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Preface9

This dissertation is the result of my own work and includes nothing which is the outcome of work done in10

collaboration except where specifically indicated in the text.11

It is not substantially the same as any work that has already been submitted, or, is being concurrently12

submitted, for any degree, diploma or other qualification at the University of Cambridge or any other13

University or similar institution except as declared in the preface and specified in the text.14

It does not exceed the prescribed word limit for the relevant Degree Committee.15

This dissertation contains:16

. 66781 total words as counted by detex | wc -w17

. 62771+928+1476 (319/86/268/17) Total (errors:9) words as counted by texcount18



Abstract19

Computing relies on architecture specifications to decouple hardware and software development. Historically20

these have been prose documents, with all the problems that entails, but research over the last ten years has21

developed rigorous and executable-as-test-oracle specifications of mainstream architecture instruction sets22

and “user-mode” concurrency, clarifying architectures and bringing them into the scope of programming-23

language semantics and verification.24

However, the system semantics, of address translation and TLB maintenance, instruction-fetch and its25

required cache maintenance, and exceptions and interrupts, remains mostly obscure, leaving us without a26

solid foundation for verification of security-critical systems software.27

We produce precise mathematical models, for those aspects of the Arm A-class architecture. We implement28

these models as executable models, in both microarchitectural-flavoured operational and declarative29

axiomatic style formats. We validate these models, against currently available hardware through the30

production and evaluation of hardware test harnesses and test suites, and against the architectural intent31

through discussions with Arm architects. We produce a variety of hand-written and machine-generated32

litmus tests, exercising parts of the architecture previously unexplored.33

We discuss the nature of producing such models, the challenges that writing specifications of existing34

systems entails, and briefly touch upon how these models have evolved over time, and how we imagine35

they will evolve in the future as the remaining questions are resolved.36
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Chapter 1249

Introduction250

The computers we use every day are complex machines, made of many components, all working together to251

execute the software we run on them. These machines act as interpreters for a custom binary programming252

language, with commands made up of the instructions of the underlying architecture. These architectures253

can be thought of as abstractions of the underlying hardware: programming languages whose syntax254

is defined by the binary encoding of the instructions from the ISA (Instruction Set Architecture), and255

semantics is the composition of the sequential behaviours of the instructions from the ISA, with the whole256

machine execution model.The architecture therefore can be thought of as the interface between hardware257

and software: defining the guarantees hardware must give and that software may rely upon.258

Over the years much work has gone into defining, mathematically and precisely, the architectures that259

the processors we use every day implement. This previous work covers Intel/AMD’s x86 [1, 2, 3, 4],260

Arm’s ARMv7-A [5] and Armv8-A [6, 7] architectures, IBM’s Power [8], RISC-V [9], and others. In261

theory, this interface is straightforward to define. One can give precise formal semantics to the individual262

instructions, as Arm does with its Architecture Specification Language (or ASL for short) [10, 11], and263

then tie instructions together in a fetch-decode-execute loop. In practice, however, modern industrial264

architectures accumulate great complexity and subtlety. The Armv8-A and Intel reference manuals have265

11,500 [12], and 4922 [1] pages respectively, covering everything from the individual instructions to the266

interactions between those instructions and the way they interact with memory.267

The complexity of these interfaces becomes most apparent with the interaction with multiprocessor systems268

[13]. When multiple processors are executing concurrently, and communicating through shared memory,269

then various hardware optimisations, which are usually invisible to the programmer outside of timing270

effects, can become architecturally visible, affecting the semantics of the machine code, that is the values271

capable of being read or written to registers or memory by those processors. Over the years, these effects272

have been studied as part of the field of ‘relaxed memory’ research, resulting in numerous formal models273

for a variety of microprocessor architectures giving precise mathematical semantics to the concurrent274

behaviours of ‘userland’ machine code programs [14, 15, 3, 4, 16, 7, 17]. Analogously for high-level275

languages, there is similar work in understanding their relaxed memory behaviours which arise from276

both their compilation to such low-level machine programs, and also from the compiler’s optimisations277

[18, 19, 20, 16].278

We now seek to expand this work on relaxed memory for the Arm architecture, to cover not just those279

parts of the architectures used by userland processes, but the features required by systems software to280

function. In this work we will focus on the Armv8-A architecture: the application-class processors that281

power a large proportion of modern mobile devices. There are a few reasons to focus on Arm: (1) they282

are ubiquitous and millions (perhaps even billions, with over a trillion devices running Arm hardware283

today) of people rely on software running on Arm hardware every day, (2) Arm has a diverse ecosystem of284

implementations, meaning software must program to this abstract interface much more tightly than one285

might for other architectures, and (3) Arm have put a large amount of effort into precisely and formally286

defining their ISA in their ASL language, enabling us to give a faithful specification to the architectural287

envelope.288

Specifically, we will focus on key architectural features required by operating systems and hypervisors,289

which are not accessible, or only partially accessible, to userland processes: instruction fetching and cache290

maintenance, virtual memory and TLB maintenance, and exceptions.291
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1.1 Arm-A architecture overview292

In this work we will primarily be focused on Arm. Arm will serve as an example of representative modern293

microprocessor architecture, and while the focus will be on Arm many of the behaviours and conclusions294

will also apply to other architectures including RISC-V, IBM Power, and x86.295

Arm produce three major classes of architectures, A-class (Application), R-class (Real-time) and M-class296

(Microprocessor). Arm predominantly produce architecture, and while they do design a small number297

of implementations it is primarily their partners who design and print their own. This will give us a298

large surface of interesting designs of the same architecture to test. In particular, we will focus on the299

A (Application)-class processors.300

Arm’s A-class architecture is intended to support general-purpose high-performance microprocessors, such301

as those found in mobile devices, tablets, laptops, and servers. Arm has three A-class architectures which302

can currently be found in modern hardware: ARMv7-A, Armv8-A, and Armv9-A. ARMv7-A is 32-bit303

only. Armv8-A and Armv9-A have 32-bit and 64-bit execution modes. Armv8-A and Armv9-A’s 64-bit304

modes use the same base ISA and execution modes, except where Armv9 has some additional features, or305

required extensions, or bugfixes. We will focus here on the 64-bit architecture found in Armv8-A and306

Armv9-A, and will use the term Arm-A to refer to both Armv8-A and Armv9-A interchangeably.307

Execution of an Arm-A processor is split into two modes: AArch64 (for 64-bit execution) or AArch32 (for308

32-bit execution). AArch64 mode uses the A64 instruction set. AArch32 mode can use either the T32 or309

A32 instruction sets. This is illustrated in Figure 1.1.310

Arm-A

AArch32 AArch64

T32 A32 A64

Architecture

Execution mode

ISA

Figure 1.1: Arm-A structure.

A64, currently, has 402 ‘base’ instructions and another 1,205 vector, matrix and floating-point instructions.311

It has 31 general-purpose registers, accessible through either 32-bit views as w0-w30, or as 64-bit views as312

x0-x30, as shown in Figure 1.2. It has a dedicated zero register (wzr/xzr), and stack pointer register (sp).313

Instructions are fixed-width, with 32-bit opcodes, and in the typical RISC style: with most instructions314

reading operands from registers, and writing results back to registers, with only limited support for315

immediate values. Execution in AArch64 is split into 4 ‘exception levels’, these demark the levels of316

privilege that a process may have, ranging from EL0 (least privileged) to EL3 (most privileged). Typically317

userland processes execute at EL0, with very limited access to hardware features; with operating systems318

running at EL1, hypervisors running at EL2, and any firmware and secure monitor running at EL3.319

There are also secure modes, which we do not consider here. Each CPU has its own bank of registers; is320

executing in either AArch64 or AArch32 execution mode; is fetching, decoding and executing instructions321

from either the A64, A32 or T32 ISAs; is executing at at one of EL0, EL1, EL2 or EL3.322

08162432404856 715233139475563

GPR#n

Xn

Wn

Figure 1.2: Arm-A W and X register views for a general-purpose register.

1.1. ARM-A ARCHITECTURE OVERVIEW 10



Proc Proc Proc Proc

Kernel Kernel

Hypervisor

Firmware/Secure Monitor

EL0: Userland

EL1: Operating System

EL2: Hypervisor

EL3: Firmware

Least privileged

Most privileged

Figure 1.3: Arm-A exception levels.

1.2 Systems software323

The programs we interact with on a day-to-day basis on our computers, our word processors and internet324

browsers, are typically unprivileged programs, with restricted access to hardware. Such programs are325

often referred to as executing in userland. These userland programs make up the bulk of the applications326

we use every day, from spreadsheets, to web browsers, text editors, and so on. They typically execute with327

the least privilege (in Arm, this means at EL0, as in Figure 1.3), and with the operating systems and328

hypervisors below them restricting the access to memory they have through the use of virtual memory329

(see Chapter 7).330

Operating systems typically split userland execution into processes: discrete instances of programs, each331

with some associated dedicated (virtual) memory [21, p. 85]. It is then the operating system, executing332

with more privilege (at EL1), that configures and schedules these processes.333

Modern operating systems seek to enforce isolation between these processes primarily through the334

application of a virtual memory abstraction [21, pp. 185,194,604][22, p 227] (described in detail in Part II),335

with each process behaving as if it had direct access to memory, when in fact the operating system (via336

the hardware supporting it) are redirecting the accesses at runtime.337

This virtual memory abstraction can be layered, with an extra level of abstraction below the operating338

systems controlled by a hypervisor. Hypervisors behave similarly, but instead of controlling many processes339

at EL0 they instead can control multiple operating systems at EL1.340

Finally, software at EL3 executes any firmware or secure monitor. Generally, the firmware performs341

hardware-specific actions, especially during boot (reading and writing implementation-defined configuration342

registers and performing any functionality required by the System-on-Chip). The Secure Monitor is a343

part of the Arm architecture’s TrustZone security extensions, and we will not discuss these features here.344

Figure 1.3 demonstrates a typical setup, with firmware running at EL3, a hypervisor at EL2, which is345

controlling a couple of operating systems, each of which has multiple processes under its control.346
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1.3 Relaxed memory347

The implementations of programming languages, in the form of compilers and interpreters either in348

software or hardware, are not just direct implementations of the simple in-order sequential semantics349

one might expect. Instead, as time progressed these implementations have acquired multiple layers of350

abstraction, made with increasing complexity. Compilers and hardware re-write programs to be faster,351

use less space, and be more compact. They propagate and duplicate reads, subsume or outright eliminate352

writes, reorder operations in the program, replace one computation with another, or even just remove353

entire sections of the program entirely.354

These optimisations may be semantics preserving with respect to the simple sequential semantics: aside355

from the timing effects they are designed to cause they are invisible to the programmer. This is, however,356

not true in all cases, with many highly desirable optimisations not preserving the source program’s357

semantics [23].358

It is multithreaded programs, and multicore processors, which often breaks the assumptions made by these359

optimisations. As an example, take Intel’s x86 microprocessor architecture. It allows its implementations360

to perform an innocuous-sounding optimisation: to buffer writes together locally. This store buffering361

optimisation is ubiquitous in the hardware world, but it permits multiple cores to have mutually inconsistent362

views of memory [23, 3, 4]; where, at the same point in time, different cores see different values for the363

same memory address. If the programmer was unaware of these behaviours and the required mitigation364

in software, then this could break key invariants of software, leading to critical bugs in synchronisation365

primitives [23], data structures, or software more generally [24].366

Intel, and their x86 architecture, is not the only example of hardware architectures performing such367

optimisations, and store buffering is not the only behaviour hardware exhibits. Arm [12], RISC-V [25],368

and IBM’s Power [26] architectures all exhibit their own behaviours, with consequential requirements on369

software. Each of these microprocessor architectures comes with its own reference manual, comprised of370

thousands, or tens of thousands, of pages with a mix of prose and pseudocode, attempting to describe371

these behaviours. These architectures are incomparable, the behaviours they allow are not subsets372

of one another. Instead, there are several optimisations that some architectures allow as observable373

behaviour, where others do not. Those optimisations include, but are not limited to, things such as:374

reordering of instructions, prefetching and caching of data and instructions, buffering of loads and stores,375

hierarchical cache layouts, and branch prediction with speculation down those branches. It is not that376

some implementations perform these optimisations while others do not, but that those architectures which377

allow such behaviours to be observed do not require that the hardware include relevant hazard checking378

or invalidations which would recover from ‘bad’ states.379

It is not just hardware that has these concerns. A variety of software languages, including C and C++380

[27, 28], Java [29, §17.4], Rust [30], and Haskell [31], are all known to have comparable behaviours, derived381

both from similar optimisations done by their compilers and interpreters, but also inherited from the382

hardware they run upon.383

Over the decades, the community has spent a large amount of effort in understanding the behaviours384

the hardware actually exhibits, by empirically observing what extant hardware does, by talking with385

architects and hardware designers about what they imagine hardware could do, now or in the future,386

and by building precise mathematical models which capture the architectural ‘envelope’ of allowable387

behaviours. These models come in many flavours, and in Chapter 2 we will explore two such models for388

Arm, and the set of behaviours they are intended to capture.389
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1.4 Contributions390

In this work, we extend the previous relaxed memory work on Arm into the realm of systems software:391

instruction fetch and cache maintenance (Part I), pagetables and TLB maintenance (Part II), and a392

start on exception handling (Part III). We will produce both axiomatic-style declarative semantics and393

microarchitectural-style operational semantics to cover a variety of those parts of the architecture.394

1.4.1 Artifacts395

This work will present:396

. A set of litmus tests for instruction fetching and cache maintenance (Ch. 3), covering many areas397

and features and clarifying the architectural intent in those areas.398

. A microarchitectural-style structural-operational-semantics for Arm-A (Ch. 4), covering ifetch and399

cache maintenance, as an extension to the existing Flat model.400

. An equivalent formulation as an axiomatic-style declarative semantics (Ch. 5), as an extension to401

the herd-style Armv8 axiomatic model.402

. An extension of the litmus7 tool, and a set of results from testing against a range of hardware403

(Ch. 6).404

. A set of litmus tests for virtual memory and TLB maintenance, using the whole Arm translation405

table walk with both stages (Ch. 8).406

. An axiomatic-style declarative semantics (Ch. 9) as an extension to the original Armv8 model.407

. A new hardware testing harness, and validation of the models by experimentation against hardware,408

and through abstraction proofs (Ch. 10).409

. A set of litmus tests for precise exceptions in Arm (Ch. 11).410

. An axiomatic-style declarative semantics for precise exceptions in Arm (Ch. 12).411

. An extension to the hardware testing harness of Chapter 10 to support hardware testing of exceptions,412

and validation of the previously mentioned precise exceptions semantics on hardware (Ch. 13).413
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1.5 Publications and collaborations414

The work presented in Chapters 3 to 10 were done in collaboration with a variety of other people on415

different aspects, and resulted in the production of the following publications:416

. “ARMv8-A system semantics: instruction fetch in relaxed architectures”, in the Proceed-417

ings of the 29th European Symposium on Programming (ESOP 2020), by Ben Simner, Shaked418

Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter419

Sewell [32].420

. “Isla: Integrating full-scale ISA semantics, axiomatic concurrency models”, in the421

Proceedings of the 33rd International Conference on Computer Aided Verification (CAV 2021), by422

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell [33].423

. “Relaxed virtual memory in Armv8-A”, in the Proceedings of the 31st European Symposium424

on Programming (ESOP 2022), by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod,425

Christopher Pulte, Richard Grisenthwaite, and Peter Sewell [34].426

. “Precise exceptions in relaxed architectures (pre-publication)”, in the unpublished work,427

by Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean428

Pichon-Pharabod, and Peter Sewell [35].429

. “Isla: Integrating full-scale ISA semantics, axiomatic concurrency models (extended430

version)”, in the Formal Methods in System Design (May, 2023), by Alasdair Armstrong, Brian431

Campbell, Ben Simner, Christopher Pulte, and Peter Sewell [36].432

Many of the aspects of the work presented in this thesis were done jointly with many of the people listed433

above. The Isla tooling was primarily written by Alasdair Armstrong. The work on the litmus and434

diy tools was done by Luc Maranget. The production of litmus tests and discussions with architects435

and microarchitects was done jointly with Shaked Flur, Christopher Pulte, Ohad Kammar, Thibaut436

Pérami, Jean-Pichon Pharabod, and Peter Sewell. The writing of models was done in collaboration with437

Christopher Pulte and Shaked Flur (for ifetch); Christopher Pulte and Thibaut Pérami (for VMSA); and438

Jean Pichon-Pharabod and Ohad Kammar (for exceptions). Validation of the models, through proof and439

hardware testing, was done jointly with Jean Pichon-Pharabod (on the VMSA abstraction proofs) and440

