1, 1:X3=y,
2:X1=y, 2:X3=x

WRC.RRTf.inv+dmb+dsb-isb AArch64

Forbidden: 1:X0=desc3(z) & 2:X0=1 & 2:X2=0

The translation-read of x (h1)
is ordered after the read of
the translation table entry (b)
and so by multi-copy-atomicity
it cannot read from an older
write than b did. The dsb-isb
sequence in Thread 2 ensures

the translation-table-walk of g
is ordered after the program-
order earlier read even without
FEAT_ETS (see §8.4.3).

W s1:l3(x)a:

Thread 0

R s1:l3(x)b:

dsb syc:

W y/pa2 = 0x1d:

Thread 1

R y/pa2 = 0x1e:

dsb syf:

isbg:

T s1:l3pte(x)h1: Fault (R)h2:

ereti:

Thread 2

trf
iio

rf

rf

po

po

po

po

po

po

Figure 8.26: Test WRC.RRTf.inv+dmb+dsb-isb

STR X0,[X1]

Thread 0

LDR X0,[X1]
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
LDR X2,[X3]

Thread 2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa2, *pa1 = 1,
0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x), 1:X0=0, 1:X1=x,
1:X2=1, 1:X3=y, 2:X1=y, 2:X3=pte3(x)

WRC.TRR.inv+po+dsb AArch64

Forbidden: 1:X0=1 & 2:X0=1 & 2:X2=0

The read of the translation table
entry for x (f) is ordered after the
translation read of x (b1) and so by
multi-copy-atomicity it cannot read
from an older write than b1 did.
The dsb in Thread 2 is sufficient
to order the reads, any preserved
read-to-read thread-local ordering
suffices.

W s1:l3pte(x)a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

W y/pa2 = 0x1c:

Thread 1

R y/pa2 = 0x1d:

dsb sye:

R s1:l3pte(x) = 0x0f:

Thread 2

rf

iiotrf

rfpo

po

po

Figure 8.27: Test WRC.TRR.inv+po+dsb
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STR X0,[X1]
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]

Thread 1

// read ESR_EL1.ISS, to see if fault at Level 2 or 3.
MRS X14,ESR_EL1
AND X14,X14,#7
CMP X14,#7
MOV X17,#1
MOV X18,#2
// if ESR_EL1.ISS.DFSC == Translation Level 3
// then x0 = 1 else x0 = 2
CSEL X0,X17,X18,eq

// advance ELR
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13

// return
ERET

Thread1 El1 Handler

Initial state: ipa1 |-> pa1, x |-> invalid at level 2, s1table new_table 0x280000 {,
x |-> invalid, }, 0:X0=mkdesc3(oa=ipa1), 0:X1=pte3(x, new_table),
0:X2=mkdesc2(table=0x283000), 0:X3=pte2(x), 0:PSTATE.EL=1, 1:X1=x

ROT.inv+dsb AArch64

Forbidden: 1:X0=1

W new_table:l3pte(x)a:

dsb syb:

W s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)c:

Thread 0

T s1:l2pte(x)d1:

T new_table:l3pte(x)d2: Fault (R)d3:

erete:

Thread 1

trf iio
iiotrf

po

po

po

The translation-table walk from the read of x in Thread 1 must perform its translation non-TLB
reads, d1 and d2, in the order they appear in the walk, forbidding reading from the new level 2 table

entry in d1, but then reading the stale initial value for that entry from memory. The test listing contains
some concrete values to make it executable in isla: the location of the new table is fixed at page 280, so
that it is not symbolic; the location of the level 3 table within the new tree will be in page 283, which is
known from the fixed isla configuration of page tables. Whether the exception comes from the level 2 or
the level 3 entry can be determined by reading the ISS field of the ESR_EL1 register, which is what the

exception handler does in this test.

Figure 8.28: Test ROT.inv+dsb
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STR X0,[X1]
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0,
0:X1=pte3(x), 0:X3=x

CoWinvT+po AArch64

Allowed: 0:X2 = 0

The translation read (b1) of the
last-level entry for x can be exe-
cuted out-of-order with respect to
the program-order earlier store (a)
of an invalid entry to pte3(x).

W s1:l3pte(x) = 0x0a:

T s1:l3pte(x)b1: R x/pa1 = 0x0b2:

Thread 0

trf
iio

po

Figure 8.29: Test CoWinvT+po

8.5 Caching of translations in TLBs

We have seen in §8.4 that, while non-TLB reads do not necessarily preserve the program-order without
additional synchronisation, due to the out-of-order execution of instructions, those translation table reads
get satisfied from the coherent storage subsystem or from forwarding from earlier stores, much like the
normal explicit data reads do. This section will explore what happens when translation table walk reads
may instead be satisfied from the TLB.

Unfortunately for the programmer, the TLB need not be coherent with memory: it can have stale values.
This section explores the behaviours that arise from this caching of stale values.

8.5.1 Cached translations

In the previous section we carefully constructed tests which began with an initially invalid translation,
to avoid TLB caching issues. Here, we will generally start with entries that are valid, and so might be
present in the TLB.

The following CoWinvT+po test (Figure 8.29) begins with an initially valid (and therefore potentially
initially cached in the TLB) translation for the virtual address x. It then updates the last-level translation
table entry for x, setting it to 0, making it invalid (and thus unmapping x). Then, program order later,
the same thread tries to read x.

The read can succeed, as its translation can read from the old value from memory. We saw earlier that
translation table walks can be executed out-of-order with respect to program order (§8.4.1), but even
inserting thread-local ordering to the translation, such as in test CoWinvT+dsb-isb (Figure 8.30, p.133),
does not forbid it.
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STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0,
0:X1=pte3(x), 0:X3=x

CoWinvT+dsb-isb AArch64

Allowed: 0:X2 = 0

The translation read (d1) of the
last-level entry for x is required to
be satisfied after the earlier store of
the invalid entry (a) because of the
intervening dsb sy; isb sequence,
but the value could come from a
cached value in the TLB, allowing
d1 to read from a stale value.

W s1:l3pte(x) = 0x0a:

dsb syb:

isbc:

T s1:l3pte(x)d1: R x/pa1 = 0x0d2:

Thread 0

trf
iio

po

po

po

Figure 8.30: Test CoWinvT+dsb-isb

8.5.2 TLB fills

Translation table walks can be requested by the core in two different ways: (1) through the architectural
execution of an instruction; or, (2) from a spontaneous translation table walk (for example, due to
speculation and prefetching of data or instructions). In either case, the result of that walk can be cached
in the TLB and recalled for other translation table walks.

Architecturally, a TLB fill is no different to a normal translation table walk. Each TLB fill originates
from a non-TLB read, with all the behaviours described in the previous sections. Later translation table
walks are allowed, however, to recall an earlier value and then reuse that rather than doing a fresh read.

Spontaneous walks The hardware may, at any time, prefetch or speculatively read some address. These
appear as spontaneous translation table walks. Those spontaneous walks may be cached. We can see this
occurring in the following MP.RT.inv+poloc-dmb+ctrl-isb test (Figure 8.31, p.134), where a spontaneous
translation and the resulting TLB fill allows a future translation table walk to see a stale value.

Speculative paths Since translation table walks, and therefore TLB fills from the result of those walks,
can happen at any point, there is no need to consider TLB fills of architectural translation table walks
down speculative paths as any such behaviour is subsumed by a spontaneous fill.

However, as described earlier, we saw that writes cannot be forwarded to translation table walks when
down speculative paths (§8.4.5). This naturally excludes TLB fills of still speculative writes: since a
speculative write cannot be used in the result of a translation table walk, it cannot end up cached in a
TLB.

8.5.3 microTLBs

So far we have spoken as if entries are, at any particular moment in time, either present in the TLB or not.
Hardware, however, may have multiple microTLBs for the same thread, each with their own potential
cached entry for the same address.

In effect, these microTLBs behave as if they were a larger non-deterministic TLB with potentially many
values for each entry. The presence of these smaller caching structures in a superscalar machine means
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STR X0,[X1]
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, y |-> pa2, *pa1 = 0, *pa2 = 0,
0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x), 0:X2=0, 0:X3=pte3(x), 0:X4=1,
0:X5=y, 1:X1=y, 1:X3=x

MP.RT.inv+poloc-dmb+ctrl-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

W s1:l3pte(x) = 0x0b:

dmb syc:

W y/pa2 = 0x1d:

Thread 0

R y/pa2 = 0x1e:

isbf:

T s1:l3pte(x)g1: R x/pa1 = 0x0g2:

Thread 1

iio

trf

rf

po

co

po po

ctrl

A spontaneous walk and fill can happen on Thread 1 after the write of the valid entry to pte3(x) (a),
but before the immediate re-invalidation of that entry (b), allowing the later translation table walk (g1)
to see the old cached entry, even though the architectural translation table walk could not have happened

while the valid entry was visible.

Figure 8.31: Test MP.RT.inv+poloc-dmb+ctrl-isb

8.5. CACHING OF TRANSLATIONS IN TLBS 134



STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=0, 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTfT+dsb-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = 0x0a:

Thread 0

T s1:l3pte(x)b1: Fault (R)b2:

eretc:

dsb syd:

isbe:

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 1

trf
iio

iiotrf

po

po

po

po

The earlier translation read (b1) reads from the new invalid entry, reading from memory (as it cannot
have been in the TLB), but a later translation read (f1) of the same location can still potentially see a

stale cached entry.

Figure 8.32: Test CoTfT+dsb-isb

that different instructions may be accessing different TLBs at the same time. This allows later instructions
to ‘skip’ over a previously seen cached entry, and then see it again later.

These effects can be seen in the CoTfT+dsb-isb test (Figure 8.32), where the presence of these micro-TLBs
(or other distributed caching structures) permits later events (even locally-ordered later) to see old cached
entries after earlier events witnessed a TLB miss.

Break-before-make and restrictions We will see later that the ability to have multiple cached entries
for a single address causes problems for software managing coherence, and imposes extra restrictions on
software practice. This means that, in general, the effects of the micro-TLBs are restricted to only those
combinations that do not cause break-before-make violations (see §8.6.5).

8.5.4 Partial caching of walks

TLBs need not cache entire virtual to physical translations. Instead, they are free to cache any subset of
the reads from the walk separately.

Caching up to last-level table The most common kind of caching structure we are aware of in mi-
croarchitecture is the walk cache (see §8.3.1). Traditionally, a TLB would store entire virtual to physical
mappings, making it fast to lookup the translation (often a single cycle), but there was limited space,
and this induced heavy burden on a TLB miss or TLB invalidation. Walk caches store the last-level
table entry, allowing TLB invalidation of leaf entries and TLB misses to re-use a prefix of the walk and
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perform a minimal number of accesses. This can be seen in the MP.RTT.inv3+dmb-dmb+dsb-isb test
(Figure 8.33, p.137), where a walk cache allows the table entry to be cached separately from the last-level
entry, allowing the last translation read to read from a much newer value.

Independent caching of IPAs In a two-stage regime, the virtual addresses are first translated into
intermediate physical address. The secondary translations based on the intermediate physical addresses,
either of the final output address or of any of the intermediate table addresses, may be cached in the TLB
without remembering the originating virtual address. This means that these cached translations may be
recalled for translations of different virtual addresses.

In addition, pre-fetching may perform translations of arbitrary IPAs. This means that any cached
translations might not correspond to any valid whole translation table walk, but may still be used during
such walks. This is most clear in ROT.invs1+dmb2 (Figure 8.34, p.138), where, although the IPA was
never reachable from the stage 1 translations, the old IPA to PA mapping was cached and used later.

Caching of whole translation A common configuration for the TLB is to cache whole translation walks,
from virtual to physical. This kind of caching has an important caveat: there is no requirement for the
TLB to remember the intermediate physical address of any stage 2 translations that were done during the
walk, including the final stage 2 walk of the access address itself. This means that TLB invalidations by
IPA might not remove all the cached data associated with a cached entry for that IPA, if there is a whole
cached translation which is derived from that entry. See §8.6.4 for more discussion on how this affects
requirements on software.

Caching of individual entries Architecturally, Arm wish to allow many more implementations of TLBs
and translation caching structures than currently known hardware contains.

The weakest variation on this is allowing each individual translation table entry to be cached separately
and independently. One could construct litmus tests for each of the possible combination of translation
table entries, but there would be overwhelmingly many of these, or even a ‘most relaxed’ version where
every translation table entry comes from different previous translations, but this would be too large to
show here. So, for simplicity we show just one of them here, ROT.inv2+dmb (Figure 8.35, p.139), where
the last-level entry came from a newer value than the previous levels.

8.6 TLB maintenance

Recovering coherence for translation reads in the presence of TLB caching can be achieved through the
use of TLB maintenance instructions: namely, the TLBI (‘TLB invalidate’) family of instructions.

TLB maintenance generally performs two microarchitectural effects: erasing stale entries from the TLB,
ensuring future TLB fills (for example, due to a translation read) will see the coherent value from memory;
and the more subtle effect of discarding any partially executed instructions, on other cores, which had
already begun execution using a stale entry but had not yet finished executing. We now explore both of
these effects, and the subtle interaction with other parts of the VMSA, in more detail.

8.6.1 Recovering coherence

We saw in §8.5.1 that stale values cached in the TLB can cause coherence violations in the translation,
for example, in the CoWinvT+dsb-isb test (Figure 8.30, p.133). By inserting the correct TLBI sequence
into that test, we produce a new test, CoWinvT.EL1+dsb-tlbi-dsb-isb (Figure 8.36, p.140), which is now
forbidden.

There are many flavours of TLBI that could have been inserted into this test. The one in the figure is
TLBI VAE1: TLB invalidation by virtual address, for the EL1&0 translation regime. Using a TLBI-by-VA
means the programmer has to provide the virtual page to invalidate, and the TLBI only affects addresses
for that specific invalidated entry, not all of them.

Using the incorrect TLBI leads to insufficient invalidation occurring. For example, in the aforementioned
CoWinvT.EL1+dsb-tlbi-dsb-isb test (Figure 8.36, p.140), if the TLBI had the wrong page then it would
have no effect and the test would remain allowed.
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: assert x[48..21] != y[48..21], x |-> invalid,
y |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0, 0:X1=pte2(x),
0:X2=mkdesc3(oa=pa1), 0:X3=pte3(x), 0:X4=1, 0:X5=y, 1:X1=y, 1:X3=x

MP.RTT.inv3+dmb-dmb+dsb-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l2pte(x) = 0a:

dmb syb:

W s1:l3pte(x) = mkdesc(addr=page(pa1))c:

dmb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

Ti1:

Ti2:

R x/pa1 = 0x0i3:

Thread 1

trf

iio

iio

trf

rfpo

po

po

po

po

po

po

The translation-read of the level 2 entry for x (i1) can read from stale writes from a translation that
the subsequent level 3 translation-read (i2) does not read from, as the level 2 entry could have been

cached in the TLB (in this case, a co-located ‘walk cache’ structure), while the level 3 entry gets read
from memory. In the test, x is initially invalid at level 3, and x and y have different level 2 entries (by

ensuring they are not in the same 2 MiB region), and writes zero to the level 2 entry for x (a) and then
overwrites the previously-zero level 3 entry to point to pa1, such that the final read of x could only see a

valid entry if the walk read-from the new level 3 entry, but a stale cached level 2 entry. The magic
numbers are concrete instantiations from isla-axiomatic’s symbolic evaluation.

Figure 8.33: Test MP.RTT.inv3+dmb-dmb+dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

MOV X0,#0
LDR X0,[X1]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1, x |-> invalid at level 2, ipa1 |-> pa1,
*pa1 = 1, 0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x, s2_page_table_base), 0:X2=0,
0:X3=pte3(x, s2_page_table_base), 0:X4=mkdesc3(oa=ipa1), 0:X5=pte3(x), 0:PSTATE.EL=1,
1:X1=x

ROT.invs1+dmb2 AArch64

Allowed: 1:X0=1

W s2:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

W s2:l3pte(x) = 0x0c:

dmb syd:

W s1:l3pte(x) = mkdesc(addr=page(pa1))e:

Thread 0

T s1:l3pte(x)f1:

T s2:l3pte(x)f2: R x/pa1 = 0x1f3:

Thread 1

iio
iioco

trf

trf

po

po

po

po

The translation read of the stage 2 leaf entry for x (f2) can read from an old cached version, from the
write (a) even though it was not reachable by any translation table walk for any VA (as the IPA it maps
was not mapped by any stage 1 tables before it was overwritten by (b)). This test relies on translation

table walks being naturally ordered (by iio), see §8.4.8.

Figure 8.34: Test ROT.invs1+dmb2
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

MOV X0,#1
LDR X0,[X1]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: intermediate ipa1, assert pa1 == ipa1, ipa1 |-> pa1,
x |-> invalid at level 2, s1table new_table 0x280000 { x |-> ipa1 }, 0:X0=0,
0:X1=pte3(x, new_table), 0:X2=mkdesc2(table=0x283000), 0:X3=pte2(x),
0:PSTATE.EL=1, 1:X1=x

ROT.inv2+dmb AArch64

Allowed: 1:X0=0

W new_table:l3pte(x) = 0x0a:

dmb syb:

W s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)c:

Thread 0

T s1:l2pte(x)d1:

T new_table:l3pte(x)d2: R x/pa1 = 0x0d3:

Thread 1

trf iio
iiotrf

po

po

The translation-read of the level 3 entry (d2) can read from a stale cached translation, which was
cached before the write to the level 2 entry (c). Note that this test assumes that the original new_table
was reachable (and therefore could be cached) before the write c. See §8.8.1 for a discussion on this.

Figure 8.35: Test ROT.inv2+dmb

FEAT_nTLBPA

Armv8.4-A introduced a new optional Arm feature, FEAT_nTLBPA [12, A2.2.1 (p79)].

This feature adds a field to the memory model feature register (AA64MMFR1_EL1) which identifies whether
the current processor’s TLB may contain non-coherent copies of stage 1 entries indexed by those entries’
intermediate physical address. Microarchitecturally, this corresponds to there being non-coherent caches
associated with the TLB, which must be flushed on a TLBI. These caches would allow TLB misses to
read from a non-coherent cache, thus not seeing the most up-to-date value from the coherent storage
subsystem like described in §8.4.

This change adds a field to the register, whose reserved value in Armv8.0 corresponds to non-coherent
caches existing. This implies that in processors without FEAT_nTLBPA, one should assume that TLBs may
contain non-coherent caching structures, including prior to the introduction of the FEAT_nTLBPA feature
entirely: it is not clear to us whether this is intentional. Therefore, some behaviours described here may
assume a setting that is too strong, erroneously assuming all non-TLB translation-reads read from the
coherent-latest write. Our experimental data did not include any devices with incoherent non-TLB reads.

8.6.2 Thread-local ordering and TLBI

TLB maintenance instructions are not naturally locally ordered with respect to other instructions in the
instruction stream. This means that they can be executed out-of-order with respect to other instructions.
To ensure they are synchronized with other instructions, the programmer can use the DSB barrier instruction
to impose order on the instructions before and after it.

Leaving out one or both of the DSBs around the TLBI leads to insufficient ordering around the TLBI, and
allows the invalidation to occur at the wrong time. For example, the CoWinvT.EL1+tlbi-dsb-isb test
(Figure 8.37, p.141), a version of Figure 8.36 without the DSB b, is allowed as the initial write and TLBI
may be re-ordered, negating the architectural effect of the TLBI.
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STR X0,[X1]
DSB SY
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0, 0:X1=pte3(x),
0:X3=x, 0:X5=page(x), 0:PSTATE.EL=1

CoWinvT.EL1+dsb-tlbi-dsb-isb AArch64

Forbidden: 0:X2 = 0

The translation-read of the trans-
lation table entry for x (f1) is re-
quired to happen after the earlier
store (a), because of the interven-
ing dsb sy; isb sequence (d and
e), and cannot be satisfied from the
TLB, because of the TLBI (c), for-
bidding it from still seeing a stale
value. Note that TLBI instructions
can only be executed from EL1 or
above, so this test starts execution
at EL1 rather than the usual de-
fault of EL0.

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.36: Test CoWinvT.EL1+dsb-tlbi-dsb-isb
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STR X0,[X1]
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0, 0:X1=pte3(x),
0:X3=x, 0:X5=page(x), 0:PSTATE.EL=1

CoWinvT.EL1+tlbi-dsb-isb AArch64

Final state: 0:X2 = 0

The TLBI (b) can be re-ordered
with program-order earlier events,
due to the lack of DSBs ordering it
after them, allowing the store (a)
to happen later, letting the final
translation read (e1) still see the
old stale translation.

W s1:l3pte(x) = 0x0a:

TLBI VAE1 page=page(x)b:

dsb syc:

isbd:

T s1:l3pte(x)e1: R x/pa1 = 0x0e2:

Thread 0

trf
iio

po

po

po

po

Figure 8.37: Test CoWinvT.EL1+tlbi-dsb-isb

8.6.3 Broadcast

Arm provide broadcast variants of the TLBI instructions. These are generally suffixed with the letters IS
(‘Inner-shareable’) in the mnemonic. Broadcast TLBIs, sometimes referred to as TLB shootdowns, allow
one processor to perform maintenance on other cores’ TLBs. This is in contrast to other systems, such as
for x86, and IBM’s Power architecture, where maintenance of other cores must be achieved in software
through the use of purely thread-local invalidation instructions.

TLB invalidation on another core One of the simplest examples of multi-core invalidation is a message
passing invalidation pattern, where the old entry is removed, and a message is sent to another core. This
can be seen in the MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb test (Figure 8.38, p.142).

Instruction restarts Broadcast TLBIs must do more than touch the other thread’s TLB. If another
processor has an in-flight instruction which has started but not yet finished execution using a stale
translation, then that instruction must be restarted.

This ensures that Arm broadcast TLBIs have the same behaviour as the traditional software IPI-based
shootdown (with context synchronization). It also provides a needed security guarantee: if a mapping is
taken away from a process, then future writes to the physical location it used to map to, should not be
visible to that process any more.

This guarantee is captured in the RBS+dsb-tlbiis-dsb (Figure 8.39, p.143) (Read-Broken-Secret) test.
Once a mapping has been broken, and sufficient TLB maintenance performed, any future reads or writes
to the original physical location will not be visible through that mapping any more. Note, however, that
this does not mean that instructions which have already completed their execution will be restarted, even
if they occur after an earlier restarted instruction. This can be seen in the RBS+dsb-tlbiis-dsb+poloc test
(Figure 8.40, p.144), where the program-order later load can see the old value, even after the first faults.

While here we describe things in terms of instruction restarting, these behaviours can be (and presumably
sometimes are) implemented in terms of waiting: instead of the TLBI forcibly restarting instructions that
already started but haven’t finished, the TLBI can simply wait for them to complete.
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X4
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa2, 0:X0=0, 0:X1=pte3(x), 0:X2=1,
0:X3=y, 0:X4=page(x), 0:PSTATE.EL=1, 1:X1=y, 1:X3=x

MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

T s1:l3pte(x)i1: R x/pa1 = 0x0i2:

Thread 1

trf
iio

rf

po

po

po

po

po

po

po

The broadcast TLBI on Thread 0 (c) ensures that the earlier unmapping (a) is seen by the ordered later
translation read on Thread 1 (i1), by ensuring Thread 1’s local TLB is cleaned of any stale entries for x.

Figure 8.38: Test MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb

8.6. TLB MAINTENANCE 142



STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]

Thread 1

MOV X0,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa1, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X5=page(x), 0:X2=2, 0:X3=y, 0:PSTATE.EL=1, 1:X1=x

RBS+dsb-tlbiis-dsb AArch64

Forbidden: 1:X0 = 2

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa1 = 0x2e:

Thread 0

T s1:l3pte(x)f1: R x/pa1 = 0x2f2:

Thread 1
trf

iio

rf

po

po

po

po

The broadcast TLBI of x (c) ensures that the execution of the load of x in Thread 1 either entirely
executes using the old translation and finishes before the TLBI does, or begins execution after the TLBI

finishes.
Figure 8.39: Test RBS+dsb-tlbiis-dsb
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

Thread 0

MOV X0,#1
LDR X0,[X1]
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa1, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X5=page(x), 0:X2=2, 0:X3=y, 0:PSTATE.EL=1, 1:X1=x,
1:X3=x

RBS+dsb-tlbiis-dsb+poloc AArch64

Final state: 1:X0 = 1 & 1:X2 = 0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa1 = 0x2e:

Thread 0

T s1:l3pte(x)f1: Fault (R)f2:

eretg:

T s1:l3pte(x)h1: R x/pa1 = 0x0h2:

Thread 1

trf rf

iio

iio

trf

po

po

po

po po

po

Even though the broadcast TLBI on Thread 0 (c) ensures that not-yet-completed instructions using
the old mapping are restarted, it does not require that the second load of x in Thread 1 (h) be restarted

if it has already satisfied its value, as that value must have come from a write before the TLBI.

Figure 8.40: Test RBS+dsb-tlbiis-dsb+poloc
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Atomic TLBIs In previous tests, we describe behaviour in terms of writes that occur ‘before’ or ‘after’ a
TLBI. Microarchitecturally, a TLBI instruction may be non-atomic: it sends messages to all other cores,
performs some action on those cores, and sends messages back to the originating core. Program-order-
earlier DSBs ensure that instructions program-order-earlier than the DSB are complete before sending the
messages. Program-order-later DSBs ensure that all instructions program-order-after the DSB wait for those
messages to return before executing.

By ensuring that between any TLBI and potential same-thread access is a DSB ensures that the TLBI’s
effect happens entirely between the execution of those instructions. This, coupled with the fact that these
messages strengthen and never weaken the behaviour of other cores, means that you cannot observe a
partial TLBI effect, as long as the programmer takes care to maintain the required thread-local ordering.
This allows us to simplify the model, treating TLBIs as having a single serialisation point at which the
invalidation effect happens globally.

8.6.4 Virtualization

Throughout this section, we have considered tests for a single-stage translation with virtual mappings.
However, many of these questions and behaviours also apply to the second-stage of a two-stage mapping
with intermediate physical addresses, with only a few differences. We now explore how adding a second
stage of translation affects the behaviours discussed here.

Virtual to physical and IPA caches The existence of TLBs that cache virtual to physical mappings
(§8.5.4) complicates TLB maintenance requirements for changes to the intermediate physical mappings.

When invalidating stale second-stage entries from the TLB, it is required for the programmer to do two
sets of invalidations: first to invalidate any of the old cached IPA to PA entries; then, perhaps surprisingly,
a second invalidation to remove any stale cached end-to-end translations, comprising whole VA to PA
mappings (or combinations), as these could have indirectly cached the result of a second stage translation,
without remembering the IPA they went through.

This is illustrated in MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb (Figure 8.41, p.146), where invalidation of
just the IPA is not enough to forbid the relaxed behaviour. Adding an invalidation of the VA (or all
VAs), like in MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb (Figure 8.42, p.147), ensures that later
translations cannot see the stale value any more. Note that the invalidations must happen in the specified
order, as otherwise the TLB could be immediately refilled from the earlier cached second-stage entries.
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STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1 ipa2, x |-> ipa1, ipa1 |-> pa1,
y |-> ipa2, ipa2 |-> pa2, z |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0,
0:X1=pte3(ipa1, s2_page_table_base), 0:X2=1, 0:X3=z, 0:X4=page(ipa1),
0:PSTATE.EL=2, 1:X1=y, 1:X3=x

MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb AArch64

Forbidden if ETS1:X0=1 & 1:X2=0

W 0x203000 = 0x0a:

dsb syb:

TLBI IPAS2E1IS page=page(ipa1)c:

dsb syd:

W z/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

Ti1: R x/pa1 = 0x0i2:

Thread 1

trf
iio

rf

po

po

po

po

po

po

po

Despite the TLB invalidation of the stale IPA (c), a later stage 2 translation-read of that IPA (i1) can
still see the old stale value.