Luc Maranget (test generation and hardware testing for ifetch).441

Much of the above work was done in collaboration with Arm and their staff, in particular their chief442

architect, Richard Grisenthwaite. He is our primary contact within Arm, and we have a close collaboration443

with him characterised by discussions on Arm hardware, the requirements of the software that runs on444

them, the consequences of the models we propose, and, where relevant, the history of the architecture. In445

cases where we present some behaviour and declare that it is ‘allowed by Arm’, it usually means we have446

confirmation from the chief architect directly. However, it is not just the chief architect we collaborate447

with, but many members of Arm’s staff: Will Deacon, and later Jade Alglave, as the primary maintainer448

of the Arm memory models; and Ian Caulfield, Nikos Nikoleris, Gustavo Petri, Anthony Fox, and others,449

who discussed Arm modelling efforts, Arm hardware implementations, and provided feedback individually450

on many of the aforementioned publications.451
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1.6 Overview452

This document is split into five main parts:453

. Introduction and background (Chapters 1 and 2)454

. Instruction fetch (Part I comprising chapters 3-6)455

. Virtual memory (Part II comprising chapters 7-10)456

. Exceptions (Part III, comprising chapters 11-13)457

. Limitations and Conclusion (Chapter 14)458

Background Chapter 2 covers the fundamental concepts behind relaxed memory. the idea of litmus459

testing as a means to clarify and understand architecture, including a selection of important and useful460

litmus tests from the literature; how Arm defines their intra-instruction semantics and how such semantics461

compose with a concurrency model; the two kinds of concurrency models we will explore in this thesis,462

microarchitectural-style operational semantics and axiomatic-style declarative semantics; and describe463

instantiations of these for Arm-A.464

Part I: Instruction fetching We start with a brief overview of the existing prose text for instruction465

fetch (ifetch) and the related instruction (and data) cache maintenance operations. Focusing primarily on466

self-modifying (and concurrent modification) of code, such as what is required for JITs, dynamic loaders,467

and operating systems schedulers, we produce a set of litmus tests (Ch. 3) to capture the key relaxed468

behaviours that arise from the optimisations found in modern microprocessors, and clarify where such469

behaviours were unclear. We produce a microarchitectural-style operational semantics (Ch. 4) based470

on our discussions with architects and micro-architects. We then produce an axiomatic model (Ch. 5)471

intended equivalent to the operational model. We then validate that these models (Ch. 6), confirming472

they coincide for the litmus tests given in the chapter. We automatically generate a large test suite of473

novel tests and check the two models do not diverge on these tests. We additionally check that they do474

not forbid behaviours exhibited on hardware by running the test suite on a selection of modern Arm475

processors.476

Part II: Virtual memory Structured similarly to the instruction-fetching chapters, but independently of477

them, we explore the Arm Virtual Memory Systems Architecture or VMSA. We begin with an overview of478

the sequential aspects (Ch. 7), describing the structure and behaviour of the Arm address translation479

and memory management architecture without considering concurrency or caching effects. Then, we480

explore the relaxed behaviours of virtual memory (Ch. 8) by producing litmus tests and discussing the481

architectural intent. We produce an axiomatic-style model for relaxed virtual memory (Ch. 9), as an482

extension to the original (user mode) model, using the whole Arm translation table walk, including483

multiple stages, and TLB maintenance. Finally, there is a discussion on the validation of this model484

(Ch. 10) achieved by discussion with the Arm chief architect, along with some limited testing of current485

Arm hardware, and some proofs over the axiomatic model for some expected key abstraction results.486

Part III: Exceptions A short overview of the in-progress work on relaxed exceptions in Arm-A. We487

begin with a discussion on the Arm interpretation of precise exceptions, before producing some key litmus488

tests, an axiomatic model, and finally produce some preliminary hardware results to support the models.489

Conclusion Finally, Chapter 14 presents a short recap of the presented work, its limitations, and relation490

to other work in the area. Additionally, there is a discussion on what was learned, in terms not only of491

the models produced but also of the process itself, before finally touching on what remains as potential492

future work.493
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Chapter 2494

Modelling Arm: background495

Now we turn our attention to the current well-established methods of precisely and formally modelling496

relaxed memory behaviours, in the context of Arm-A. In this chapter, we will cover two methods:497

microarchitectural-style operational semantics, which mimic the mechanisms seen on hardware; and,498

axiomatic-style declarative models which filter out whole-program execution graphs based on some499

predicate.500

We shall see that the idea of litmus testing is central: litmus tests provide a way of succinctly and efficiently501

describing and enumerating the behaviours of the underlying architecture that the models should allow or502

forbid. We will start by looking at litmus testing in general, and some specific litmus tests of interest to503

the Armv8-A models, before looking at the models in detail.504

2.1 Relaxed behaviours and litmus testing505

The foundation of much of the relaxed memory work has been focused on litmus tests, small, self-contained,506

executable, snippets of code. They each capture a simple pattern or shape one may find in software.507

Take the classic MP (‘Message passing’) litmus test as an example [23]. Its code listing for the AArch64508

(Arm-A) variant can be found in Figure 2.1. The ‘MP’ portion of the name captures the shape: the code509

pattern, or sequence of events, that acts as the skeleton for a family of related tests. In this case, message510

passing is a common software pattern where one thread writes some data followed by a flag signalling511

the data is ready, while another thread concurrently reads the flag in order to further read the data.512

Thus, the ‘MP’ shape implies a two-threaded test with two locations (usually called x and y), with one513

thread (usually written first) writing to the locations, and another thread reading them in the converse514

order. The second half of the name (‘+pos’) designates the variation on the shape, in this case, that515

both threads have accesses just program-order after each other with no other barriers or dependencies.516

Typically these variations are defined as the sequence of orderings between events (separated by - in the517

name) for each thread (separated by +). Thus, we get a whole family of litmus tests based on the basic518

MP shape: MP+pos (the one shown here), MP+dmbs (with an Arm dmb memory barrier on each thread),519

MP+dmb.st+addr (with an Arm dmb.st memory barrier on the writer thread and an address dependency520

on the reader thread), and so on.521
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MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+pos AArch64

Allowed: 1:X0=1, 1:X2=0

Figure 2.1: MP test code listing.

The code listing given is totally standard [37]: the top line contains the name of the litmus test (MP+pos),522

and the architecture that this variant is for (AArch64); the second section contains the initial register523

and memory state; the next section contains the assembly code listing for each thread; and finally at the524

bottom is a conjectured outcome (plus its architectural intent, if known) given as a constraint on the final525

register and memory state. On Arm, the outcome given in the listing in Figure 2.1 is allowed.526

On a sequentially consistent (SC ) machine, whose executions are simply the interleaving of the instructions527

of all threads [38], there are many executions of the listed code, each giving rise to (potentially distinct)528

final states. To see the highlighted outcome, where Thread 1 reads 1 for y but 0 for x, there is only one529

possible combination of reads: that the read of y reads from the write to y, and the read of x reads from530

the initial memory state. This combination is not consistent with any of the simple interleavings of the531

instructions a sequentially consistent machine would perform. We represent these executions not as an532

interleaving of the instructions, but as a graph of the events of those instructions (the reads and writes533

they perform) connected by their implicit orderings. There may be, and in this case, are, multiple different534

operational traces that lead to the same execution witness, which we shall explore later. The execution535

graph that corresponds to the allowed outcome can be found in Figure 2.2.536

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

po porf
fr

Figure 2.2: MP test execution diagram.

The nodes on the left, below the Thread 0 label, correspond to events from executing Thread 0 of the537

program, where the event labelled a:W x=1 corresponds to the propagation of the first store in Thread 0538

(the write of 1 to x) to memory, and event b corresponds to the second store being propagated. They are539

related by program-order (po) which says that instruction the event a comes from is earlier than that of b’s540

in the instruction stream of the processor; that is, a’s instruction was earlier in the fetch-decode-execute541

cycle of the processor than b’s was. Similarly, below the Thread 1 label we see the event labelled c:R y=1:542

the read event corresponding to the first load, reading the address y and getting the value 1. The value543

was read from the write event b, therefore b is related to c (the read of y) by the reads-from (rf) relation.544

Finally, the load of x reads from the initial value in memory, so we have another read event, labelled545

d, which reads 0. The read d of x read a value from a write to x from before the event a happened, in546

this case that is the initial memory from the ‘Initial state’ of the test, and so d is related to a by the547

from-reads (fr) relation.548

On Arm, the writes and reads need not execute in the order they appear in the program. So, while this549

execution appears to have a cyclic dependency in the order events must have happened in, the cycle can550

be broken by re-ordering the execution of either the reads or writes. The execution is therefore allowed,551

and we readily observe this outcome on most modern hardware.552
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Litmus testing We use litmus tests to explore behaviours: particular patterns in code, or specific553

hardware mechanisms that are responsible for allowing or forbidding the test. Many litmus tests exercise554

many microarchitectural mechanisms whose composition or confluence leads to the final result, or where555

there may be multiple different mechanisms or choices that could each independently lead to the same556

result. For example, in the MP+pos test we just saw, there are three well-understood microarchitectural557

explanations: that the stores are committed out-of-order (re-ordered within the pipeline, store queue, or558

other thread-local storage), that the stores propagate out-of-order (are pushed out-of-order into the shared559

memory), or that the loads satisfy out-of-order (either requested out-of-order in the pipeline, or requests560

returned out-of-order from the memory subsystem). Any of the above explanations are alone sufficient to561

allow the relaxed outcome highlighted by the test. One needs to prevent out-of-order execution on both562

sides of the test (through the use of memory barriers, for example) to forbid that relaxed outcome.563

Previous work has systematically enumerated these various patterns to produce a large collection of litmus564

tests, for a range of architectures, each with an assortment of variations for different intra-thread orderings565

(for barriers, dependencies, and so on). This has included obtaining both the architectural intent for566

those patterns, as well as extensive testing campaigns on a variety of modern hardware. In some cases,567

some outcome may be architecturally allowed, that is, the final state constraint is permitted to occur in568

practice, but has not been experimentally observed on any hardware so far. In other cases, there may569

be no architecturally allowed execution that permits a particular outcome, but it is still observed on570

hardware: these are (or at least imply there exists) hardware errata, more commonly referred to as ‘bugs’.571

We will not do an exhaustive review of all the behaviours that are allowed and forbidden in Arm, instead572

referring the reader to the existing literature [14, 37, 39, 16, 7, 6, 40]. However, we will briefly look at573

some of the behaviours that the reader should be familiar with in order to understand future chapters,574

namely coherence, barriers and dependencies, and multi-copy atomicity.575

2.1.1 Thread-local ordering576

On Arm, instructions need not execute in the order they appear in the program, as we just saw. Reads577

and writes are free to be re-ordered with respect to each other, with few restrictions. This is in contrast578

to other architectures such as Intel/AMD’s x86, where only writes can be re-ordered with respect to579

program-order later reads (through store buffering) [1, 23, 3]. Note that this does not mean that the580

hardware is not allowed to re-order the instructions, but that if it does it must preserve the illusion of581

in-order execution to the programmer.582

Not all re-orderings are permissible; Arm requires that single-threaded programs should behave as if583

executed sequentially, at least for loads and stores. This means that non-SC executions only come about584

through the interaction between multiple threads. We have already seen this with the MP test mentioned585

earlier. To forbid the outcome of that test we must add barriers or dependencies to enforce thread-local586

ordering, preventing the events from being reordered. Two (forbidden) variations of MP can be found in587

Figure 2.3.588

Dependencies in Arm arise from the intrinsic control and data flow of the program. Usually, they are589

categorised into three kinds: address dependencies (addr), from reads to memory events that use that590

read in the computation of the address the memory event accesses; data dependencies (data), from reads591

to writes, where the value read is used in the computation of the value written; and control dependencies592

(ctrl), from reads to events of instructions program-order after a (conditional) branch in the program593

where the value of the read was used in the computation of the value used in the condition. Note that these594

are not purely dynamic properties of the execution, but rather they are syntactic in that the dependencies595

an instruction induces is a statically known property, thus there are no so-called ‘fake’ dependencies: the596

values read or written at runtime by an instruction does not matter only the set of registers it accesses.597

Not all dependencies are equal. On Arm, address and data dependencies enforce both read-to-read598

and read-to-write ordering, control dependencies enforce read-to-write but not read-to-read ordering.599

Speculation allows reads to happen ‘early’, but not writes; this gives an asymmetry where control600

dependencies provide strength to a write but not a read. This can be seen in the two tests in Figure 2.4.601
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+dmbs AArch64

Forbidden:
1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb dmbrf
fr

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.3: Two variants of MP with thread-local ordering.
On the left: MP+dmbs with Arm DMB barrier between instructions.
On the right: MP+dmb.st+addr with an address dependency between the reads.

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+ctrl AArch64

Allowed: 1:X0=1, 1:X2=0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]

Thread 0

|LDR X0,[X1]|
CBNZ X0,LC01
LC01:
MOV X2,#1
STR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

LB+ctrls AArch64

Forbidden: 0:X0=1, 1:X0=1

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st ctrlrffr

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

ctrl ctrlrf
rf

Figure 2.4: Two litmus tests with speculation.
On the left: MP+dmb.st+ctrl with Arm DMB barrier between the writes, but a control dependency between
the reads.
On the right: LB+ctrls, a variant of the classic ‘load buffering’ litmus test, with control dependencies to
both writes.
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MOV X0,#1
STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 1:X1=x, 1:X3=x,
*x=0,

CoRR1 AArch64

Forbidden:
1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
LDR X2,[X3]

Thread 0

Initial state:
0:X1=x, 1:X1=x,
0:X3=x, *x=0

CoWR AArch64

Forbidden: 0:X2=0

W x=1a:

Thread 0

R x=1b:

R x=0c:

Thread 1

po

rf

fr

W x=1a:

R x=0b:

Thread 0

pofr

Figure 2.5: Two coherence litmus tests.
On the left: CoRR1, that two subsequent reads of the same location in the same thread should be consistent
with the coherence order. On the right: CoWR, that a read of a location cannot skip over a newer
program-order earlier write from the same thread.

2.1.2 Coherence602

A guarantee provided by most modern microprocessor architectures is coherence: that there is for each603

location, a total order that writes to that location happen in, that all threads agree on [8].604

This property is one that sets processor consistency models apart from those one would find in databases605

and other distributed systems, which generally do not require it, such as the classic causal consistency606

model for distributed systems [41].607

Two of the key litmus tests for coherence can be found in Figure 2.5.608

2.1.3 Multi-copy atomicity609

Coherence is not sufficient to guarantee that all threads agree on what the most recent write is at the same610

point in time. Eventually, they will all have seen the same writes to the same location in the same order,611

but at any particular moment, some threads may not have caught up to the latest write yet. Architectures612

that have this property are called non-multi-copy atomic [13].613

Arm has a kind of partial multi-copy atomicity, which they call other-multi-copy atomicity. This other-614

multi-copy atomicity gives guarantees similar to normal multi-copy-atomic architectures, but allows writes615

to be read by the writing thread itself earlier than they can be seen by other threads, however, once616

a write has propagated to another thread then all threads must see that write or something newer [7].617

The hardware mechanism which motivates this is write forwarding: the processor can satisfy a read from618

a same-thread same-location program-order-earlier write, if that write has committed, even before the619

write has propagated out to memory. Figure 2.6 contains the classic PPOCA (preserved-program-order–620

control–address) litmus test, which shows that writes can be observed locally before being propagated to621

other threads, even down speculative branches. Figure 2.7 shows the classic IRIW (independent-reads622

independent-writes) litmus test, which demonstrates the latter point, that writes propagate to all threads623

simultaneously.624
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MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X8,X0,X0
MOV X2,#1
STR X2,[X3,X8]
LDR X4,[X5]
EOR X9,X4,X4
LDR X6,[X7,X9]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x,
1:X3=z, 1:X5=z,
*x=0, *y=0, *z=0

MP+dmb.st+addr-rfi-addr AArch64

Allowed:
1:X0=1, 1:X4=1, 1:X6=0

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]
LDR X4,[X5]
EOR X6,X4,X4
LDR X7,[X8]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=z, 1:X5=z
1:X8=x, *x=0, *y=0

PPOCA AArch64

Allowed: 1:X0=1, 1:X4=1
1:X7=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb st addr

po

addr

rf

rf

fr

W x=1a:

W y=1b:

Thread 0

R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb ctrl

rf

addr

rf

fr

Figure 2.6: Two litmus tests with write forwarding.
On the left: MP+dmb.st+addr-rfi-addr with write-forwarding down a non-speculative branch.
On the right: PPOCA, with write-forwarding down a speculative branch.

MOV X0,#1
STR X0,[X1]

Thread 0

LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 1

MOV X0,#1
STR X0,[X1]

Thread 2

LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 3

Initial state: 0:X1=x, 1:X1=x, 1:X3=y,
2:X1=y, 3:X1=y, 3:X3=x, *x=0, *y=0

IRIW+dmbs AArch64

Forbidden: 1:X0=1, 1:X2=0, 3:X0=1, 3:X2=0

W x=1a:

Thread 0

R x=1b:

R y=0c:

Thread 1

W y=1d:

Thread 2

R y=1e:

R x=0f:

Thread 3

dmb dmb

rf

fr

rf

fr

Figure 2.7: IRIW+dmbs: a classic multi-copy atomicity litmus test.
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2.2 Intra-instruction semantics625

Much of the work in this document will be dedicated to understanding the inter-instruction and concurrency626

aspects of the semantics. Previous work has, for Arm and RISC-V, established high-fidelity models for627

the intra-instruction behaviour of individual instructions. That is, the sequential behaviour of the register628

and memory accesses, and any arithmetic over them, the instruction performs.629

Arm produces such models as part of their architecture specifications, in their custom ASL (architecture630

specification language) programming language [10], which can be found in the manual [12] or otherwise631

acquired from Arm [42].632

The ASL and Sail specification languages Although this document is focused on Arm-A, and Arm633

use their ASL language, the tools we build upon are generally architecture agnostic, and use the Sail634

specification language for instruction semantics [43]. For compatibility with those tools we use the635

asl_to_sail generated translations [43, 44] throughout the work presented here. Sometimes the listings636

given will be extracted from the Arm documentation (and therefore will be in ASL) or from the tooling637

(and so be in Sail); the captions of any figures or listings should make it clear which language the presented638

code is in. Sail and ASL are very similar languages, and are used for broadly the same purposes, with639

similar syntax and semantics; we will not go into depth here into the history or minutiae of them; instead,640

we will look at just one aspect of Sail, its effect system, as it is important to the function of the tools we641

will use later on.642

Outcomes Sail programs are effectful: they have effects such as read register, write register, read memory,643

and so on.644

These effects make Sail programs monadic computations over the Sail effect datatype (called outcome).645

Figure 2.8 lists the outcomes defined by the Sail effect system [15], it contains one pure value (Done),646

and the other values each represent one step of the intra-instruction semantics suspended at the interface647

with the environment, containing a continuation to resume the execution with the environments choice.648

Read_mem(read_kind, address, size, read_continuation) Read request
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 2.8: Outcomes (the Sail effect datatype).

An example instruction As an example, take the Arm ‘ADD Xd,Xn,Xm’ instruction, whose Sail code can649

be found in Figure 2.9, as extracted from the original source ASL code in the Arm manual. It takes650

two input registers (Xn,Xm), adds the values stored in them together, and stores the result in the output651

register (Xd), updating any flags as it does so.652

The calls to X_read and X_set, and (not shown) EndOfInstruction. Each has an effect, and emits an outcome653

in the trace. Omitting the outcomes for the flag registers, and the exact arithmetic calculation, this code654

results in the trace of outcomes shown in Figure 2.10:655

Read_reg(n, fun v1 ->
Read_reg(m, fun v2 ->

Write_reg(d, (v1 + v2), Done)
)

)

Figure 2.10: Trace from the Arm ADD instruction.
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1 function execute_aarch64_instrs_integer_arithmetic_add_sub_shiftedreg (d,
datasize , m, n, setflags , shift_amount , shift_type , sub_op) = {

2 result : bits('datasize) = undefined;
3 let operand1 : bits('datasize) = X_read(datasize , n);
4 operand2 : bits('datasize) = ShiftReg(datasize , m, shift_type , shift_amount)

;
5 nzcv : bits (4) = undefined;
6 carry_in : bits (1) = undefined;
7 if sub_op then {
8 operand2 = not_vec(operand2);
9 carry_in = 0b1

10 } else {
11 carry_in = 0b0
12 };
13 (result , nzcv) = AddWithCarry(operand1 , operand2 , carry_in);
14 if setflags then {
15 (PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv
16 };
17 X_set(datasize , d) = result
18 }

Figure 2.9: Sail pseudocode for the ADD Xd,Xn,Xm instruction.

The set of such traces define the semantics of that instruction, and the concurrency models described656

later in this chapter are parameterised over such traces.657

2.3 Arm-A operational model658

The canonical multi-copy atomic operational semantics for Arm is the Flat model [7].659

Flat is a small-step operational semantics, with transitions designed to (abstractly) match the kinds of660

actions we see in hardware.661

Flat is implemented as an executable-as-a-test-oracle model in the RMEM tool [45]. RMEM is written662

in a combination of OCaml and the Lem [46, 47] language for operational semantics. It can either be663

run through a command-line interface, for example to run batches of tests, or can be used interactively,664

including through a version compiled to JavaScript which can be run in a web browser [48].665

Flat has an explicit flat memory (from which it derives its name), which stores the most recent write that666

propagated to memory for each location, and a set of hardware threads, with each thread containing a tree667

of concurrently executing instruction instances (abstractly modelling modern microprocessor pipelines)668

with explicit out-of-order execution.669

Figure 2.11 demonstrates a snapshot of an example instruction tree from a thread with 10 in-flight instruc-670

tion instances. Some instructions (i2, in grey) have finished executing, some (i3, i6, i7, i9, blank/white)671

have not begun executing, and some (i0, i1, i4, i8, i5, in pink) are currently in-progress. Flat has explicit672

speculation down branches, and re-ordering of instructions. This can be seen in the diagram: there is673

a fork in the tree at i3 (a branch in the program) which has not yet been executed while some earlier674

instructions (i0, i1) have not finished (and so it is not yet known whether the program will execute down675

branch i4 or i8), but later instructions down both branches have already begun executing.676

i0 i1 i2 i3
i4 i5

i6

i7
i8 i9

Figure 2.11: A tree of 10 concurrently executing instruction instances.

Flat is composed of two subsystems: a storage subsystem which contains a flat array for memory, and the677
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thread subsystem which contains a pool of threads which may only communicate with the flat memory678

and not directly with one another, as sketched in Figure 2.12.679

P0 P1

. . .

Pn

. . .

Flat memory

Figure 2.12: Flat state (diagram).

Thread subsystem The thread subsystem has a per-thread tree of instruction instances. Each node in680

the tree is an instruction instance, a piece of state representing a single instruction in the process of being681

fetched, decoded and executed; its state includes the current pseudocode state (such states are listed in682

Figure 2.13), as well as any other ancillary data required by the operational model (pending addresses683

and values and so on).684

The thread system then has a set of guarded transitions, split into two groups: the local transitions, each685

of which calls the continuation contained within the outcome of an instance and updates the instruction686

instance state with the new outcome; and, the synchronised transitions which can also update the storage687

subsystem state, which typically update the current pseudocode state without calling the continuation.688

Figure 2.14 contains a fragment of the Lem code from RMEM which defines the thread subsystem state689

and the relevant transitions (but not their guards).690

Plain(next_state) Ready to make a pseudocode step
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store

Figure 2.13: Operational pseudocode states.

1 type threadSubsystem =
2 nat → instruction_tree;
3 type instruction_tree =
4 list (instruction_instance *

instruction_tree);
5 type instruction_instance =
6 <| id: nat;
7 program_loc: address;
8 micro_op_state: micro_op_state;
9 mem_reads: set address;

10 ... |>
11 type micro_op_state =
12 | MOS_plain
13 of outcome
14 | MOS_pending_mem_read
15 of (value → outcome)
16 | MOS_potential_mem_write
17 of outcome
18 type thread_trans =
19 | T_register_read
20 of reg_name * value
21 | T_register_write

22 of reg_name * value
23 | T_satisfy_read
24 of value
25 | T_mem_write_footprint
26 of list write
27 | T_mem_potential_write
28 of list write
29 | T_commit_store
30 | T_complete_store
31 | T_commit_barrier
32 of barrier_kind
33 | ...
34 type sync_trans =
35 | T_propagate_write
36 of write
37 | T_satisfy_read
38 of read_request * value
39 | T_propagate_barrier
40 of barrier_kind
41 | ...

Figure 2.14: Lem fragment of thread subsystem state.

Storage subsystem The Flat storage subsystem is comparatively straightforward: a finite map from691

location to the most-recently propagated write to that location. Figure 2.15 contains a fragment of the692

Lem sources from RMEM for the (non-mixed-size) Flat storage subsystem.693
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type flat_storage_subsystem_state = <| memory: nat → write; ... |>

Figure 2.15: Simplified Lem listing of the Flat storage subsystem state from RMEM.

Transitions Flat defines a set of common transitions for all instructions, as well as a set of instruction-694

specific transitions for stores, loads, and barriers. Below is a complete list of the local and synchronised695

transitions.696

Common transitions:
. Fetch instruction.
. Pseudocode internal step.
. Register read.
. Register write.
. Finish instruction.

Transitions on a Load instruction:
. Initiate read.
. Satisfy read from forwarding.
. Satisfy read from flat mem-

ory.
. Complete load.

Transitions on a Barrier instruc-
tion:

. Commit barrier.

Transitions on a Store instruction:
. Initiate write address.
. Initiate write data.
. Commit write.
. Propagate write to memory.
. Complete store.

697

Each transition has a guard, a predicate over the state that must be true in order for the transition to be698

valid, and an action, a function that updates the whole system state from one configuration to another.699

Figure 2.16 gives the informal description of one transition, the ‘Initiate read’ on a load, including its700

guard and action. I do not describe the Flat model here.701

Transition: Initiate memory reads for instruction i.
Guard: Instruction i is in state MOS_plain(O_read_mem(addr,cont)).
Action:

. Add addr to i.mem_reads

. Update the state of i to MOS_pending_mem_read(fn v → cont v)

Figure 2.16: Example Flat transition in full.
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2.4 Arm-A axiomatic model702

In contrast to the operational model presented in the previous section, a model with equivalent behaviour703

can be given declaratively, in a so-called axiomatic style. These axiomatic models describe the allowed704

behaviour of programs by a predicate, typically described by a collection of axioms, constraining the event705

graphs of the candidate executions of that program.706

In an axiomatic model, the executions are the graphs of events of a single run of the program, with the707

events related by a set of intrinsic relations capturing the order of events and their dependencies.708

The model first considers an overapproximate set of candidate executions: executions consistent with the709

intra-instruction semantics, but where the values used in the program are unconstrained. The model then710

has axioms, generally acyclicity of some relation over the events of the execution, which reject some of711

these executions as inconsistent. Those that remain are the valid, or consistent, executions of the program712

permitted by the model.713

The model can therefore be used to assert whether some given program can reach a final state satisfying714

some constraint. If there is a candidate executions of the program, which is consistent with the axioms715

of the model, then the model is said to allow that execution, and if the final state satisfies the given716

constraint, that outcome is permitted by the model.717

Succinctly, an axiomatic model winnows down a large set of graphs of potential whole-program executions718

to a small set of allowed executions by checking that the events of those executions do not violate any of719

the axioms of the model.720

2.4.1 Arm-A candidate executions721

Arm-A candidate executions are composed of two parts. First, there is the set of events of the program,722

for Arm these are the memory access and barrier events, labelled with their access type (read or write, or723

barrier kind). In addition, there are the candidate relations over those events, derived from the intrinsic724

dependencies in the program; some of which we have already seen: program order, and address/data/control725

dependencies.726

It is often useful to split the candidate execution definition into two steps: first, to define the pre-execution727

which contains all the events, and the relations which are intrinsic to the program; then to complete these728

into a candidate execution with existentially-quantified relations (coherence-order and reads-from) which729

witness a particular choice of runtime execution order.730

More formally, we can define an Arm-A candidate execution as: a set of event IDs (here just assuming
IDs are the natural numbers); a labelling function (from N to Label); a collection of the candidate
relations (CR) satisfying some constraints (described in more detail later on), and a candidate witness
(CW) describing the existentially quantified coherence-order and reads-from relations.

Candidate Pre-Execution ≡ P(N)× (N → Label)× CR

Candidate Execution ≡ Pre-Execution × CW

The candidate relations, and the candidate witness, are sets of named relations over the events of the
pre-execution, subject to some well-formedness constraints (discussed later):

L−→ ≡ N× N
CR ≡ 〈 po−−→, loc−−−→, addr−−−→, ctrl−−−→, data−−−→, rmw−−−→, ext−−−→〉
CW ≡ 〈 co−−→, rf−−→〉

Events The labelling function maps each event ID to an event label, describing the kind of access and, if731

applicable, what data or address it operates over.732

A simplified version of the labels, sufficient for the model described here, contains (1) memory events with
location and values, namely reads (R) including acquire reads (A) and weak-acquire reads (Q), writes (W)
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including release writes (L); and (2) a set of Arm barriers (DMB, ISB) and their variants. More precisely,
these labels can be described as follows:

Label ≡ Reads ∪ Writes ∪ Barriers
Reads ≡ {R,A,Q} × Loc × Val

Writes ≡ {W,L} × Loc × Val
Barriers ≡ {DMB.LD,DMB.ST,DMB.SY, ISB}

Loc ≡ Bitvec48
Val ≡ Bitvec64

In §2.5.1 we will see a more realistic definition of the event types for a production architecture (Armv9-A),733

and their correspondence to the underlying effects of the Sail definition, as used by the isla-axiomatic734

tool.735

Candidate relations The candidate relations capture the relationships and orderings between the events736

of the execution. These are often separated into two kinds: the pre-execution relations (which are intrinsic737

to the program), and the existentially-quantified coherence-order and reads-from relations of the witness,738

combined these two sets make up the relations of the candidate execution. For Arm, the relations in a739

pre-execution are, with their intended meaning:740

. program order: E1 po E2 iff the instruction generating E1 occurs before the instruction generating741

E2 in the instruction stream.742

. same-location: M1 loc M2 iff the address of M1 is the same location as used by M2.743

. address dependent: R1 addr M2 iff the value read by R1 is used in the calculation of the address744

M2.745

. data dependent: R1 data W2 iff the value read by R1 is used in the calculation of the value written746

by W2.747

. control dependent: R1 ctrl E2 iff the value read by R1 is used to determine whether or not the748

instruction E2 originates from would have executed at all.749

. read-modify-write: R1 rmw W2 for the separate read and write events of an atomic update.750

. external: E1 ext E2 iff the instructions which generated events E1 and E2 originated from different751

hardware threads.752

Plus the existentially quantified witness:753

. reads-from (rf), from W1 to R2 when R2 reads the value that W1 wrote.754

. coherence-order (co), from W1 to W2 where W1 appears before W2 in the coherence order of that755

location, (informally, that W1 propagated to memory before W2).756

where En represents events of any kind, Mn is a memory effect event, Rn is a read event, and Wn is a757

write event.758

Well-formedness Each of the relations of the candidate relations and witness are subject to some759

well-formedness constraints.760

Note that a well-formed execution does not necessarily correspond to a consistent execution of the761

underlying ISA (see ‘Fundamental candidates and ISA-Consistency’).762

Well-formedness requires that the candidate relations are all properly constructed: they have the right type,763

and satisfy some basic relational properties (symmetry, reflexivity, transitivity and so on) depending on764

the relation. Figure 2.17 contains the types and some basic well-formedness properties of the pre-execution765

relations.766
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Relation Type Properties
po E× E transitive, asymmetric, irreflexive
loc M× M transitive, symmetric, reflexive
ext E× E transitive, symmetric, irreflexive

addr,ctrl R× M asymmetric, irreflexive
data R× W asymmetric, irreflexive
rmw R× W asymmetric, irreflexive

Figure 2.17: Non-ISA-dependent well-formedness properties of pre-execution relations.