Figure 8.41: Test MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb
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STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
TLBI VMALLE1IS
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
isb
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1 ipa2, x |-> ipa1, ipa1 |-> pa1,
y |-> ipa2, ipa2 |-> pa2, z |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0,
0:X1=pte3(ipa1, s2_page_table_base), 0:X2=1, 0:X3=z, 0:X4=page(ipa1),
0:PSTATE.EL=2, 1:X1=y, 1:X3=x

MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb AArch64

Forbidden: 1:X0=1 & 1:X2=0

W 0x203000 = 0x0a:

dsb syb:

TLBI IPAS2E1IS page=page(ipa1)c:

dsb syd:

TLBI VMALLE1IS vmid=0x0e:

dsb syf:

W z/pa2 = 0x1g:

Thread 0

R y/pa2 = 0x1h:

dsb syi:

isbj:

Tk1: R x/pa1 = 0x0k2:

Thread 1

trf
iiorf

po

po

po

po

po

po

po

po

po

By performing TLB invalidation of the stage 1 entries (e) after invalidating the stage 2 ones (c1), it is
guaranteed that the later translation-read (k1) cannot see the old stale value any more.

Figure 8.42: Test MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb
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8.6.5 Break-before-make

TLBs are not required to store only a single cached translation for a given address. There may, in
general, be multiple valid translations cached in the TLB. In some cases this is perfectly fine, e.g. for
translations which differ only in the permissions. However, if the translations conflict (see ‘Conflicting
entries’) then having those translations both in the TLB simultaneously would be dangerous and may lead
to unpredictable behaviour (see ‘Violating break-before-make’). To avoid this possibility, the architecture
provides a break-before-make sequence, which will ensure that there cannot be two cached conflicting
translations existing in the TLB at the same time.

Conflicting entries Simply having multiple entries cached at once is not, necessarily, dangerous. Instead,
the architecture specifies when such combinations are conflicting: when writing to the translation tables
to update an already valid entry with a new valid entry, and the change involves any of the following1:

. A change in output address, if the new or old entry is writeable.

. A change in output address, if the new and old locations have different contents.

. A change in memory type.

. A change in cacheability or shareability.

. A change in block size (e.g. replacing a page of 4KiB leaf with a 2MiB block mapping).

The break-before-make process When updating a translation table entry to a new conflicting entry,
the architecture specifies break-before-make is required, and the programmer must:

(1) write an invalid entry to overwrite the currently valid translation table entry in memory (break the
translation);

(2) perform any TLB maintenance required to sufficiently invalidate the old entry from any TLB(s)
required;

(3) write the new valid translation table entry, overwriting the old invalid entry (make the new
translation).

This sequence must be well-ordered: each step must have been fully completed before the next; in
particular, the write of invalid must be visible to the MMU before performing TLB maintenance, and
that TLB maintenance must have completed before making the new entry. In practice, this means the
sequence requires DSB SY barriers (or equivalent) before and after any TLBI instructions.

Litmus test For completeness, the BBM+dsb-tlbiis-dsb (Figure 8.43, p.149) gives a simple valid-to-valid
concurrent update test. The point is not whether a particular relaxed outcome is allowed, but that the
test does does not give rise to unpredictable behaviour.

Violating break-before-make Architecturally, reaching a state where there is a pair of conflicting entries
in the TLB leads to a degraded state, defined by ConstrainedUnpredictable behaviour. The only
way to avoid this is to use the appropriate break-before-make sequence. The Arm reference manual states
that failure to perform break-before-make, when it is required, can lead to failure of single-copy atomicity,
coherence, or even the full breakdown of uniprocessor semantics. While the reference manual does not
give motivation for this, we can speculate that this is to allow hardware to perform multiple translations
during execution of the instruction, for example, during hazard checking.

In this work we do not try to give a characterisation of the ConstrainedUnpredictable behaviour
arising from TLB conflicts. Understanding unpredictable behaviours in full is left to future work, but a
quick summary might be ‘any behaviour that an arbitrary program could have performed’. That is, an
instantaneous change in the state to a random new state that would have been reachable by executing
arbitrary code at that same exception level, security state, and translation regime.

1See the Arm ARM ‘TLB maintenance requirements and the TLB maintenance instructions’ [12, D5.10.1 (p4913)] for
the full list of conditions.
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X6
DSB SY
STR X2,[X1]

Thread 0

LDR X0,[X1]

Thread 1

MOV X0,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, *pa2 = 2, 0:X0=0, 0:X1=pte3(x),
0:X2=mkdesc3(oa=pa2), 0:X4=1, 0:X6=page(x), 0:PSTATE.EL=1,
1:X1=x

BBM+dsb-tlbiis-dsb AArch64

Allowed: 1:X0=0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W s1:l3pte(x) = mkdesc(addr=page(pa2))e:

Thread 0

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 1
trf

iio

co

po

po

po

po

The update of the translation table entry for x in Thread 0 follows the break-before-make sequence,
first breaking x (a), then performing the necessary TLBI sequence (b-c-d), before making a new mapping
for x (e). This ensures the concurrent access in Thread 1 is guaranteed to see either the old value, the
intermediate broken page (and so a page fault), or the new value. This test is the variant whose final

state asserts that the old value was read.
Figure 8.43: Test BBM+dsb-tlbiis-dsb
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8.6.6 Access permissions

Accesses which result in permission faults can have been satisfied from the TLB, and writes which update
translation table entries AP field can be cached in the TLB.

Translations can give rise to permission faults. These are unlike translation faults, in that they are based
not just upon the descriptor read, but also on the kind of access requested: read, write, or execute.

Accesses which result in permission faults result in exceptions, much like translation faults do, but, unlike
those, may have been read from the TLB. This can clearly be seen in the CoWinvTp.ro+dsb-isb test
(Figure 8.44, p.151), where a permission fault comes from an entry that must have read from the TLB.

Multiple cached entries We can observe multiple cached entries within a TLB by modifying the access
permissions of an entry. It is not architecturally required to perform break-before-make when the two
entries differ only in permissions, and it is permitted for the TLB to cache them both.

When reading from the TLB where there existing multiple entries for the same input address, it is allowed
for the hardware to generate a TLB conflict abort.

If the hardware does not generate a conflict abort, then translation reads of that address are Constraine-
dUnpredictable as described earlier. However, when there is no requirement for break-before-make,
the constraints are tighter: translations are nondeterministically able to read one or the other, (or an
‘amalgamation’) of the values [12, K1.2.3 (p11243)].

We can avoid the question of ‘amalgamation’ by constructing a test that only changes a single bit of the
descriptor, in a way that is not a break-before-make violation, and therefore avoiding any questions about
what amalgamations of entries are allowed. This can be seen with the MP.RTpT.ro+dmb-dmb+dsb-isb-
dsb-isb test (Figure 8.45, p.152), where the existence of multiple cached entries in the TLB allows multiple
translation-reads to read from different stale writes.

Atomic TLB reads The presence of multiple cached translation table entries in the TLB introduces the
question of whether those TLB fills and subsequence TLB reads must read from entire single-copy atomic
writes of the original translation table entries (much like a read of memory would) or whether a translation
read can read from a mix of different writes. RMD+dmb (Figure 8.46, p.153) (‘Read-mixed-descriptor’)
shows that translation reads cannot partially read from a write: they must read from the entire write or
none of it.
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STR X0,[X1]
DSB SY
ISB
MOV X13,#0
STR X2,[X3]

Thread 0

// read ESR_EL1.ISS to see if Permission or Translation fault
MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111
MOV X15,#1 // Permission
MOV X16,#2 // Translation
CSEL X13,X15,X16,eq
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X2=1, 0:X3=x

CoWinvTp.ro+dsb-isb AArch64

Allowed: 0:X13=1

W s1:l3pte(x) = 0x0a:

dsb syb:

isbc:

T s1:l3pte(x)d1: Fault (W)d2:

erete:

Thread 0

trf
iio

po

po

po

po

The translation-read (d1) of x, which happens after the program-order-earlier write to the translation
tables (a) because of the intervening dsb; isb sequence (b-c), can read from a stale value and result in a

permission fault, as the read-only entry from the initial state may be cached in the TLB.

Figure 8.44: Test CoWinvTp.ro+dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X13,[X4]
MOV X2,X13
DSB SY
ISB
LDR X13,[X4]
MOV X3,X13

Thread 1

// read ESR_EL1.ISS to see if Permission or Translation fault
MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111
MOV X15,#1 // Permission
MOV X16,#2 // Translation
CSEL X13,X15,X16,eq

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread1 El1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, y |-> pa2, *pa1 = 0,
0:X0=mkdesc3(oa=pa1, AP=2), 0:X1=pte3(x), 0:X2=0, 0:X3=pte3(x), 0:X4=1, 0:X5=y,
1:X1=y, 1:X4=x

MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb AArch64

Allowed: 1:X0=1 & 1:X2=1 & 1:X3=0

W s1:l3pte(x) = mkdesc(AP=0x3, addr=page(pa1))a:

dmb syb:

W s1:l3pte(x) = 0x0c:

dmb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

T s1:l3pte(x)i1: Fault (R)i2:

eretj:

dsb syk:

isbl:

T s1:l3pte(x)m1: R x/pa1 = 0x0m2:

Thread 1

trf
iio

iio

co
trf

rf

po

po

po

po

po

po

po

po

po

po

po

The first translation-read of x (i1) reads from the write that removes read permissions (a) and this
write must have come from the TLB because of the intervening invalidation (c), message pass (e-f), and
dsb; isb sequence (g-h). The later translation-read of x (m1) can still see an even older value with read
permissions, from the initial state, as it may also have been cached in the TLB.

Figure 8.45: Test MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

MOV X0,#0
LDR X0,[X1]

Thread 1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, y |-> pa2,
*pa1 = 0, *pa2 = 1, 0:X0=mkdesc3(oa=pa2, AP=2), 0:X1=pte3(x),
0:X2=1, 0:X3=y, 1:X1=x

RMD+dmb AArch64

Forbidden: 1:X0=1

W s1:l3pte(x) = mkdesc(addr=page(pa2))a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

T s1:l3pte(x)d1: R x/pa2 = 0x1d2:

Thread 1
trf

iiotrf

rf

po

po

The translation-read of x (d1) cannot read from both the 64-bit single-copy atomic write ‘a’ and the
initial state. Note that this test does not, as far as we can see, violate the break-before-make requirements,
as currently prescribed by the Arm manual, as the contents in memory of both locations pa1 and pa2
are the same at the time of the write to the translation tables. isla-axiomatic cannot generate such
candidates, so the execution diagram shown is hand-written.

Figure 8.46: Test RMD+dmb

8.7 Context synchronisation

There are many operations which change the current system context. We focus on two of these: taking
and returning from exceptions, and writing to system registers.

These actions can change the context that the system is executing in: the current exception level, the
translation regime, the translation table base, the ASID or VMID, and the variety of other system
configuration state used by the translation table walker.

8.7.1 Relaxed system registers

So far, in this and previous work, register reads and writes have been completely sequential: instructions
program-order-after a write to a register always reads from that write (or an intervening write). System
registers break this guarantee.

Arm System registers may require the programmer to insert explicit synchronization, as stated in the
Arm reference manual [12, D13.1.2 (p5235)]:

Reads of the System registers can occur out of order with respect to earlier
instructions executed on the same PE, provided that both:

. Any data dependencies between the instructions, including read-after-read
dependencies, are respected.

. The reads to the register do not occur earlier than the most recent Context
synchronization event to its architectural position in the instruction stream.

This means a read of a system register might not read from the most recent write to that system register.

To ensure that writes to system registers are seen by program-order-later reads, the programmer must
ensure a Context synchronization event occurs. Context synchronisation ensures that future instructions are
guaranteed to see updates to the context made by program-order-earlier instructions. Microarchitecturally,
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these can be achieved e.g. by flushing the pipeline, causing future instructions to restart. Some context
synchronising operations have already been encountered: the ISB instruction, and taking and returning
from exceptions.

There are two important considerations: (1) this does not apply to non-System registers, such as the
‘Special-purpose’ registers, which never require synchronization; and (2) the synchronization required for
System registers depends on the kind of access.

There are two kinds of accesses to System registers: direct and indirect. Direct accesses are the typical
way programmers interact with registers: instructions which explicitly refer to the name in its mnemonic.
Indirect accesses happen when an instruction which does not explicitly mention the register by name
nevertheless performs an access to it, implicitly during its execution.

Out-of-order execution means these indirect register reads and writes may occur out-of-order with respect
to any program-order-earlier direct reads or writes of that register. This means that before any direct
read, and after any direct write, the programmer must perform a context-synchronizing event to ensure
that these direct accesses occur in-order with respect to other indirect accesses. The programmer does
not have to insert context-synchronization after any direct read, as it is guaranteed that register reads or
writes cannot be affected by program-order later accesses.

System register ASL A naive interpretation of the relaxed semantics is to allow these reads to read-
from the most recent indirect write and any program-order-earlier direct writes since the last context
synchronization event.

However, this does not give the correct behaviour. The Arm ASL was not written in a way to accommodate
relaxed system register behaviours: sometimes it re-reads the same system register multiple times, or it
gets all the fields of a register in one read, or it re-uses the same previously read system register value
in multiple places. This leaves open questions about whether these registers can be redundantly re-read
during execution, whether the instruction reads the entire register at once or piecemeal over the course of
execution, and whether repeated accesses to the same register within an instruction are able to read-from
different writes. These questions, and others, are still under discussion with Arm.

The model we present in the next chapter gives a simple, incomplete and possibly unsound, semantics of
system registers with respect to a pointed set of writes (see §9.1) which allows the model to permit some
of the known behaviours in this area, without yet fully exploring the architecture.

Caching of system registers in TLBs In addition to being out-of-order due to pipeline effects, some
system registers may be indirectly cached within the TLB.

We have already seen one such TLB-cacheable register: the MAIR register. Direct writes to the MAIR may
fail to be seen by program-order-later translations, even after context synchronization, as the translations
may get their value from a stale value in the TLB which was computed using the old MAIR. To ensure
that an update to a TLB-cacheable register is observed by program-order-later translations, both TLB
maintenance and context synchronization are required, in that order.

The registers which can be cached in this way, and the behaviours that arise from this caching, are
currently under investigation with Arm.

8.8 Problems

This section describes some in-progress work with Thibaut Pérami.

Some questions, and problems, have arisen after publication of the model in the next section. These fall
into two main categories:

1. when a memory location should be considered a pagetable entry by the model (Reachability); and
2. invalidations of block or table entries (Wide invalidations).
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STR X0,[X2]
STR X1,[X2]
MSR TTBR0_EL1,X3
ISB
MOV X1,#1
LDR X3,[X4]

Thread 0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: *pa1 = 0, s1table new_table 0x2C0000 {,
x |-> invalid, }, 0:X0=mkdesc3(oa=pa1), 0:X1=0,
0:X2=pte3(x, new_table), 0:X3=ttbr(asid=1, base=new_table),
0:X4=x, 0:PSTATE.EL=1, 0:PSTATE.SP=1

RUE+isb AArch64

Final state: 0:X1=1

W new_table:l3pte(x) = mkdesc(addr=page(pa1))a:

W new_table:l3pte(x) = 0x0b:

MSR TTBR0_EL1=0x2C0000c:

isbd:

T new_table:l3pte(x)e1: R x/pa1 = 0x0e2:

Thread 0

iio

trf
po

po

co

po

The write to the new_table translation table entry for x (a) is not visible at the point of the change of
TTBR (c), and so the later translation table walk (e1) cannot read from it. Note that isla-axiomatic

currently does not do any kind of reachability analysis, and so does not forbid this test.

Figure 8.47: Test RUE+isb

8.8.1 Reachability

One important property that the TLB must have is that it may only add new cached translations for
translation table entries which are reachable by a translation in the current context. That is, it can only
cache an entry which is the result of a valid translation table walk, either using values from memory or
other valid translation table entries from the TLB, using the current translation table base and other
System register state. This means that writes which are coherence-before the most recent write, at the
time a translation table entry location becomes reachable, are not visible to the walker, and therefore
cannot have been cached in any TLB.

This is captured in the RUE+isb (Figure 8.47) (‘Read-unreachable-entry’) test, which is architecturally
forbidden as the write to the translation table from before the time the location becomes reachable by
translation table walkers cannot have been cached in any TLBs, or read from by any spontaneous walks.
Currently, the models do not attempt to track reachability, and so erroneously allow this test.

8.8.2 Wide invalidations

In §8.6, we discussed invalidations of entries in the TLB, and investigated how TLBI instructions remove
cached translations which translate a given page. This raises an important question: does the invalidation
apply only to that page, or to all translations mapped by the same translation table entry? On one hand,
TLBs can split such ‘wide’ translations into multiple smaller paged-sized ones, e.g. for when the stage 2
mapping is at a smaller granularity. On the other hand, this would require software to do a very expensive
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MOV X2, #0
STR X2, [X1]
DSB SY
TLBI VAE1, X4
DSB SY
ISB
LDR X6, [X3, #0x1000]

Thread 0

MOV X6,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: aligned 2097152 virtual x,
x |-> pa1 at level 2, 0:X1=pte2(x,page_table_base), 0:X3=x,
0:X4=page(x), 0:PSTATE.EL=1, 0:PSTATE.SP=1

InvalidateWideBlock AArch64

Allowed: 0:X6 = 0

x is mapped by a 2 MiB block entry
at level 2. Breaking it and inval-
idating the TLB passing x affects
all translations in the same 2 MiB
block.

W s1:l2pte(x) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l2pte(x)f1: R x/pa1 = 0x0f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.48: Test InvalidateWideBlock

invalidation to clear cached block entries, either iterating over every page in the region, or simply flushing
the entire TLB.

Arm have, tentatively, decided that the architectural intent is that the TLB invalidations should invalidate
all mappings which use the same cached translation table entry, see InvalidateWideBlock (Figure 8.48).
However, this does not apply when the original mappings were of smaller granularity. For example, even
if writing an invalid entry at level 2 then doing invalidation, the old level 3 entries may still be cached in
the TLB, illustrated in InvalidateWide (Figure 8.49, p.157).

8.9 Contributions

We have now covered all the key relaxed virtual memory behaviours, and will in the next chapter move on
to discuss the model which captures those behaviours. But before that, it may at this point be unclear
what the contribution of this chapter is. They come in three forms: (1) the attempt at some systematic
coverage of the kinds of behaviours which systems software must account for; (2) the precise, formal
description (in prose, and as litmus tests) of those behaviours; and, (3) the clarification of the architecture
where such behaviours were otherwise unclear.

Coverage of behaviours While this chapter attempts to systematically cover the behaviours we imagine
software may try to rely on, starting from the basics of translation table walks and exploring the effects of
out-of-order pipelines, caching, and barriers, we cannot claim it is exhaustive. As it is a manually compiled
and curated list of behaviours, there will be corner cases missed and software patterns overlooked. That
said, we believe we have covered those patterns which are known for the features we cover, enough for
software verification efforts of microkernels and hypervisors.
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MOV X2, #0
STR X2, [X1]
DSB SY
TLBI VAE1, X4
DSB SY
ISB
LDR X6, [X5]

Thread 0

MOV X6,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: *pa1 = 1, *pa2 = 2, x |-> pa1, z |-> pa2,
0:X1=pte2(x,page_table_base), 0:X3=x, 0:X4=page(x),
0:X5=z, 0:PSTATE.EL=1, 0:PSTATE.SP=1

InvalidateWide AArch64

Allowed: 0:X6 = 2

x and z are two entries mapped at
level 3 but within the same 2 MiB
region, so are mapped by the same
level 2 entry. Breaking the level 2
entry and invalidating with one ad-
dress does not invalidate the other.

W s1:l2pte(z) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l2pte(z)f1: R z/pa2 = 0x2f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.49: Test InvalidateWide
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Clarification of architecture Attempts to clarify the architecture come primarily from confidential
discussions with architects. The behaviours discussed usually fell into one of three categories: whether
they were clear already; needed further exploration; or are still under investigation by Arm.

The first major category are those behaviours which were already clear and covered in the architecture
text. As alluded to right at the start of this chapter, these are not whole sections or sub-sections or even
necessarily whole tests. The most obvious cases are §8.3.3 (‘Invalid entries’), §8.2.1 (‘Virtual coherence’),
and §8.6.5 (‘Break-before-make’). These are fundamental behaviours to the correctness of all modern
systems software, and for which the architecture reference manual has clear words (at least, enough to
cover the basic sequences software rely upon).

Most of the subsections fall into a more involved category, of things that either had some associated reference
materials, or was otherwise clear from discussion with architects, but for which further investigation was
needed. This includes: forwarding (§8.4.4) and speculation (§8.4.5) for translation table walks; multi-copy
atomic translation table walks (§8.4.7); intra-instruction ordering (§8.4.8, §8.4.9); micro-TLBs (§8.5.3)
and partial walk caching (§8.5.4); a variety of TLBI questions (§8.6); and, system register accesses (§8.7.1).

Despite the work conducted here, from reading the architecture reference text, discussions with architects,
and the testing of existing hardware, there are still many questions, some of which are currently under
investigation by Arm. These include further questions about the scope of TLBIs, interaction with exceptions
and interrupts, changes in cacheability, translations for instruction fetching, and relaxed system register
accesses. Those areas will require more work before giving a concrete semantics.

8.10 Related work

The authoritative Arm-internal ASL model [10, 11, 72], and the Sail model derived from it [45] cover
address translation, and other features sufficient to boot an OS (Linux), as do the handwritten Sail models
for RISC-V (Linux and FreeBSD) and MIPS/CHERI-MIPS (FreeBSD, CheriBSD), but without any cache
effects.

Goel et al. [85, 98] describe an ACL2 model for much of x86 that covers address translation; and the
Forvis [99] and RISCV-PLV [100] Haskell RISC-V ISA models are also complete enough to boot Linux.

Syeda and Klein [101, 102] provide a somewhat idealised model for ARMv7 address translation and TLB
maintenance.

Komodo [58] uses a handwritten model for a small part of ARMv7, as do Guanciale et al. [59, 60].
Romanescu et al. [103, 104] discuss address translation in the concurrent setting, but with respect to
idealised models.

Lustig et al. [87] describe a concurrent model for address translation based on the Intel Sandy Bridge
microarchitecture, combined with a synopsis of some of the relevant Linux code, but not an architectural
semantics for machine-code programs. Hossain [105] continues this line, producing an estimated architec-
tural model for x86, using their TransForm framework to automatically synthesise litmus tests from the
memory model used in validation.

Tao et al. [106] define a weak virtual memory model, based on what they call wDRF (weak data race
freedom), which gives bounds to software when it behaves in accordance with a set of conditions, which
they use in the verification of their SeKVM hypervisor. These conditions permit some races to the page
table code, but do not attempt to capture the full architectural envelope. The model here, we hope, gives
a sound underlying base from which one could prove a wDRF-SC property above, connecting the work of
Tao to our model.

Independent work by Arm, after the conclusion of this work, further extended the herdtools suite of
tools, models, and tests, for some overlapping portion of the VMSA, including covering dirty bits and
access flags which we do not consider here [107]. They differ from the model presented here where the
architecture has changed (around ETS and write forwarding). Further work is required to understand
how the models differ in their intersection and how a model that covers their union could be constructed.
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Chapter 9

An axiomatic VMSA model

We now define a semantic model for Arm-A relaxed virtual memory (RVM ) that, to the best of our
knowledge, captures the Arm architectural intent for the questions discussed in Chapter 8, including
two-stage translation-table walks and the required TLB maintenance, as an extension to the base usermode
Arm-A axiomatic memory model [7] (as recalled in Chapter 2).

In Chapter 8, we described the design issues in microarchitectural terms, discussing the behaviour of
translation table walks and TLB caching, along with the needs of system software. We now abstract from
those specific litmus-test examples and give a general definition of what behaviour is allowed or not. We
do this by extending the base model, defining ordering between new translation-read events and other
events, without modelling TLBs or out-of-order pipelines directly.

The base Arm axiomatic model is defined as a predicate over candidate executions, each of which is a graph
with various events (reads, writes, barriers) and relations over them. We now extend these candidates
with new events and new relations over those events, and modify some original relations.

9.1 Candidate events

We extend the events of the candidate executions and the corresponding labelling function, given in
Figure 9.1, to contain new events:

. T for the implicit reads of memory originating from architected translation-table walks.
These roughly correspond to the point the translation-read was satisfaction from memory, which
with TLBs may happen very early1.

. TLBI events for each TLBI instruction, with a single such event per TLBI instruction, corresponding
to the TLBI being completed on all relevant cores.

. TE and ERET events for taking and returning from an exception, annotated with the reason for the
exception (not shown here).

. MSR events for writes to relevant system registers, such as the TTBRs; and MRS for reads.

. DSB events for DSB instructions.

Implicit accesses and faults Execution of the translation in the Arm architectural pseudocode performs
reads of memory, which would normally generate R events in the candidate executions. Instead, when those
reads happen during calls to that function, we label them as T events. This means that each translation
table walk may generate up to 24 T events, before the instruction generates the R or W event. We explored
alternative representations, including collecting all reads into a single large translation event, or placing
all translations into the standard R set. These options have advantages, but we made the choice to keep
a 1-to-1 correspondence between the events of the execution and the ISA, and to retain as much of the
original 2018 model events and relations unchanged as possible.

We also choose not to include TLB hits and misses in the model directly, but instead model the TLB
as a relaxation of the values the walk can read from, much like normal data memory read events and
modelling load buffering, write gathering, and caches.

1Analogously to R events and load-buffers.
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Label ≡ Reads ∪ Writes ∪ Barriers ∪ Translations ∪ TLBIs ∪ Exceptions ∪ SysRegs
Reads ≡ {R,A,Q} × Loc × Val

Writes ≡ {W,L} × Loc × Val
Barriers ≡ {DMB.LD,DMB.ST,DMB.SY,DSB.SY, ISB}

Translations ≡ {T} × PA × TranslationInfo
TLBIs ≡ {TLBI} × TLBIOp × Shareability × Regime × VMID?× ASID?× Addr?

Exceptions ≡ {TE} × ExceptionInfo ∪ {ERET}
SysRegs ≡ {MSR,MRS} × SysRegName × Val

VA, IPA ≡ Addr ≡ Bitvec48
Loc ≡ PA ≡ Bitvec64

Val ≡ Bitvec64
TranslationInfo ≡ VA × IPA?× Level × Stage

TLBIOp ≡ {VA, IPA,ALL,ASID,VMALL, . . .}
ASID,VMID ≡ Bitvec8

Regime ≡ {EL1&0,EL2}
Shareability ≡ {NSH, ISH}

SysRegName ≡ {TTBR0_EL1,TTBR0_EL2,VTTBR_EL2, . . .}
ExceptionInfo ≡ . . .

where T? signifies an optional field of type T.

Figure 9.1: Definition of candidate event labels for Arm-A RVM candidates. Parts which differ from the
original definition are highlighted in blue. Terminal words of the label are given in bold.

We add a helper set, T_f, for translation reads which read-from a write whose ‘valid’ bit is 0. If a
translation read results in a fault (either because it was an invalid entry and we get a translation fault, or
because the access permissions of the resulting translation do not permit the kind of requested access and
so result in a permission fault), the candidate will contain a Fault event (partitioned into Fault_t and
Fault_p for translation and permission faults) in po order where the explicit memory event would have
been. See the discussion on obETS (§9.4.6) for more explanation of these ‘ghost’ fault events.

We partition the T set into two subsets: Stage1 and Stage2 for translation read events from a stage 1 or
stage 2 walk respectively (stage 2 reads during a stage 1 walk are marked as Stage 2, not Stage 1).

Finally, we leave the M set unchanged, containing only explicit reads and writes performed by instructions.