For the existentially-quantified coherence-order and reads-from relations, they are arbitrary, but subject767

to the constraints given in Figure 2.18.768

∀W1, R2. rf(W1, R2) =⇒ loc(W1, R2) read and write must be same location
∀W1, R2. rf(W1, R2) =⇒ r-value(R2) = w-value(W1) value read matches value written
∀W1,W2, R3. rf(W1, R3) ∧ rf(W2, R3) =⇒ W1 = W2 each read reads-from at most one write
∀R2. ∃W1. rf(W1, R2) every read reads from somewhere

∀W1,W2. W1 6= W2 ∧ loc(W1,W2)
=⇒ co(W1,W2) ∨ co(W2,W1) co is per-location total
∀W1,W2,W3. co(W1,W2) ∧ co(W2,W3) =⇒ co(W1,W3) co is transitive
∀W1,W2. co(W1,W2) =⇒ ¬co(W2,W1) co is antisymmetric
@W1. co(W1,W1) co is irreflexive

Figure 2.18: Well-formedness conditions of co and rf.
r-value and w-value extract the Val from a read or write respectively.
(Hand transcribed from the versions used in isla-axiomatic, see §2.5)

We say a candidate execution is well-formed if all the constraints of all the relations are satisfied:769

Well-Formed(E : Execution) = see Figures 2.17 and 2.18

Fundamental candidates and ISA-Consistency Candidate executions are constructed from a limited770

set of events: reads, writes, and barriers. Eventually, our models will extend this set, both with more771

instructions and further architectural features, but also with an expanded set of intrinsic events from the772

intra-instruction semantics.773

For a candidate execution to be consistent with a given architecture’s intra-instruction semantics, as
defined by its ISA, there must be a corresponding execution in a model whose events have been expanded
to include all the events of the underlying ISA. We can imagine taking the candidate execution and
‘completing’ the events to include all the relevant register reads and writes, and instruction fetches, and
other intrinsic events the ISA would have produced, and we get a ‘fundamental’ candidate execution.

Fundamental Execution ≡ P(N)× (N → LabelF )× CRf × CW

Complete(E : Execution) : Fundamental Execution

Fundamental executions are much like their candidate counterparts, except that the labels are simply the
set of possible outcomes as defined by the ISA, with continuations replaced by their arguments; and the
various candidate relations are replaced by intra-instruction causality orders.

LabelF ≡ Outcome (see Figure 2.8)
CRf ≡ 〈 po−−→, iico-addr−−−−−−−−→, iico-ctrl−−−−−−−−→, iico-data−−−−−−−−→〉

As an example, take the reader thread of an MP-shaped test, with a barrier between the loads. Figure 2.19774

shows a sketch for a completion of that reader thread to a fundamental execution in Arm, with introduced775

events in blue (assuming translation disabled, and eliding voluminous ISA intricacy).776
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Rreg(PC,p) Rmem(p,ldr x0,[x1]) Rreg(X1,y) Rmem(y,1) Wreg(X0,1) Wreg(PC,p+4)

R_reg(PC,p) Rmem(p,dmb sy) Barrier(DMBSY) Wreg(PC,p+4)

Rreg(PC,p) Rmem(p,ldr x2,[x3]) Rreg(X3,x) Rmem(x,0) Wreg(X2,0) Wreg(PC,p+4)

po

po

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

iico-addr iico-ctrl iico-ctrl

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

Figure 2.19: Completion of reader thread of MP+dmb.sys into a fundamental candidate.
Nodes and edges in black are original, the ones in blue complete the execution.

The previously primitive inter-instruction dependencies (addr, ctrl, data) become derived relations, and777

part of the ISA-consistency check requires that the candidate dependencies matches the derived ones in778

the fundamental execution.779

Given a fundamental candidate we can partition it into each thread (by grouping by int) and then into
instructions (by grouping by iico). For each instruction we can extract a trace of events, by following iico.
Recall that the intra-instruction semantics defines a set of traces, so we can ask whether the extracted
trace from the graph corresponds to one of these traces defined by the intra-instruction semantics, which
is precisely asking whether the extracted trace simulates the ISA:

Instr(I : P(N), F : Execution) : I ⊆ E.iico+[I]

SimulatesISA(F : Fundamental Execution) : ∀I. Instr(I, F ) ⇒ I ∈ ISA

Where r+ is the symmetric closure of r.780

We can now define what it means for an execution to be consistent with the ISA (with respect to some
given intra-instruction semantics). If there exists a completed fundamental candidate, such that, for each
instruction, the sequence of events in iico order is an execution of the intra-instruction semantics, then
we can say the original execution is ISA-Consistent:

ISA-Consistent(E) = ∃F. F = Complete(E) ∧ SimulatesISA(F )

In practice, tools generally go the other way: producing complete traces from the intra-instruction781

semantics defined by the ISA, and discarding or hiding events down to a smaller set — thereby producing782

ISA-Consistent executions by construction. However, it is still useful to think in terms of completing the783

executions up to a larger fundamental candidate, as not all models explicitly appeal to the intra-instruction784

semantics in their definitions, especially historically.785

Consistency Given an arbitrary pre-execution, that is, a graph with any choice of events and relations,
one can define whether or not such a graph corresponds to a valid execution. This can be done by checking
that: there exists some witness (co and rf) such that that candidate is well-formed; that the candidate is
consistent with the ISA; and, that does not violate any of the axioms of the model.

Axiom-Consistent(E : Execution) = see §2.4.2
Consistent(E : Execution) = Well-Formed(E)

∧ ISA-Consistent(E)

∧ Axiom-Consistent(E)

Consistent(E : Pre-Execution) = ∃co, rf. Consistent((E, 〈co, rf〉))

Program semantics Architecturally there is no such thing as a ‘program’. Instead, there are only whole786

machine states. The model then allows us to define what set of configurations are reachable from an initial787

one, i.e. a ‘program’. There are primarily two ways of representing the initial state in these models: either788

(1) by only considering executions which are co-prefixed by the set of writes corresponding to the initial789

memory configuration; or, (2) by including some special initial event which other events can read from.790

The choice of representation does not matter, but the first has been the most common approach so that is791

what we assume here.792
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Each execution then has a ‘final’ state: the concrete register values for each thread at the end of execution,793

and the coherence-final write for each location.794

We can then define whether a particular outcome is permitted by the model, by checking whether a state
with that outcome is reachable from the initial state of the program: that is, whether there exists any
consistent execution, prefixed with the initial writes from the program, whose final state matches the
desired outcome:

State ≡ Memory × (ThreadId → Registers)
Final(E : Execution) = `Final register and memory state of E′

Prefixed(Init : State, E : Execution) = `E has co-initial writes corresponding to the initial state′

Reachable(Init : State, S : State) = ∃E : Pre-Execution, co, rf.
let C = (E, 〈co, rf〉) in
Prefixed(Init, C)

∧ Consistent(C)

∧ S = Final(C)

Giving semantics to an Arm-A program can be done by collecting the set of reachable consistent executions,795

from an initial machine configuration (program):796

JP : StateK = {S : State | Reachable(P, S)}

(Note that this means J_K is not defined compositionally as a traditional denotational semantics would797

be, instead, here we have a whole-program consistency check)798

An example Consider the classic MP+dmb.sy+addr litmus test, whose code listing is contained in799

Figure 2.20. The test has two threads, the first has two store instructions separated by a barrier, the800

second has two loads with a syntactic address dependency between them, forming an instance of the801

classic message-passing shape seen earlier. Figure 2.21 contains six potential candidate executions for this802

test:803

. Candidate 1 is not consistent with the intra-instruction semantics: it has read events in Thread 0,804

but the intra-instruction semantics dictate that stores generate write events not read events.805

. Candidate 2 has events consistent with the intra-instruction semantics, but the relations are not806

consistent with the well-formedness conditions (specifically, rf does not satisfy the ‘read and write807

must be same location’ constraint), and so this candidate is not well-formed.808

. Candidates 3, 4 and 5, are well-formed, and consistent with the ISA, and consistent with the axioms809

of the model (given in §2.4.2).810

. Candidate 6 is well-formed, and consistent with the ISA, but not consistent with the axioms.811

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.sy+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

Figure 2.20: MP+dmb.sy+addr test code listing.

The four well-formed candidate executions listed in Fig-812

ure 2.21 are the only well-formed and ISA-Consistent813

candidates for this test. Executions with other events814

would not be ISA-Consistent; those with co and rf other815

than those shown would not be well-formed; those with816

read or write values other than those shown would also817

not be ISA-Consistent, as those values must have arisen818

from an execution of the intra-instruction semantics.819

Only Candidate 6 has a final state which satisfies the820

1:X0=1,1:X2=0 constraint of the test. Since no candi-821

date satisfying the final state constraint is consistent822

with the axioms, the test is forbidden.823
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R x=1a:

dmb syb:

R y=1c:

Thread 0

R y=1d:

R x=0e:

Thread 1

po

po

data

rf

W x=1a:

dmb syb:

W y=1c:

Thread 0

R y=1d:

R x=0e:

Thread 1

po

po

addr

rf
rf

W x=1a:

dmb syb:

W y=1c:

Thread 0

R y=0d:

R x=1e:

Thread 1

po

po

addr
rf

rf

1. Not ISA-Consistent 2. Not Well-formed 3. Consistent

W x=1a:

dmb syb:

W y=1c:

Thread 0

R y=0d:

R x=1e:

Thread 1

po

po

addr
rf

rf

W x=1a:

dmb syb:

W y=1c:

Thread 0

R y=1d:

R x=1e:

Thread 1

po

po

addr

rf

rf

W x=1a:

dmb syb:

W y=1c:

Thread 0

R y=1d:

R x=0e:

Thread 1

po

po

addr

rf
rf

4. Consistent 5. Consistent 6. Not Axiom-consistent

Figure 2.21: Six potential candidate executions for MP+dmb.sy+addr.
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2.4.2 Arm-A axioms824

Axiomatic models define axioms over candidates, primarily as acyclicity requirements over derived relations825

over their events. The axioms of the model define which executions are Axiom-consistent. Final states826

from consistent executions are those states that are permitted by the model to be observed on hardware.827

Historically, axiomatic models were given as a set of constraints over the derived relations of the model828

[49, 8]. Recent work describes equivalent models as point-free definitions of acyclicity conditions in a829

relation algebra over the events of the derived relations of the candidate. The derived relations are830

constructed composing the candidate relations CR, and the restricted identity relation (idE , for identity831

over events with label E), with some standard relation operators: union (|), intersection (&), relation832

composition (by sequential composition, with ;), transitive closure (+), and relation inverse (−1). The833

model is then a set of relations defined in this algebra, describing the set of preserved orderings, with834

axioms requiring some of them to be acyclic.835

We write these models in the Herd model definition language (often commonly referred to as simply836

Cat), introduced by Alglave et al. [39]. Cat is a general language that allows one to express first-order837

quantifier-free relations, in a relatively concise syntax, using a set of built-in relations and relational838

operators. Values in Cat are either sets of events, or relations (sets of pairs of events). Cat lets the user839

define either sets of events, or relations over events, using the usual set of set and relational operators,840

with some custom syntax, reproduced here for quick reference:841

. R+ for one-or-more repetitions of R.842

. [E] for the identity relations over events with label E, corresponding to the mathematical relation843

idE ,844

. [E1 | E2] for the set of events with labels E1 or E2, mathematically equivalent to idE1 | idE2, and845

so on for any number of unions.846

. domain(R) and range(R) give the sets of events that are the domain and codomain of a relation R.847

. (E1 * E2), is the relation formed by the cartesian product of sets of events with labels E1 and E2,848

that is, the mathematical relation range(idE1)×range(idE2). E1 or E2 can be substituted with an849

underscore which acts as a wildcard that matches events with any label.850

. id for the generalised identity relation over events, which corresponds to id_ ;851

. R? as a shorthand for relation option, equivalent to R | id.852

The original herdtools Cat language and the isla-axiomatic Cat-like model language have diverged853

over time, but the features described in this section remains common to both.854

An Arm-A Cat model A reformulation of the original non-mixed-size multi-copy-atomic Armv8-A model855

from 2018 [7, 50], can be found in Figure 2.22. The other models presented in this thesis will be an extension856

to the one presented here. Note that this particular presentation of the model is slightly different from857

the original, with the transitive relations over barriers split into multiple edges explicitly relating events858

to barriers, and lifting coi and fri into obs. Although equivalent to the original, this presentation will be859

easier to extend, the reason for which will become apparent later on. Additionally, the current official Arm860

models have diverged from the original model this one is based on, either through the addition of new861

features (mixed-size, memory tagging extensions, and so on), or through iterative refactors of the model862

over time. An isla-axiomatic-executable version of the model can be found at https://github.com/863

rems-project/system-semantics-arm-axiomatic-models/blob/main/models/aarch64_interface.cat.864
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1 (* observed by *)
2 let obs = rfe | fr | co
3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | ctrl; [W]
8 | addr; po; [W]
9 | (ctrl | (addr; po)); [ISB]

10 | (addr | data); rfi
11
12 (* atomic -ordered -before *)
13 let aob = rmw
14 | [range(rmw)]; rfi; [A | Q]
15
16 (* barrier -ordered -before *)
17 let bob = [R] ; po ; [dmbld]
18 | [W] ; po ; [dmbst]
19 | [dmbst]; po; [W]
20 | [dmbld]; po; [R|W]
21 | [ISB]; po; [R]
22 | [L]; po; [A]
23 | [A | Q]; po; [R | W]
24 | [R | W]; po; [L]

25 (* Ordered -before *)
26 let ob1 = obs | dob | aob | bob
27 let ob = ob1+

28
29 (* Internal visibility

requirement *)
30 acyclic po-loc | fr | co | rf

as internal
31
32 (* External visibility

requirement *)
33 irreflexive ob as external
34
35 (* Atomic: Basic LDXR/STXR

constraint to forbid
intervening writes. *)

36 empty rmw & (fre; coe) as atomic

Figure 2.22: Armv8-A multi-copy atomic ‘user’ axiomatic model.

The Cat model relies on a set of built-in event sets and relations, these are:865

Events Relations

R Reads po,rmw program-order and read-modify-write
W Writes po-loc po between same-location events
M Explicit memory events (R|W) addr/ctrldata dependencies
A Read-acquire co/rf Witness
L Write-release rfi/coi internal (within thread) rf/co
Q Weak read-acquire rfe/coe external (across threads) rf/co
F Fences (barriers) id identity

ISB Instruction sychronization barrier
dmbXY Memory barrier with kind XY

866

The axioms The Arm-A model is made up of three axioms: external (line 33), which asserts acyclicity867

of a global ordered-before relation, capturing most of the ordering constraints of the Arm memory model;868

the internal axiom (line 30), sometimes called ‘SC-per-location’, which ensures that when restricted to a869

single location the accesses are consistent with an SC semantics; and, the atomic axiom (line 36) which870

asserts that there are no same-location writes interposing between events of what is supposed to be an871

atomic action.872

Ordered-before The main relation, ordered-before (ob), is defined on line 27 as the transitive closure873

of the union of a set of auxiliary ordering relations. These auxiliary relations are: observed-by (obs,874

line 2), which orders events after the events they observe the effect of, namely, writes must happen875

before other-thread reads which read from them; dependency-ordered-before (dob, line 5), which orders876

events which must not be re-ordered due to syntactic dependencies in the original source program;877

atomic-ordered-before (aob, line 13) which asserts that the read of an atomic read-modify-write happens878

before the write, and that acquire reads of an atomic write are ordered; and, barrier-ordered-before (bob,879

line 17) between events where there is an intervening barrier instruction ordering them. A candidate880

execution with a cycle in ordered-before is forbidden. For example, in the following MP+dmb.st+addr881

test, whose code listing and event diagram for the forbidden execution can be found in Figure 2.23.882
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MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.23: MP+dmb.st+addr test code listing and execution diagram.

The interesting candidate execution has the final state 1:X0=1 ∧ 1:X2=0, and contains the following ob883

cycle:884

. a dmbst b885

. b rfe c886

. c addr d887

. d fr a888

This cycle is forbidden in the Arm model, as each of the relations are contained in ob, and a cycle in ob is889

forbidden by the external axiom:890

. ([W]; dmbst; [W]) is in bob, which is in ob.891

. rfe is in obs, which is in ob.892

. addr is in dob, which is in ob.893

. fr is in obs, which is in ob.894

Internal and atomic axioms The other axioms of the model forbid behaviours that the ordered-895

before acyclicity check does not recognise, such as non-SC behaviours for single locations or supposedly896

atomic actions (such as exclusives or read-modify-writes) which were interrupted by an intervening897

write. Figure 2.24 contains two example tests, a coherence test forbidden by the internal axiom and an898

LB-shaped atomic increment failure forbidden by the atomic axiom.899

MOV X0,#1
STR X0,[X1]
MOV X2,#2
STR X2,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X1]

Thread 1

Initial state:
0:X1=x, 1:X1=x, *x=0,

CoRR0 AArch64

Forbidden:
1:X0=2, 1:X2=1

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 0

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 1

Initial state: 0:X1=x 1:X1=x
*x=0

LB+po-locxxs AArch64

Forbidden: 0:X3=0, 1:X3=0, *x=1

W x=1a:

W x=2b:

Thread 0

R x=2c:

R x=1d:

Thread 1

po porf

rf

R x=0a:

W x=1b:

Thread 0

R x=0c:

W x=1d:

Thread 1

rmw rmw
fr
fr

Figure 2.24: Two tests forbidden by the other axioms.
On the left, a variation on coherence which relies on po-loc and so is forbidden by the internal axiom.
On the right, an atomic increment that failed to atomically update the location, forbidden by the atomic
axiom.

Note that this is not the only possible presentation of the model. A separate internal/SC-per-location900
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axiom is classic, but the current official herdtools version of the Arm model has separate axioms for901

each of the forbidden coherence shapes [51]. The external axiom usually considers a partially-ordered902

ordered-before relation built from smaller primitive relations, as was presented here, but other formulations903

sometimes pick some linearisation of some total order, equivalent to but more operational in presentation904

than the one presented here.905

2.5 The isla-axiomatic tool906

Throughout this work we will use the isla-axiomatic tool [33] to implement executable versions of our907

axiomatic models.908

The isla-axiomatic tool uses the full ASL specification of the Arm ISA, converted to Sail. The generation909

of candidates then uses whole machine states, including all instruction fetch and translation table walks910

as real memory accesses. This is unlike herd where the instruction semantics is ad-hoc.911

Using isla-axiomatic allows us to use the Arm ASL definitions which already exist (for instruction912

fetching, decoding, and translation table walks in particular), giving us those fundamental executions ‘for913

free’ for those features, and enabling us to focus on modelling the concurrent aspects of them.914

isla-axiomatic candidates Underpinning the isla-axiomatic tool is isla, a generic symbolic evaluator915

for Sail programs [33].916

isla-axiomatic uses isla to generate candidate executions, by producing traces of Sail outcomes for each917

thread, with concrete control flow but potentially symbolic values for reads and writes. isla-axiomatic918

then produces the relevant dependency relations (which it does in an ad-hoc way), then applies a restriction919

to the events of the traces (discarding all events except reads, writes and barriers for the base model),920

and takes the cartesian product of these restricted traces of events for each thread; the result is precisely921

the set of well-formed pre-executions (but with symbolic values).922

We use a non-architected fetch-decode-execute loop for each thread, which sequentially fetches the next923

instruction and runs the Sail (converted from ASL) decode and execute functions, until a pre-determined924

point is reached (usually a particular ‘end-of-test’ opcode) which signifies the end of that trace. A sketch925

of the top-level fetch-decode-execute function is given below, and the full version is part of our Arm Sail926

model1:927

1 function Step() {
2 if pending interrupts then {
3 TakePendingInterrupt ();
4 };
5
6 let pc = Read_reg(PC);
7
8 let opcode = \
9 Read_mem(

10 ReadKind_IFETCH ,
11 pc , 4);

12 // magic opcode not part of ISA
13 if opcode == 0xfee1dead {
14 EndOfTrace ();
15 };
16
17 let instr = ArmASL_Decode(opcode);
18
19 ArmASL_Execute(instr);
20
21 Write_reg(PC, pc+4)
22 }

928

During symbolic evaluation of the Sail, when a branch’s condition is symbolic and not constrained to one929

of true or false, the symbolic execution forks. This gives a set of traces of outcomes for each thread, with930

concrete opcodes and register names, but with constrained symbolic values.931

We can then use this as an executable oracle for litmus tests. By taking the well-formed pre-executions932

generated from those symbolic traces, isla-axiomatic can produce a single SMT problem for each933

candidate whose satisfiability encodes whether the candidate is consistent. It does this by creating SMT934

definitions of: the events from the pre-execution with constraints on symbolic values; the candidate935

relations (in particular, coherence-order and reads-from); the axioms of the model and any auxiliary936

relations from the Cat model; with the final assertion from the litmus test. Giving this SMT problem to937

an off-the-shelf SMT solver (such as Z3) allows automatic consistency checking: if the SMT solver can938

1https://github.com/rems-project/sail-arm/blob/master/arm-v9.3-a/src/step.sail#L217
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find a satisfying assignment of the symbolic values, then the execution is allowed; if the SMT solver says939

it is unsatisfiable then the execution is either forbidden by the axioms, or does not satisfy the constraint940

on the final state. If all executions when compiled to SMT are unsatisfiable then the test as forbidden.941

2.5.1 ISA/concurrency interface942

This section is based on in-progress work with Thibaut Pérami, Alasdair Armstrong, Thomas Bauereiss,943

and Peter Sewell.944

As isla-axiomatic uses the full ISA outcomes, the model should be able to utilise any information945

exposed in the Sail outcome type. To achieve this the isla-cat language is extended with the structs and946

enums from the Sail definition, and an accessor construct allowing the model writer to define event sets947

predicated on the values of fields of the underlying Sail structs.948

As previously mentioned, each event in an isla-axiomatic candidate execution corresponds to an outcome949

in the trace of the intra-instruction semantics. The outcomes then form the interface between the sequential950

ISA semantics and the concurrency model. The current Sail ISA/concurrency interface is defined in951

https://github.com/rems-project/sail/tree/sail2/lib/concurrency_interface.952

For example, the Arm Sail model contains the sail_barrier outcome1 :953

outcome sail_barrier : 'barrier -> unit954

Each architecture’s Sail specification can then instantiate the 'barrier type variable with architecture-955

specific data. For instance, in Armv9-A the 'barrier kind is instantiated with a custom Barrier type2 ,956

derived from the Arm barrier kind in the official ASL specification:957

1 enum MBReqDomain = {958

2 MBReqDomain_Nonshareable ,959

3 MBReqDomain_InnerShareable ,960

4 MBReqDomain_OuterShareable ,961

5 MBReqDomain_FullSystem962

6 }963

7964

8 enum MBReqTypes = {MBReqTypes_Reads , MBReqTypes_Writes , MBReqTypes_All}965

9966

10 struct DxB = {967

11 domain : MBReqDomain ,968

12 types : MBReqTypes ,969

13 nXS : bool970

14 }971

15972

16 union Barrier = {973

17 Barrier_DSB : DxB ,974

18 Barrier_DMB : DxB , // The nXS field is ignored from DMBs975

19 Barrier_ISB : unit ,976

20 Barrier_SSBB : unit ,977

21 Barrier_PSSBB : unit ,978

22 Barrier_SB : unit ,979

23 }980

24981

25 instantiation sail_barrier with982

26 'barrier = Barrier983

Then the Sail Arm specification can use the sail_barrier outcome to generate events in the trace. For984

example, the DataSynchronizationBarrier function, which in the ASL is left uninterpreted, is implemented985

in the Sail model by a sail_barrier effect3, which generates a barrier event in the trace when executed:986

1 function DataSynchronizationBarrier (domain , types , nXS) = {987

2 sail_barrier(Barrier_DSB(struct { domain = domain , types = types , nXS = nXS988

}))989

1https://github.com/rems-project/sail/blob/0.18/lib/concurrency_interface/barrier.sail#L75
2https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/interface.sail#L286
3https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/stubs.sail#L105
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3 }990

2.5.2 Extended Cat with Sail interface991

The extended isla-cat language is very similar to the original Cat language but with some differences.992

Since isla-axiomatic does not support mutually recursive bindings, procedures, or inline function993

definitions, we will not use them in our models.994

Unlike Cat, isla-axiomatic does not define a large collection of built-in relations and sets. Instead, it995

adds accessors: point-free declarations which define functions over events. Accessors can access the fields996

of the underlying Sail structures to allow the model author to define their own relations and sets based on997

the underlying ISA definitions.998

For example, the Armv9-A accessor for barrier access types matches on the Barrier union we saw earlier,999

and if it is one of Barrier_DMB or Barrier_DSB it extracts the .types field from its DxB struct, and otherwise1000

returns the default value for that type. The isla-cat definition of such an accessor is given below:1001

1 accessor barrier_types: MBReqTypes = .match {1002

2 Barrier_DMB => .types ,1003

3 Barrier_DSB => .types ,1004

4 _ => default1005

5 }1006

These accessors can be used in simple function declarations, using the isla-cat define command. For1007

example, the Armv9-A model defines the F (fence) event type and the various Arm barrier event kinds1008

(dmb ld,dmb sy, . . . ) with accessors. An extract of the isla-cat definition for Armv9-A1, for the parts1009

defining the dmbld event (which is the event set that includes all barrier events that are at least as strong1010

as a DMB.LD instruction), is given below:1011

1 accessor F: bool = is sail_barrier1012

21013

3 define has_barrier_type(ev: Event , t: MBReqTypes): bool =1014

4 (barrier_types(ev) == t)1015

51016

6 accessor is_DxB: bool =1017

7 .match {1018

8 Barrier_DMB => true ,1019

9 Barrier_DSB => true ,1020

10 _ => false1021

11 }1022

121023

13 accessor is_DMB: bool =1024

14 .match {1025

15 Barrier_DMB => true ,1026

16 _ => false1027

17 }1028

181029

19 define ArmBarrierRM(ev: Event): bool =1030

20 is_DxB(ev) & has_barrier_type(ev, MBReqTypes_Reads)1031

211032

22 define DMB(ev: Event): bool =1033

23 F(ev) & is_DMB(ev)1034

241035

25 define DMBLD(ev: Event): bool = DMB(ev) & ArmBarrierRM(ev)1036

261037

27 define dmbld(ev: Event): bool =1038

28 (* see full code for definitions of dmbsy and dsbld *)1039

29 DMBLD(ev) | dmbsy(ev) | dsbld(ev)1040

1Full definition can be found at https://github.com/rems-project/system-semantics-arm-axiomatic-models/blob/main/
models/armv9-interface/barriers.cat
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Chapter 31043

Relaxed instruction fetching1044

This part is based, on: ARMv8-A system semantics: instruction fetch in relaxed architectures [32] by Ben1045

Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and1046

Peter Sewell. Published in the proceedings of the 29th European Symposium on Programming (ESOP,1047

2020).1048

We now describe the main instruction fetch phenomena and architecture design questions for Arm-A. As1049

usual, this will be done through the creation of handwritten litmus tests, which we will use to guide model1050

design later on.1051
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3.1 Introduction1087

Self-modifying code is a software pattern relied on by nearly all software, but only explicitly managed by1088

few: systems software, such as dynamic loaders, operating system kernels, and hypervisors; and some1089

usermode, like just-in-time (JIT) compilers. This software forms part of the security-critical computing1090

base, currently trusted but not trustworthy, that is especially in need of verification, and which will require1091

a precise and well-validated definition of the architectural abstraction.1092

The semantics required for self-modifying code, of instruction fetch and cache maintenance, are areas where1093

microarchitectural optimisations can have surprising programmer-visible effects, especially in the concurrent1094

context. Previous work has scarcely touched on this: none of seL4 [52], CertiKOS [53, 54], Komodo [55],1095

nor the works of Guanciale et al. [56], nor Baudmann et al. [57], address realistic architecture concurrency,1096

and they use (at best) idealised models of the sequential systems architecture. The CakeML [58, 59] and1097

CompCert [60] verified compilers target only sequential user-mode ISA fragments, without self-modifying1098

code. Previous attempts at verification of self-modifying code have typically focused on MIPS or x86,1099

such as in the works of Cai et al. and Myreen [61, 62]. However, those architectures have a very different1100

programmer model than Arm presents, not requiring explicit instruction cache maintenance.1101

In this part we focus on instruction fetch and its required cache maintenance, for Arm-A. The ability to1102

execute code that has previously been written to data memory is fundamental to computing: fine-grained1103

self-modifying code is now rare, and (rightly) deprecated, but program loading, dynamic linking, JIT1104

compilation, debugging, and OS configuration, all rely on executing code from data writes. However,1105

because these are relatively infrequent operations, hardware designers have been able to optimise by1106

partially separating the instruction and data paths, with distinct instruction caching, which by default1107

may not be coherent with data accesses. This can introduce programmer-visible behaviour analogous to1108

that of user-mode relaxed-memory concurrency, and require specific additional synchronisation to correctly1109

pick up code modifications. Exactly what these are was not entirely clear in the Arm-A architecture text1110

at the time this work was done (up to version D.a [63]).1111

We clarify this situation, developing precise abstractions that bring the instruction-fetch part of Arm-A1112

system behaviour into the domain of rigorous semantics. Arm have stated that they intend to officially1113

incorporate a version of this into their architecture [64].1114

We aim thereby to enable future work on system software verification using the techniques of programming1115

languages research: program analysis, model-checking, program logics, and so on.1116

Overview We begin (§3.2) by recalling the informal architectural guarantees that the Arm-A architecture1117

provides, and the ways in which real-world software systems such as Linux, the JavaScript and WebAssembly1118

JITs, and other language implementations modify instruction memory. We then survey the fundamental1119

phenomena and architecture design questions (§3.3-3.15) with a series of examples, and explore the1120

interactions between instruction fetching, cache maintenance and the ‘usual’ relaxed memory stores and1121

loads, showing that instruction fetches are more relaxed, and how even fundamental coherence guarantees1122

for data memory do not apply to instruction fetches.1123

We give an operational semantics for Arm instruction fetch and cache maintenance (Ch. 4) in an abstract-1124

microarchitectural style (following §2.3) capturing the architectural intent as we understand it.1125

We give a more concise presentation of the model in an axiomatic style (Ch. 5), extending the “user-mode”1126

axiomatic model presented in §2.4, and intended to be functionally equivalent to the aforementioned1127

operational semantics.1128

We validate all this (Ch. 6), in two ways: by the extensive discussion with Arm staff and systems1129

programmers, and by experimental testing of hardware behaviour on a selection of Armv8-A cores designed1130

by multiple vendors. We run tests on hardware with a mild extension of the Litmus tool [65, 66]. We1131

make the operational model executable as a test oracle by integrating it into the RMEM tool and its web1132

interface [48], introducing optimisations that make it possible to exhaustively execute the examples. We1133

make the axiomatic model executable as a test oracle by extending our isla-axiomatic tool. We then1134

compare hardware and the two models for the handwritten tests (modulo two tests not supported by the1135

axiomatic checker), compare hardware and the operational model on a suite of 1456 tests, automatically1136

generated with an extension of the diy tool [67], and check the operational and axiomatic models against1137

sets of previous non-ifetch tests. In all this data our models are equivalent to each other and consistent with1138
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hardware observations, except for one case where our testing uncovered a hardware bug on a Qualcomm1139

device.1140

We focus on motivating examples, the main intuition and style of the operational model (in a prose1141

rendering of its executable mathematics), and the definition of the axiomatic model.1142

Caveats and Limitations Our operational semantics are integrated with a substantial fragment of the1143

Sail Armv8-A ISA (similar to that used for CakeML), but not yet with the full ISA model [43, 10, 11, 68];1144

this is a matter of additional engineering and is future work. We do not handle the interaction between1145

instruction fetch and mixed-size accesses, or other variants of the cache maintenance instructions, e.g. those1146

used for interaction with DMA engines or variants by set or way instead of by virtual address. Finally,1147

while the equivalence between our operational and axiomatic models is validated experimentally, we do1148

not have a formal proof of equivalence. A proof of this equivalence will be essential in the long term,1149

but represents a major step and substantial work itself: the complexity makes mechanisation essential,1150

but the operational model (in all its scale and complexity) has not yet been subject to mechanised proof.1151

Without instruction fetch, a non-mechanised proof was the main result of an entire PhD thesis [6], and we1152

expect the addition of instruction fetch to require global changes to the argument.1153

3.2 Industry practice and the existing Arm prose1154

Computer architecture relies on a host of sophisticated techniques for performance, including buffering,1155

caching, prediction and prefetching, and pipelining. For the normal memory reads and writes of ‘user-mode’1156

concurrency, the programmer-visible relaxed-memory effects largely arise from store buffering and from1157

out-of-order and speculative pipeline behaviour, not from the cache hierarchy (though some IBM POWER1158

phenomena do arise from the interconnect, and from late processing of cache invalidates).1159

At first sight, one might expect instruction fetches to act like other memory reads. However, writes to1160

instruction memory are relatively rare, so hardware designers have adopted much more aggressive caching1161

mechanisms specifically for those accesses. The Arm architecture carefully does not mandate exactly what1162

these may be, permitting a wide range of possible hardware implementations. For example, a typical1163

high-performance Arm processor might have per-core separate L1 instruction and data caches, above a1164

unified per-core L2 cache and an L3 cache shared between cores. There may also be additional structures,1165

e.g. per-core fetch queues, loop buffers, and caching of decoded micro-ops. Figure 3.1 shows a typical1166

micro-architectural design: that of the Arm Cortex-A53, with independent per-thread instruction and1167

data caches, which unify into a global cache before memory. Data flows out of the core into the L1 data1168

cache, and then from the data cache to the instruction cache or out to memory.1169
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Data&Instruction Cache

Memory

Figure 3.1: Block diagram of the Arm Cortex-A53 [69], with simplified data and instruction flow [70].