TLBIs As described in §7.7, Arm have a variety of TLBI instructions, with varying arguments. Each
TLBI instruction generates a single TLBI event, each with a distinct label. To aid in modelling, there are a
set of subsets of TLBI for various kinds of TLBI:

. TLBI-S1 for invalidations of Stage 1 entries.

. TLBI-S2 for invalidations of Stage 2 entries.

. TLBI-IPA for invalidations by intermediate physical address.

. TLBI-VA for invalidations by virtual address.

. TLBI-ASID for invalidations by ASID.

. TLBI-VMID for invalidations by VMID.

. TLBI-ALL for the TLBI ALL instructions.

. TLBI-IS for broadcast TLBIs.

. TLBI-EL1 for invalidations of the EL1&0 regime.

. TLBI-EL2 for invalidations of the EL2 regime.

These do not cut the TLBI set into partitions. Rather any TLBI event may belong to multiple. For example,
a TLBI VAE1IS event would belong to TLBI-VA, TLBI-VMID, TLBI-EL1, and TLBI-IS.

We also include all TLBIs in a general C (‘Cache maintenance’) set.
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1 let dsbsy = DSBISH | DSBSY | DSBNSH
2 let dsbst = dsbsy | DSBST | DSBISHST | DSBNSHST
3 let dsbld = dsbsy | DSBLD | DSBISHLD | DSBNSHLD
4 let dsbnsh = DSBNSH
5 let dmbsy = dsbsy | DMBSY
6 let dmbst = dmbsy | dsbst | DMBST
7 | DSBST | DSBISHST | DSBNSHST
8 let dmbld = dmbsy | DMBLD
9 | dsbld | DSBISHLD | DSBNSHLD

10 let dmb = dmbsy | dmbst | dmbld
11 let dsb = dsbsy | dsbst | dsbld

Figure 9.2: Barrier helper sets.

Exceptions Despite not modelling exceptions in general in this part, we do need to include some exception
machinery in the model to capture the minimal ordering requirements arising from both their context
synchronisation effects and behaviours from crossing exception level boundaries.

To support this, we add two new events: TE (‘Take exception’); and ERET (‘Exception return’).

Barriers The Arm DSB (‘Data synchronization barrier’) instruction is required for TLB maintenance, as
was seen in the previous chapter. We include DSB events, one for each kind of DSB instruction:

. DSBSY and DSBISH (which we treat as equivalent, as we do not model shareability domains).

. DSBNSH, for non-shareable (thread-local) DSBs.

. DSBST, DSBLD, for DSBs with ST or LD kinds.

. DSBISHST, DSBISHLD, and so on, for all combinations of DSB instruction domain and access types.

Arm define a hierarchy of barriers where, for example:

DMB.LD < DMB.SY < DSB.SY

That is, any ordering imposed by a DMB.LD is also imposed by a DMB.SY, and therefore also a DSB.SY.

To avoid an explosion in the number of relations as we add the new barrier events, we simplify and update
the barrier-ordered-before relation in the Arm model to use a collection of helper sets, which encode this
hierarchy. Those helper sets can be found in Figure 9.2.

Context changing and synchronisation Finally, we add events for context-changing and context-
synchronising operations. Context changes are updates to system registers which change the current
translation regime, which are generated as MSR events We add a general context-synchronisation event set
CSE which includes ISB, TE, and ERET.

Changes to system registers may have relaxed behaviours, as described in §8.7.1, but full relaxation of
the system register reads done by the Arm pseudocode is unlikely to be valid, consistent, or meaningful.
Instead, we introduce a pointed-set semantics: when generating a candidate, we keep a per-system-register
set of writes to that register, remembering which one is the most recent. On a write to that system
register, we add it to the pointed set as the new pointed element. On a read of that system register, we
generate one candidate for each value in the set, and then ‘lock’ the remainder of the execution of that
instruction to that value, so repeated reads will see the same value. When a context-synchronization
event is generated (that is, an event that will be in the CSE set) all the sets are reduced to singleton sets
containing only the most recent write.

This gives us some relaxed behaviours, enough to see relaxed behaviours around changes to the TTBR, but
we note that this is unlikely to be the full story for relaxed system registers.
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9.2 Candidate relations

We extend the set of candidate relations and the witness to include the new events: adding the explicit
events to program-order, updating address dependencies to take translation into account, and adding new
relations to capture intra-instruction ordering and ordering to/from translation-reads and TLBIs. The
updated candidate relations are given in Figure 9.3.

Addresses, ASIDs, and VMIDs Each translation table walk will read from general-purpose and system
registers to get a value for the input address, the current ASID, current VMID, and the roots of the
translation tables. We then relate each T with any other T where the translation associated with it is for
the same virtual address (with same-va), the same intermediate-physical address (with same-ipa), or the
same resulting physical address (same-pa). This means that all T events within a translation have the
same same-* relations. We also include same-*-page relations, which relate two events when their virtual,
intermediate physical, or physical addresses, are in the same page.

If two translations are for the same ASID, their translation reads are related by same-asid. If two
translations are for the same VMID, their translation reads are related by same-vmid.

To use these relations, we also include TLBI events. A TLBI-X is related to T by same-X if the parameter to
the TLBI instruction (the page, VMID, or ASID) matches the T event’s associated translation. For example,
a TLBI-IPA event would be same-ipa-page related to a T whose translation was for an intermediate
physical address in the page provided as the parameter to the TLBI IPA instruction.

Generalised coherence order We add an extended coherence order wco, which is an arbitrary linearisation
of writes, DSB barriers, and cache and TLB maintenance operations, consistent with the usual coherence
order. This generalised coherence order captures a global ‘commit’ order of these operations, consistent
with what a hypothetical microarchitectural-style operational semantics would generate.

One might be concerned at the validity of doing this, for two reasons. First, this generalised coherence
order will relate all writes, not just same-location ones. However, extending coherence to a total order
over all locations is sound [6, §10.5 p174], so this does not cause an issue. Secondly, it enforces a kind of
atomicity of TLBIs. For broadcast TLBIs, microarchitectures will implement these with message passing
to and from each core separately, and so there is no single moment the TLBI ‘happens’. However, as
described in §8.6.6, we are able to consider TLBI instructions as executing ‘atomically’, so long as there
are no break-before-make violations. This is a similar justification as for including DC and IC events in a
similar generalised coherence order for instruction fetching [35, §5 p29].

The full definition of wco, as defined in isla-axiomatic, can be found in Figure 9.8, p.173.

Dependencies A candidate execution consists not only of events, and reads-from relations but also a set
of dependencies: addr, data, ctrl, po, and loc. We add iio, and a special tdata (described below) to
these.

The intra-instruction-order relation (iio) relates two events from the same instruction in the order the
intra-instruction semantics generated the events. This relation therefore captures a total order over all
events within an instruction, regardless of the intra-instruction dependencies (control, data) or unordered
accesses (for example, for misaligned accesses). We are currently investigating a relaxation of this ordering,
and associated changes in the underlying Arm pseudocode definitions, to enable a more relaxed definition
of the ordering within an instruction to handle these cases.

We make loc relate events with the same physical address (for T events, this is the physical location of
the translation table entry).

Program order (po) is restricted to explicit events: R, W, F, C, CSE and MSR. Implicit translation reads (T)
and any indirect reads or writes of registers are not included in po.

Address dependencies were once fundamental, with address translation we can now define address
dependencies as dependencies into the translation table walk. To do this, we include a new relation, tdata,
that relates reads with the translation read events of any translation which reads from the register written
by that read to compute the address. The traditional addr can then be recovered as tdata; iio*; [M].
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The Arm-A RVM pre-execution relations are:
. intra-instruction-order: E1 iio E2 for events E1, E2 in the same instruction where E1 is generated

before E2 in the intra-instruction trace.
. program order: E1 po E2 for explicit events E1, E2 such that the instruction generating E1 occurs

before the instruction generating E2 in the instruction stream.
. same-location: M1 loc M2 iff the address of M1 is the same physical location as used by M2.
. same-address (same-va, same-ipa, same-pa): between events E1, E2 iff the (virtual/intermediate

physical/physical)-address of E1 is the same as E2.
. same-page (same-va-page, same-ipa-page, same-pa-page): between events E1, E2 iff the (virtu-

al/intermediate physical/physical) address of E1 is in the same page (e.g. 4KiB chunk) as E2.

. same-address-space (same-asid, same-vmid): between events E1, E2 iff the associated translation of
E1 and E2 are using the same ASID or VMID.

. address dependent: R1 tdata T2 iff the value read by R1 is used in the calculation of the address
which T2 is a translation of.

. data dependent: R1 data W2 iff the value read by R1 is used in the calculation of the value written
by W2.

. control dependent: R1 ctrl E2 iff the value read by R1 is used to determine whether or not the
instruction E2 originates from would have executed at all.

. read-modify-write: R1 rmw W2 for the separate read and write events of an atomic update.

. external: E1 ext E2 iff the instructions which generated events E1 and E2 originated from different
hardware threads.

Plus the existentially quantified witness:
. reads-from (rf), from W1 to R2 when R2 reads the value that W1 wrote.
. translation-reads-from (trf), from W1 to T2 when T2 reads the value that W1 wrote.
. coherence-order (co), from W1 to W2 where W1 appears before W2 in the coherence order of that

location, (informally, that W1 propagated to memory before W2).
where En represents events of any kind, Mn is an explicit memory effect event, Tn is a translation-read
event, Rn is a read event, and Wn is a write event.

Figure 9.3: Definition of the candidate relations and witness for Arm-A RVM candidates. Parts which
differ from the base definition are highlighted in blue.
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9.3 Axioms

The RVM model axioms are, mostly, a syntactic extension to the original Arm-A axiomatic model presented
in Chapter 2. This is by design. Although there may be other nicer or more succinct ways of phrasing
the model, the variation presented here is designed to be as syntactically close as possible to the original.
This helps with readability for those familiar with the original; it allows us to present the differences to
the original in an easier form; it makes recovery of the original model easier; and, it makes it easier to
prove equivalence of the axiomatic models in the presence of constant address translation, increasing the
confidence we have in the model.

Figure 9.4 contains the axioms and relations for our Arm-A relaxed virtual memory axiomatic model,
defined in Cat. Unchanged parts from the original are greyed out. We elide some helper relations, which
we will describe in more detail later.

The model has three kinds of axioms: internal ones for per-location guarantees, an external axiom for the
global happens-before ordering, and the atomic axiom for RMWs (untouched in this work).

Internal axioms The new model has two per-location axioms: internal and translation-internal.

1 (* Internal visibility requirement *)
2 acyclic po-loc | fr | co | rf as internal
3
4 (* Writes cannot forward to po-future translates *)
5 acyclic (po-pa | trfi) as translation -internal

Unchanged from the original, the internal axiom captures the SC-per-location guarantee. Translations,
however, do not have the same per-location guarantees. To account for this, we introduce a second
axiom, translation-internal, which captures the weaker per-location guarantee for translation table
walks. Since translation reads, in the presence of TLB caching and out-of-order pipelines, do not even
guarantee coherence, the only behaviour that this axiom ends up preventing is translation reads reading
from program-order later stores.

External axiom The external axiom asserts acyclicity of the global happens-before ordering for Arm.
The happens-before relation (called ob, ‘ordered-before’, in Arm) is the union of all the ordering relations,
given in §9.4.

1 (* Ordered -before *)
2 let ob = (obs | dob | aob | bob | iio | tob | obtlbi | ctxob

| obfault | obETS)+

3
4 (* External visibility requirement *)
5 irreflexive ob as external

We choose to include all the pipeline and TLB effects as ordering requirements, rather than introducing
new ordering axioms just for translation and TLB invalidation. This produces a model that is more
consistent with the previous Arm memory models, and ensures ordering information gained through
observing translation table walks is respected by non-translation-table accesses.

Atomic axiom The atomic axiom remains unchanged. In this work, we do not consider the interaction
of translation with atomic accesses, although one expects the intra-instruction semantics defined by the
ASL already describes the behaviour in enough detail.

1 (* Atomic requirement *)
2 empty rmw & (fre; coe) as atomic
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1 let speculative =
2 ctrl
3 | addr; po
4 | [T]; instruction -order
5
6 (* translation -ordered -before *)
7 let tob =
8 [T_f]; tfre
9 | [T]; iio; [R|W]; po; [W]

10 | speculative; trfi
11
12 (* observed by *)
13 let obs =
14 rfe | fr | wco
15 | trfe
16
17 (* ordered -before TLBI and translate *)
18 let obtlbi_translate =
19 [T&Stage1 ]; tlb_barriered; [TLBI -S1]
20 | ([T&Stage2 ]; tlb_barriered; [TLBI -S2])
21 &
22 (same -translation; [T&Stage1]

23 ; trf−1; wco−1)
24 | ([T&Stage2 ]; tlb_barriered; [TLBI -S2]
25 ; wco?; [TLBI -S1])
26 &
27 (same -translation; [T&Stage1]
28 ; maybe_TLB_cached)
29
30 (* ordered -before TLBI *)
31 let obtlbi =
32 obtlbi_translate

33 | [R|W|Fault_T ]; iio−1; [T]
34 ; (obtlbi_translate & ext); [TLBI]
35
36 (* context -change ordered -before *)
37 let ctxob =
38 speculative; [MSR]
39 | [CSE]; instruction -order
40 | [ContextChange ]; po; [CSE]
41 | speculative; [CSE]
42 | po; [ERET]; instruction -order; [T]
43
44 (* ordered -before a fault *)
45 let obfault =
46 data; [FaultFromW]
47 | speculative; [FaultFromW]
48 | [dmbst]; po; [FaultFromW]
49 | [dmbld]; po; [FaultFromW|FaultFromR]
50 | [A|Q]; po; [FaultFromW|FaultFromR]

51 | [R|W]; po; [FaultFromReleaseW]
52
53 (* ETS -ordered -before *)
54 let obETS =

55 (obfault; [Fault_T ]); iio−1; [T_f]
56 | ([TLBI]; po; [dsb]
57 ; instruction -order; [T])
58 & tlb -affects
59
60 (* dependency -ordered -before *)
61 let dob =
62 addr | data
63 | speculative; [W]
64 | addr; po; [W]
65 | (addr | data); rfi
66 | (addr | data); trfi
67
68 (* atomic -ordered -before *)
69 let aob =
70 rmw
71 | [range(rmw)]; rfi; [A|Q]
72
73 (* barrier -ordered -before *)
74 let bob =
75 [R]; po; [dmbld]
76 | [W]; po; [dmbst]
77 | [dmbst]; po; [W]
78 | [dmbld]; po; [R|W]
79 | [L]; po; [A]
80 | [A|Q]; po; [R|W]
81 | [R|W]; po; [L]
82 | [F|C]; po; [dsbsy]
83 | [dsb]; po
84
85 (* Ordered -before *)
86 let ob =
87 (obs | dob | aob | bob
88 | iio | tob | ctxob

89 | obtlbi | obfault | obETS)+

90
91 (* Internal visibility requirement *)
92 acyclic po-loc | fr | co | rf as internal
93 (* External visibility requirement *)
94 irreflexive ob as external
95 (* Atomic requirement *)
96 empty rmw & (fre; coe) as atomic
97 (* Writes cannot forward to po-future

translates *)
98 acyclic (po-pa | trfi)
99 as translation -internal

Figure 9.4: RVM axioms and relations
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9.4 Relations

The RVM model modifies some of the original ordering relations, and introduces some new ones. This
section goes through each in detail, describing the mechanisms, and justifying the existence or non-existence
of particular clauses.

9.4.1 Observed-by

1 (* observed by *)
2 let obs = rfe | fr | wco | trfe

The ‘observed-by’ relation includes the original rf and fr (over physical locations), the ‘generalised
coherence order ’ (wco, §9.2), and the translation-reads-from-external (trfe) relation.

Generalised coherence Including wco, which is existentially quantified over the candidates, fixes some
global order in which the writes and TLBIs happen in. Consider, informally, some microarchitectural
execution. Writes would be propagated to the coherent storage subsystem, and TLBIs would be completed,
and these would be interleaved within some global-time whole-machine trace. The generalised wco relation
captures a serialisation of these events. The model is then quantified over all such orderings, accounting
for any interleaving of these events.

External translation reads Inclusion of trfe enforces that those translation-table-walk translation reads
which could not come from forwarding must have originally come from the coherent storage subsystem,
and so the write must have been globally propagated before the translation read happened (§8.4.2, §8.4.7).

However, the translation read might have happened much later, either due to out-of-order execution
(§8.4.1) or TLB caching (§8.5.1). So we do not include the translation analogue of the usual from-reads-
external relation in ob, tfre (translation-from-reads-external), which relates translation-reads with writes
coherence-before the ones they read from.

Additionally, writes may be forwarded to its thread’s translation walker: translation-reads may be satisfied
before the propagation of the write to the coherent storage subsystem (§8.4.4). Therefore we do not
include the translation analogue of reads-from-internal in ob, trfi (translation-reads-from-internal), which
relates writes with same-thread translation-reads which read from that write.

9.4.2 Dependency-ordered-before

1 let dob =
2 addr | data
3 | speculative; [W]
4 | addr; po; [W]
5 | (addr | data); rfi
6 | (addr | data); trfi

The dependency-ordered-before relation is mostly unchanged: we add a single (addr | data); trfi clause
to forbid thin-air creation of values (§8.4.1, §8.4.2), much like the analogous constraint in the usermode
model.
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9.4.3 Barrier-ordered-before

1 let bob =
2 [R]; po; [dmbld]
3 | [W]; po; [dmbst]
4 | [dmbst]; po; [W]
5 | [dmbld]; po; [R|W]
6 | [L]; po; [A]
7 | [A | Q]; po; [R | W]
8 | [R | W]; po; [L]
9 | [F | C]; po; [dsbsy]

10 | [dsb]; po

We rewrite the original barrier-ordered-before relation to use the barrier helpers defined in Figure 9.2.
The first seven clauses of bob capture the same ordering as in the user model, but capturing the barrier
hierarchy: imposing the same barrier orderings when using stronger barriers (namely, DSBs in place of
DMBs). We use helper sets F for all fences (barriers), and C for cache operations (including TLBIs).

The Arm DSB instruction does have additional ordering over a DMB, and these are captured by the two new
clauses of bob above. First, a DSB SY orders TLBI instructions and other barriers and cache operations
(§8.6.2). Second, all program-order later events must wait for an earlier DSB to finish before performing
their explicit memory events.

9.4.4 Translation-ordered-before

1 let tob =
2 [T_f]; tfre
3 | [T]; iio; [R|W]; po; [W]
4 | speculative; trfi

Translation table walks themselves impose ordering on the surrounding events, in three possible ways:

. coherence of translation-reads of invalid entries;

. might-be-same-address for program-order-later accesses; and

. non-forwarding of the speculative writes.

Invalid writes Reads of invalid entries must not have come from the TLB (§8.3.3). Therefore, for a
translation fault, the translation-read of the invalid entry must have come from the coherence-latest write
from memory at the time the translation happened. This is what the first clause of tob captures: that
any translation-reads which read an invalid entry must happen before any writes coherence after the one
it read from.

There is a careful subtlety here: we cannot simply include all of tfr after a translation-read of invalid,
as a thread-local write may be forwarded to the translation table walker before it has propagated to
memory (§8.4.4).

Speculation As we saw earlier, speculation interacts with translation in two ways: first, it is forbidden
to read-from a still speculative write (§8.4.5), and, second, events program-order-after an instruction
which does a translation table walk are speculative until the translation table walk completes (§8.4.1).

To capture these we first define when one event is considered speculative until another event happens,
with a new relation, speculative:

1 let speculative = ctrl | addr; po | [T]; instruction -order
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This captures all the control-flow dependencies that we model here, the classic ctrl and addr; po, as well
as a new general [T]; instruction-order which says that all events ordered (iio|po)+ after a translation
read are speculative until the translation read satisfies.

We then include speculative to same-thread translation-reads-from (trfi) in ob, forbidding forwarding
of still-speculative writes to translation table walks. For now, we are unable to give a precise bound on
the ordering for thread-local forwarding, and this area is still currently under investigation with Arm,
including potentially being strengthened to forbid this entirely.

Might-be-same-address Finally, we include [T]; iio; [M]; po; [W], which captures that writes cannot
propagate until program-order-earlier instructions have determined their physical addresses (and so will
not fault). Although this edge is subsumed by the speculative; [W] edge in dob, it is kept here for
clarity.

9.4.5 Contextually-ordered-before

1 let ctxob =
2 speculative; [MSR]
3 | [CSE]; instruction -order
4 | [ContextChange ]; po; [CSE]
5 | speculative; [CSE]
6 | po; [ERET]; instruction -order; [T]

The contextually-ordered-before relation, ctxob, captures the orderings required from context-changing
and context-synchronising operations, without trying to capture the full extent of the relaxed behaviours.
See Part III for a more detailed discussion of the ordering from context-synchronisation on an exception.
The ctxob relation here is an approximation: capturing the orderings we know the architecture must
provide, but perhaps not exploring the full architectural envelope of possible behaviours to its full extent.

Speculation The first guarantee we see is that context changes and synchronisation should not happen
speculatively. Speculative context changes may create translation table roots and associated translation
table walks from unreachable writes, creating thin-air problems (§8.8.1). To prevent this, we ensure that
context-changing operations only happen once they are non-speculative, by enforcing speculative; [MSR]
in ob. Forbidding the speculative execution of context-synchronising operations is achieved by the inclusion
of speculative; [CSE] in ob.

Context synchronising Context-synchronising events (such as from ISB and ERET instructions) guar-
antee that program-order-earlier context-changing events are seen by program-order-later instructions.
Microarchitecturally, context synchronisation can be achieved by simply flushing the pipeline, restarting
all program-order-later instructions. For now, this effect seems fixed in the architecture (§8.7), and so
we get [CSE]; instruction-order in ob, subsuming the earlier ISB orderings. To ensure that context
changes are seen after the synchronisation, we include [ContextChange]; po; [CSE] in ob. The union of
these two relations ensures the context change is ordered before any program-order-later events.

Exceptions Taking and returning from exceptions are context synchronising (§8.7). However, translation
reads of a lower exception level should not satisfy during execution at a higher exception level. We over-
approximate this by including po; [ERET]; instruction-order; [T] in ob, ensuring all translation-reads
after an ERET wait.
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9.4.6 Fault-ordered-before and ETS

Note: ETS is subject to change, as noted in §8.4.3, p.123.

1 (* ordered -before a fault *)
2 let obfault =
3 data; [FaultFromW]
4 | speculative; [FaultFromW]
5 | [dmbst]; po; [FaultFromW]
6 | [dmbld]; po; [FaultFromW|FaultFromR]
7 | [A|Q]; po; [FaultFromW|FaultFromR]
8 | [R|W]; po; [FaultFromReleaseW]
9

10 (* ETS -ordered -before *)
11 let obETS =
12 (obfault; [Fault_T ]); iio−1 ; [T_f]
13 | ([TLBI]; po; [dsb]; instruction -order; [T]) & tlb -affects

To capture the specific guarantees described by FEAT_ETS (§8.4.3, §8.6.2), we include Fault events in the
candidate executions. These events sit in the execution (in po order) where the explicit memory event
would have been if there was no fault, tagged with the kind of fault it was (translation or permission).

Ordering to a fault To fully capture the strength of FEAT_ETS, we keep track of syntactic dependencies
into the instruction which faulted, and apply those dependencies to the Fault event itself.

obfault is then the syntactic subset of local ordering in ob, where the right-hand side of each clause
is substituted with a Fault_T (a translation fault). We use this to construct an obETS relation, whose
first clause adds to ob exactly this ordering to the translation read of the invalid entry, as architected by
FEAT_ETS.

Note that dependencies and orderings from a faulting instruction are not required to be respected, and so
we do not induce orderings from a Fault_T.

FEAT_ETS and TLBI The second clause of obETS captures a second architected behaviour of FEAT_ETS:
faults after thread-local TLBIs do not need context synchronisation to be ordered after the TLBI. Note
that one still needs a DSB to complete the TLBI in that case.

9.4.7 TLBI-ordered-before

1 (* ordered -before TLBI *)
2 let obtlbi =
3 obtlbi_translate
4 | [R|W|Fault_T ]; iio−1 ; (obtlbi_translate & ext); [TLBI]

Finally, there is the obtlbi relation, which captures the ordering between translations, their explicit
memory events, and the TLB invalidations which affect them. The relation is split in two: the first clause
enforces order between stale translations and the TLBIs they are invalidated by; the second clause imposes
additional ordering on the intra-instruction-later explicit events, caused by broadcast TLBIs (§8.6.3).
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Identifying stale TLB entries

1 let tlb_barriered =
2 ([T]; tfr; wco; [TLBI]) & tlb -affects−1

When a translation read happens, it is allowed for it to read from a stale write (§8.5.1). That is,
the translation need not be ordered before writes which come after the write it actually reads from.
Consequently the tfre relation is not included in ob.

To account for TLB maintenance, we include some edges from translations to TLBIs, when there is an
interposing newer write. The general shape of this ordering, named tlb_barriered in the model, is
illustrated in Figure 9.5.

a: W pte(x)=old

b: W pte(x)=new

c: TLBI

d: T x

trf
wco

wco

tfr

tlb-affects

tlb_barriered

Figure 9.5: General tlb_barriered shape.

The tlb_barriered auxiliary relation relates a translation read (d) to any TLBI (c) which targets that
translations context (ASID, VMID, address, etc) and which is wco-after an interposing write (b) since the
write the translation read read from. Intuitively, ‘after’ the TLBI the stale writes will no longer be in the
TLB, and so translation-reads should not read from them any more.

Stale translation reads We can then use this tlb_barriered relation to define ordering between
translation reads and the TLB maintenance which affect them. For stage 2 translations, tlb_barriered
alone would be too strong: since invalidations of second-stage entries also require stage 1 invalidations to
clear any end-to-end virtual-to-physical mappings (§8.6.4) we must include some additional restrictions,
considering the stage 1 and stage 2 cases separately.

1 (* translate ordered -before TLBI *)
2 let obtlbi_translate =
3 [T & Stage1 ]; tlb_barriered; [TLBI -S1]
4
5 | (([T & Stage2 ]; tlb_barriered; [TLBI -S2])
6 ; wco?; [TLBI -S1]
7 )
8 & (same -translation; [T & Stage1 ]; maybe_TLB_cached)
9

10 | ([T & Stage2 ]; tlb_barriered; [TLBI -S2])
11 & (same -translation; [T & Stage1 ]; trf−1 ; wco−1 )

For stage 1 translation reads we can include tlb_barriered between stage 1 translation-reads and TLBIs
directly.

For stage 2 translation reads, we have to case split on the execution: either (1) the translation table
walk does a stage 1 translation read which reads-from an older write, in which case there may have been
a whole cached translation that must be invalidated; or (2) one of the stage 1 translation reads of the
translation table walk reads from a write that is newer than the stage 2 TLBI, and so there cannot have
been any cached whole translation entries in the TLB, and so we only need the stage 2 invalidation. These
cases are illustrated in Figure 9.6, and correspond to the two clauses of obtlbi_translate which match
on stage 2 translation reads.
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a: W s1pte(x)=new

b: W s2pte(x)=new

c: TLBI-S2

d: TLBI-S1

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

wco?

same-trans

ob

Case (1)

a: W s2pte(x)=new

b: TLBI-S2

c: W s1pte(x)=new

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

same-trans

ob

Case (2)

Figure 9.6: obtlbi stage 2 scenarios.

The staggered two-step invalidation in case (1), where a translation-read may have been cached in the
TLB, is captured with the following maybe_TLB_cached relation:

1 let maybe_TLB_cached =
2 ([T]; trf−1 ; wco; [TLBI]) & tlb -affects−1

We then use this relation to add ordering from a stage 2 translation-read to the stage 1 TLBI, wco-after a
stage 2 TLBI that removed any stale IPA mappings, which would remove any cached whole-translation
any stage 1 translation-read might have read from, and after which any fresh translation table walk would
be required to not see the stale stage 2 entry the translation-read read from.