Cache maintenance In contrast with usermode models, where the caches are mostly invisible to the1170

programmer and the hardware cache protocol manages them, the caches for instruction data require1171

explicit management by software through the use of cache maintenance instructions.1172

This exposes details to the programmer that may otherwise have been invisible, aside from performance1173

implications, such as the cache line size (as caches may cache arbitrarily large ‘lines’ of memory at a time)1174

and physical hierarchy of the caches.1175
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Cache maintenance operations can generally be split into one of two kinds:1176

. Invalidations remove any potential cached copies of a whole line in the cache, meaning they can no1177

longer be read from.1178

. Cleans force a write-back of a cache line, pushing any cached copies further down the cache hierarchy.1179

From the programmer’s perspective, invalidations are destructive: whole writes may be lost entirely.1180

However, cleans push data further out thereby making it more widely visible. For instruction cache1181

maintenance, only invalidation is provided, but for data cache maintenance the programmer can choose1182

whether to do a clean, an invalidate, or both; and whether the maintenance takes effect to the Point1183

of Unification or the Point of Coherency (see §3.10). Arm therefore provide a large collection of cache1184

maintenance instructions, of which the most relevant for this part are:1185

Instruction Operation
DC CVAU Clean Data&Unified Caches by VA to PoU
DC IVAC Invalidate Data&Unified Caches by VA to PoC
DC CVAC Clean Data&Unified Caches by VA to PoC
DC CIVAC Clean&Invalidate Data&Unified Caches by VA to PoC
IC IVAU Invalidate Instruction Caches by VA to PoU
IC IVAC Invalidate Instruction Caches by VA to PoC
IC IALLU Invalidate Local Instruction Cache to PoU
IC IALLUIS Invalidate All Instruction Caches to PoU

1186

We discuss more about the relationship between these cache maintenance operations in §3.11.1187

Instruction caching is not necessarily coherent with data memory accesses, and ‘the architecture does not1188

require the hardware to ensure coherency between instruction caches and memory’ [71, B2.4.4 (B2-114)] 1.1189

Hence, programmers must use the explicit cache maintenance instructions. The manual gives a sufficient1190

sequence: ‘If software requires coherency between instruction execution and memory, it must manage this1191

coherency using Context synchronization events and cache maintenance instructions. The following code1192

sequence can be used to allow a processing element (PE) to execute code that the same PE has written.’1193

1 ; Coherency example for data and instruction accesses [...]1194

2 ; Enter this code with <Wt> containing a new 32-bit instruction ,1195

3 ; to be held in Cacheable space at a location pointed to by Xn.1196

4 STR Wt, [Xn]; Store new instruction1197

5 DC CVAU , Xn ; Clean data cache by virtual address (VA) to PoU1198

6 DSB ISH ; Ensure visibility of the data cleaned from cache1199

7 IC IVAU , Xn ; Invalidate instruction cache by VA to PoU1200

8 DSB ISH ; Ensure completion of the invalidations1201

9 ISB ; Synchronize the fetched instruction stream1202

At first sight, this may be entirely mysterious. This and the following chapters establish precise semantics1203

for each of the above instructions, explaining why each is required. However, a rough intuition for each is:1204

1. The DC CVAU,Xn cleans this core’s data cache for address Xn, pushing the new write far enough down1205

the hierarchy for an instruction fetch that misses in the instruction cache to be guaranteed to see1206

the new value. This point is the Point of Unification (PoU) and is usually the point where the1207

instruction and data caches become unified (L2 for most modern devices).1208

2. The DSB ISH waits for the clean to have happened before letting the later instructions execute1209

(without this, the sequence itself can execute out-of-order, and the clean might not have pushed the1210

write down far enough before the instruction cache is updated). The ISH makes this specific to the1211

Inner Shareable Domain: the processor itself, not the system-on-chip. We do not model shareability1212

domains in this work, so this is equivalent to a DSB SY.1213

3. The IC IVAU,Xn invalidates any entry for that address in the instruction caches for all cores, forcing1214

any future fetch to miss in the instruction cache, and instead read the new value from the data1215

memory hierarchy.1216

4. The second DSB ISH waits for the cache invalidation to complete.1217

5. The final ISB flushes this core’s pipeline, forcing a re-fetch of all program-order-later instructions.1218

1Version J.a of the Arm architecture reference manual includes the word ‘not’ here, which is a typographical error.
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Some hardware implementations provide extra guarantees, rendering the DC or IC instructions unnecessary.1219

Arm allow software to discover this in an architectural way, by reading the CTR_EL0 register’s DIC and IDC1220

fields, described in more detail later (§3.15).1221

Arm make clear that instructions can be prefetched, including speculatively, but any limits on prefetching1222

are implementation defined [72, p. 201].1223

Concurrent modification and instruction fetch require the same sequence, with an ISB on each thread that1224

executes the new instructions, and the rest of the sequence on the modifying thread [71, B2.2.5 (B2-94)].1225

Concurrent modification without synchronisation is restricted to particular instructions (B (branch), BL1226

(branch-and-link), BRK (break), SMC, HVC, SVC (secure monitor, hypervisor, and supervisor calls), ISB, and1227

NOP), otherwise there could be constrained unpredictable behaviour : ‘any behavior that can be achieved1228

by executing any sequence of instructions that can be executed from the same Exception level’. All this1229

gives some guidance for programmers, but leaves the exact semantics of instruction fetch and those cache1230

maintenance instructions unclear.1231

Linux has many places where it modifies code at runtime: in boot-time patching of alternatives, modifying1232

kernel code to specialise it to the particular hardware being run on; when the kernel loads code (e.g. when1233

the user calls dlopen); and in the ptrace system call, used e.g. by the GDB debugger to patch arbitrary1234

instructions with breakpoints at runtime. In Google’s Chrome web browser, its WebAssembly and1235

JavaScript just-in-time (JIT) compilers write new code during execution and modify existing code at1236

runtime. In the JavaScript JIT, this modification happens inside a single thread and so is relatively1237

straightforward. The WebAssembly case is more complex, as one thread is modifying the code being1238

concurrently executed by another. In practice, software typically does not use the same sequence verbatim.1239

For example, synchronising a range of addresses all at once, by performing many DCs at once, then1240

performing all the IC parts after. Additionally, the final ISB may be subsumed by other instruction1241

synchronisation e.g. from exception entry or return. Software threads may also be migrated (by the OS1242

or hypervisor) from one hardware thread to another, potentially interrupting such an instruction cache1243

maintenance sequence. Moreover, for security reasoning, we have to be able to bound the possible behaviour1244

of arbitrary code. For all these reasons, we must consider the effect of each instruction individually and1245

how they compose, and cannot simply assume a canned sequence.1246

The problem we face is to give such a semantics that correctly defines behaviour in arbitrary concurrent1247

contexts, that captures the Arm architectural intent, that is strong enough for software, and that abstracts1248

from the variety of hardware implementations (e.g. with differing cache structures) that the architecture1249

intends to allow – but which programmers should not have to think about.1250

3.3 Modifiable instructions1251

As was mentioned in §3.2, concurrent modification and execution is only permitted if the original and modi-1252

fied instructions are concurrently modifiable, which is defined as: simple branches, supervisor/hypervisor/secure-1253

monitor calls, the ISB (instruction synchronisation) barrier, the BRK (breakpoint) instruction, and NOP.1254

Otherwise, the architecture permits constrained unpredictable behaviour, meaning that the resulting1255

machine state could be anything that would be reachable by arbitrary instructions at the same exception1256

level. Stronger constraints for constrained unpredictable is an area under investigation by Arm.1257

The following W+F test (Figure 3.2) illustrates this.1258

STR W0,[X1] //modify Thread 1 at l

Thread 0

l: ADD X0,X0,#1 //initial code

Thread 1

Initial state: 0:W0="SUB X0,X0,#1", 0:X1=l
W+F AArch64

Allowed: constrained-unpredictable final state

Figure 3.2: Code listing for test W+F.

In this test, Thread 0 writes to the code that Thread 1 is executing, overwriting the ADD X0,X0,#11259

instruction with the 32-bit encoding of the SUB X0,X0,#1 instruction. If the fetch were atomic, the1260

outcome of this test would be the result of executing either the ADD or the SUB instruction. However,1261
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because at least one of those is not a ‘concurrently modifiable’ instruction (not in the set of atomically-1262

fetchable instructions given previously), Thread 1 has constrained-unpredictable behaviour and the final1263

state is very loosely constrained. Note, however, that this is nonetheless much more restrained than the1264

C/C++ whole-program undefined behaviour in the presence of a data race: unlike C/C++, a hardware1265

architecture has to define a useful envelope of behaviour for arbitrary code, to provide guarantees for the1266

rest of the system when one user thread has a race.1267

Debuggers and breakpoints One challenge in the definition as given by Arm is that it forbids replacing1268

arbitrary instructions with breakpoints concurrently. Other architectures (such as IBM Power) simply1269

require that at least one of the instructions is concurrently modifiable, not both.1270

In practice, debuggers replace instructions with breakpoints (the BRK instruction) regardless. Further1271

work is required to investigate whether a strengthening could be made to the Arm architecture to permit1272

this in general.1273

Conditional branches In version D.a (and earlier) of the Arm architecture reference manual, it made1274

clear that, for branches with conditions (B.cond) which are overwritten by other B.cond instructions, the1275

Arm architecture provided a specific non-single-copy-atomic fetch guarantee: that the execution will be1276

consistent with either the old or new target, with either the old or new condition [63, B2-94]. In version E.a,1277

this condition was removed entirely, meaning B.cond instructions were not permitted to be concurrently1278

updated at all [73, B2-112]. In version G.b, B.cond was added to the list of concurrently-modifiable1279

instructions, once more permitting replacement of (and with) a B.cond instruction [74, B2-130], with the1280

stronger semantics that you will see either the old instruction or the new instruction entirely.1281

STR W0,[X1]

Thread 0

l: B.EQ g

Thread 1

Initial state:
0:W0="B.NE h", 0:X1=l

W+F+branches AArch64

Final state: execute "B.NE g"

Figure 3.3: Code listing for test W+F+branches.

For example, the W+F+branches test (Figure 3.3) overwrites a B.EQ g with a B.NE h. Under the D.a1282

and earlier text, the result could be consistent with executing B.NE g or B.EQ h instead, and thus the test1283

is allowed. Under the E.a-G.a text, the test has ‘constrained unpredictable’ behaviour. Under the G.b1284

and later text, the test has well-defined behaviour, but is now forbidden.1285

To avoid this unfortunate confusion, and any possible constrained unpredictable behaviours due to it, our1286

examples will be restricted to modifying only NOPs and unconditional branches.1287

Synchronising branches The Arm architecture does not give branch instructions any instruction synchro-1288

nisation effects. Instead, the architecture relies on explicit synchronisation instructions (see §3.6). This is1289

in contrast to other architectures, such as x86, which does not require any explicit cache maintenance or1290

pipeline flushing when jumping to newly-modified code.1291
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3.4 Coherence1292

Data writes and reads are coherent, in Arm and in other major architectures: in any execution, for each1293

address, the reads of each hardware thread must see a subsequence of the total coherence order of all1294

writes to that address (see §2.1.2). The plain-data CoRR1 test (Figure 2.5, p.20) illustrates one case of1295

this: it is forbidden for a thread to read a new write of x and then the initial state for x.1296

Instruction fetches are not necessarily coherent: one instruction fetch may be inconsistent with a program-1297

order-previous fetch, and the data and instruction streams can become out of sync with each other.1298

However, they are not completely incoherent and still must respect some properties, giving rise to three1299

new forms of coherence:1300

. Instruction-to-Instruction Coherence: whether fetches of the same location must observe writes to1301

the same location coherently.1302

. Data-to-Instruction Coherence: whether fetches and then reads of the same location must observe1303

writes to the same location coherently.1304

. Instruction-to-Data Coherence: whether reads and then fetches of the same location must observe1305

writes to the same location coherently.1306

These new kinds of coherence describe the relationship between the instruction ‘stream’ with the instruction1307

and data caches.1308

3.4.1 Instruction-to-Instruction coherence1309

Arm explicitly do not guarantee any consistency between fetches of the same location: fetching an1310

instruction does not mean that a later fetch of that same location will not see an older instruction [71,1311

B2.4.4]. This is illustrated by the CoFF test (Figure 3.4), which is a variant of the CoRR1 test1312

(Figure 2.5, p.20) test for coherence discussed earlier, but where the explicit reads of the CoRR shape are1313

replaced by implicit reads caused by fetching the instructions.1314

STR W0,[X1] //a

Thread 0

BL f
MOV X0,X10
BL f
MOV X1,X10

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f
CoFF AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: YNNNY

write f=B l1a:

Thread 0

fetch f=B l1b:

fetch f=B l0c:

Thread 1

irf
fpo

irf

Figure 3.4: Code listing and execution diagram for CoFF.

Here, Thread 1 makes two calls to address f (recall BL is the branch-and-link ‘call’ instruction), while1315

Thread 0 overwrites the instruction at that address with the opcode for the instruction B l1 (a branch to1316

the location labelled l1). Here, and in future tests, we assume some common library code consisting of a1317

function at address f, which always has the same shape: a branch that might be overwritten, which selects1318

a block that writes a value to register X10 before returning. This is sometimes duplicated at different1319

addresses (f1, f2, ...) or extended to g, with three cases. We sometimes elide the common code.1320

The interesting potential execution of this test is the one in which the first call to f fetches and executes1321

the newly-written B l1, before the second call fetches and executes the original B l0. The execution shown1322

in Figure 3.4 is the well-formed candidate execution consistent with the final state of the test. Candidate1323

executions for self-modifying tests are similar to those of previous axiomatic models, but augmented with1324

new fetch events, one per instruction, and new edges relating those events.1325

As in Chapter 2, we use po and rf edges for the program-order and reads-from relations, together with1326

new relations:1327
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. fe (fetch-to-execute), which relates the fetch event of an instruction to all the execution events1328

(memory writes, reads, and/or barriers) of the instruction;1329

. irf (instruction-read-from), relating a write to all fetches that read from it (analogous to reads-from,1330

rf); and1331

. fpo (fetch-program-order), relating fetches of instructions that are in program order (analogous to1332

program order, po).1333

As usual, edges from the initial state are shown as originating from a small circle, for example, the1334

instruction-reads-from for event c in Figure 3.4. We discuss these new candidates in more detail later1335

(Chapter 5).1336

Since we do not modify the code of most locations, or perform any cache maintenance operations over1337

those locations, we usually omit the fetch events for the instructions at those locations. Instead, showing1338

only the subgraph of interesting events, as in the CoFF execution diagram in Figure 3.4.1339

For Arm, this execution is both architecturally allowed and experimentally observed. This is shown in1340

the test listing in Figure 3.4 in the line underneath the final state beginning with hw-refs. This line is a1341

condensed table, where each column represents one hardware device and the entry represents whether it1342

was observed on that device (Y), not observed on that device (N), or whether there are no results for that1343

device (indicated by -). The final hw-refs line from CoFF (Figure 3.4, p.45), annotated with the names1344

of the devices (see §6.3 for a more detailed discussion of the hardware testing) is as follows:1345

h955-a531 openq8202 h955-a573 nexus94 s9055

N Y Y N N1346

3.4.2 Data-to-Instruction coherence1347

Fetching from a particular write does imply that program-order-later reads from the same address will see1348

that write (or a coherence successor thereof). This is a data-to-instruction coherence property, illustrated1349

by CoFR (Figure 3.5). Here, if Thread 1 happens to fetch the newly-written B l1 at f (in the ‘Common’1350

function code), then a data read of f cannot see the original B l0 instruction (it can only read the new1351

B l1).1352

STR W0,[X1]

Thread 0

BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state:
0:W0="B l1", 0:X1=f, 1:X2=f

CoFR AArch64

Forbidden: 1:X0=2, 1:X1="B l0"

hw-refs: NNNNN

write f=B l1a:

Thread 0

fetch f=B l1b:

fetch LDR X1,[X2]c:

read f=B l0d:

Thread 1
irf

fpo

ferf

Figure 3.5: Code listing and execution diagram for CoFR.