We capture the general shape of (2) by ordering the second-stage translation-read with the second-stage
TLBI using tlb_barriered just as we did for Stage 1, but only when one of the same-translation stage 1
walk translation-reads already read from something newer — and therefore there cannot have been a
whole-translation cached in the TLB.

Broadcast TLBIs Recall that broadcast TLBIs impose restrictions on other threads (§8.6.3). When a
broadcast TLBI’s invalidation affects a translation on another core, then it must also affect the explicit
memory effect associated with it. This shape is illustrated in Figure 9.7, and corresponds to the final
clause of obtlbi.

a: W pte(x)=new

b: TLBI

e1: T x

e2: R|W x

tfr

obtlbi_translate iio

ob

Figure 9.7: obtlbi broadcast TLBI shape.
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Connecting TLB invalidations to translation reads The final part of the puzzle is how to relate TLBI
events with translations which may be affected by the invalidation. Recall that the TLBIs are grouped
into subsets of TLBI-S1, TLBI-VA, and so on. We define a tlb_might_affect that is the cross-product of
these with the same-* relations:

1 let tlb_might_affect =
2 [ TLBI -S1 & ~TLBI -S2 & TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -va-page & same -asid & same -vmid) ; [T & Stage1]
3 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -asid & same -vmid) ; [T & Stage1]
4 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage1]
5 | [~TLBI -S1 & TLBI -S2 & TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; (same -ipa -page & same -vmid) ; [T & Stage2]
6 | [~TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage2]
7 | [ TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T]
8 | ( TLBI -S1 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage1)
9 | ( TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage2)

Finally, we get tlb-affects by attaching tlb_might_affect to events in the same thread, and if a TLBI-IS,
to events in other threads too:

1 let tlb -affects =
2 ([~TLBI -IS]; tlb_might_affect) & int
3 | [TLBI -IS]; tlb_might_affect
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1 declare wco(Event , Event): bool
2
3 (* wco has domain and range of W,CacheOp *)
4 assert forall ev1: Event , ev2: Event =>
5 wco(ev1 , ev2) -->
6 (W(ev1) | C(ev1) | (ev1 == IW)) & (W(ev2) | C(ev2))
7
8 (* wco is transitive *)
9 assert forall ev1: Event , ev2: Event , ev3: Event =>

10 wco(ev1 , ev2) & wco(ev2 , ev3) --> wco(ev1 , ev3)
11
12 (* wco is total *)
13 assert forall ev1: Event , ev2: Event , ev3: Event =>
14 wco(ev1 , ev3) & wco(ev2 , ev3) & ~(ev1 == ev2) -->
15 wco(ev1 , ev2) | wco(ev2 , ev1)
16
17 (* wco is irreflexive *)
18 assert forall ev1: Event , ev2: Event , ev3: Event =>
19 wco(ev1 , ev2) --> ~(ev1 == ev2)
20
21 (* wco is antisymmetric *)
22 assert forall ev1: Event , ev2: Event =>
23 wco(ev1 , ev2) --> ~wco(ev2 , ev1)
24
25 (* all write/cache -op pairs are wco related *)
26 assert forall ev1: Event , ev2: Event =>
27 W(ev1) & C(ev2) -->
28 wco(ev1 , ev2) | wco(ev2 , ev1)
29
30 (* wco is consistent with co *)
31 assert forall ev1: Event , ev2: Event =>
32 co(ev1 , ev2) --> wco(ev1 , ev2)
33
34 (* all C are wco after IW
35 * n.b. all W are wco after IW, because all W are co after IW

and co => wco
36 *)
37 assert forall ev: Event =>
38 C(ev) --> wco(IW, ev)

Figure 9.8: wco.cat: isla-cat definition of wco.
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Chapter 10

Validating the RVM model

10.1 Validation against the architecture

To ensure that the proposed virtual memory model presented in Chapter 9 correctly captures the
architectural intent (where known), we engaged in detailed discussions with Arm.

Our model is produced through an iterative process: where the production of interesting litmus tests are
guided by hardware testing and surveying of software requirements; the resulting tests are presented to,
and discussed with, Arm architects; new and updated models are created using any architectural intent
learned from those discussions; and, finally, those new models are validated against hardware and software
requirements, informing the production of further litmus tests.

Ideally, we would run this process until a fixed point is reached. However, this is not always practical. We
know the model presented in Chapter 9 is incomplete, and more work is needed to further update the
models with the extensions to the architecture and further clarified intent.

10.1.1 Clarity of architecture

We claim that the litmus tests presented in Chapter 8 have known architectural intent, and (as will be
discussed in the following sections) the presented model correctly captures that intent for those tests.

For some of these behaviours, it seems improbable that the architectural intent would change. Specifically,
the guarantees given by the break, break-before-make, and general TLB-maintenance shapes, are funda-
mental to the security and correctness of modern software, and so are highly unlikely to be weakened over
time.

Some of the behaviours arise as consequences of other parts of the design, specifically around TLB fills
(§8.5.2), where the strength of the fill itself arises from a historical design of the processors, and not
a fundamental software requirement. As modern hardware has advanced, Arm have added features to
specifically weaken those areas (such as with FEAT_nTLBPA).

Conversely, many of the relaxed behaviours may see changes as the architecture evolves. We already saw
how the introduction of FEAT_ETS strengthened some aspects of the architecture, and features such as
ETS are still in-flux, and there seems no reason to believe that Arm have settled on the final design.
Hopefully, the questions raised in this work have helped guide Arm in that design, and resulted in a more
stable architecture.

10.1.2 Remaining questions and updates

There are a number of places where the model as presented lacks the underlying architectural clarity to
yet give more precise bounds on the architectural envelope.

There are a few places this is apparent in the model presented here:

. ConstrainedUnpredictable behaviours due to TLB conflicts (break-before-make violations).

. Architectural features such as FEAT_nTLBPA, FEAT_ETS2, FEAT_TTL, and FEAT_BBM.
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. Caching of access permissions, memory types, shareability, and so on.

. Sharing TLBs between PEs.

. Caching of non-last-level block entries in the TLB.

The first, the constraints on unpredictability, were already discussed earlier (§8.6.5), and more discussion
with architects is required to be able to present a model with any confidence.

The last one (caching of non-last-level block entries) is more interesting, and represents a gap in the
model presented in the previous chapter. When an block entry is cached in the TLB, the hardware has a
choice between caching entries per-page or only one for the whole block. The model currently is too weak,
allowing separately cached entries per-page, and the architectural intent is now clearly to ensure that
TLB invalidations would remove any cached entries for the whole block.

10.2 Validating against hardware

Hardware testing is an important aspect in gaining confidence in any relaxed memory model: without
thorough evaluation of a range of microarchitecture it would not be possible to make strong claims of
soundness of such a model. However, testing systems-level features on hardware is much more challenging
than testing the features covered in previous user-level models (including instruction fetch, as the required
cache maintenance instructions were all unprivileged). Testing virtual memory requires a setup running
at least at EL1, both to be able to run the TLB maintenance instructions, and to enable catching of any
generated exceptions.

One approach would be to use klitmus7, an experimental version of litmus which produces a kernel
module that runs at EL1 [108]. klitmus was primarily designed for the testing of the Linux kernel memory
model, with the kernel modules it produces run as part of the Linux kernel. Attempting to modify the
currently in-use translation tables or exception vectors would interfere with Linux’s operations. Using
klitmus would therefore require a custom kernel as well as test infrastructure.

Instead, we build a brand new test harness designed for running tests which use systems features such as
TLB maintenance and exception handlers: system-litmus-harness1.

Limitations system-litmus-harness has some limitations, for now: (1) the harness runs at EL1 and
cannot run tests at EL2; (2) we do not check for known CPU errata for the device being ran on, instead
relying on defensive programming; (3) while the harness can run with QEMU/KVM on any device,
running it bare metal (without a VM) is supported on only a limited number of devices; and (4) the
harness currently uses an ad-hoc litmus test format which is not unified with either isla-axiomatic or
litmus7 itself. We do not believe any of these limitations are fundamental; they should all be solvable
with additional engineering resources.

10.2.1 Harness overview

At its core, system-litmus-harness is a relatively simple micro-kernel running at EL1. It builds in a set
of litmus tests, with fixed code for each thread, and an initial state described in an ad-hoc language. The
user gives the harness arguments, at boot, containing the name(s) of litmus tests to run and other run
configuration options. The harness then runs the litmus tests, collects the results, and echos those results
back to the user through the serial output.

The structure of the test runner inside the harness is in a typical litmus style. It runs the tests in batches,
executing each thread in a loop, where each iteration of the loop operates on a different set of locations,
making each iteration independent from one another. This is extended in the obvious way for translation,
making each iteration use its own translation tables and ASID.

Litmus test format Figure 10.1 gives an example litmus test, CoTR.inv+dsb-isb, a variation on the
straight-forward CoRR coherence shape but for translation walks, in the system-litmus-harness format.
Litmus tests are dedicated C files which define a litmus_test_t struct containing the litmus test data.
The test displayed here can be found at https://github.com/rems-project/system-litmus-harness/
blob/master/litmus/litmus_tests/pgtable/CoTR.inv%2Bdsb-isb.c.

1https://github.com/rems-project/system-litmus-harness
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1 #include "lib.h"
2
3 #define VARS x, y
4 #define REGS p1x0 , p1x2
5
6 static void P0(litmus_test_run* data)
7 {
8 asm volatile (
9 /* setup */

10 "mov x0 , %[ ydesc ]\n\t"
11 "mov x1 , %[xpte]\n\t"
12 /* code */
13 "str x0 , [x1]\n\t"
14 :
15 : ASM_VARS(data , VARS),
16 ASM_REGS(data , REGS)
17 : "cc", "memory", "x0", "x1"
18 );
19 }
20
21 static void sync_handler(void)
22 {
23 asm volatile (
24 "mov x0 , #0\n\t"
25
26 ERET_TO_NEXT(x10)
27 );
28 }
29
30 static void P1(litmus_test_run* data)
31 {
32 asm volatile (
33 /* setup */
34 "mov x1 , %[x]\n\t"
35 "mov x3 , %[xpte]\n\t"
36 /* code */
37 "ldr x0 , [x1]\n\t"
38 "dsb sy\n\t"
39 "isb\n\t"

40 "ldr x2 , [x3]\n\t"
41 /* teardown */
42 "str x0 , [%[ outp1r0 ]]\n\t"
43 "cbz x2 , .after\n\t"
44 "mov x2 ,#1\n\t"
45 ".after :\n\t"
46 "str x2 , [%[ outp1r2 ]]\n\t"
47 :
48 : ASM_VARS(data , VARS),
49 ASM_REGS(data , REGS)
50 : "cc", "memory", "x0", "x1",
51 "x2", "x3", "x10"
52 );
53 }
54
55 litmus_test_t CoTRinv_dsbisb = {
56 "CoTR.inv+dsb -isb",
57 MAKE_THREADS (2),
58 MAKE_VARS(VARS),
59 MAKE_REGS(REGS),
60 INIT_STATE(
61 2,
62 INIT_UNMAPPED(x),
63 INIT_VAR(y, 1)
64 ),
65 .interesting_result = (u64 []){
66 /* p0:x0 =*/1,
67 /* p0:x2 =*/0,
68 },
69 .thread_sync_handlers =
70 (u32 **[]){
71 (u32 *[]){NULL , NULL},
72 (u32 *[]){(u32*) sync_handler ,

NULL},
73 },
74 .requires_pgtable = 1,
75 .no_sc_results = 3,
76 };

Figure 10.1: CoTR.inv+dsb-isb litmus test, system-litmus-harness source.

The header VARS and REGS define the global variables to allocate (in this case, we want two, named x and
y), and the names of output variables (which we usually style after the names of the machine registers
which store them) for the final register values to save from the test.

The test then defines two threads with two static functions, P0 and P1, containing the code of the threads.
These functions take a litmus_test_run struct, which contains the virtual addresses of each of the global
and output variables, and any other initial state required for the test.

Taking the code for Thread 1, in P1, as an example, it is given as an asm block which contains the test
code sandwiched between some setup and teardown code that moves values from the C code into the
machine registers the test uses, and back out at the end.

This test has an exception handler for this thread. It is given by the sync_handler function and set as
the vector for this thread in the initial state. The handler simply resets x0 to 0, and then performs an
ERET to the next instruction address (that is, to ELR+4).

The final block of the test is the litmus_test_t struct, which gives the C definition for the test. It
provides the name, the number of threads, the global and output variables, which exception handlers to
install for each thread, the particular relaxed result to mark, and the initial machine state to run the test
from. In this case, the initial state says that x starts unmapped (invalid at level 3), and y is mapped to a
location that contains the value 1. Implicitly, global variables have virtual addresses in distinct pages.
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Litmus test format reference

Our test format supports writing a variety of kinds of pagetable tests with different initial state setups.
Appendix C describes the test format in full.

As an example, take the INIT_STATE from the ROT1+dsb-dsb-tlbi-dsb test1, which defines three variables:
x, y, and z. Its initial state is reproduced in Figure 10.2. It says that all three variables start out mapped
with initial values 0, 1, and 2, respectively (L13-15). Next, it tells the allocator that x should be allocated
in its own 2MiB region (L16), but to nevertheless place y in that region too (L17) with the same page
offset, i.e. it should have the same least significant 12 bits as x (L18). Finally, it tells the allocator to
place z in its own 2MiB region, with the same PMD offset (bits 20-12) as x (L20). This ensures that bits
12-0 overlap for x and y, and bits 20-12 overlap for x and z, and therefore the table containing the entry
for y can be assigned to the level 2 entry for x, as required by the ROT test shape (see §8.4.8).

1 #define VARS x, y, z
2 #define REGS p0x4
3
4 /* see source for full test */
5
6 litmus_test_t ROT1_dsbtlbidsb = {
7 "ROT1+dsb -dsb -tlbi -dsb",
8 MAKE_THREADS (1),
9 MAKE_VARS(VARS),

10 MAKE_REGS(REGS),
11 INIT_STATE(
12 8,
13 INIT_VAR(x, 0),
14 INIT_VAR(y, 1),
15 INIT_VAR(z, 2),
16 INIT_REGION_OWN(x, REGION_OWN_PMD),
17 INIT_REGION_PIN(y, x, REGION_SAME_PMD),
18 INIT_REGION_OFFSET(y, x, REGION_SAME_PAGE_OFFSET),
19 INIT_REGION_OWN(z, REGION_OWN_PMD),
20 INIT_REGION_OFFSET(z, x, REGION_SAME_PMD_OFFSET),
21 ),
22 .interesting_result = (u64 []){
23 /* p0:x2 =*/1,
24 },
25 .start_els = (int[]){1},
26 .requires_pgtable = 1,
27 .no_sc_results = 2,
28 };

Figure 10.2: system-litmus-harness initial state for an ROT-shaped test.

10.2.2 Results from hardware

We ran a collection of hand-written litmus tests on three hardware devices using system-litmus-harness
running inside KVM: a Raspberry Pi 3B+ (Arm Cortex-A53 r0p4), Raspberry Pi 4B (Arm Cortex-A72
r0p3), and an AWS m6g-metal instance (claiming to be an A76).

Note that the hardware tests represent an overlapping set of tests with those presented in Ch.8: some
contain BBM violations; some tests are not reproduced on hardware; and some may appear with
different names, e.g. CoWTf.inv+dmb test (Figure 8.18, p.122) appears in the table as CoWT.inv+dmb.
Tables 10.1 and 10.2 list the total results for all the tests from all three devices.

Our testing revealed some incompatibilities between the architectural intent and the current implementa-
tions. For some break-before-make sequences, such as test MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb we

1which can be found at https://github.com/rems-project/system-litmus-harness/blob/master/litmus/litmus_tests/
pgtable/pmds/ROT1%2Bdsb-dsb-tlbi-dsb.c
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did observe some rare violations of the architectural intent on the Arm cortex-based cores in the Raspberry
Pi 4B and AWS Graviton cores1. The related MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb test
(with a detour after the write) was never observed however, suggesting it is related to the DSB not fully
propagating the store, which implies it may be related to other known CPU errata. These anomalous
results have been reported, and are under investigation by Arm.

10.3 Validation by abstraction

We cannot ‘prove’ that the model is correct. Correctness of a relaxed memory model like this depends on
the architects’ intent, and that may change as new revisions of the architecture are released. However, we
can identify properties we believe any sound model would have, and check that the model presented here
has those properties.

The key property is that the presented model has a ‘virtual memory abstraction’. While there is no general
definition of what such an abstraction is, we give one intuitive and informal definition: a program with a
fixed injective translation table mapping behaves as if executing above physical memory directly. We can
state this virtual memory abstraction as a property over candidate executions.

To do this, we define a translation erasure operation: given a candidate C, the translation-erased candidate
C∼T is C, but where all TLBI, T, and T_f events are erased; any edge containing such events as source or
target removed; and extended with the derived relations addr and po from C.

If given a full (with all the translation table walk events) well-formed (consistent with the intra-instruction
semantics) candidate C, with no TLBI events, no T_f events, and no W events to any pagetable location,
then, the candidate is consistent in the VMSA model if and only if the translation-erased candidate C∼T

is consistent in the base model.

Informally, the proof is a straightforward inclusion proof by relation algebra. The internal and atomic
axioms are trivially subset inclusions of one another under translation erasure. Additionally, the translation-
internal relation is trivially a subset of the usual internal one with translation events erased. For external,
we show that ob in the base model implies ob in the VMSA model, and that ob in the VMSA model
implies the same ob in the base model. Therefore they must forbid the same cycles. See Appendix D for a
complete proof, largely due to Jean Pichon-Pharabod.

1Further investigation indicates that our m6g-metal instance may have in-fact also been a mislabelled Graviton1, also
based on the Arm Cortex A72.
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Table 10.1: system-litmus-harness hardware results from three devices: Part I.

Name rpi4b rpi3bp graviton2
CoRT 964.72K/8M 520.06K/3M 2.29M/108M
CoRT+dsb-isb 802.86K/8M 327.02K/3M 3.41M/108M
CoTR 2.51M/8M 0/3M 21.70M/107.50M
CoTR+addr 0/8M 1/3M 0/107.50M
CoTR+dmb 1/8M 0/3M 4/107.50M
CoTR+dsb 2/8M 0/2.50M 5/107M
CoTR+dsb-isb 1/8M 0/2.50M 1/107M
CoTR.inv 3.63M/6.50M 0/2.50M 32.28M/43M
CoTR.inv+dsb-isb 0/6.50M 0/2.50M 0/43M
CoTR1+dsb-dc-dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 4/43M
CoTR1+dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 3/43M
CoTR1.tlbi+dsb-isb 6/6.50M 1/2.50M 29/43M
CoTT 0/6.50M 0/2M 0/43M
CoTW 0/1.50M 0/1.50M 0/10.50M
CoWT 3.77M/6.50M 1.85M/2M 22.64M/43M
CoWT+dsb 3.76M/6.50M 995.06K/2M 21.50M/43M
CoWT+dsb-isb 3.78M/6.50M 995.77K/2M 21.50M/43M
CoWT+dsb-svc-tlbi-dsb 0/6.50M 0/2M 0/42.50M
CoWT.inv 10/6.50M 1.73M/2M 169/42.50M
CoWT.inv+dmb 8/6.50M 69.38K/2M 42/42.50M
CoWT.inv+dsb 1/6.50M 0/2M 57/42M
CoWT.inv+dsb-isb 0/6.50M 0/2M 0/42M
CoWT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42.50M
CoWT1+dsb-tlbi-dsb-isb 0/6.50M 0/2M 0/42.50M
CoWinvT 4.17M/6.50M 1.79M/2M 26.81M/42M
CoWinvT+dsb-isb 4.19M/6.50M 1.83M/2M 26.80M/42M
CoWinvT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42M
CoWinvWT1+dsb-tlbi-dsb-dsb-isb 0/6.50M 0/2M 0/42M
ISA2.TRR+dmb+po+dmb 0/6.50M 0/2M 0/42M
MP.BBM1+[dmb.ld]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/437.50M
MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/198.50M 0/1.06G 0/129.50M
MP.BBM1+[po]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/145.50M
MP.BBM1+dsb-isb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/6.50M 0/2M 52/135.50M
MP.BBM1+dsb-tlbiis-dsb-dsb+dsb 1/6.50M 0/2M 7/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb 0/6.50M 0/2M 2/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb 1/6M 0/2M 0/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb 2/6M 0/2M 3/42.50M
MP.BBM1+po-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/1M 0/1.50M 9/191.50M
MP.BBM1.id+dsb-tlbiis-dsb-dsb+dsb-isb 10/6M 2/2M 87/42.50M
MP.RT+svc-dsb-tlbi-dsb+dsb-isb 1/6M 0/2M 3/42M
MP.RT+svc-dsb-tlbiis-dsb+dsb-isb 1/6M 0/2M 3/42M
MP.RT.inv+dmb+addr 0/6M 0/2M 0/42M
MP.RT.inv+dmb+po 0/6M 6/1.50M 0/42M
MP.RT1+[dmb.ld]-dmb+dsb-isb 7.15K/6M 986/1.50M 1.26K/42M
MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dmb 0/1M 0/1M 0/23M
MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dsb-isb 0/1M 0/1M 0/23M
MP.RT1+[dmb.ld]-dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 0/42M
MP.RT1+dc-dsb-tlbiall-dsb+dsb-isb 4/6M 1/1.50M 5/41.50M
MP.RT1+dc-dsb-tlbiall-dsb-isb+dsb-isb 3/6M 0/1.50M 2/41.50M
MP.RT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 4/41M
MP.RT1+dsb-tlbi-dsb+dsb-isb 0/6M 0/1.50M 2/41M
MP.RT1+dsb-tlbiall-dsb+dsb-isb 5/6M 0/1.50M 6/41M
MP.RT1+dsb-tlbiallis-dsb+dsb-isb 3/6M 0/1.50M 2/41M
MP.RT1+dsb-tlbiis-dsb+dsb-isb 1/6M 0/1.50M 1/41M
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Table 10.2: system-litmus-harness hardware results from three devices: Part II.

Name rpi4b rpi3bp graviton2
MP.RT1+dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 1/41M
MP.RT1+dsb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 1/41M
MP.RT1+dsb-tlbiis-dsb-tlbiis-dsb+dsb-isb 0/6M 0/1.50M 3/41M
MP.TT+Winv-dmb-Winv+tpo 254.83K/6M 114.48K/1.50M 170.96K/41M
MP.TT+dmb+dsb-isb 688.65K/5.50M 174.78K/1.50M 492.98K/41M
MP.TT+dmb+tpo 843.79K/5.50M 157.80K/1.50M 480.31K/41M
MP.TT.inv+dmb+dsb-isb 0/5.50M 0/1.50M 0/41M
MP.TT.inv+dmb+tpo 0/5.50M 0/1.50M 0/41M
MP.invRT+dsb+dsb-isb 871.53K/5M 101.75K/1.50M 1.78M/40.50M
MP.invRT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/5.50M 0/1.50M 1/41M
MP.invRT1+dsb-tlbiis-dsb+dsb 0/5M 0/1.50M 2/41M
MP.invRT1+dsb-tlbiis-dsb+dsb-isb 1/4.50M 0/1.50M 1/41M
WRC.AT+ctrl+dsb 128.64K/4.50M 77.36K/1.50M 214.45K/40M
WRC.TRR+addr+dmb 0/4.50M 0/1.50M 0/40M
WRC.TRR.inv+addrs 0/4.50M 0/1.50M 0/40M
WRC.TRT+addr+dmb 35.28K/4.50M 32.50K/1.50M 103.16K/40M
WRC.TRT+dmbs 53.60K/4.50M 36.76K/1.50M 171.51K/40M
WRC.TRT+dsb-isbs 18.80K/4.50M 30.44K/1.50M 104.62K/39.50M
WRC.TRT.inv+addrs 0/4M 0/1.50M 0/38.50M
WRC.TRT.inv+dsb-isbs 0/4M 0/1M 0/38M
WRC.TRT.inv+po+addr 0/4M 0/1M 0/37.50M
WRC.TRT.inv+po+dmb 0/4M 0/1M 0/37M
WRC.TRT1+dsb-tlbiis-dsb+dmb 0/4.50M 0/1M 0/38M
WRC.TRT1+dsb-tlbiis-dsb+dsb-isb 0/4.50M 0/1M 0/38M
CoWR.alias 0/6M 0/1.50M 0/36M
MP+dmb-data+dmb 0/5M 0/1.50M 0/36M
MP.alias+dmbs 0/5M 0/1.50M 0/36M
MP.alias2+dmb-data+dmb 0/5M 0/1.50M 0/36M
MP.alias2+dmbs 0/3M 0/1.50M 0/19.50M
MP.alias2+po-data+dmb 2.23K/5M 3.17K/1.50M 407.36K/36M
MP.alias3+rfi-data+dmb 51/3M 16/1.50M 36.35K/19.50M
SB.alias+dmbs 0/5M 0/1M 0/35.50M
WRC.alias2+addrs 0/4M 0/43M 0/19M
WRC.alias2+dmbs 0/4M 0/43M 0/18.50M
MP.NC+dsb-dc-dsb-dmb+dmb 138.80K/8M 364.97K/26M 54.95K/25.50M
MP.NC+po-dmb+dmb 345.33K/7.50M 642.90K/25.50M 333.55K/25.50M
MP.NC1+dsb-tlbiis-dsb-dc-dsb-dmb+dmb 0/7.50M 0/25.50M 0/25.50M
MP.NC1+dsb-tlbiis-dsb-dmb+dmb 556/7.50M 482/25.50M 6/25.50M
WR.NC+dsb 0/0 0/0 0/0
WR.NC+po 0/0 0/0 0/0
WR.WARA-NC+dsb 0/0 0/0 0/0
WR.WARA-NC+po 0/0 0/0 0/0
WWR.NC+po-po 0/0 0/0 0/0
CoWT.L23+dsb-isb 11.45M/13M 6.73M/13.50M 48.94M/84.50M
CoWT.L23+po 12.88M/13M 13.39M/13.50M 80.61M/84.50M
CoWT1.L23+dsb-tlbi-dsb-isb 0/13M 0/13.50M 0/84.50M
ROT+dsb-dsb 0/13M 0/13.50M 0/84.50M
ROT+po-po 0/13M 0/13.50M 0/84M
ROT1+dsb-dsb-tlbi-dsb 0/13M 0/13.50M 0/84M
ROT1+dsb-dsb-tlbivaa-dsb 0/13M 0/13.50M 0/84M
CoTT+dsb-popage 0/35.50M 0/31M 0/1.12G
CoTT+po-popage 1/47M 0/43.50M 0/1.20G
WR.MAIR1+dsb-isb-dc-dsb 0/0 0/0 0/0
WR.MAIR1+dsb-isb-po 0/0 0/0 0/0
WR.MAIR1+dsb-tlbi-dsb-isb-dc-dsb 0/0 0/0 0/0
WR.MAIR1+dsb-tlbi-dsb-isb-po 0/0 0/0 0/0
WR.MAIR1+po-po 0/0 0/0 0/0
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Part III
Exceptions and interrupts

This part is based on: in-progress and under-submission work done in collaboration with Alasdair Armstrong,
Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell.
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Chapter 11

Relaxed precise exceptions

We now turn to the final part, and discuss hardware support for exceptions and interrupts.

We do so in the way previous work have made now typical: we describe the main phenomena and
architectural design space, through the exploration of litmus tests; we use those litmus tests as a
catalyst for discussions about the architectural intent with the architects and for discovery of the current
implementations by the surveying of hardware; we produce a formal mathematical model that captures
that intent; and, finally, we validate that model by making it executable as a test oracle and execute a
suite of litmus tests, comparing the results to hardware and previously collected intent from architects.
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11.1 Introduction

Hardware exceptions (and their many variants: interrupts, traps, faults, aborts, etc.) provide support
for many exceptional situations that systems software has to manage. This includes explicit privilege
transitions via system calls, implicit privilege transitions from trappable instructions, inter-processor
software-generated interrupts, external interrupts from timers or devices, recoverable faults like address
translation faults, and non-recoverable faults like memory error correction faults.