This ordering guarantee was not clear in the Arm prose specification at the time of this work [63, 75, 74],1353

but the architectural intent that emerged during discussion with Arm is that the given execution should1354

be forbidden. This architectural decision was motivated by microarchitectural design: (1) instructions1355

decode in order (so the fetch b must occur before the read d), and (2) fetches that miss in the instruction1356

cache must read from the coherent data storage system, so the instruction cache cannot be ahead of the1357

available data. This ensures that observing a write with an instruction fetch implies that all threads are1358

now guaranteed to read from that write (or another coherence-after it).1359

1Qualcomm Snapdragon 810 (cluster of 4x Arm Cortex A53)
2Qualcomm Snapdragon 820 (4x Qualcomm Kryo cores)
3Qualcomm Snapdragon 810 (cluster of 4x Arm Cortex A57)
4NVIDIA Tegra K1 (with 2x NVIDIA Denver cores)
5Amlogic 905 (with 4x Arm Cortex A53 cores)
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This test represents the most fundamental kind of data-to-instruction coherence: that data must become1360

visible to the coherent data side before instruction accesses. However, it alone gives no guarantee when the1361

instruction accesses are guaranteed to see it. We shall see later (§3.6) that instruction cache maintenance1362

will generally be required to guarantee future instruction fetches read-from coherence-latest data writes,1363

but that the hardware may announce that it provides a stronger kind of data-to-instruction coherence1364

guarantee rendering such cache maintenance unnecessary (§3.15).1365

3.4.3 Instruction-to-Data coherence1366

In the other direction, reading from a particular write to some location does not imply that later fetches of1367

that location will see that write (or a coherence successor), as in the following CoRF+ctrl-isb (Figure 3.6).1368

STR W0,[X1]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f
CoRF+ctrl-isb AArch64

Allowed: 1:X0="B l1", 1:X1=1

hw-refs: YYYNY

write f=B l1a:

Thread 0

read f=B l1b:

fetch f=B l0c:

Thread 1
rf

ctrl+isb
irf

Figure 3.6: Code listing and execution diagram for CoRF+ctrl-isb.

Here Thread 1 has a control dependency (the CBNZ conditional branch, dependent on the value read by its1369

load) and an instruction synchronisation barrier (ISB), abbreviated to ctrl+isb, between its load and1370

the fetch from f. If the latter were a data load, this would ensure the two loads are satisfied in order.1371

This was also not explicit in the prose [63, 75, 74], but it is what one would expect, and it is observed in1372

practice. Microarchitecturally, it is easily explained by an out-of-date entry for f in the instruction cache1373

of Thread 1: if Thread 1 had previously fetched f (perhaps speculatively), and that instruction cache1374

entry has not since been evicted or explicitly invalidated, then this fetch of f will simply read the old1375

value from the instruction cache without going out to data memory. The ISB ensures that f is freshly1376

fetched, but does not ensure that Thread 1’s instruction cache is up-to-date with respect to data memory.1377

There is an additional more subtle mechanism here, even if the instruction cache is empty (e.g. by manually1378

clearing it with appropriate cache maintenance instructions, see §3.10 and SM.F+ic test (Figure 3.19, p.54))1379

the test may still be observed as the instruction fetches and instruction cache fills need not read-from the1380

coherence-latest write1381

Software must then use cache maintenance operations to achieve such guarantees (§3.6). However,1382

much like with data-to-instruction coherence, the hardware may announce that it provides a kind of1383

instruction-to-data coherence guarantee rendering data cache maintenance unnecessary (§3.15).1384

3.5 Cross-thread synchronisation1385

We now consider modifying code that can be fetched by other threads, by considering variants of the1386

standard message-passing shape MP+pos (Figure 2.1, p.17). Here, we replace one or both of the reads by1387

fetches, and ask what synchronisation is required to ensure that the relaxed outcome is forbidden. Consider1388

first an MP variant where the first write is of a new instruction, and the second is just a simple data1389

memory flag, with some thread-local ordering ordering the writes on the left-hand thread, and ordering1390

the read to the fetch on the right-hand side. We call this test MP.RF+dmb+ctrl-isb (Figure 3.7, p.48).1391
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STR W0,[X1]
DMB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+dmb+ctrl-isb AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

dmb rf ctrl

isb
irf

Figure 3.7: Code listing and execution diagram for MP.RF+dmb+ctrl-isb.

This test includes sufficient synchronisation on each thread to enforce thread-local ordering of data accesses:1392

the DMB in Thread 0 ensures the writes a and b propagate to memory in program order, and the control1393

dependency into an ISB on Thread 1 ensures the read c and the fetch e happen in program order. However,1394

as we saw in §3.2, this is not enough to synchronise concurrent modification and execution of code in1395

Arm-A. Thread 0 needs to perform the entire cache synchronization sequence (§3.2), not just a DMB, to1396

forbid this outcome. Adding that full cache synchronisation sequence gives test MP.RF+cachesync+ctrl-isb1397

(Figure 3.11, p.50), described in more detail later (§3.6.2).1398

Synchronisation with memory by fetching Another variant of this MP-shape test, where the message1399

passing itself is done using modification of code, gives a much stronger guarantee. This can be seen in1400

MP.FR+dmb+fpo-fe (Figure 3.8), in which Thread 0 writes a message (to x) and then writes to the code1401

concurrently being executed by Thread 1. If Thread 1 fetches the new instruction written by Thread 0,1402

then Thread 1 must also see the new value of x.1403

STR X0,[X1]
DMB ISH
STR W2,[X3]

Thread 0

BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

Initial state: 0:X0=1, 0:X1=x,
1:X2=x, [x]=0,
0:W2="B l1", 0:X3=f

MP.FR+dmb+fpo-fe AArch64

Forbidden: 1:X0=2, 1:X1=0

hw-refs: NNNN-

write x=1a:

write f=B l1b:

Thread 0

fetch f=B l1c:

fetch LDR X1,[X2]d:

read x=0e:

Thread 1

dmb irf fpo

fe

Figure 3.8: Code listing and execution diagram for MP.FR+dmb+fpo-fe.

This was not clear from the architectural prose at the time of the work, but this outcome is intended to be1404

architecturally forbidden. This is for similar reasons as the previous CoFR test (Figure 3.5, p.46): since1405

Thread 1 fetched the updated value for f, the value must have reached at least the data caches (since that1406

is where the instruction cache reads from), and therefore multi-copy atomicity guarantees that a normal1407

load instruction will observe it.1408

3.6 Cache maintenance1409

As we have seen, instruction fetches satisfy few guarantees, so explicit synchronisation must be performed1410

when modifying the instruction stream to ensure correct execution of the new instructions.1411

Test SM (Figure 3.9, p.49) shows the simplest self-modifying code case: without additional synchronisation,1412

a write to program memory can be ignored by a program-order-later fetch.1413
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STR W0,[X1] //a
BL f
MOV X0,X10

Thread 0

f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state:
0:W0="B l1", 0:X1=f

SM AArch64

Allowed: 1:X0=1

hw-refs: YYYYY

write f=B l1a:

fetch f=B l0b:

Thread 0

ifr
irf

Figure 3.9: Code listing and execution diagram for SM.

In this execution, the fetch b, fetching the instruction at f, fetches a value from a write coherence-before a,1414

even though b is the fetch of an instruction program-order after a. We illustrate this with an instruction1415

from-reads (ifr) edge. This is a derived relation, analogous to the usual from-reads (fr) relation, that1416

relates each fetch to all writes that are coherence-after the write it read from; it is defined as ifr =1417

irf−1;co. If the fetch were a data read, this would be a forbidden coherence shape (CoWR). As it is, it is1418

architecturally allowed, as described explicitly by Arm [71, B2.4.4], and it is experimentally observed on1419

all devices we have tested. Microarchitecturally, this is simply due to fetches from old instruction cache1420

entries.1421

3.6.1 Synchronisation on a single thread1422

As we described earlier (§3.2), the Arm architecture provides cache maintenance instructions to synchronise1423

the instruction and data streams: the DC data-cache clean instruction, and the IC instruction-cache1424

invalidate instruction. To forbid the relaxed outcome of SM, by forcing a fetch of the modified code, the1425

specified sequence of cache maintenance instructions must be inserted, with an ISB.1426

STR W0,[X1] //overwrite f with branch
DC CVAU,X1 //clean data cache
DSB ISH
IC IVAU,X1 //invalidate instruction cache
DSB ISH
ISB //flush pipeline
BL f
MOV X0,X10

Thread 0

Initial state: 0:W0="B l1", 0:X1=f
SM+cachesync-isb AArch64

Forbidden: 1:X0=1

hw-refs: NNNNN

write f=B l1a:

ISBb:

fetch f=B l0c:

Thread 0

cachesync

isb
irf

Figure 3.10: Code listing and execution diagram for SM+cachesync-isb.

Now, the outcome is forbidden. The cache synchronisation sequence DC CVAU; DSB ISH; IC IVAU; DSB ISH1427

(which we abbreviate to a single cachesync edge) ensures that by the time the ISB executes, the instruction1428

and data memory have been made coherent with each other for f. The ISB then ensures the final fetch of1429

f is ordered after this sequence. The microarchitectural intuition for this sequence was in §3.2. Our §4.11430

microarchitecturally-flavoured operational model will describe the semantics of this sequence using that1431

microarchitectural intuition in a way that gives precise and well-defined semantics to each instruction1432

individually, such that their composition results in the correct system-wide synchronisation. This will be1433

discussed in much more detail later (Chapter 4).1434

3.6.2 Broadcast cache maintenance1435

The hardware threads writing new instructions, performing the necessary cache maintenance, and finally1436

fetching the new instructions, may not be the same hardware thread. So long as the sequence in its1437
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entirety has been performed by the time the fetch happens, then the instruction stream will have been1438

made consistent with the data stream for that address.1439

The simplest example of this is in MP.RF+cachesync+ctrl-isb (Figure 3.11), where the ‘producer’ thread1440

(Thread 0) writes the new instructions, and performs all the cache maintenance, before writing a flag1441

informing the ‘consumer’ thread (Thread 1) that the instructions are ready to be fetched. Although the1442

cache maintenance happened on a different thread to the one that will try fetch the new instructions,1443

their effect is enforced system wide; the consumer needs only to flush its own pipeline (with an ISB) to be1444

guaranteed to see the new instructions.1445

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl-isb AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: NYNNN

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

cachesync rf ctrl

isb
irf

Figure 3.11: Code listing and execution diagram for MP.RF+cachesync+ctrl-isb.

In-order fetches One can make both writes be of new instructions, as in MP.FF+dmb+fpo test1446

(Figure 3.12) (without the full synchronisation sequence) or MP.FF+cachesync+fpo test (Figure 3.13, p.51)1447

(with the full sequence). This idiom is quite common in practice; this was how Chrome’s WebAssembly1448

JIT synchronised its updates to modified code, up until the code was redesigned to use Arm’s FEAT_BTI1449

(branch-target-identification) feature [76, 77].1450

Without the full cache synchronisation sequence on Thread 0, this is allowed.1451

STR W0,[X1]
DMB ISH
STR W2,[X3]

Thread 0

BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+dmb+fpo AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: YYYNY

write f1=B l1a:

write f2=B l1b:

Thread 0

fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

dmb fpoirf

irf

Figure 3.12: Code listing and execution diagram for MP.FF+dmb+fpo.

Inserting the full cache maintenance sequence on the producer thread forbids the outcome.1452
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STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR W2,[X3]

Thread 0

BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+cachesync+fpo AArch64

Forbidden: 1:X0=2, 1:X1=1

hw-refs: NNNNN

write f1=B l1a:

write f2=B l1b:

Thread 0

fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

cachesync fpoirf

irf

Figure 3.13: Code listing and execution diagram for MP.FF+cachesync+fpo.

This may be surprising at first sight, as there is no synchronisation on the right-hand side (Thread 1), but1453

the architectural intent is for fetches to appear to be satisfied in-order.1454

Microarchitecturally, that could be ensured in two ways: either by actually fetching in-order, or by making1455

the IC instruction not only invalidate all the instruction caches (for this address) but also clean any core’s1456

pre-fetch buffer stale entries (for this address). Architecturally, this was not clear in the prose at the time1457

of the work, but, concurrent with this work, Arm were independently strengthening their definition to1458

guarantee this ordering.1459

Software thread migration The cache maintenance sequence need not be contiguous, or even all on a1460

single thread. In general, it may be split up with many instructions between, and over multiple threads.1461

This can be seen in the ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb test (Figure 3.14), where Thread 0 performs1462

a write to f and then only a DC before synchronizing with Thread 1, which performs the IC, while Thread 21463

observes the modified code. This can happen in practice when a software thread is migrated between1464

hardware threads at runtime, by a hypervisor or OS. Thread 0 and Thread 1 may just represent the1465

runtime scheduling of a single-threaded process, beginning execution on hardware Thread 0 but migrated1466

to hardware Thread 1 between the DC and IC instructions. In the graph, the dcsync and icsync represent1467

the DC and IC combinations with their surrounding barriers. The DC does not need a barrier preceding it,1468

because it is ordered w.r.t. the preceding store to the same cache line.1469

STR W0,[X1]
DC CVAU, X1
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB ISH
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

LDR X0,[X2]
CBZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 2

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, [x]=0, 1:X4=f, 1:X1=x,
1:X2=1, 1:X3=y, [y]=0, 2:X2=y

ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb
AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: NN---

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

write y=1d:

Thread 1

read y=1e:

ISBf:

fetch f=B l0g:

Thread 2

dcsync icsync ctrl

isb

rf rf

ifr

Figure 3.14: Code listing and execution diagram for ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb.

This works because the IC IVAU is broadcast to all threads [71, B2.2.5p3]. Therefore the IC happening1470

on a different thread to the DC does not break the sequence, so long as there is ordering between the IC1471

and DC. Additionally, the DC need not happen on the same thread as the initial store, so long as the DC is1472

ordered after the store.1473

The migration and context-switching code needs only contain a DSB and a context-synchronising operation1474

(such as an ISB, although usually this is performed implicitly by the exception return mechanism itself)1475

to ensure sufficient synchronisation exists for the sequence to be migrated at any point.1476
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3.6.3 Completion of cache maintenance1477

Recall that we have an asymmetry between the required synchronisation for DC instructions and IC1478

instructions: IC instructions must have a preceding DSB to order with earlier accesses, whereas DC1479

instructions do not necessarily need one; DC instructions are ordered by DMB with surrounding memory1480

accesses, whereas an IC is not.1481

This is because the DC is ordered much like a read (see §3.12.1). However, both the DC and IC are not1482

guaranteed to have completed their effect until after the subsequent execution of a DSB instruction on the1483

same thread [72, pp. 5790-5791], and an IC instruction always requires an DSB before it [72, p. 5791].1484

3.7 Dependencies1485

Reads, including implicit reads due to an instruction fetch, must have their address become known before1486

the value can be used. This is a general principle Arm have, that values from reads generally cannot be1487

observably speculated. For instruction fetches, this address is the program counter.1488

This means that computations which are used in the calculation of that address give rise to dependencies1489

in the program. Sometimes these dependencies are hard and must be preserved, and other times, not.1490

3.7.1 Address dependencies1491

When the destination of a branch is passed as a register, e.g. with the BR (branch-register) or BLR (branch-1492

and-link-register) instructions, then the instruction fetch of the target cannot go ahead until after the1493

address is resolved.1494

This can be seen in the MP.RF+cachesync+addr test (Figure 3.15), where the target of the branch is1495

dependent on the value of register X2 which comes from the earlier load of x.1496

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
EOR X2,X0,X0
ADD X2,X2,f
BLR X2
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+addr AArch64

Forbid?: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf addr
irf

Figure 3.15: Code listing and execution diagram for MP.RF+cachesync+addr.

3.7.2 Control dependencies1497

For branches where the destination is known, but where it is not yet known if the branch will be taken,1498

then it is permitted for the instruction to be fetched and executed speculatively.1499
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STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0

LDR X0,[X2]
CBNZ X0,l

l:
BL f
MOV X1,X10

Thread 1

Initial state:
0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: YYYYY

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf ctrl
irf

Figure 3.16: Code listing and execution diagram for MP.RF+cachesync+ctrl.

3.8 Multi-Copy Atomicity1500

For data accesses, the question of whether they are multi-copy atomic is a crucial one in relaxed1501

architectures. IBM POWER, ARMv7, and pre-2018 ARMv8-A are non-multi-copy atomic: two writes to1502

different addresses could become visible to distinct other threads in different orders. Post-2018 ARMv8-A,1503

Armv9-A, and RISC-V are all multi-copy atomic (or “other multi-copy-atomic” in Arm terminology)1504

[7, 6, 71]: the programmer can assume there is a single shared memory, with all data-access relaxed-memory1505

effects due to thread-local out-of-order execution.1506

One again has to ask whether writes are multi-copy atomic when observed by instruction fetches.1507

However, the lack of any fetch atomicity guarantee for most instructions (§3.3), and the lack of coherent1508

fetches for the others (§3.4), means the question of multi-copy atomicity for instruction fetching is not1509

particularly interesting. Tests are either trivially forbidden (by data-to-instruction coherence, as in test1510

WRC.F.RR+po+dmb (Figure 3.17)) or are allowed, but only the full cache synchronisation sequence1511

provides enough guarantees to forbid it, and this sequence ensures all cores will share the same consistent1512

view of memory.1513

STR W0,[X1]

Thread 0

BL f
MOV X0,X10
STR X1, [X2]

Thread 1

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 2

Initial state: 0:W0="NOP", 0:X1=f,
1:X1=1, 1:X2=x, [x]=0, 2:X1=x, 2:X3=f

WRC.F.RR+po+dmb AArch64

Forbidden: 1:X0=1, 2:X0=2, 2:X2="B l0"

hw-refs: NN--N

write f=NOPa:

Thread 0

fetch f=NOPb:

write x=1c:

Thread 1

read x=1d:

read f=B l0e:

Thread 2
irf

po rf dmb

fr

Figure 3.17: Code listing and execution diagram for WRC.F.RR+po+dmb.