To manage exceptions, software relies on a key architectural guarantee, precision: that exceptions appear
to execute between instructions. To confidently write concurrent systems code that handles exceptions,
e.g. mapping on demand at page faults, programmers need a well-defined and well-understood semantics.
These modern definitions of precision (e.g. in the current Arm-A documentation) are mostly unchanged
over the last 60 years, dating back to at least the IBM System/360. These definitions fundamentally
assume a sequential programmers model. For example, Hennessy and Patterson state [109]:

An exception is imprecise if the processor state when an exception is raised does
not look exactly as if the instructions were executed sequentially in strict program
order

However, modern architectures with programmer-observable relaxed behaviour, such as Arm-A, make
such a naive definition inadequate, and leaves it unclear exactly what guarantees there are on exception
entry and exit. On pipelined out-of-order processors with observable speculative execution, exceptions
have subtle interactions with relaxed memory behaviour which had not previously been investigated.

Overview In this part, we begin by clarifying the key concepts needed to discuss exceptions in the
relaxed-memory setting (§11.1-11.2), through the exploration the basic relaxed behaviour across exception
boundaries (§11.3). We extend this by introducing the potential of external aborts and examining how
they effect the programmer-visible behaviour (§11.4).

We develop an axiomatic model for precise exceptions on Arm-A, including tooling for executing it as a
test oracle, along with a library of tests (Chapter 12).

Finally, we validate this model (Chapter 13) by extending the harness presented in Part II and collecting
data from a range of implementations.

11.1.1 Exception taxonomy

Arm-A defines multiple kinds of exception [81, D1.3.1]:

. Synchronous exceptions. These originate from an instruction, e.g. supervisor/hypervisor calls, traps,
data/instruction, page faults, etc.

. Asynchronous exceptions. These are interrupt requests from other processors/peripherals/timers, or
system errors.

In Arm nomenclature, any non-synchronous exception is called an interrupt.

Synchronous exceptions are further broken down into classes, for example:

. PC Alignment, for a misaligned program counter.

. Instruction abort, for MMU faults on instruction accesses.

. Undefined instruction encoding.

. Data abort, for MMU faults on data accesses.

. Execution of an SVC (supervisor call).

. Trapped register access, from attempting accessing a register that is not permitted or is configured
to trap.

For a complete list of exception classes, and their prioritisation, we refer to the Arm architecture reference
manual [81, D1.3.5, p5369].
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11.1.2 Exception lifecycle

When an exception is taken, execution jumps to the appropriate exception vector. Vectors are pre-
determined locations which contain code to be executed on the event of an exception. Different kinds
of exception jump to different vectors, and so the currently in-use vectors form a vector table. Software
configures the vectors by setting the base address of the vector table, by writing to the appropriate vector
base address register (VBAR).

On taking the exception:

. The current processor state is saved into the saved program status register (SPSR). This includes
the current exception level, status flags and condition bits, and interrupt masking (described in
more detail later).

. The privilege level typically escalates (e.g. from EL0 to EL1).

. The program-counter to return to (the ‘preferred return address’) is saved into the appropriate
exception link register (ELR).

. The cause of the exception is saved into either the exception syndrome register (ESR) for synchronous
exceptions, telling the programmer the class of the exception and other associated data; or into the
interrupt status register (ISR), telling the programmer which interrupt(s) are pending.

. If the exception is a translation-related fault, the faulting address is also saved into the fault address
register (FAR).

. The PC is set to the current VBAR plus the appropriate offset.

The code then executed is termed the exception handler. Execution continues in the new state until the
processor executes an ERET (‘exception return’) instruction. On executing an ERET:

. The saved processor state (SPSR) is restored.

. The value saved in the ELR is written to the PC.

Thus, execution jumps back to where the program was executing before the exception was taken, in much
the same processor state as it was in at the time.

Preferred return address

The ‘preferred return address’ of synchronous exceptions has an architecturally defined relationship with
the instruction that caused the exception. For most instructions, the preferred return address is the
program counter value at the point when the exception is taken, therefore returning back to the same
instruction once the exception is handled.

There is one exception to this: the class of exception generating instructions, whose sole purpose is to
generate a particular kind of exception. The most common of these is the SVC (‘supervisor call’) instruction,
which is used to implement system calls. These instructions preferred return address is always the next
instruction, that is, PC + 4.

11.1.3 Vectors and vector tables

The appropriate vector is determined from: the type of the exception, either synchronous, interrupt
request (IRQ), ‘fast’ interrupt request, or external abort (which is described in more detail later); the
current stack pointer in use; whether the exception originates from a lower exception level; and whether
the exception originates from the 32-bit mode or not. As such the vector table contains 16 vectors. Each
vector is 128 bytes. The vectors are then located at a given offset from the base address, see Figure 11.1.

Exception from Exception type
Synchronous IRQ Fast IRQ External abort

Current EL, using stack pointer SP_EL0 0x000 0x080 0x100 0x180
Current EL, using this EL’s stack pointer 0x200 0x280 0x300 0x380
Lower EL, in 64-bit mode 0x400 0x480 0x500 0x580
Lower EL, in 32-bit mode 0x600 0x680 0x700 0x780

Figure 11.1: Arm vector table offsets [81, D1.3.1].
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There is not a single active vector table, but one per exception level, with all the exception-related registers
(SPSR, ELR, ESR, FAR, etc) appropriately banked (with one per exception level).

Note that in Armv8, fast interrupt requests function identically to normal interrupt requests. However,
they have independent routing machinery. Interrupt controllers may freely choose to route different
interrupts as different types, but which type the interrupt is has no effect on the execution of the machine.

11.1.4 Precision

Historically, the introduction of pipelined machines raised issues about the behaviour of exceptions:
since instructions may have already been partially executed, the resulting interrupts would appear as
a discontinuity in the flow of instructions [110]. Since then, hardware has had two kinds of exceptions:
imprecise exceptions retain that discontinuity, whereas precise ones take the performance penalty of
recovering (e.g. by discarding later instructions and restarting earlier instructions) to guarantee more
predictable behaviours that programmers could rely on. Intuitively, for a precise exception one can
pinpoint a particular point in the sequence of instructions where the exception happens.

Today, Arm retains imprecise exceptions, but only in some cases: all synchronous exceptions and interrupt
requests are precise. Only system errors — errors from the external system reported back the CPU
asynchronously — may be imprecise. We discuss external aborts in more detail in §11.4.

11.2 Instruction instances

One often thinks of processors as executing instructions in some instruction sequence, and common
terminology is based on those two concepts. For example, the Arm manual has around 60 instances of
instruction stream or execution stream.

However, exceptions can arise at multiple points within the fetch-decode-execute cycle, including during
the fetch and decode, when there is no ‘instruction’. For Armv9.4-A, much of this is captured in an Arm
top-level function written in the Arm Architecture Specification Language (ASL), which previous work by
Armstrong, Campbell et al. [45, 111, 112] translated into Sail. This gives us an executable semantics of
the sequential ISA aspects of Armv9.4-A with exceptions (§13.2).

A highly simplified outline of a single-instruction slice of the (400k line) instruction semantics is given in
Figure 11.2.

function __TopLevel() =
// in TakePendingInterrupts:
if IRQ then AArch64_TakePhysicalIRQException ()
if SE then AArch64_TakePhysicalSErrorException (...)
// in AArch64_CheckPCAlignment:
if pc [1..0] != 0b00 then AArch64_PCAlignmentFault ()
// in __FetchInstr:
opcode = AArch64_MemSingle_read(pc , 4) // read memory
// in __DecodeA64:
match opcode

[1,_,1,1,1,0,0,1,0,1,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_] =
// the semantics for one family of instructions ,
// including loads LDR Xt ,[Xn]
// execute_aarch64_instrs_memory_single_general_
// immediate_signed_post_idx(n,t,...)
let address = X_read(n, 64) // read register n
let data : bits('datasize) = // read memory

Mem_read(address , DIV(datasize ,8))
// write register t
X_set(t, regsize) = ZeroExtend(data , regsize)

Figure 11.2: Outline of a single-instruction slice of the Arm intra-instruction semantics.
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Figure 11.3: Top. The tree of (partially) executed FDX instances at one time, in hardware or operational
model execution. Bottom. The sequence of architecturally executed FDX instances in a completed
execution.

Executing this semantics may lead to one or more kinds of exception, calling the ASL/Sail function
AArch64_TakeException(). This function writes the appropriate values to registers, e.g. computing the
next PC, exception level, etc. and terminates this __TopLevel() execution. So instead of ‘instruction
instances’, we refer to fetch-decode-execute instances (FDX instances), a single execution of __TopLevel().

11.2.1 Fetch-decode-execute trees and streams

One must relate the out-of-order speculative execution of hardware implementations and the architectural
definition of the allowed behaviours.

At any instant, each core may be processing, out-of-order and speculatively, many instructions (really,
FDX instances). Partially executed instances are restarted or discarded if they would violate the intended
semantics (e.g. on a mispredicted branch).

One can visualise the state of a single core abstractly as a tree of partially and completely executed
instances, as in Figure 11.3 (top). Abstract-microarchitectural operational semantics have long made use
of this abstraction to implement the thread subsystems [8, 20, 15, 48, 16, 7], see Chapter 2. We now lift
this model-specific concept into the domain of architecture.

In the figure, we depict the retired (committed) FDX instances as solid dark green, and partially/tentatively
executed in-flight instances as light green. The arrows depict program order. Committed instances can
be program-order-after in-flight instances, and non-committed instances may need to be restarted.
Eventually all FDX instances for this hardware thread will be either committed or discarded, e.g. as
in Figure 11.3 (bottom). These are the architecturally executed FDX instances. The architecture
definition, and any formal semantics thereof, have to define which such sequences are allowed for each
thread. This definition includes the register content; memory read values; and their relationships
with other threads, as determined by the relaxed concurrency model. Axiomatic concurrency models,
e.g. [13, 113, 114, 115, 116, 117, 4, 2, 34, 118, 69, 42, 32, 46], have candidate executions which contain
events just from these architecturally executed instances.

The Arm prose specification, given in Figure 11.4 (top), previously attempted to capture the relationship
between implementation execution (out-of-order and speculative) and the architectural definition of
allowed behaviour in terms of a notion of a ‘simple sequential execution’ of the machine. As the prose says,
simple sequential execution does not hold for the intended relaxed-memory architecture. We propose a
more correct rephrasing that allows for exceptions and other systems phenomena in Figure 11.4 (bottom).

Figure 11.5 depicts a tree of instances involving exception entry (SVC) and return (ERET). Arm-A allows
implementations to execute the exception handler’s instruction instances out-of-order with respect to
instances program-order-before the exception entry and program-order-after the exception return. The
constraints on this freedom is what we now explore.
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Architecturally executed An instruction is architecturally executed only if it
would be executed in a simple sequential execution of the program. [...]
Simple sequential execution The behavior of an implementation that fetches,
decodes and completely executes each instruction before proceeding to the next
instruction. Such an implementation performs no speculative accesses to memory,
including to instruction memory. The implementation does not pipeline any
phase of execution. In practice, this is the theoretical execution model that the
architecture is based on, and Arm does not expect this model to correspond to a
realistic implementation of the architecture.

Architecturally executed A candidate execution can be architecturally executed
if it is composed of a sequence of FDX instances for each thread that together
satisfy the Arm concurrency model [extended to cover exceptions, as described
here, and other systems phenomena], starting from the machine initial state.

Figure 11.4: Arm prose specification [81, Glossary, p12916] (top) and our suggested rephrasing (bottom).

svc eret

Figure 11.5: The tree of partially and completely executed FDX instances with exceptions, in hardware or
operational model execution. Instructions may execute out-of-order across exception boundaries, requiring
a modern definition for precision.

11.3 Relaxed behaviour of precise exceptions

Exceptions change the control flow and processor context, that is, the collection of system and special
registers which control the execution of the machine. These include the current exception level (PSTATE.EL),
masking of interrupts (PSTATE.{D,A,I,F}), processor flags, and so on. Changes to the context need not
take effect immediately; to ensure that program-order-later instructions see such changes, exceptions are
context synchronising: they ensure updates to the context are seen by later instructions. As a side-effect
of that context synchronisation, exception boundaries impose some ordering.

We will see that the context synchronisation performed by the machinery is the primary mechanism that
enforces order at the boundary of an exception. In addition to this, different classes of exceptions may
come with their own additional ordering constraints: translation faults are bound by the constraints
discussed in Chapter 8, interrupts cannot happen before they are generated, and so on. However, we
can set a baseline set of behaviours for exceptions by investigating the simplest kind of exception: the
unencumbered exception-generating-instructions such as the SVC supervisor call. As such, throughout this
section we will use exceptions from SVC instructions as an exploratory tool, but all behaviours described
therein also apply to all other exception types.

In this section, we explain relaxed behaviour of precise exceptions through litmus testing. We start with
the baseline out-of-order execution across exception boundaries (§11.3.1), before talking about context
synchronisation in detail (§11.3.2). We continue with a collection of potentially interesting edge cases:
changing privilege levels (§11.3.3), dependencies through exception machinery (§11.3.4), asynchronous
exceptions (§11.3.5), then the stronger behaviour of specific types of exceptions (§11.3.6), before touching
on how the instruction semantics needs to be adapted (§11.3.7), and finally we discuss a corner case when
disabling context synchronisation (§11.3.8).

11.3.1 Out-of-order execution across exception boundaries

Before discussing the ordering that exception boundaries do impose, we will first see that, in general,
exception boundaries do not act as memory barriers. Loads and stores may be executed out-of-order over
an exception entry or an exception exit or the composition of both.

11.3. RELAXED BEHAVIOUR OF PRECISE EXCEPTIONS 187



Figure 11.6 contains a sample of shapes which show that the reads and writes are able to execute
out-of-order with respect to the various exception boundaries.

As an example, the first of these, MP+dmb.sy+svc, is an MP (message passing) variant. The writer
thread is ordered by a full barrier. The reader thread is split in two: after the first read there is an SVC
which generates an exception and the exception handler performs the second read. We show this in the
execution diagrams with a single svc edge between the two reads.

11.3.2 Context synchronisation and speculation

Updates to the context, such as writes to system registers, need synchronisation to be guaranteed to have
an effect. We do not model the behaviour of such context-changing operations when such synchronisation
is not performed. Instead, we merely identify when and how exceptions are context-synchronising, and
note that this has a knock-on effect on memory accesses.

Architecturally, a context synchronisation event guarantees that no instruction program-order-after the
event is observably fetched, decoded, or executed until the context-synchronising event has happened [68,
p. 14752, B2.10.1]. A simple microarchitectural implementation for context synchronisation is to flush the
pipeline: restarting all program-order-later instances once the context-synchronising effect occurs. More
complex implementations may be more clever, as long as they preserve the semantics.

Software can explicitly generate context-synchronising events by issuing an Instruction Synchronisation
Barrier (ISB). Context synchronisation can also happen implicitly, for example on exception entry and
exit. This is the case in Arm, except in a rare use case we return to in §11.3.8.

The effect of context synchronisation events in exception boundaries is that any instance after the boundary
has an ISB-equivalent dependency on the instances before the boundary. This mechanism implies the
following fundamental invariant: context synchronising exception boundaries are never taken speculatively.
This limits speculation of such boundaries to the same well-understood extent as speculation of ISBs. This
invariant has interesting interactions with external aborts, which we discuss in §11.4.

The fact that context-synchronising exception boundaries cannot be taken speculatively implies that the
code inside an exception handler cannot execute before the exception entry’s control-flow is determined
(see MP+dmb+ctrlsvc (Figure 11.7, p.190)); and similarly, cannot return before the ERET’s control-flow is
determined (see MP+dmb+ctrleret (Figure 11.7, p.190)).

11.3.3 Privilege level

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
PSTATE.EL=0b1;

MP.EL1+dmb.sy+svc AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svcrf
fr

Figure 11.8: Same-exception-level exceptions are no stronger or weaker.
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+svc AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svcrf
fr

SVC #0
MOV X2,#1
STR X2,[X3]

Thread 0

MOV X0,#1
STR X0,[X1]
ERET

T0 Handler

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+eret+dmb.sy AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

eret dmbrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

MOV X0,#1
STR X0,[X1]
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

SB+dmb.sy+eret AArch64

Allowed: 0:X2=0, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

R x=0d:

Thread 1

dmb eretfr
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0
LDR X2,[X3]

Thread 1

ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+svceret AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svceretrf
fr

MOV X0,#2
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

MOV X2,#1
STR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

S+dmb.sy+svc AArch64

Allowed: 1:X0=1, *x=2

W x=2a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

dmb svcrf
co

LDR X0,[X1]
SVC #0
MOV X2,#1
STR X2,[X3]

Thread 0

ERET

T0 Handler

LDR X0,[X1]
SVC #0
MOV X2,#1
STR X2,[X3]

Thread 2

ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

LB+svc-erets AArch64

Allowed: 0:X0=1, 1:X0=1

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

dmb svceretrf
rf

Figure 11.6: Reads and writes may be executed out-of-order across exception entry, exit, or even both.
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrlsvcrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

LDR X0,[X1]
CBNZ X0,LC00
LC00:
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrleret AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrleretrf
fr

Figure 11.7: Context synchronising exception entry (and returns) are not executed speculatively.

The privilege level (exception level) has little to no additional effect on the behaviours we present: their
allowed/forbidden status remains the same whether the privilege goes up/down in entry/exit or remains
the same. For example in the MP.EL1+dmb+svc test (Figure 11.8) the exception is taken from EL1 and
to EL1, but this does not affect any of the machinery (except which vector is used). As before, this is a
general statement about the exception machinery, and specific types of exceptions may have additional
constraints: e.g. translation faults cannot be caused by out-of-context translations, where the context
depends on the exception level (§8.8.1).

Store forwarding It is permitted for writes to be forwarded from a store to a read across exception entry
and return. For example in the SB+dmb+rfisvc-addr test (Figure 11.9), the store in Thread 1 is observed
by the load in the exception handler (at a higher privilege level) ‘early’, before it is propagated globally.

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

MOV X0,#1
STR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]
EOR X6,X2,X2
LDR X4,[X5,X6]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=y, 1:X5=x

SB+dmb.sy+rfisvc-addr AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

SVCd:

R y=1e:

R x=0f:

Thread 1

dmb po

po

addr

fr

rf

fr

Figure 11.9: Forwarding into a non-speculative handler.
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11.3.4 Dependency through system registers

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
MRS X4,ESR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ESR_EL1,X5
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:PSTATE.EL=0b1,
1:X1=y, 1:X3=x

MP.EL1+dmb.sy+dataesrsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb dataesrsvcrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

LDR X0,[X1]
MRS X4,ELR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ELR_EL1,X4
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlelr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrlelrrf
fr

Figure 11.10: System registers and context synchronisation

Where exceptions are taken to and returned to are part of the context, and their respective registers
must be read by the exception machinery on taking and returning from the exception. These registers
are not read-only; software can write to them. Therefore, they can be involved in register dependency
chains. While we do not attempt, in this work, to build a general model of dependencies, we touch on this
particular aspect briefly.

Dependencies on system register accesses compose with ordering from context synchronisation events to
program-order-later instructions. The MP.EL1+dmb+dataesrsvc test (Figure 11.10) demonstrates that a
write to the system register ESR that depends on a read forbids reordering this read across the boundary,
even though resolving the dependency does not affect the exception.

The ELR register is a special-purpose register, and is therefore ‘self-synchronising’, unlike system registers [81,
D19.1.2, p6331]. Therefore, writes to the ELR do not need context synchronisation to guarantee that they
are seen by program-order-later instructions, and this means that dependencies into the ELR are preserved
automatically, for example, in the MP+dmb+ctrlelr test (Figure 11.10).

This has two related subtleties, and is currently under investigation by Arm. The Software Thread ID
Register (TPIDR) is a system register in which the operating system can store thread identifying information,
but has no relevant indirect effects. Further testing and discussions may clarify whether it forbids reordering.
While dependencies through special-purpose registers are preserved, context synchronisation does not
necessarily need to wait for those writes, and so these dependencies do not necessarily pass to instructions
after context synchronisation (in contrast to system register writes).

11.3.5 Ordering from asynchronous exceptions

Asynchronous exceptions cannot be taken speculatively. Therefore, all instructions program-order-after
an asynchronous exception happen after that exception.

11.3.6 Exception-specific mechanisms

Some exceptions on some implementations involve additional mechanisms. For example, when an
implementation supports Enhanced Translation Synchronisation the translation-table-walks which generate
MMU faults gain additional ordering from program-order-previous instances, see §8.4.3. Figure 11.11
compares a message-passing shape involving a translation fault with an asynchronous interrupt.
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X5,X0,X0
// will segfault
LDR X4,[X5]

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+addr-fault AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

Pagefaultd:

R x=0e:

Thread 1

dmb addr

po

rf

fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
L:
NOP

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
interrupt at=L

MP+dmb.sy+int AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

TakeInterruptd:

R x=0e:

Thread 1

dmb po

po

rf

fr

Figure 11.11: Different exception kinds can have different behaviour.

11.3.7 Exceptions and the intra-instruction semantics

Wherever possible, we want to interpret the intra-instruction ASL ordering as preserved, for conceptual
simplicity, memory-model tool execution, and reasoning. This has previously been possible except in a few
specific cases that are inherently concurrent: instructions that do multiple accesses, and CSEL, CAS, SWAP,
etc. Exceptions introduce a new interesting case for instructions that do a register writeback concurrently
with a memory access. For example, STR (immediate) has ‘Post-index’ and ‘Pre-index’ versions [81,
C6.2.322, p1996]. The post-index STR Xt, [Xn], #8, for example, stores the value in Xt to the address
initially in register Xn and increments Xn by 8. The Arm ARM ASL for STR puts that register write at the
end, after the memory access has completed.

The architectural intent is that program-order-later instances that depend on Xn can go ahead early,
e.g. before the data in register Xt is available to be written to memory. The related litmus tests have
previously been observed on hardware [119].

Previous work captured this allowed by having the register writeback before the memory access in the
instruction semantics. However, exceptions require more care: when the memory access generates an
exception, the writeback register should appear unchanged to instances after the exception boundary.

Currently, the Armv9.4 ASL, and therefore the Sail derived from it, does not account for the relaxed
behaviour of exceptions around these register writebacks. There are a number of proposed solutions,
ranging from including code to cleanup after exceptions in the ASL, to treating register writes fully relaxed,
like memory writes: with speculative ’forwarding’ and discarding on an exception. As was discussed earlier
we will need some similar change for relaxed system registers (§8.7.1), and for intra-instruction parallelism
(§8.4.9). No solution has yet been implemented, and so the model here does not account for these cases.

11.3.8 Disabling context synchronisation

So far we have assumed exception boundaries are context synchronising. However, Arm has an optional
feature, FEAT_ExS, which provides two new fields, EIS and EOS, in the SCTLR_ELx system control register.
These allow software to disable context synchronisation on exception entry and return, respectively. While
the semantics seems clear for these systems, the programming model is unpredictable and hard to program
correctly, and so this configuration is rarely encountered in practice.

The result of switching off context synchronisation on exception boundaries is to weaken the previously
described speculation tests: permitting speculation of the entry or exit of non-context-synchronising
exception boundaries, and all the behaviours associated thereof.
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11.4 Synchronous external aborts

The memory system may detect errors such as data corruption independently of the MMU or Debug
hardware, e.g. using parity bits or error correcting code. In those cases, it will signal the error by a
class of exceptions called external aborts. The architecture does not define when implementations report
such aborts synchronously [97, D7.6, IPJHZS]. It is implementation defined whether an external abort is
reported as a synchronous external abort (under the ‘Data abort’ class) or asynchronously as a system
error, and what errors are reported as external aborts at all [97, RFNVVJ].

Instances program-order-after a potential cause for synchronous external aborts are considered speculative
until any such synchronous external abort can be ruled out. This results in stronger behaviour (§11.4.1).
In an implementation that always reports external aborts asynchronously, the later instances become
non-speculative earlier, allowing them to exhibit weaker behaviours.

In general, systems want to report errors as synchronously as possible. When errors are reported
asynchronously, in general, the only recovery is to wind down the aborting process. The Arm Reliability,
Availability, and Serviceability (RAS) extension adds some ability for more fine-grained recovery procedures,
but this extension is a substantial component of the architecture, far beyond the scope of this work.

11.4.1 Behaviour resulting from synchronous external aborts

There is an asymmetry between reads and writes with respect to speculation: reads can be satisfied
speculatively, whereas writes cannot be propagated speculatively. We must therefore consider reads and
writes separately.

Instructions program-order-after stores are executing speculatively up until the store has reached the point
in its execution where no further synchronous exceptions can occur. If a store may generate a synchronous
external abort, then that point is (at least) once it has propagated to memory This means that events
program-order-after an unpropagated store must also be considered to be speculative until the store has
propagated. For example, this forbids out-of-order propagation of writes (e.g. as in MP+po+addr).

Reads program-order-after writes are permitted to execute early, even speculatively, unless otherwise
forbidden by some other part of the model, e.g. with an interposing context-synchronisation-event. For
example, when there is the possibility of synchronous external aborts on a store, reads program-order-after
ISBs program-order-after the store are forbidden from satisfying before the propagation of that store (e.g.
as in R+dmb.sy+isb).

Perhaps more interestingly, if a load may generate a synchronous external abort, then program-order-later
instances are speculative until the load has completed all its reads, and is non-restartable. This means that
writes program-order-after that read are forbidden from executing out-of-order. This forbids interesting
tests which would otherwise be allowed, namely load-buffering (LB+pos) and MP with a plain ISB after
one load (MP+dmb.sy+isb) [120].

Load buffering and the out-of-thin-air problem This has an important and hitherto not well-understood
impact on programming-language concurrency models. Ruling out LB enables substantially simpler design
of programming language concurrency models: they can execute instructions in-order and merely keep a
history of the writes seen so far, e.g. [121], and thereby avoid the notorious out-of-thin-air problem [122].
These simpler semantics support a line of model checkers for C/C++ and LLVM [123, 124, 125]. In
contrast, the presence of LB seems to require significant sophistication [126, 122, 127, 128, 129, 42, 28, 130].
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Chapter 12

An axiomatic model for precise exceptions

We now give a formal semantics that describes the concurrent behaviour of precise exceptions on Arm-A.
We give it as an extension of the previous model of Deacon et al. [7], as was recalled in Chapter 2. The
full model extended with exceptions is given in Figure 12.1.

The model is parameterised along two axes:

. FEAT_ExS corresponds to the feature of the same name being implemented; we do not support
runtime changes of the related SCTLR_ELx.{EIS,EOS} fields, and so fix them as variants.

. SEA_R and SEA_W correspond to the implementation-defined choice of whether loads or stores may
generate synchronous external aborts.

Most current hardware does not support FEAT_ExS, and moreover, we expect that most software would
not use it. However, its semantics is relatively straight-forward as we understand it, and so we include it
in our model.

The SEA variants in this model are not architecturally-defined identifiers. In fact, in the absence of actually
observing a fault directly there appears no architectural way to identify the choice beyond running the
litmus tests presented in Chapter 11. These two variants capture whether any store or load respectively,
could generate a synchronous external abort, even though the model does not consider executions in which
such aborts actually occur.

12.1 Extended candidates

To support precise exceptions, we add new events to the candidate execution:

. TE (take exception), and TakeInterrupt, and ERET (exception return). These correspond to the
synchronisation points (whether or not they are synchronising) of taking or returning from an
exception.

. MRS and MSR events for the reading and writing (respectively) of system registers, corresponding to
the identically-named Arm instructions.

Exceptions and program-order Program-order includes all the events of the thread, even with interposing
exceptions. That is, program-order is not discontinuous, at least for precise exceptions. We therefore
include all the new events in program-order. This includes the events from instructions directly before
and after taking or returning from an exception.

Interrupts While we do not model inter-processor interrupts or the generic interrupt controller, we do
support precise asynchronous exceptions generally (e.g. timers).

Candidates can, at any point in thread, have an instance which does not follow from the natural intra-
instruction semantics, but corresponds to pending an interrupt, i.e. setting the appropriate bit in the ISR.
The intra-instruction semantics then will take the interrupt at the appropriate time.

For performance reasons in the executable-as-a-test-oracle implementation within isla-axiomatic we do
not allow arbitrary interrupts, see §13.2.
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1 "Arm -A exceptions"
2
3 include "cos.cat"
4 include "arm -common.cat"
5
6 (* might -be speculatively

executed *)
7 let speculative =
8 ctrl
9 | addr; po

10 | if "SEA_R"
11 then [R]; po
12 else 0
13 | if "SEA_W"
14 then [W]; po
15 else 0
16
17 (* context -sync -events *)
18 let CSE =
19 ISB
20 | if "FEAT_ExS" & ~"EIS"
21 then 0
22 else TE
23 | if "FEAT_ExS" & ~"EOS"
24 then 0
25 else ERET
26
27 let ASYNC =
28 TakeInterrupt
29
30 (* observed by *)
31 let obs = rfe | fr | co
32
33 (* dependency -ordered -before *)
34 let dob =
35 addr | data
36 | speculative ; [W]
37 | speculative ; [ISB]
38 | (addr | data); rfi
39
40
41
42 (* atomic -ordered -before *)

43 let aob =
44 rmw
45 | [range(rmw)]; rfi; [A|Q]
46
47 (* barrier -ordered -before *)
48 let bob =
49 [R] ; po ; [dmbld]
50 | [W] ; po ; [dmbst]
51 | [dmbst]; po; [W]
52 | [dmbld]; po; [R|W]
53 | [L]; po; [A]
54 | [A | Q]; po; [R | W]
55 | [R | W]; po; [L]
56 | [dsb]; po
57
58 (* contextually -ordered -before *)
59 let ctxob =
60 speculative; [MSR|CSE]
61 | [MSR]; po; [CSE]
62 | [CSE]; po
63
64 (* async -ordered -before *)
65 let asyncob =
66 speculative; [ASYNC]
67 | [ASYNC]; po
68
69 (* Ordered -before *)
70 let ob = (obs | dob | aob |
71 bob | ctxob | asyncob)+
72
73 (* Internal visibility

requirement *)
74 acyclic po-loc | fr | co | rf as

internal
75
76 (* External visibility

requirement *)
77 irreflexive ob as external
78
79 (* Atomic: Basic LDXR/STXR

constraint to forbid
intervening writes. *)

80 empty rmw & (fre; coe) as atomic

Figure 12.1: Arm-A exceptional model (grayed out parts are unchanged from the original model).
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12.2 Extended relations

We expand ordered-before:

. Wherever ctrl|(addr;po) was used before, we also include instructions program-order-after reads
or writes when in the relevant SEA variant. With those variants, the instructions program-order-after
those events are speculative up until the memory access has completed.

. The previous model’s use of ISB was purely for its context synchronisation effect. Accordingly,
wherever [ISB] was used before, we include exception entry (TE) and exit (ERET), unless we are in
the variant where context synchronisation on those events is disabled.

. We extend barrier-ordered-before with the DSB barriers. The barrier event classes are upwards-closed,
so that DSB.SY is included in all the dmb events.

. We add a context-ordered-before (ctxob) sub-clause to the ordered-before relation, which captures the
ordering of context-changing operations and context-synchronisation: namely, that context-changes
and context-synchronisation cannot happen speculatively; that all context-changes are ordered before
any context-synchronisation; and that no instruction program-order-after context-synchronisation
can be executed until the synchronisation is complete.

. We add an async-ordered-before (asyncob) clause to ordered-before, capturing that asynchronous
events (such as interrupts) cannot be done speculatively, and instructions program-order-after them
may not happen before the asynchronous event which precipitated them.

12.3 Challenges in defining precision

The phenomena we described in §11.3 highlight how the historical definition of precision does not account
for relaxed memory. The problem is then how to adequately define precision in a relaxed-memory setting.
This challenge is hinted at in the way the Arm reference manual [81, D1.3.1, p5355] defines precision as:

An exception is precise if on taking the exception, the hardware thread (aka
processing element, PE) state and the memory system state is consistent with the
PE having executed all of the instructions up to but not including the point in
the instruction stream where the exception was taken from, and none afterwards.
[except that in certain specific cases some registers and memory values may be
UNKNOWN]

This definition explicitly allows various side effects of an instruction executing when an exception is taken
to be visible. The details are intricate, but in outline: registers that would be written by the instruction
but which are not used by it (to compute memory access addresses) can become UNKNOWN, and for
instructions that involve multiple single-copy-atomic memory writes (e.g. misaligned writes and store-pair
instructions), where each write might generate an exception (e.g. a translation fault), the memory locations
of the writes that do not generate exceptions become UNKNOWN. These side effects could be observed
by the exception handler, and the memory write side effects could be observed by other threads doing
racy reads. Hardware updates to page-table access flags and dirty bits, and to performance counters,
could also be observable. This means that the abstraction of a stream of instructions executed up to a
given point does not account for the relaxed-memory behaviour.

Arm classify particular kinds of exceptions as precise or not, but all the above makes it hard to define in
general what it means for an exception to be precise in a relaxed setting.

The ultimate architectural intent of precision is that it is sufficient to meaningfully resume execution after
the exception. For example, for software that does mapping on demand, when an instruction causes a
fault by accessing an address which is not currently mapped, the exception handler will map that address
and return. This means that re-executing the original instruction will overwrite these UNKNOWNs, and
will have ordering properties much like the original instruction would have had if the mapping had already
been in place.

Our models are complete enough to reason about such cases in concrete examples. However, a general
definition of precision, and the accompanying reasoning principle, would have to capture assumptions
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about the exception handler and its concurrent context to ensure that they do not observe the above
side effects. More straightforwardly, the above definition of what becomes UNKNOWN would have to be
codified, as that is not currently in the ASL architectural pseudocode.

Exceptions may also be imprecise, in which case the behaviour is very loosely constrained, and the current
architecture does not give well-defined guarantees in the presence of imprecise exceptions.

12.4 Scope and limitations

We do not give semantics to imprecise exceptions. It is unclear how to do so at an architectural level.

We do not define the behaviour of ‘constrained unpredictable’, and merely flag when it is triggered.
Clarifying it will require substantial extensive discussions with Arm architects, likely affecting the wording
in the architectural specifications, beyond the scope of this work. We do not model switching between
Arm FEAT_ExS modes (§11.3.8): they are supported architecturally, but are not commonly implemented.
Finally, while we believe our models correctly capture the Arm architectural intent, and that it gives a
solid basis for programmers, this is not an authoritative definition of the architecture, and is subject to
change.
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Chapter 13

Validating the exceptions model

13.1 Validating against hardware

We extend the harness described in Chapter 10, and run a set of 55 hand-written tests on a small collection
of devices: Raspberry Pi 3B+, 4B, and 5; an ODROID N2+ with an Amlogic S922X SoC; and an Apple
Mac Mini with Apple M2 silicon SoC. The results from that testing can be found in Table 13.1.

We note that many devices do not observably re-order loads with respect to writes or context-synchronisation:
of our devices, only the ODROID’s S922X SoC had a core (its Arm Cortex-A73) which exhibit those
behaviours on usermode tests. For that reason, we did not expect, except on that core, to observe
re-ordering loads across exception boundaries.

We find that out-of-order execution of stores across exception boundaries is readily observable over the full
range of devices. The Apple M2 is the only device which did not exhibit store-store re-ordering across an
exception boundary, but it does not exhibit normal store-store re-ordering across context-synchronisation
in usermode tests, so this is not unexpected.

As such, the hardware results for exceptions are disappointingly weak: the hardware we have access to
is not aggressive enough in the base usermode behaviours to be expecting to observe the behaviours we
seek here, and the number of runs is not substantial enough to draw any inferences on the envelope of
behaviours they implement. Further hardware testing will be required to build the necessary confidence,
especially around FEAT_ExS and the differences in the exception kinds.

13.2 Executable-as-a-test-oracle implementation

We implement the model as an executable-as-a-test-oracle implementation in Isla [46],

To support tests with asynchronous exceptions, we added a construct to specify a label where the exception
will occur, so that Isla then pends an interrupt at that program point.

The instruction semantics we use is a translation into the Sail language of the Armv9.4-A ASL specification,
including the top-level function provided by Arm [112]. The translation process [45] is mostly automatic,
requiring select manual interventions mostly due to differences in the type systems of ASL and Sail. We
also added patches to support the integration with Isla, in particular adding hooks to expose information
about exceptions being taken in a form that can be readily consumed by Isla. In doing so, we encountered
and fixed some bugs in the ASL model related to uses of uninitialised fields in data structures, as well as
missing checks for implemented processor features that led to spurious system register accesses.

The results from the model over each of the variants can be found in Table 13.2.
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Table 13.1: Exceptions hardware refs. Columns are, respectively, an ODROID N2+ (Amlogic S99X, ‘big’
cores only, Arm Cortex-A73 r0p2), an Apple M2, and Raspberry Pis 3B+ (Arm Cortex-A53 r0p4), 4B
(Arm Cortex-A72 r0p3), and 5 (Arm Cortex-A76 r1p4).

Name s922x m2 rpi3b+ rpi4b rpi5
LB+svc-dmb-erets 0/18M 0/360M 0/1M 0/19M 0/11M
LB+svc-erets 0/18M 0/360M 0/1M 0/19M 0/11M
LB+svcs 388/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrl-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrl-rfisvceret-addr 0/18M 0/360M 0/22M 0/108M 0/39M
MP+dmb+ctrl-svc 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrlelr 0/18M 0/360M 0/22M 0/108M 0/39M
MP+dmb+data-svc 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+dmb-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret-dmb 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret=addr 0/18M 0/0 0/1M 0/19M 0/11M
MP+dmb+svc 84/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-addreret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-dmb 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-dmb-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-eret 0/18M 0/360M 0/33M 0/19M 0/11M
MP+dmb+svcnoeis 23/18M 0/360M 0/1M 0/19M 0/11M
MP+eret+addr 22K/18M 0/360M 63/1M 0/19M 2/11M
MP+eret+dmb 18K/18M 0/360M 1K/33M 262/19M 20/11M
MP+eret+svc 9K/18M 0/360M 244/21M 256K/107M 20/39M
MP+erets 29K/18M 0/360M 30/1M 59/19M 16/11M
MP+svc+addr 17K/18M 0/360M 59/1M 0/19M 8/11M
MP+svc+dmb 18K/17M 0/360M 80/1M 3/19M 876/11M
MP+svc+eret 22K/17M 0/360M 1K/21M 33/107M 77/39M
MP+svc-W-eret-W+addr 14K/13M 0/0 0/0 0/16M 1/6M
MP+svc-dmb+addr 0/17M 0/360M 0/1M 0/19M 0/11M
MP+svc-dmb-eret+addr 0/17M 0/360M 0/1M 0/19M 0/11M
MP+svc-eret+addr 13K/17M 0/360M 52/1M 0/19M 2/11M
MP+svc-erets 3K/17M 0/360M 42/1M 2/19M 8/11M
MP+svcs 8K/17M 0/360M 31/1M 0/19M 20/11M
MP.EL1+dmb+ctrlvbarsvc 0/17M 0/360M 0/21M 0/108M 0/39M
MP.EL1+dmb+svc 29/17M 0/360M 0/33M 0/12M 0/11M
S+dmb+eret 0/17M 0/360M 0/33M 0/12M 0/11M
S+dmb+svc 0/17M 0/360M 0/33M 0/12M 0/11M
S+erets 0/17M 0/360M 0/1M 0/19M 0/11M
S+svc-dmb-erets 0/17M 0/359M 0/1M 0/19M 0/11M
S+svc-erets 0/17M 0/359M 0/1M 0/19M 0/11M
S+svcs 0/17M 0/359M 0/1M 0/19M 0/11M
SB+dmb+eret 38/17M 12K/359M 162K/33M 85K/12M 2K/11M
SB+dmb+rfi-ctrl-eret 17K/17M 10K/359M 10K/1M 42K/19M 46/11M
SB+dmb+rfi-ctrl-svc 13K/17M 8/359M 15K/1M 2K/18M 58K/11M
SB+dmb+rfieret-addr 16K/16M 6K/359M 591K/21M 8K/107M 54/39M
SB+dmb+rfisvc-addr 18K/16M 12/359M 839K/21M 2K/106M 135K/39M
SB+dmb+svc 195/16M 14/359M 351K/33M 458/11M 63K/11M
SB+svc-dmb-erets 0/16M 0/359M 0/1M 0/18M 0/11M
SB+svc-erets 9K/16M 0/359M 22K/1M 7K/18M 38/11M
SB+svcs 2K/16M 0/359M 534K/21M 0/106M 646K/39M
SEA_R_detect 0/16M 359M/359M 0/1M 0/18M 0/10M
SEA_W_detect 0/16M 0/359M 0/1M 0/18M 0/10M
MP+dmb+eret-svc 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+eret 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+eret-svc 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+svc-eret 0/4M 0/360M 0/1M 0/3M 0/5M
SB.EL1+erets 15K/3M 0/359M 25K/1M 148/2M 43/5M
SB.EL1+svc-erets 3K/3M 0/359M 19K/1M 1K/2M 17/5M
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Table 13.2: Exceptions model refs

Name No features FEAT_ExS SEA_R SEA_W SEA_R&W
LB+svc-dmb-erets forbid forbid forbid forbid forbid
LB+svc-erets allow allow forbid allow forbid
LB+svcs allow allow forbid allow forbid
MP+daifset+dmb allow allow allow forbid forbid
MP+dmb+ctrl-eret forbid allow forbid forbid forbid
MP+dmb+ctrl-rfisvceret-addr forbid allow forbid forbid forbid
MP+dmb+ctrl-svc forbid allow forbid forbid forbid
MP+dmb+ctrlelr forbid allow forbid forbid forbid
MP+dmb+daifset allow allow allow allow allow
MP+dmb+dmb-eret forbid forbid forbid forbid forbid
MP+dmb+eret-dmb forbid forbid forbid forbid forbid
MP+dmb+eret-svc allow allow forbid allow forbid
MP+dmb+eret allow allow forbid allow forbid
MP+dmb+eret=addr forbid forbid forbid forbid forbid
MP+dmb+svc-addreret allow allow forbid allow forbid
MP+dmb+svc-dmb-eret forbid forbid forbid forbid forbid
MP+dmb+svc-dmb forbid forbid forbid forbid forbid
MP+dmb+svc-eret allow allow forbid allow forbid
MP+dmb+svc allow allow forbid allow forbid
MP+dmb+svcnoeis allow allow forbid allow forbid
MP+eret+addr allow allow allow forbid forbid
MP+eret+dmb allow allow allow forbid forbid
MP+eret+svc allow allow allow allow forbid
MP+erets allow allow allow allow forbid
MP+svc+addr allow allow allow forbid forbid
MP+svc+dmb allow allow allow forbid forbid
MP+svc+eret allow allow allow allow forbid
MP+svc-dmb+addr forbid forbid forbid forbid forbid
MP+svc-dmb-eret+addr forbid forbid forbid forbid forbid
MP+svc-eret+addr allow allow allow forbid forbid
MP+svc-erets allow allow allow allow forbid
MP+svcs allow allow allow allow forbid
MP.EL1+dmb+ctrlvbarsvc forbid allow forbid forbid forbid
MP.EL1+dmb+eret-svc allow allow forbid allow forbid
MP.EL1+dmb+eret allow allow forbid allow forbid
MP.EL1+dmb+svc-eret allow allow forbid allow forbid
MP.EL1+dmb+svc forbid forbid forbid forbid forbid
S+dmb+eret allow allow forbid allow forbid
S+dmb+svc allow allow forbid allow forbid
S+erets allow allow allow allow forbid
S+svc-dmb-erets forbid forbid forbid forbid forbid
S+svc-erets allow allow allow allow forbid
S+svcs allow allow allow allow forbid
SB+daifsets allow allow allow allow allow
SB+dmb+eret allow allow allow forbid forbid
SB+dmb+rfi-ctrl-eret allow allow allow forbid forbid
SB+dmb+rfi-ctrl-svc allow allow allow forbid forbid
SB+dmb+rfieret-addr allow allow allow forbid forbid
SB+dmb+rfisvc-addr allow allow allow forbid forbid
SB+dmb+svc allow allow allow forbid forbid
SB+svc+dmb-erets forbid forbid forbid forbid forbid
SB+svcs allow allow allow forbid forbid
SB.EL1+erets allow allow allow forbid forbid
SB.EL1+svc-erets allow allow allow forbid forbid
MP+dmb+ctrl-int forbid forbid forbid forbid forbid
MP+dmb+int allow allow allow allow allow
MP+int+dmb allow allow allow allow allow
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Chapter 14

Conclusion

We presented models for three key parts of the Arm architecture required for systems software: instruction
fetch and its required cache maintenance instructions; virtual memory and its required TLB maintenance
instructions; and the baseline behaviour for precise exceptions. We have produced a corpus of hand-written
litmus tests for these architectural aspects, covering a range of interesting hardware optimisations and
software requirements. We have clarified the architectural intent for those tests, and produced models
that capture that intent, as we understand it at the time of writing.

We produced axiomatic-style declarative semantics, in the standard cat language, for all three aspects
of the architecture. Additionally we produced a microarchitectural-style operational semantics for the
instruction fetch fragment intended equivalent to the axiomatic one.

We validated these models against a variety of hardware implementations, even finding some places where
modern microprocessors deviate from the desired architectural intent. For instruction fetch, with Maranget
we extended the herdtools suite to be able to generate new litmus tests, and ran those tests on hardware.
We built a brand new test harness, system-litmus-harness, able to run tests on a variety of hardware
at EL1, either bare metal or in KVM. We used this harness to produce experimental data for both the
virtual memory and exceptions parts.

We made these models executable as a test oracle, allowing the user to experimentally check behaviours
manually, or even do rudimentary model checking of a larger software pattern, by implementing them
in the isla-axiomatic or RMEM tools. This allowed us to validate the models against each other where
applicable, and against the architectural intent, and comparing the results from hardware test runs against
the model’s predictions.

Finally, for virtual memory, we proved a simple virtual memory abstraction which gives confidence that
the model correctly captures a key property that the model is intended to have.

14.1 Limitations

While we endeavour to be as faithful to the architectural intent as we can, and to produce models that
are sound abstractions of that intent, we have had to make tradeoffs in places.

We presented three models for three separate parts of the architecture, but did not merge them together
into a single architectural model. The models can be unioned together to produce a combined model with
all the events and relations from the models, but more work is needed to understand the interactions
between the architectural features: instruction fetches are memory reads which themselves are translated,
but where that translation behaves subtly different from the normal translations with different caching
rules; translation and instruction fetch can both cause exceptions to happen; exceptions cause the control-
flow to change and new instructions to be fetched; and so on. We do not imagine this is a particularly
arduous or complex task, but one that we have not yet done.

We produced two new separate languages for defining litmus tests. Ideally, we would have one unified
language that all tools (litmus, isla-axiomatic, and system-litmus-harness) all accept. As stated earlier,
we do not believe there is a fundamental restriction to unifying these languages, as currently they have
not diverged so far as to be incompatible.
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There are some places where it has become known that models presented in this work do not faithfully
capture the architectural intent as it is known today. In particular around the reachability of pagetable
entries, and invalidation of non-last-level pagetable entries, as was discussed earlier.

14.2 Future work

There are many areas where the work presented here is only the start, and where further effort could bear
fruit.

For more confidence in the architectural intent, more hardware testing (especially for the virtual memory
tests) is essential. In particular, running at EL2 (for stage 2 tests), and over a more varied collection of
devices.

Capturing more of the systems architecture is always desirable. We made a start here, but this is no
means the end. Modern systems software relies on much more of the architecture than just covered
here, such as: the Arm generic interrupt controller, and virtualisation of interrupts; the variety of Arm
features and extensions for virtual memory e.g. FEAT_ETS2, FEAT_BBM, FEAT_nTLBPA, access permissions,
and cacheability, and shareability domains; device memory and DMA; and much more.

With the models themselves, they can always be improved to be executable more efficiently, and the tools
easier to use. isla-axiomatic can run the virtual memory tests, but needs optimisations to be able to
run in any reasonable timeframe, and even then still takes hours on a modern high-end machine. This
seriously restricts the current usefulness of such tools to the average programmer.

There are now many concurrently existing models for Arm, covering overlapping sets of features: the
usermode model, which we recalled in Chapter 2; for transactional memory, Chong et al. [131]; for
persistent memory, Raad et al. [89]; and the official Arm model which contains an updated usermode,
memory tagging, ifetch, and some overlapping parts of the VMSA, Alglave et al. [42, 97, 107]. Simply
gluing these together into a single model would not be sound, as their interactions would need to be
explored, and the architectural intent clarified first. However, it seems necessary for such work to be
carried out to enable future verification efforts of complex systems.

Work on relaxed systems, either on virtual memory, instruction fetching, or exceptions has not ceased at
the finalization of this work. We are continuing to improve all the models given here, to engage in fruitful
discussions with Arm, to produce new models for more of the architecture, and to build more confidence
in the models we have already created.

Hopefully, this work enables future work by researchers, academics, engineers, architects, and hardware
designers, to better understand the environment as it is today. This hopefully will help them to produce
clearer and more robust architectures, and to take the first steps in verifying the complex systems software
that underpins so much of the modern base of computing with respect to the reality of the hardware we
run them on.
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Appendix A

Pocket guide to the Arm ISA

The litmus tests, as found in this thesis, use a relatively small subset of the whole ISA.

Refer to the Arm Architecture Reference Manual, Section C6 (‘A64 Base Instruction Descriptions’) for a
more complete explanation of all the instructions.

A.1 Architectural concepts

Some terminology:

. AArch64 is the 64-bit execution mode.

. A64 is the name of the 64-bit ISA which AArch64 executes.

. PE (‘Processing Element’) is generic Arm terminology for a hardware thread/core.

. GPR (‘General-purpose register’) is one of the 31 ‘general-purpose’ registers.

. Immediate values are literal numeric values used in the instructions, as opposed to being read from
registers.

Exception levels Arm execution is split into privilege levels (called exception levels in Arm), labelled
from EL0 (least privileged execution) to EL3 (most privileged), see Fig A.1.

Proc Proc Proc Proc

Kernel Kernel

Hypervisor

Firmware/Secure Monitor

EL0: Userland

EL1: Operating System

EL2: Hypervisor

EL3: Firmware

Least privileged

Most privileged

Figure A.1: Arm-A exception levels.

Registers A64 has:

. 31 general-purpose registers, named R0–R30.
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– Rn is an internal name, the register should be accessed via one of its aliases: Xn or Wn (see
Fig A.2).

– X0–X30 are aliases for the whole 64-bit bitvector stored in R0-R30.

– W0–W30 are aliases for the least-significant 32-bit vector stored in R0-R30.

. a stack pointer, SP.

– WSP is an alias for the least-significant 32-bit vector of SP.

. a program counter register, named PC, not directly accessible by software.

. a collection of ‘special-purpose registers’ which generally store some processor state, e.g.

– NZCV, the flag register.

– DAIF, interrupt mask register.

– CurrentEL, the current exception level register.

– . . .

. a collection of ‘system registers’ which are generally configuration and identification registers, which
control how the machine executes, e.g.

– SCTLR_EL1 the system configuration register, for EL1 and below.

– CTR_EL0 the cache-type identification register, accessible from EL0.

– . . .
63 03132

Wn

Xn

Figure A.2: Views of general-purpose register Rn.
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A.2.1 Branches

Branches are those instructions which write to the PC register.

B

B <LABEL>

Jumps to a given label.

Example The following code branches to label L2, then writes 2 to general-purpose register R0:
1 b L2
2 L1:
3 MOV X0 ,#1
4 RET
5 L2:
6 MOV X0 ,#2
7 RET
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Example Labels can be numeric, and branches to them can be suffixed with f (‘forward’) or b (‘back’).
e.g. this code has the control-flow-graph shown on the right:

1 0:
2 B 0f
3 1:
4 B 1f
5 0:
6 B 1b
7 0:
8 RET
9 1:

10 B 0b

B.cond

B.<COND> <LABEL>

Jumps to the given label, if the condition given is true.

Conditions The conditions are based on the current value of the condition register, NZCV, which are set
by condition instructions (e.g. CMP), and then the <COND> is one of:

. eq: Z==1

. ne: Z==0

. gt: N==V && Z==0

. lt: N!=V

Example This program returns 0, as the values are unequal.

1 MOV X0 ,#13
2 MOV X1 ,#11
3 CMP X0,X1
4 // now NCZV =={0,0,1,1}
5 B.eq Lequal
6 Ldifferent:
7 MOV X0 ,#0
8 RET
9 Lequal:

10 MOV X0 ,#1
11 RET

BL and RET

BL <LABEL>
RET

Branch-and-link (aka ‘call’) and return. BL jumps to given label, saving the return location (current
value of PC+ 4), to register X30. RET then returns, by branching to the location stored in general-purpose
register X30.

Example The following example returns 1,2,3 to registers R0, R1 and R2, respectively. Note that the
general-purpose register X30 is overwritten by BL, so the following example explicitly saves and restores
the value to some arbitrarily-picked general-purpose registers.

1 MOV X20 ,X30
2 BL f
3 MOV X30 ,X20
4 RET
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5 f:
6 MOV X0 ,#1
7 MOV X21 ,X30
8 BL g
9 MOV X30 ,X21

10 RET
11 g:
12 MOV X1 ,#2
13 MOV X22 ,X30
14 BL h
15 MOV X30 ,X22
16 RET
17 h:
18 MOV X2 ,#3
19 RET

BR and BLR

BR <GPR>

Branches to an address in the given general-purpose register. The address is absolute (not PC-relative).

BLR <GPR>

Branch-and-link register, behaves as BL as before, but jumps to the address stored in the register rather
than to a label.

Example The following code places the address of label L into the register R0 using the ADR instruction,
then branches to the label using the stored address:
1 ADR X0,L
2 BR L
3 L:
4 MOV X0 ,#1
5 RET

CBZ and CBNZ

CBZ <GPR>, <LABEL>
CBNZ <GPR>, <LABEL>

Jumps to given label, if the value in the given general-purpose register is zero (or not zero if CBNZ).

Example The following code returns with 3 in R3, since X0 is zero (so the first CBNZ) is not taken, X1 is
not zero (so the first CBZ) is not taken, but X2 is zero so the final CBZ is taken, and label L2 is branched to,
and the fallthrough case is missed:
1 MOV X0 ,#0
2 MOV X1 ,#1
3 MOV X2 ,#0
4
5 CBNZ X0,L0
6 CBZ X1,L1
7 CBZ X2,L2
8
9 // (fallthrough case)

10 MOV X3 ,#0
11 RET
12
13 L0:
14 MOV X3 ,#1
15 RET
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16 L1:
17 MOV X3 ,#2
18 RET
19 L2:
20 MOV X3 ,#3
21 RET

A.2.2 Comparisons

For use with the B.cond instruction. These instructions write to the NZCV flag register.

CMP

CMP <GPR0>, <GPR1>
CMP <GPR0>, #<IMM>

Subtracts the value stored in the second argument (either from a general purpose register or an immediate
value) from the value stored in the first general purpose register, setting the flag register.

Example At the end of this program the flag registers are set such that NCZV=={0,0,1,0} i.e. the result
is not-negative, no carry, it is zero, and no overflow.
1 MOV X0 ,#100
2 CMP X0,X0

Example At the end of this program the flag registers are set such that NCZV=={1,0,0,0} i.e. the result
is negative, no carry, not zero, and no overflow.
1 MOV X0 ,#1
2 MOV X1 ,#2
3 CMP X0,X1

Example At the end of this program the flag registers are set such that NCZV=={1,0,0,1} i.e. the result
is negative, no carry, not zero, and it overflowed.
1 MOV X0 ,#0
2 NEG X0,X0
3 CMP X0 ,#1

A.2.3 Register moving and arithmetic

MOV

MOV <GPR0>, <GPR1>
MOV <GPR0>, #<IMM>
MOV <GPR0>, #<IMM>, LSL #<IMM>

Copies a value stored in the second argument (either in a general-purpose register or a 16-bit immediate
value) into the first argument.

Optionally, the immediate value can be shifted left a multiple of 16.

Example At the end of this program X0 contains the value 2, and X1 contains the value 1.
1 MOV X0 ,#1
2 MOV X1 ,#2
3 MOV X2 ,#3
4 MOV X2,X0
5 MOV X0,X1
6 MOV X1,X2
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MRS and MSR

MSR <SYSREG>, <GPR>
MRS <GPR>, <SYSREG>

Writes (MSR) or reads (MRS) a system (or special-purpose) register.

Example This program sets bits 31-28 to one in the flags register then reads the CTR_EL0 identification
register into general-purpose register R1 (note the flags are not relevant here, this is just an example
register):
1 MOV X0 ,#0 xf000 LSL 16
2 MSR NCZV ,X0
3 MRS X1,CTR_EL0

ADD

ADD <GPR0>, <GPR1>, <GPR2>
ADD <GPR0>, <GPR1>, #<IMM>

Adds the values stored in the second and third arguments together, and stores the result in the register
given as the first argument.

Examples It is common to pass the same register as input and output to do an increment:
1 MOV X0 ,#1
2 ADD X0,X0 ,#1
3 // {R0==2}

Simple addition:
1 MOV X0 ,#1
2 MOV X1 ,#2
3 ADD X2,X0,X1
4 // {R2==3}

EOR

EOR <GPR0>, <GPR1>, <GPR2>
EOR <GPR0>, <GPR1>, #<IMM>

Exclusive-or. Does a bitwise exclusive or on the values stored in the second and third arguments, and
writes the result to the register given as the first argument.

Examples EOR behaves as a bitwise XOR over integers:
1 MOV X0 ,#3
2 MOV X1 ,#5
3 EOR X2,X0,X1
4 // {X2==6}

Exclusive-or’ing a register with itself zeroes it:
1 MOV X0 ,#13
2 EOR X0,X0,X0
3 // {X0==0}

LSL and LSR

LSL <GPR0>, <GPR1>, <GPR2>
LSL <GPR0>, <GPR1>, #<IMM>

LSR <GPR0>, <GPR1>, <GPR2>
LSR <GPR0>, <GPR1>, #<IMM>
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Logical shift left/right. Shifts the value in the second argument by the amount in the third argument,
and stores the result in the general-purpose register named as the first argument.

Examples Left-shifts are multiplication by 2:

1 MOV X0 ,#1
2 LSL X1,X0 ,12
3 // {X1 ==4096}

Right shifts are floor division by 2:

1 MOV X0 ,#5
2 LSR X1,X0 ,1
3 // {X1==2}

A.2.4 Memory accesses

LDR

LDR <GPR0>, [<GPR1>]
LDR <GPR0>, [<GPR1>, #<IMM>]

LDRB <Wn>, [<GPR1>]
LDRB <Wn>, [<GPR1>, #<IMM>]

Reads the value at the memory address stored in the register <GPR1>, and stores the value in register
<GPR0>.

Optionally, an offset to the address can be provided as an immediate value.

There are also address register writeback versions of these instructions, see the full manual.

NOTE: if the first argument is a 32-bit alias Wn then a 32-bit value is read from memory, if the first
argument is a 64-bit alias Xn then a 64-bit value is read from memory. If the mnemonic is LDRB then it
loads a single byte, and the register must be a 32-bit alias.

STR

STR <GPR0>, [<GPR1>]
STR <GPR0>, [<GPR1>, #<IMM>]

STRB <Wn>, [<GPR1>]
STRB <Wn>, [<GPR1>, #<IMM>]

Writes the value stored in register named by the <GPR0> argument, into the memory address stored in the
register <GPR1>.

Optionally, an offset to that address can be provided as an immediate value.

NOTE: if the first argument is a 32-bit alias Wn then a 32-bit value is written to memory, if the first
argument is a 64-bit alias Xn then a 64-bit value is written to memory.

Example The following code writes the 1 as a 64-bit vector to address 1000, the value 2 as a 32-bit
vector to address 1004, and the values 3,4,5 and 6 to addresses 1008,1009,1010, and 1011.

1 MOV X0 ,#1000
2 MOV X1 ,#1
3 MOV W2 ,#2
4 MOV W3 ,#3
5 MOV W4 ,#4
6 MOV W5 ,#5
7 MOV W6 ,#6
8 STR X1 ,[X0]
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9 STR W2 ,[X0 ,#8]
10 STRB W3 ,[X0 ,#12]
11 STRB W4 ,[X0 ,#13]
12 STRB W5 ,[X0 ,#14]
13 STRB W6 ,[X0 ,#15]

Resulting in memory like (noting Arm is little-endian by default):

1000 1008 1012

1 2 3 4 5 6

LDP and STP

LDP <GPR0>, <GPR1>, [<GPR2>]
STP <GPR0>, <GPR1>, [<GPR2>]

Load and store pair variants of the load and store instructions. These read or write from two adjacent 32-
or 64-bit locations, starting at the address stored in <GPR2>, using two separate general-purpose registers
for the data.

A.2.5 Barriers

DMB

DMB.<KIND>

Data memory barrier.

Arm categorise the kinds into two partitions:

. The types: whether this orders reads or writes or both.

. The domain: whether the effect is visible to just this core, or all.

A sample of the kinds used in litmus tests are given below:
Kind Types Domain

SY RW.RW Full system
ISH RW.RW Full system
ST W.W Full system
LD R.RW Full system

See the full Arm architecture reference manual for the rest.

DSB

DSB.<KIND>

Data synchronisation barrier. Like a DMB, but affects (some) implicit memory effects, too.

Arm categorise the kinds two ways:

. The types: whether this orders reads or writes or both.

. The domain: whether the effect is visible to just this core, or all.

A sample of the kinds used in litmus tests are given below:
Kind Types Domain

SY RW.RW Full system
ISH RW.RW Full system
ST W.W Full system
LD R.RW Full system
NSH RW.RW This CPU only

See the full Arm architecture reference manual for the rest.

A.2. GUIDE TO INSTRUCTIONS 211



ISB

ISB

Instruction synchronisation barrier.

A.2.6 Cache maintenance

DC

DC <OP>, <GPR>

Data Cache maintenance by address. Performs the cache maintenance operation OP to the address stored
in the given general-purpose register.

A sample of the kinds used in litmus tests are given below:
Kind Clean/Invalidate To
CVAU Clean Point of Unification
CVAC Clean Point of Coherency
CIVAC Clean&Invalidate Point of Coherency

See the full Arm architecture reference manual for the rest.

IC

IC <OP>, <GPR>

Instruction Cache maintenance by address. Performs the cache maintenance operation OP to the address
stored in the given general-purpose register.

A sample of the kinds used in litmus tests are given below:
Kind Clean/Invalidate To
IVAU Invalidate Point of Unification
IVAC Invalidate Point of Coherency

See the full Arm architecture reference manual for the rest.

IC <ALLOP>

Instruction Cache maintenance, not by address.

ALLOP can be one of:
Op Clean/Invalidate To Domain

IALLU Invalidate Point of Unification This CPU only
IALLUIS Invalidate Point of Unification All CPUs

A.2.7 TLB maintenance

TLBI-by-address

TLBI <OP>, <GPR>

TLB maintenance, by page number stored in the general-purpose register given as argument:
31 0

Addr[55:12]
43 32

Res0
47 44

TTL
63 48

ASID

Encoding of TLBI-by-Address argument register.

A sample of TLBI-by-Address operations:

. VAE1: by virtual address and ASID, for the EL1&0 regime, for this PE.

. VAE1IS: by virtual address and ASID, for the EL1&0 regime, for all PEs.

. VAAE1: by virtual address, for all ASIDs, for the EL1&0 regime, for this PE.

. VAAE1IS: by virtual address, for all ASIDs, for the EL1&0 regime, for all PEs.
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. VAE2: by virtual address and ASID, for the EL2 regime, for this PE.

. IPAS2E1: by intermediate physical address, for the current VMID, for the EL1&0 regime, for this
PE, second stage only.

. IPAS2E1IS: by intermediate physical address, for the current VMID, for the EL1&0 regime, for all
PEs, second stage only.

TLBI-by-ASID

TLBI ASIDE1, <GPR>
TLBI ASIDE2, <GPR>

TLB maintenance, for an ASID stored in the general-purpose register given as argument:
63 48

ASID
47 0

Res0

Encoding of TLBI-by-ASID argument register.

TLBI-ALL

TLBI <OP>

TLB maintenance, for an ASID stored in the general-purpose register given as argument:

A sample of TLBI-ALL operations:

. ALLE1: for any ASID, any VMID, stage 1 and stage2, for the EL1&0 regime, this PE only.

. ALLE1IS: for any ASID, any VMID, stage 1 and stage2, for the EL1&0 regime, for all PEs.

. ALLE2: for any ASID, for the EL2 regime, for this PE.

. VMALLE1IS: for any ASID, for the current VMID, for stage1, for the EL1&0 regime, for all PEs.

. VMALLS12E1IS: for any ASID, for the current VMID, for stage1 and stage2, for the EL1&0 regime,
for all PEs.

A.2.8 Exceptions

SVC and ERET

SVC #<IMM>

Take an exception right here. Saves the current processor state (current exception level, flags, etc. but not
register values) to the saved processor status register (SPSR_ELn) and then jumps to the address stored in
the vector base address register (VBAR_ELn). Jumps to the address stored in the exception link register
(ELR_ELn), and restores the processor status which was saved on taking the exception (in the SPSR_ELn).

The immediate value is stored in the exception syndrome register, which software can read.

ERET

Return from exception. Jumps to the address stored in the exception link register (ELR_ELn), and restores
the processor status which was saved on taking the exception (in the SPSR_ELn).

Example Execution jumps between process and the exception handler, as shown by the control-flow-graph
on the right, with columns showing the current exception level.

1 MOV X0 ,#1
2 SVC #0
3 MOV X2 ,#3
4 RET
5
6 at_VBAR:
7 MOV X1 ,#2
8 ERET

at EL0 at EL1
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Appendix B

The (i)Flat model

This Appendix is based on: ARMv8-A system semantics: instruction fetch in relaxed architectures [35] by
Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget,
and Peter Sewell. Published in the proceedings of the 29th European Symposium on Programming (ESOP,
2020).

This appendix reproduces, in full, the Flat model with extensions for instruction fetching (see Chapter 4).

Since the instruction-fetching parts are additive, it can also serve as a reference for the original Flat model
of [7], by simply ignoring the ifetch-specific parts.

To help reading this document we have colour-coded some text as follows:

. [ ifetch ] Instruction fetch and cache maintenance instructions

The operational model is expressed as a state machine, with states that are an abstract representation of
hardware machine states. We first introduce the model states and transitions informally.

Model states A model state consists just of a shared memory and a tuple of thread model states:

pe
r-t

hr
ea

d

Thread

Fetch Queue

Abstract I$

new
fetch
request

decode

Abstract
D$

Memory

write data

re
ad

da
ta

most
recent

ad
d

to
I$

any

fetch

gl
ob

al

The shared memory state effectively just records the most recent write to each location, together with
some additional data for exclusives. To handle instruction fetching, the shared memory is extended with
a data cache buffer of all the writes still visible to instruction fetches. Each thread is extended with an
instruction cache that can be fetched from and fetch queue of buffered pre-fetched instructions.

Each thread model state consists principally of a list or tree of instruction instances, some of which have
been finished, and some of which have not. Below we show an example for a thread that is executing 10
instruction instances. Some (grey) are finished; others (pink) have run some but perhaps not all of their
instruction semantics; instructions are not necessarily atomic. Those with multiple children are branch
instructions with multiple potential speculative successors being explored simultaneously.
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Non-finished instruction instances can be subject to restart, e.g. if they depend on an out-of-order or
speculative read that turns out to be unsound. The finished instances are not necessarily contiguous: in
the example, the third is finished even though its predecessors are not, which can only happen if they are
sufficiently independent. Instruction instances with multiple children are conditional branches for which
the thread has fetched multiple possible successors. When a conditional branch is finished, any un-taken
alternative paths are discarded, and instruction instances that follow (in program order) a non-finished
conditional branch cannot be finished until that conditional branch is. One can choose whether or not to
allow simultaneous exploration of multiple successors of a conditional branch (as shown above); this does
not affect the set of allowed outcomes.

The intra-instruction behaviour of a single instruction can largely be treated as sequential (but not atomic)
execution of its ASL/Sail pseudocode. Each instruction instance state includes a pseudocode execution
state, which one can think of as a representation of the pseudocode control state, pseudocode call stack,
and local variable values. An instruction instance state also includes information, detailed below, about
the instruction instance’s memory and register footprints, its register and memory reads and writes,
whether it is finished, etc.

Model transitions For any state, the model defines the set of allowed transitions, each of which is a
single atomic step to a new abstract machine state. Each transition arises from the next step of a single
instruction instance; it will change the state of that instance, and it may depend on or change the rest
of its thread state and/or the shared memory state. Instructions cannot be treated as atomic units:
complete execution of a single instruction instance may involve many transitions, which can be interleaved
with those of other instances in the same or other threads, and some of this is programmer-visible. The
transitions are introduced below and defined in §B.0.4, with a precondition and a construction of the
post-transition model state for each. The transitions labelled ◦ can always be taken eagerly, as soon as
they are enabled, without excluding other behaviour; the – cannot.

Transitions for all instructions:

◦ [ ifetch ] Fetch request: This transition speculates the next address as a po-successor of a previously
speculated instruction.

. Fetch instruction: Satisfy the fetch from instruction memory.
◦ [ ifetch ] Decode instruction: Decode the instruction.
◦ Register read: This is a read of a register value from the most recent program-order predecessor

instruction instance that writes to that register.
◦ Register write
◦ Pseudocode internal step: this covers ASL/Sail internal computation, function calls, etc.
◦ Finish instruction: At this point the instruction pseudocode is done, the instruction cannot be

restarted or discarded, and all memory effects have taken place. For a conditional branch, any
non-taken po-successor branches are discarded.

Load instructions:

◦ Initiate memory reads of load instruction: At this point the memory footprint of the load is
provisionally known and its individual reads can start being satisfied.

. Satisfy memory read by forwarding from writes: This partially or entirely satisfies a single read by
forwarding from its po-previous writes.

. Satisfy memory read from memory: This entirely satisfies the outstanding slices of a single read,
from memory.

◦ Complete load instruction (when all its reads are entirely satisfied): At this point all the reads of
the load have been entirely satisfied and the instruction pseudocode can continue execution. A load
instruction can be subject to being restarted until the Finish instruction transition. In some cases it
is possible to tell that a load instruction will not be restarted or discarded before that, e.g. when all
the instructions po-before the load instruction are finished. The Restart condition over-approximates
the set of instructions that might be restarted.

Store instructions:

215



◦ Initiate memory writes of store instruction, with their footprints: At this point the memory footprint
of the store is provisionally known.

◦ Instantiate memory write values of store instruction: At this point the writes have their values and
program-order-subsequent reads can be satisfied by forwarding from them.

◦ Commit store instruction: At this point the store is guaranteed to happen (it cannot be restarted or
discarded), and the writes can start being propagated to memory.

. Propagate memory write: This propagates a single write to memory.
◦ Complete store instruction (when its writes are all propagated): At this point all writes have been

propagated to memory, and the instruction pseudocode can continue execution.

Barrier instructions:

◦ Commit barrier

Cache maintenance instructions:

. [ ifetch ] Begin IC: Initiate instruction cache maintenance.
◦ [ ifetch ] Propagate IC to thread: Do instruction cache maintenance for a specific thread.
. [ ifetch ] Perform DC: Clean the abstract data cache for a specific cache line.

Instruction cache updates:

◦ [ ifetch ] Add to instruction cache for thread: Update instruction cache for thread with write.

B.0.1 Intra-instruction Pseudocode Execution

To link the model transitions introduced above to the execution of the instructions an interface is needed
between Sail and the rest of the concurrency model. For each instruction instance this intra-instruction
semantics is expressed as a state machine, essentially running the instruction pseudocode, where each
pseudocode execution state is a request of one of the following forms:

Read_mem(read_kind, address, size, read_continuation) Read request
Perform_IC(address, res_continuation) Propagate an ic ivau
Wait_IC(address, res_continuation) Wait for an ic ivau to complete
Perform_DC(address, res_continuation) Propagate a dc cvau
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Each of these states is a suspended computation with a request for an action or input from the concurrency
model and, except in the case of Done, a continuation for the remaining execution.

Here memory values are lists of bytes, addresses are 64-bit numbers, read and write kinds identify whether
they are regular, exclusive, and/or release/acquire operations, register names identify a register and
slice thereof (start and end bit indices), and the continuations describe how the instruction instance will
continue for any value that might be provided by the surrounding memory model. This largely follows
[15, §2.2], except that memory writes are split into two steps, Write_ea and Write_memv. We ensure
these are paired in the pseudocode, but there may be other steps between them: it is observable that
the Write_ea can occur before the value to be written is determined, because the potential memory
footprint of the instruction becomes provisionally known then.

We ensure that each instruction has at most one memory read, memory write, or barrier step, by rewriting
the pseudocode to coalesce multiple reads or writes, which are then split apart into the architecturally
atomic units by the thread semantics; this gives a single commit point for all memory writes of an
instruction.

Each bit of a register read should be satisfied from a register write by the most recent (in program order)
instruction instance that can write that bit, or from the thread’s initial register state if there is no such.
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That instance may not have executed its register write yet, in which case the register read should block.
The semantics therefore has to know the register write footprint of each instruction instance, which it
calculates when the instruction instance is created. We ensure in the pseudocode that each instruction
does exactly one register write to each bit of its register footprint, and also that instructions do not do
register reads from their own register writes. In some cases, but not in the fragment of ARM that we
cover at present, register write footprints need to be dynamically recalculated, when the actual footprint
only becomes known during pseudocode execution.

Data-flow dependencies in the model emerge from the fact that a register read has to wait for the
appropriate register write to be executed (as described above). This has to be carefully handled in order
not to create unintentional strength. First, for some instructions we need to ensure that the pseudocode
is in the maximally liberal order, e.g. to allow early computed-address register writebacks before the
corresponding memory write. Leaving load-pair aside (which we do not cover), and the treatment of the
multiple reads or writes that can be associated with a single load or store instruction (which we do), we
have not so far needed other intra-instruction concurrency. Second, the model has to be able to know
when a register read value can no longer change (i.e. due to instruction restart). We approximate that
by recording, for each register write, the set of register and memory reads the instruction instance has
performed at the point of executing the write. This information is then used as follows to determine
whether a register read value is final: if the instruction instance that performed the register write from
which the register reads from is finished, the value is final; otherwise check that the recorded reads for the
register write do not include memory reads, and continue recursively with the recorded register reads. For
the instructions we cover this approximation is exact.

We express the pseudocode execution semantics in two ways: a definitional interpreter for Sail [15], with
an exhaustive symbolic mode to (re)calculate an instruction’s memory and register footprints, and as a
shallow embedding, translating Sail into directly executable code, with separate hand-written definitions
of the footprint functions. The two are essentially equivalent: the first lets one small-step through the
pseudocode interactively, while the second is more efficient and should be more convenient for proof.

B.0.2 Instruction Instance States

Each instruction instance i has a state comprising:

. program_loc, the memory address from which the instruction was fetched;

. instruction_kind, identifying whether this is a load, store, or barrier instruction, each with the
associated kind; or a conditional branch; or a ‘simple’ instruction.

. regs_in, the set of input reg_names, as statically determined;

. regs_out, the output reg_names, as statically determined;

. pseudocode_state (or sometimes just ‘state’ for short), one of
– Plain next_state, ready to make a pseudocode transition;
– Pending_mem_reads k, performing the read(s) from memory of a load; or
– Pending_mem_writes k, performing the write(s) to memory of a store;

. reg_reads, the accumulated register reads, including their sources and values, of this instance’s
execution so far;

. reg_writes, the accumulated register writes, including dependency information to identify the register
reads and memory reads (by this instruction) that might have affected each;

. mem_reads, a set of memory read requests. Each request includes a memory footprint (an address
and size) and, if the request has already been satisfied, the set of write slices (each consisting of a
write and a set of its byte indices) that satisfied it.

. mem_writes, a set of memory write requests. Each request includes a memory footprint and, when
available, the memory value to be written. In addition, each write has a flag that indicates whether
the write has been propagated (passed to the memory) or not.

. information recording whether the instance is committed, finished, etc.

Read requests include their read kind and their memory footprint (their address and size), the as-yet-
unsatisfied slices (the byte indices that have not been satisfied), and, for the satisfied slices, information
about the write(s) that they were satisfied from. Write requests include their write kind, their memory
footprint, and their value. When we refer to a write or read request without mentioning the kind of
request we mean the request can be of any kind. A load instruction which has initiated (so its read request
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list mem_reads is not empty) and for which all its read requests are satisfied (i.e. there are no unsatisfied
slices) is said to be entirely satisfied.

B.0.3 Thread States

The model state of a single hardware thread includes:

. thread_id, a unique identifier of the thread;

. register_data, the name, bit width, and start bit index for each register;

. initial_register_state, the initial register value for each register;

. initial_fetch_address, the initial fetch address for this thread;

. instruction_tree, a tree or list of the instruction instances that have been fetched (and not discarded),
in program order.

B.0.4 Model Transitions

Fetch request For some instruction i, any possible next fetch address loc can be requested, adding it to
the fetch queue, if:

1. it has not already been requested, i.e., none of the immediate successors of i in the thread’s
instruction_tree are from loc; and

2. either i is not decoded, or, if it has been, loc is a possible next fetch address for i:
(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4 );
(b) for a conditional branch, either the successor address or the branch target address1; or
(c) for a jump to an address which is not yet determined, any address (this is approximated in our

tool implementation, necessarily).

Action: add an unfetched entry for loc to the fetch queue for i’s thread.

Note that this allows speculation past conditional branches and calculated jumps.

Fetch instruction (ifetch) In ifetch mode this transition replaces the original ‘Fetch instruction’ transi-
tion.

For any fetch-queue entry in the Unfetched state, its fetch can be satisfied from the instruction cache,
from write-slices ws, if:

1. the write-slices (parts of writes) ws have the 4-byte footprint of the entry and can be constructed
from a write in the instruction cache.

Action: change the fetch-queue entry’s state to Fetched(ws).

Fetch instruction (unpredictable) For any fetch-queue entry in the Unfetched state, its fetch can be
satisfied from the instruction cache in a constrained-unpredictable way, if:

1. there exists a set of write-slices, each of which can be constructed in the same way as above;
2. that set contains write-slices corresponding to distinct opcodes, and at least one of those is an

instruction that is not B.cond or one of {B, BL, BRK, HVC, SMC, SVC, ISB, NOP}, and they are not all
B.cond instructions.

Action: record the fetch-queue entry as Constrained_unpredictable. When this has reached decode
and the corresponding point in the instruction tree becomes non-speculative, the entire thread state will
become Constrained_unpredictable.

Fetch instruction (B.cond) For any fetch-queue entry in the Unfetched state, its fetch can be satisfied
from the instruction cache, from write-slices ws and ws’, with value ws”, if:

1. there exists write-slices ws and ws’, each of which can be constructed in the same way as above;
2. ws and ws’ correspond to the encoding of two conditional branch instructions b and b’ ;
3. the write-slices ws” can be constructed as the combination of ws and ws’ such that ws” is the

encoding of the branch instruction with b’s condition and b’ ’s target.
1In AArch64, all the conditional branch instructions have statically determined addresses.

218



Action: record the fetch-queue entry as Fetched(ws”).

Decode instruction If the last entry in the fetch queue is in Fetched(ws) state, it can be removed from
the queue, decoded, and begin execution, if all po-previous ISB instructions in the instruction tree have
finished.

Action:

1. Construct a new instruction instance i with the correct instruction kind and state, for i’s program
location, and add it to the instruction tree.

2. Discard all speculative entries in the instruction tree that are successors of i that are now known to
be incorrect speculations.

Note that this transition is a proxy for the point the instructions will be decoded, but that it is the
intra-instruction semantics that actually performs the decoding, with this transition merely starting the
execution of the pseudocode.

Fetch instruction In ifetch mode this transition is replaced by Fetch instruction (ifetch).

A possible program-order successor of instruction instance i can be fetched from address loc if:
1. it has not already been fetched, i.e., none of the immediate successors of i in the thread’s instruc-

tion_tree are from loc;
2. loc is a possible next fetch address for i:

(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4 );
(b) for an instruction that has performed a write to the program counter register (_PC), the value

that was written;
(c) for a conditional branch, either the successor address or the branch target address1; or
(d) for a jump to an address which is not yet determined, any address (this is approximated in our

tool implementation, necessarily); and
3. there is a decodable instruction in program memory at loc.

Note that this allows speculation past conditional branches and calculated jumps.

Action: construct a freshly initialized instruction instance i′ for the instruction in the program memory at
loc, including the static information available from the ISA model such as its instruction_kind, regs_in,
and regs_out, and add i′ to the thread’s instruction_tree as a successor of i.

This involves only the thread, not the storage subsystem, as we assume a fixed program rather than
modelling fetches with memory reads; we do not model self-modifying code.

Initiate memory reads of load instruction An instruction instance i with next state
Read_mem(read_kind, address, size, k) can initiate the corresponding memory reads. Action:

1. Construct the appropriate read requests rrs:
. if address is aligned to size then rrs is a single read request of size bytes from address;
. otherwise, rrs is a set of size read requests, each of one byte, from the addresses ad-

dress. . .address+size-1.
2. set i.mem_reads to rrs; and
3. update the state of i to Pending_mem_reads k.

Complete load instruction (when all its reads are entirely satisfied) A load instruction instance i
in state Pending_mem_reads k can be completed (not to be confused with finished) if all the read
requests i.mem_reads are entirely satisfied (i.e., there are no unsatisfied slices).

Action: update the state of i to Plain (read_cont (memory_value)), where memory_value is assembled
from all the write slices that satisfied i.mem_reads.

1In AArch64, all the conditional branch instructions have statically determined addresses.
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Initiate memory writes of store instruction, with their footprints An instruction instance i with next
state Write_ea(write_kind, address, size, next_state′) can announce its pending write footprint. Action:

1. construct the appropriate write requests:
. if address is aligned to size then ws is a single write request of size bytes to address;
. otherwise ws is a set of size write requests, each of one byte size, to the addresses ad-

dress. . .address+size-1.
2. set i.mem_writes to ws; and
3. update the state of i to Plain next_state′.

Note that at this point the write requests do not yet have their values. This state allows non-overlapping
po-following writes to propagate.

Instantiate memory write values of store instruction An instruction instance i with next state
Write_memv(memory_value, k) can initiate the corresponding memory writes. Action:

1. split memory_value between the write requests i.mem_writes; and
2. update the state of i to Pending_mem_writes k.

Commit barrier A barrier instruction i in state Plain(next_state) where next_state is
Barrier(barrier_kind, next_state′) can be committed if:

1. all po-previous conditional branch instructions are finished;
2. all po-previous dmb sy barriers are finished;
3. [ ifetch ] all po-previous dsb sy barriers are finished; and
4. if i is an isb instruction, all po-previous memory access instructions have fully determined memory

footprints; and
5. if i is a dmb sy instruction, all po-previous memory access instructions and barriers are finished;;

and
6. [ ifetch ] if i is a dsb sy instruction, all po-previous memory access instructions, barriers, and cache

maintenance instructions have finished.

Action:
1. Update the state of i to Plain(next_state′);
2. [ ifetch ] If i is an isb instruction, for any instruction instance in this thread’s instruction tree, if that

instruction instance is in the Fetched state, set it to the Unfetched state.

Note that this corresponds to an ISB discarding any already-fetched entries from the fetch queue.

Satisfy memory read by forwarding from writes For a load instruction instance i in state Pend-
ing_mem_reads(k), and a read request, r in i.mem_reads that has unsatisfied slices, the read request
can be partially or entirely satisfied by forwarding from unpropagated writes by store instruction instances
that are po-before i, if the read-request-condition predicate holds. This is if:

1. [ ifetch ] all po-previous dsb sy instructions are finished; and
2. all po-previous dmb sy and isb instructions are finished.

Let wss be the maximal set of unpropagated write slices from store instruction instances po-before i, that
overlap with the unsatisfied slices of r, and which are not superseded by intervening stores that are either
propagated or read from by this thread. That last condition requires, for each write slice ws in wss from
instruction i′:

. that there is no store instruction po-between i and i′ with a write overlapping ws, and

. that there is no load instruction po-between i and i′ that was satisfied from an overlapping write
slice from a different thread.

Action:
1. Update r to indicate that it was satisfied by wss.
2. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every

non-finished instruction i′ that is a po-successor of i, and every read request r′ of i′ that was satisfied
from wss′, if there exists a write slice ws′ in wss′, and an overlapping write slice from a different
write in wss, and ws′ is not from an instruction that is a po-successor of i, or if i′ was a data-cache
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maintenance by virtual address to a cache line that overlaps with any of the write slices in wss′,
restart i′ and its data-flow dependents.

Satisfy memory read from memory For a load instruction instance i in state Pending_mem_reads(k),
and a read request r in i.mem_reads, that has unsatisfied slices, the read request can be satisfied from
memory, if:

1. the read-request-condition holds (see previous transition).

Action:
let wss be the write slices from memory or the abstract data cache, whichever is newer, covering the
unsatisfied slices of r, and apply the action of Satisfy memory read by forwarding from writes.

Note that Satisfy memory read by forwarding from writes might leave some slices of the read request
unsatisfied. Satisfy memory read from memory, on the other hand, will always satisfy all the unsatisfied
slices of the read request.

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes(k),
i can commit if:

1. i has fully determined data (i.e., the register reads cannot change);
2. all po-previous conditional branch instructions are finished;
3. all po-previous dmb sy and isb instructions are finished;
4. [ ifetch ] all po-previous dsb sy instructions are finished;
5. all po-previous store instructionshave initiated and so have non-empty mem_writes;
6. all po-previous memory access instructions have a fully determined memory footprint; and
7. all po-previous load instructions have initiated and so have non-empty mem_reads.

Action: record i as committed.

Propagate memory write For an instruction i in state Pending_mem_writes(k), and an unpropagated
write, w in i.mem_writes, the write can be propagated if:

1. all memory writes of po-previous store instructions that overlap w have already propagated;
2. all read requests of po-previous load instructions that overlap with w have already been satisfied,

and the load instruction is non-restartable; and
3. all read requests satisfied by forwarding w are entirely satisfied.

Action:
1. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every

non-finished instruction i′ po-after i and every read request r′ of i′ that was satisfied from wss′, if
there exists a write slice ws′ in wss′ that overlaps with w and is not from w, and ws′ is not from a
po-successor of i, or if i′ is a data-cache maintenance instruction to a cache line whose footprint
overlaps with w, restart i′ and its data-flow dependents.

2. Record w as propagated.
3. Add w as a complete slice to the abstract data cache.

Complete store instruction (when its writes are all propagated) A store instruction i in state
Pending_mem_writes(k), for which all the memory writes in i.mem_writes have been propagated, can
be completed.

Action:
Update the state of i to Plain(k(true)).

Begin IC An instruction i (with unique instruction instance ID iiid) in state Perform_IC(address,
state_cont) can begin performing the IC behaviour if all po-previous DSB ISH instructions have finished.
Action:

1. For each thread tid’ (including this one), add (iiid, address) to that thread’s ic_writes;
2. Set the state of i to Propagate_IC(address, state_cont).
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Propagate IC to thread An instruction i (with ID iiid) in state Wait_IC(address, state_cont) can do
the relevant invalidate for any thread tid’, modifying that thread’s instruction cache and fetch queue, if
there exists a pending entry (iiid, address) in that thread’s ic_writes.

Action:
1. For any entry in the fetch queue for thread tid, whose program_loc is in the same minimum-size

instruction cache line as address, and is in Fetched(_) state, set it to the Unfetched state.
2. For the instruction cache of thread tid, remove any write-slices which are in the same instruction

cache line of minimum size as address.

Complete IC An instruction i (with instruction instance ID iiid) in the state Wait_IC(address,
state_cont) can complete if there exists no entry for iiid in any thread’s ic_writes.

Action: set the state of i to Plain(state_cont).

Perform DC An instruction i in the state Perform_DC(address, state_cont) can complete if all
po-previous DMB ISH and DSB ISH instructions have finished.

Action:
1. For the most recent write slices wss which are in the same data cache line of minimum size in the

abstract data cache as address, update the memory with wss.
2. Remove all those writes from the abstract data cache.
3. Set the state of i to Plain(state_cont).

Add to instruction cache for thread A thread tid’s instruction cache can be spontaneously updated
with a write w from the storage subsystem, if this write (as a single slice) does not already exist in the
instruction cache.

Action: Add this write (as a single slice) to thread tid’s instruction cache.

Register read An instruction instance i with next state Read_reg(reg_name, k) can do a register read
if every instruction instance that it needs to read from has already performed the expected register write.

Let read_sources include, for each bit of reg_name, the write to that bit by the most recent (in program
order) instruction instance that can write to that bit, if any. If there is no such instruction, the source
is the initial register value from initial_register_state. Let register_value be the assembled value from
read_sources. Action:

1. add reg_name to i.reg_reads with read_sources and register_value; and
2. update the state of i to Plain (k(register_value)).

Register write An instruction instance i with next state Write_reg(reg_name, register_value,
next_state′) can do the register write. Action:

1. add reg_name to i.reg_writes with write_deps and register_value; and
2. update the state of i to Plain next_state′.

where write_deps is the set of all read_sources from i.reg_reads and a flag that is set to true if i is a load
instruction that has already been entirely satisfied.

Pseudocode internal step An instruction instance i with next state Internal(next_state′) can do that
pseudocode-internal step. Action: update the state of i to Plain next_state′.

Finish instruction A non-finished instruction i with next state Done can be finished if:
1. if i is a load instruction:

(a) all po-previous dmb sy and isb instructions are finished;
(b) it is guaranteed that the values read by the read requests of i will not cause coherence violations,

i.e., for any po-previous instruction instance i′, let cfp be the combined footprint of propagated
writes from store instructions po-between i and i′ and fixed writes that were forwarded to i
from store instructions po-between i and i′ including i′, and let cfp′ be the complement of cfp
in the memory footprint of i. If cfp′ is not empty:
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i. i′ has a fully determined memory footprint;
ii. i′ has no unpropagated memory write that overlaps with cfp′; and
iii. If i′ is a load with a memory footprint that overlaps with cfp′, then all the read requests of

i′ that overlap with cfp′ are satisfied and i′ can not be restarted (see §B.0.5).
Here a memory write is called fixed if it is the write of a store instruction that has fully
determined data.

2. i has fully determined data; and
3. all po-previous conditional branches are finished.

Action:
1. if i is a branch instruction, discard any untaken path of execution, i.e., remove any (non-finished)

instructions that are not reachable by the branch taken in instruction_tree; and
2. record the instruction as finished, i.e., set finished to true.

B.0.5 Auxiliary Definitions

Fully determined An instruction is said to have fully determined footprint if the memory reads feeding
into its footprint are finished: A register write w, of instruction i, with the associated write_deps from
i.reg_writes is said to be fully determined if one of the following conditions hold:

1. i is finished; or
2. the load flag in write_deps is false and every register write in write_deps is fully determined.

An instruction i is said to have fully determined data if all the register writes of read_sources in i.reg_reads
are fully determined. An instruction i is said to have a fully determined memory footprint if all the register
writes of read_sources in i.reg_reads that are associated with registers that feed into i’s memory access
footprint are fully determined.

Restart condition To determine if instruction i might be restarted we use the following recursive
condition: i is a non-finished instruction and at least one of the following holds,

1. there exists an unpropagated write w such that applying the action of the Propagate memory write
transition to s will result in the restart of i;

2. there exists a non-finished load instruction l such that applying the action of the Satisfy memory
read from memory transition to l will result in the restart of i (even if l is already entirely satisfied);
or

3. there exists a non-finished instruction i′ that might be restarted and i is in its data-flow dependents.

Cache Line of Minimum Size Cache maintenance operations work over entire cache lines, not individual
addresses. Each address is associated with at least one cache line for the data (and unified) caches, and
one for the instruction caches. The cache line of minimum size is the smallest possible cache line for each
of these. The CTR_EL0.{DMinLine, IMinLine} values describe the cache lines of minimum size for the
data and instruction caches as log2 of the number of words in the cache line.

B.0.6 Remarks about load/store exclusive instructions

The MCA ARMv8 architecture intends that the success bit of store exclusives does not introduce
dependencies, to allow (e.g.) hardware optimisations that dynamically replace load/store exclusive pairs
by atomic read-modify-write operations that can execute in the memory subsystem and therefore be
guaranteed to succeed. The ARMv8-axiomatic definition assumes all address/data/control dependencies to
be from reads, not writes. In the operational model, matching this weakness has proved to be difficult: it
means the operational model must be able to promise the success or failure of a store-exclusive instruction
even before any of its registers reads/writes have been done, so before the store-exclusive’s address and
data are available. The early success promises are the source of deadlocks in the operational model. To
illustrate this consider, for example, the following litmus test and a state where both a and e are satisfied
and finished, and where b and f are not propagated. Then d can promise its success, locking memory
location x, and h can promise its success, locking location y. But now there is a deadlock:

. For d to propagate c has to be committed and hence b propagated.
But b cannot propagate since y is locked.
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Rex x=0a:

W y=2b:

dmb stc:

Wex x=1d:

Thread 0

po

po

po

rf Rex y=0e:

W x=2f:

dmb stg:

Wex y=1h:

Thread 1

po

po

po

rf

co

co

. For h to propagate g has to be committed and hence f propagated.
But f cannot propagate since x is locked.

Similar situations arise from cases where there are other barriers or release/acquire instructions in-between
the load and the store exclusive, or if the store exclusive has additional dependencies that the load
exclusive does not have. These are cases that are not really intended to be supported by the architecture.

The model can also currently deadlock if a load and a store-exclusive are paired successfully but later
turn out to have different addresses: if the store-exclusive promises its success before its address is known
it locks the matched load-exclusive’s memory location; when they later turns out to be to a different
addresses it never unlocks it. This issue can be fixed, but it is currently still being clarified what exactly
the architecturally allowed behaviour should be.
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Appendix C

Test format: system-litmus-harness

The test format supports writing a variety of kinds of pagetable tests, through both the initial state setup
and the data passed from the harness allocator via the litmus_test_run data struct.

The data struct contains, for each global variable (e.g. x): the virtual address (%[x]); the initial last-level
descriptor (%[xdesc]); the address of the last-level entry (%[xpte]); the address of the entry at level N
(%[xpteN]); the page index, e.g. for arguments to TLB maintenance (%[xpage]). With some aliases for
the different levels to match Linux terminology: %[xpmd] for the level 2 entry (xpte2); %[xpud] for the
level 1 entry (xpte1).

The initial state enables specifying a rich variety of related machine states, each INIT_STATE can include
directives for the initial value of the variable:

. INIT_UNMAPPED(var): that the pagetable entry for var starts out invalid.

. INIT_VAR(var, value): that var starts out mapped and the location at its physical address starts
out containing value.

. INIT_ALIAS(var1, var2): that var1 and var2 should be aliased to the same location.

The programmer can also choose the initial permissions and memory attributes the variables are mapped
with:

. INIT_PERMISSIONS(var, prot, value): that var should be mapped with field prot set to value:

– for prot=PROT_AP, value can be any int, but there are some helpful aliases:

∗ PROT_AP_RWX_X (0x0): read-write-execute at EL1, execute only at EL0.

∗ PROT_AP_RW_RWX (0x1): read-write at EL1, read-write-execute at EL0.

∗ PROT_AP_RX_X (0x2): read-execute at EL1, execute only at EL0.

∗ PROT_AP_RX_RX (0x3): read-execute at EL1 and EL0.

– for prot=PROT_ATTRIDX, value defines the memory attributes as the index to the default MAIR
value, and can be any of:

∗ PROT_ATTR_DEVICE_nGnRnE (0): use strongly-ordered device memory.

∗ PROT_ATTR_DEVICE_GRE (1): standard device memory (with re-ordering, gathering and early
write acknowledgement).

∗ PROT_ATTR_NORMAL_NC (2): normal non-cacheable memory.

∗ PROT_ATTR_NORMAL_RA_WA (3): normal cacheable memory.

∗ indexes 4-7 are unused.

. INIT_MAIR(value): defines the otherwise unused MemAttr7 field of the MAIR for custom tests.

– MAIR_DEVICE_nGnRnE (0x00): strongly ordered device memory.
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– MAIR_DEVICE_GRE (0x0c): standard device memory (with re-ordering, gathering and early write
acknowledgement).

– MAIR_NORMAL_NC (0x44): normal non-cacheable memory.

– MAIR_NORMAL_RA_WA (0xff): normal cacheable memory.

Finally, the harness allocator can be guided to place variables in locations with particular relationships
between them (in the same page or cache line, or at the same offset into their respective regions):

. INIT_REGION_OWN(var, region): that var owns a region of memory larger than the default of a
page, region can take values:

– REGION_OWN_CACHE_LINE: this variable only takes up a single cache line.

– REGION_OWN_PAGE: don’t allocate other variables in the same page (the default).

– REGION_OWN_PMD: don’t allocate other variables in the same 2MiB region.

– REGION_OWN_PUD: don’t allocate other variables in the same 1GiB region.

. INIT_REGION_PIN(var1, var2, region): place var1 and var2 in the same region, where region is
one of:

– REGION_SAME_CACHE_LINE: place both in the same cache line.

– REGION_SAME_PAGE: place both in same page.

– REGION_SAME_PMD: place both same 2MiB region.

– REGION_SAME_PUD: place both same 1GiB region.

. INIT_REGION_OFFSET(var1, var2, region): ensure that var1 and var2 have the same offset into
the region (that is, the least significant bits overlap), where region can be one of:

– REGION_SAME_CACHE_LINE_OFFSET: ensure both have same lower CACHE_LINE_SHIFT bits.

– REGION_SAME_PAGE_OFFSET: ensure both have same offset into the page (bits 12-0).

– REGION_SAME_PMD_OFFSET: ensure both have same offset into the 2MiB region (bits 20-12).

– REGION_SAME_PUD_OFFSET: ensure both have same offset into the 1GiB region (bits 29-20).
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Appendix D

Proof of virtual memory abstraction

This Appendix is based on: Relaxed virtual memory in Armv8-A [37] by Ben Simner, Alasdair Armstrong,
Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell, published in the
proceedings of the 31st European Symposium on Programming (ESOP, 2022). In particular, much of the
proof is the work of Jean Pichon-Pharabod.

We consider a simple case when the virtual address abstraction ought to hold: under some conditions, the
model with translation and the original model without translations coincide. Here, we only consider the
consistency of the pre-executions, but not how these pre-executions arise.

D.1 Abstraction

Definition 1 (VA abstraction subcondition). G satisfies the VA abstraction subcondition when it has no
page-table-affecting instructions: no TLBI, no context-changing operations (for example via writing to
registers, for example via MSR TTBR), etc.

Definition 2 (VA abstraction condition). Gtr satisfies the VA abstraction condition when it satisfies the
VA abstraction subcondition, and has a static injective page table.

Theorem 1 (VA abstraction). For all (Gtr : concrete execution)
if Gtr is consistent wrt. the model with translation
and respects the VA abstraction condition, then
let Gabs = erase Gtr in
Gabs is consistent wrt. the model without translation.

Proof. First, the builtin addr of the abstract model is assumed to coincide with the derived addr of the
concrete model by the erasure. Showing that the two definitions of pre-executions do relate in this way
is outside of our scope. Given that the definitions addr coincide, the definitions of all the other derived
relations of the abstract model, including ob in the translation model, are syntactically supersets of their
definition in the concrete model, so a cycle in ob in the abstract model is also a cycle in ob in the concrete
model.

D.2 Anti-abstraction

For this direction, we need to be able to put the translation table somewhere.

Step 1: Building the candidate execution in the translation model

Definition 3 (translation extension condition). The translation extension condition is the data of
(Gabs : execution)
such that Gabs is consistent wrt. the model without translation
and has no TLBI, and no MSR TTBR
and
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(va_space : va_address -> bool)
such that all the memory accesses of Gabs are in va_space
and
(pt_pa_space : pa_address -> bool)
(pt_initial_state : pa_address -> option (list byte)),
such that the domains of pt_pa_space and pt_initial_state coincide
and
(tr_ctxt : translation_context),
such that id_map_lifted va_space and pt_pa_space are disjoint address spaces
and
(translate : translation_function),
such that translating abstract_va_space translate-reads from within pt_pa_space and gives the injective
map.

Definition 4 (translation extension). Given the translation extension condition, the translation extension
Gtr of Gabs is constructed by:

. adding all the initial writes for the page tables,

. adding all the translate reads obtained by running the translate function with the tr_ctxt,

. adding the translate reads in iio between the fetch and the explicit event,

. adding tdata to match addr,

. adding trf from the corresponding initial writes to the translates.

Definition 5 (VA anti abstraction condition). Gtr satisfies the VA anti-abstraction condition when it is
derived from a consistent execution which satisfies the VA abstraction subcondition by the translation
extension.

Lemma 1 (VA abstraction condition for translation extension). If Gtr satisfies the VA anti-abstraction
condition, then Gtr satisfies the VA abstraction condition.

Proof. The translation extension does not add any extra instructions, and sets up static injective page
tables.

Lemma 2 (obtlbi-empty). If Gtr satisfies the VA anti-abstraction condition, then obtlbi is empty.

Proof. obtlbi has

. obtlbi_translate which has

– tcache1
which is [T & Stage1]; tfr; tseq1
the latter is
[W]; (maybe_TLB_barriered_by_va & ob); [TLBI VA]
which requires a TLBI, so it is empty

– tcache2 & ...
which requires a TLBI, so it is empty

– (tcache2; ...) & ...
which requires a TLBI, so it is empty

. [M]; iio^-1; obtlbi_translate
to which the same reasoning applies

Step 2: Consistency

Lemma 3. If Gtr satisfies the VA anti-abstraction condition, then translation-internal is acylic.

Proof. po-pa; [W]; trf is empty
because by the VA anti-abstraction condition there are no non-initial writes to page tables.
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So we only need to show external is acyclic.

Lemma 4 (ob-to-T). If G satisfies the VA anti-abstraction condition, then, for all n ≥ 1,

imm(ob)^n; [T] ==
iio
| imm(ob)^(n-1); trfe
| imm(ob)^(n-1); [T]; iio; [T]
| imm(ob)^(n-1); [CSE]; instruction-order
| imm(ob)^(n-1); po; [ERET]; instruction-order; [T]

Proof. . The addr clause
| tdata; [T_f]
is empty because there are no translation failures.

. tob does not contribute: there are no faults, and no non-initial writes to page table entries.

. The first clause of ctxob is empty because there are no MSR TTBR. The third and fourth are also
empty, because they do not end in a [T].

. Given a static injective mapping, the new | (addr | data | ctrl); trfi clause of dob is empty.

Lemma 5 (no-cycle-ob-to-init). If Gtr is well-formed and consistent (in either model), then there is cycle
in ob via the initial writes.

Proof. By well-formedness, wco; [INIT] = [INIT]; wco; [INIT], and wco is acyclic.
By examination of the other edges.

Lemma 6 (ob-from-T). If Gtr satisfies the VA anti-abstraction condition, then

[T]; imm(ob) ==
iio
| [T]; iio; [M]; po; [W]

Proof. By examination of the edges.

Lemma 7 (instruction-order-compress).
instruction-order; [T]; iio; [M]; po ⊆ instruction-order

Proof. If we unfold the definitions of instruction-order and po, we have
iio^-1; fpo; iio; [T]; iio; [M]; [M|F|C]; iio^-1; fpo; iio; [M|F|C]
which we can simplify into
iio^-1; fpo; fpo; iio; [M|F|C]
which means we have
instruction-order.

Lemma 8 (instruction-order-compress-iio). instruction-order; iio; po ⊆ instruction-order

Proof. iio is transitive, and is the RHS of instruction-order.

Lemma 9 (ob-acyclic-preserved). If G satisfies the VA anti-abstraction condition, if there is a cycle in
translate-ob, then there is a cycle in plain-ob.

Proof. Consider a minimal cycle in translate-imm(ob) (that is, the transitive closure of the ob of the model
with translation). Let n be its length.
We show that there is a cycle in plain-ob.
Assume, for contradiction, that the cycle contains an edge that is not in plain-ob (that is, the ob of the
model without translation):
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. iio
by case split:

– [T]; iio; [M]: by Lemma ob-to-T, the ob edge to the left has to be either

∗ iio in which case, by transitivity of iio, there is a shorter cycle, so we have a contradiction.
Let us call this Case IIOtrans.

∗ trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist.

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]
then we have imm(ob)^(n-2); [T]; iio; [M], which involves one fewer translate,
so we have a contradiction.

∗ imm(ob)^(n-2); [CSE]; instruction-order
This is similar to IIOtrans.

∗ imm(ob)^(n-2); po; [ERET]; instruction-order; [T]
This is similar to IIOtrans.

– [T]; iio; [T]:
So the whole cycle looks like imm(ob)^(n-1); [T]; iio; [T]

By Lemma ob-to-T, we have either

∗ imm(ob)^(n-2); iio; [T]; iio; [T]
See Case IIOtrans.

∗ imm(ob)^(n-2); trfe
the trfe is from an initial write by the VA abstraction condition,
and by Lemma no-cycle-ob-to-init, the cycle cannot exist.

∗ imm(ob)^(n-2); [T]; iio; [T]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

∗ imm(ob)^(n-2); [CSE]; instruction-order
This is similar to IIOtrans.

∗ imm(ob)^(n-2); po; [ERET]; instruction-order; [T]
This is similar to IIOtrans.

. tob has

– [T_f]; tfr
which has a fault, so we have a contradiction.

– ([T_f]; tfri) & (po; [dsb.sy]; instruction-order)^-1
which has a fault, so we have a contradiction.

– speculative; trfi which is empty, because of the static page table.

. obtlbi, which is empty by Lemma obtlbi-empty.

. ctxob has

– speculative; [MSR TTBR]
by the VA abstraction condition, there is no MSR TTBR

– [CSE]; instruction-order
So the whole cycle looks like
[CSE]; instruction-order; imm(ob)^(n-1)
Because instruction-order is acyclic, n ≥ 1, so we have
[CSE]; instruction-order; imm(ob); imm(ob)^(n-2)
By Lemma ob-from-T, we have either:
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∗ [CSE]; instruction-order; iio; imm(ob)^(n-2)
which means that by Lemma instruction-order-compress, we have
[CSE]; instruction-order; imm(ob)^(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

∗ [CSE]; instruction-order; [T]; iio; [M]; po; [W]; imm(ob)^(n-2)
which means that by Lemma instruction-order-compress, we have
[CSE]; instruction-order; imm(ob)^(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

– [ContextChange]; po; [CSE]
by the VA abstraction condition, there is no ContextChange.

– speculative; [CSE]
The CSE has to be an ISB, because there are no exceptions, and the speculative is either in
dob in the plain model, so we have a contradiction, or in [T]; instruction-order.
So the whole cycle looks like imm(ob)^(n-1); [T]; iio; [M]; po; [ISB]

Because po | iio is acyclic, n− 1 has to be ≥ 1, so by Lemma ob-to-T, we have either

∗ imm(ob)^(n-2); iio; [T]; iio; [M]; po; [ISB]
See Case IIOtrans.

∗ trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]; po; [ISB]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

∗ imm(ob)^(n-2); [CSE]; instruction-order; [T]; iio; [M]; po; [ISB]
which means that by Lemma instruction-order-compress, we have
imm(ob)^(n-2); [CSE]; instruction-order
so we have a cycle involving one edge fewer,
so we have a contradiction.

∗ imm(ob)^(n-2); po; [ERET]; instruction-order; [T]; iio; [M]; po; [ISB]
is similar

– po; [ERET]; instruction-order; [T]
So the whole cycle looks like
po; [ERET]; instruction-order; [T]; imm(ob)^(n-1)
Because instruction-order is acyclic, n ≥ 1, so we have
po; [ERET]; instruction-order; [T]; imm(ob); imm(ob)^(n-2)
By Lemma ob-from-T, we have either:

∗ po; [ERET]; instruction-order; [T]; iio; imm(ob)^(n-2)
which means that by Lemma instruction-order-compress-iio, we have
po; [ERET]; instruction-order; imm(ob)^(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

∗ po; [ERET]; instruction-order; [T]; ([T]; iio; [M]; po; [W]) ; imm(ob)^(n-2)
which means that by Lemma instruction-order-compress, we have
po; [ERET]; instruction-order; imm(ob)^(n-2)
so we have a cycle involving one edge fewer, so we have a contradiction.

. extended dob:

– involving trfi from non-initial writes, which contradicts our assumption about static translation.

– or [T]; instruction-order; [W],
so [T]; iio; [M]; po; [W]
So the whole cycle looks like imm(ob)^(n-1); [T]; iio; [M]; po; [W]

Because po | iio is acyclic, n− 1 has to be ≥ 1, so by Lemma ob-to-T, we have either
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∗ imm(ob)^(n-2); iio; [T]; iio; [M]; po; [W]
See Case IIOtrans.

∗ trfe, which is from an initial write by the VA abstraction condition,
but by Lemma no-cycle-ob-to-init, the cycle cannot exist

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]; po; [W]
but we already have iio to the second T,
so we have a cycle involving one fewer translate,
so we have a contradiction.

∗ imm(ob)^(n-2); [CSE]; instruction-order; [T]; iio; [M]; po; [W]
which means that by Lemma instruction-order-compress, we have
imm(ob)^(n-2); [CSE]; instruction-order
so we have a cycle involving one edge fewer,
so we have a contradiction.

∗ imm(ob)^(n-2); po; [ERET]; instruction-order; [T]; iio; [M]; po; [W]
is similar

. extended bob, but only involving TLBI, which contradicts our assumption of no TLBI.

. extended obs, but only involving trfe, by the VA abstraction condition, the only writes to page
tables are from initial writes, and by Lemma no-cycle-ob-to-init, there are no ob cycles via initial
writes, so there is no cycle.

. obfault, which involves a fault, which contradicts our assumptions.

. obets, which involves a fault or a TLBI, which contradicts our assumptions.

All the other edges are in plain-ob by definition.

Theorem 2 (VA anti-abstraction). If the translation extension condition holds, then there exists a Gtr that
satisfies the VA anti-abstraction condition such that Gtr is a stitching of Gabs with the pt_initial_state
according to translate in tr_ctxt and Gtr is consistent wrt. the model with translation.

Proof. Gtr exists by the translation extension construction,
and it is consistent by Lemma ob-acyclic-preserved.
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