3.9 More on instruction caches1514

Test CoFF (Figure 3.4, p.45) showed that fetches can see “old” writes. In principle, there is no limit1515

to the number of distinct values within the instruction cache: there could be many values for a single1516

location cached in the instruction memory for each core, even if the data cache has been cleaned. The1517

MP.RFF+dc-dsb+ctrl-isb-isb test (Figure 3.18, p.54) illustrates this, with Thread 0 writing two distinct1518

new opcodes for g, and Thread 1 able to see all three (both of the new, and the initial) values for g.1519
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STR W0,[X2]
STR W1,[X2]
DSB ISH
DC CVAU,X2
DSB ISH
STR X3,[X4]

Thread 0

LDR X0, [X4]
CBNZ X0, l

l:ISB
BL g
MOV X1,X10
ISB
BL g
MOV X2,X10
ISB
BL g
MOV X3,X10

Thread 1

g: B l0
l2:MOV X10,#3

RET
l1:MOV X10,#2

RET
l0:MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g,
0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0, 1:X4=x

MP.RFF+dc-dsb+ctrl-isb-isb AArch64

Allowed: 1:X0=1, 1:X1=3, 1:X2=2, 1:X3=1

hw-refs: NNNNN

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0

read x=1d:

fetch g=B l2e:

fetch g=B l1f:

fetch g=B l0g:

Thread 1

po

dcsync

ctrl+isb

isb

isb

rf

irf

irf

irf

Figure 3.18: Code listing and execution diagram for MP.RFF+dc-dsb+ctrl-isb-isb.

It is thought unlikely that hardware will exhibit this in practice, but the desire for the simpler and weaker1520

option means the architectural intent is to allow it, and we follow that in our models.1521

3.10 Points of unification and coherence1522

Cleaning the data cache, with the DC instruction, forces previous writes to become visible to instruction1523

fetch, but does not restrict the set of values that could be in the instruction cache. It does this by1524

pushing the writes past the Point of Unification (the point where the instruction and data caches become1525

unified). However, there may be multiple Points of Unification: one for each individual core, where its1526

own instruction and data memory become unified, and one for the entire system (or shareability domain)1527

where all the caches eventually unify. Fetching from a write implies that it has reached the closest PoU,1528

but does not imply it has reached any others, even if the write originated from a distant core. Consider1529

test SM.F+ic (Figure 3.19).1530

STR W0,[X4]
LDR X2,[X3]
CBZ X2,l

l: ISB
BL f
MOV X1,X10

Thread 0

BL f
MOV X0,X10
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

Initial state: 0:W0="B l1", 0:X4=f,
0:X3=x, [x]=0, 1:X4=f, 1:X2=1, 1:X3=x

SM.F+ic AArch64

Allowed: 1:X0=2, 0:X2=1, 0:X1=1

hw-refs: NNNN-

write f=B l1a:

read x=1b:

ISBc:

fetch f=B l0d:

Thread 0

fetch f=B l1e:

write x=1f:

Thread 1

po

ctrl

isb

irf

icsync

rf

irf

Figure 3.19: Code listing and execution diagram for SM.F+ic.

In SM.F+ic, Thread 0 modifies f, and Thread 1 fetches the new value and performs just an IC and DSB,1531

before signalling Thread 0 which also fetches f. The IC (without its sibling DC) is not strong enough to1532

ensure that the write is pulled into the instruction cache of Thread 0.1533

This was not clear in the existing prose, but Arm have since architected that it be allowed (i.e., that IC is1534

weak in this respect). We have not so far observed it in practice. The write may have passed the Point of1535

Unification for Thread 1, but not the shared Point of Unification for both threads. In other words, the1536

write might reach Thread 1’s instruction cache without being pushed down from Thread 0’s data cache.1537

Microarchitecturally this can be explained by direct data intervention (DDI), an optimisation allowing1538

cache lines to be migrated directly from one thread’s (data) cache to another [78]. The line could be1539

migrated from Thread 0 to Thread 1, then pushed past Thread 1’s Point of Unification, making it visible1540

to Thread 1’s instruction memory without ever making it visible to Thread 0’s own instruction memory.1541
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The lack of coherence between instruction and data caches would make this observable in theory, even1542

in multi-copy atomic machines, although we have never observed it in practice (suggesting that modern1543

machines either do not do DDI, at least before the Point of Unification, or that instruction fetches are not1544

as weak as permitted).1545

With insufficient synchronisation of the data caches, there is theoretically no limit to how far back in1546

time the fetches could read from. Recall that in the MP.RF+dmb+ctrl-isb test (Figure 3.7, p.48), the full1547

cachesync sequence was required to forbid the ‘bad’ behaviour. Test FOW (Figure 3.20) is similar to1548

that MP-shaped test, but writes two new values to the data consecutively rather than one, and has two1549

threads reading the flag before fetching that address. Here, both threads can see the updated flag, but can1550

execute different instructions on the instruction fetch of g, even after invalidating the instruction cache.1551

STR W0,[X2]
STR W1,[X2]
DSB ISH
IC IVAU, X2
DSB ISH
STR X3,[X4]

Thread 0

LDR X0, [X4]
CBNZ X0, la

la: ISB
BL g
MOV X1,X10

Thread 1

LDR X0, [X4]
CBNZ X0, lb

lb: ISB
BL g
MOV X1,X10

Thread 2

g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g, 0:W1="B l2", 0:X3=1, 0:X4=x,
[x]=0, 1:X4=x, 2:X4=x

FOW AArch64

Allowed: 1:X0=1, 1:X1=2, 2:X0=1, 2:X1=1

hw-refs: NN--N

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0

read x=1d:

fetch g=B l1e:

Thread 1

read x=1f:

fetch g=B l0g:

Thread 2

po

icsync

ctrl+isb ctrl+isbirf

rf

rf

irf

Figure 3.20: Code listing and execution diagram for FOW.

This was not clear in the existing architecture text. It is a case where the architecture design is not very1552

constrained. On the one hand, it has not been observed, and it is thought unlikely that hardware will ever1553

exhibit this behaviour: it would require keeping multiple writes in the coherent part of the data caches,1554

before the point of coherence, which would require more complex cache coherence protocols, rather than a1555

single dirty line. On the other hand, there does not seem to be any benefit to software from forbidding it.1556

Therefore the architects are forced to make a decision. In this case, the more permissive model is also the1557

simpler one. It makes it easier for programmers to understand and to provides more flexibility for future1558

microarchitectural optimisations. Our models therefore allow the above behaviour.1559

In theory, once a write passes the Point of Coherency (the point where all data and unified caches1560

eventually unify) then any writes coherence before that write cannot be seen at all by instruction fetches1561

any more. We do not set out to attempt to model this, since a general notion of a point of coherency is1562

not required in the models as it is only distinguished by device memory or DMA, which we do not model1563

here.1564
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3.11 Promotion1565

Cache maintenance operations form a partial order: if one cache operation is sufficient for the sequence,
then a stronger one is also sufficient. Assuming that the Point of Unification is before the Point of
Coherency (as is often assumed by software), the partial order is:

DC CVAU ≤ DC CVAC ≤ DC CIVAC

DC IVAC ≤ DC CIVAC

IC IVAU ≤ IC IVAC

IC IVAU ≤ IC IALLUIS

The litmus tests shown so far, and in future sections, will use the least operation in this order, typically1566

DC CVAU and IC IVAU.1567

A program (or litmus test) which uses one of these instructions can be replaced with another program1568

where that instruction is replaced with (‘promoted’) to a stronger cache maintenance operation. Often1569

software will want to use the least sufficient maintenance as they are the most efficient, and therefore1570

give the best performance. However, sometimes operating systems and hypervisors will ‘trap’ cache1571

maintenance operations to emulate or promote them automatically, either for virtualisation or as part of1572

the resolution to CPU errata. In those cases, software must ensure it only promotes cache maintenance1573

consistent with the above ordering.1574

3.12 Cleans and invalidates are like reads and writes1575

3.12.1 Cleans are similar to reads1576

Microarchitecturally, cleans are non-destructive; they push the data further down the cache hierarchy,1577

without causing the data to be lost. In hardware, these clean operations may be propagated around the1578

system in much the same way reads are. This gives clean operations the same memory ordering constraints1579

as data reads. This, in turn, means that DC CVAUs wait for program-order previous reads and writes1580

(and other DCs) of the same location just as reads do (or really, within the same cache line of minimum1581

size, see §3.13), and do not require any other explicit barriers or dependencies between them. Cleans1582

may be speculated, but otherwise respect dependencies and fences, even with respect to surrounding1583

non-same-cache-line accesses.1584

3.12.2 IC invalidates are not quite like writes1585

Invalidations are destructive: data that was once visible is lost, potentially forever.1586

Invalidations behave somewhat like writes; they cannot be performed speculatively, and end up existing1587

at some place within the global coherence order of that location: reads after the invalidation cannot read1588

from writes from before it.1589

IC invalidations behave like this, with some extra details about in-order fetching (see test MP.FF+dmb+fpo1590

(Figure 3.12, p.50)), with one major exception: they do not respect dependencies or barriers other than1591

DSB. This means that, in practice, every IC requires a DSB between it and any program-order earlier or1592

later memory accesses, in order to synchronise with them.1593

3.12.3 DC and IC address speculation1594

Normal data load and store instructions (in Arm-A and in other relaxed architectures) respect address1595

dependencies: reads cannot be satisfied, and writes cannot be forwarded from or committed, until their1596

addresses are resolved from previous register writes (though those can still be out-of-order or speculative).1597

In other words, the architecture forbids programmer-visible value speculation of such addresses.1598

For DC and IC instructions, which are loosely analogous to loads and stores from the specified addresses, we1599

similarly have to consider whether or not dependencies from the calculation of their addresses are respected.1600
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Test MP.R.RF+addr-cachesync+dmb+ctrl-isb (Figure 3.21, p.57) illustrates this for DC. Thread 0 writes1601

to g and performs the full cache synchronization sequence. However, the DC’s address depends on a1602

detour through Thread 1 which writes an even newer instruction to g. Since the address of the DC cannot1603

be speculated, this address dependency must be preserved and so the final fetch of g after the cache1604

synchronization must observe the branch Thread 1 wrote.1605

LDR X0,[X1]
STR W2,[X3]
EOR X4,X0,X0
ADD X4,X4,X3
DC CVAU,X4
DSB ISH
IC IVAU,X4
DSB ISH
STR X5,[X6]

Thread 0

LDR W0,[X2]
STR W1,[X2]
DMB SY
STR X3,[X4]

Thread 1

LDR X0,[X2]
CBNZ X0,l

l: ISB
BL g
MOV X1,X10

Thread 2

g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:X1=z, 0:W2="B l1", 0:X3=g, 0:X5=1, 0:X6=y,
1:W1="B l2", 1:X2=g, 1:X3=1, 1:X4=z, 2:X2=y, [x]=0, [y]=0

MP.R.RF+addr-cachesync+dmb+ctrl-isb AArch64

Forbidden: 0:X0=1, 1:W0="B l1", 2:X0=1, 2:X1=1

hw-refs: NN--N

read z=1a:

write g=B l1b:

DC gc:

write y=1d:

Thread 0

read g=B l1e:

write g=B l2f:

write z=1g:

Thread 1

read y=1h:

fetch g=B l1i:

Thread 2

po

po

icsync

addr

po

dmb

ctrl+isbrf

rf

rf

irf

Figure 3.21: Code listing and execution diagram for MP.R.RF+addr-cachesync+dmb+ctrl-isb.

This was unclear in the prose at the time of this work, but Arm have since decided the architectural1606

intent is that it should be forbidden: addresses of cache maintenance instructions should not be visibly1607

value-speculated, and so these instructions must respect their address dependencies.1608

3.12.4 DC might be to same address1609

Data loads and stores can be ordered by the fact that they might access the same address [37, §12.5].1610

Arm made it clear in the architectural text that DC is ordered with respect to loads and stores with1611

addresses in the same cache line, while IC is not [71, D4.4.8]. We therefore have to ask whether DC is1612

subject to a might-access-same-address restriction in the same way as data loads and stores [37, §10.5].1613

The MP.RRF+dmb+addr-cachesync-isb test (Figure 3.22, p.58) below illustrates this, in which program-1614

order previous load/store addresses may not be determined when the DC executes. Arm clarified that1615

the architectural intent (which was not clear from the architectural text at the time of this work) is1616

that DC should be like loads in this respect too, with the aforementioned test architecturally allowed.1617

Microarchitecturally, the DC is not required to wait for those addresses to be determined before executing,1618

but if they end up being to the same address, the DC must be re-issued. Because the read d was not to the1619

same location, the DC need not be re-issued and so may have happened before the write a to f.1620
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STR W0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X2,X0,X0
LDR X3,[X4,X2]
DC CVAU,X5
DSB ISH
IC IVAU,X5
DSB ISH
ISB
BL f
MOV X6,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f, 0:X2=1,
0:X3=x, [x]=0, 1:X1=x, 1:X4=z, [z]=0, 1:X5=f

MP.RRF+dmb+addr-cachesync-isb AArch64

Allowed: 1:X0=1, 1:X6=1

hw-refs: N-N--

write f=B l1a:

write x=1b:

Thread 0

read x=1c:

read z=0d:

ISBe:

fetch f=B l0f:

Thread 1

dmb rf addr

cachesync

isb

ifr

Figure 3.22: Code listing and execution diagram for MP.RRF+dmb+addr-cachesync-isb.

3.12.5 DC ordering with respect to other memory accesses1621

We saw that the DC instruction is ordered with program-order-previous stores to the same address. Normal1622

‘data’ loads are additionally ordered with respect to other same-location accesses in the same thread. Here1623

we ask how far we can extend this to data cache maintenance operations.1624

po-previous loads We extend this to cover all the natural thread-local same-address ordering constraints1625

as normal ‘data’ loads. For example, DCs are ordered with respect to program-order-earlier same-location1626

loads as in CoRF+cachesync-isb (Figure 3.23), and may be re-ordered with respect to program-order-later1627

same-location loads, as in MP+dmb+addr-dc (Figure 3.24, p.59).1628

Note that these have not yet been confirmed with Arm architects; where the test final state has a question1629

mark, the stated results come from our models and await architectural decision.1630

STR W0,[X1]

Thread 0

LDR W0,[X1]
DC CVAU, [X1]
DSB ISH
IC IVAU, [X1]
DSB ISH
ISB
BL f

Thread 1

Initial state:
0:W0="B l1", 0:X1=f
1:X1=f

CoRF+cachesync-isb
AArch64

Forbid?: 1:X2=1

hw-refs: -----

write f=B l1a:

Thread 0

read f=B l1b:

DC fc:

IC fd:

ISBe:

fetch f=B l0f:

Thread 1

po

dsb

dsb

isb

rf

ifr

Figure 3.23: Code listing and execution diagram for CoRF+cachesync-isb.
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STR X0,[X1] //a
DSB SY
STR X2,[X3] //b

Thread 0

LDR X0,[X1] //c
EOR X5,X5,X0
ADD X5,X5,X3
DC CVAU,X5 //d
LDR X2,[X3] //e

Thread 1

Initial state: 0:X0=1, 0:X1=x
0:X2=1, 0:X3=y
1:X1=y, 1:X3=x

MP+dmb+addr-dc AArch64

Allow?: 1:X0=1, 1:X2=0

hw-refs: -----

write x=1a:

write y=1b:

Thread 0

read y=1c:

DC xd:

read x=0e:

Thread 1

dmb addr

po

rf

fr

Figure 3.24: Code listing and execution diagram for MP+dmb+addr-dc.

3.13 Same-cache-line ordering1631

Arm-A has an architected cache line of minimum size. There are two cache line minimum sizes: one for1632

the data caches, and one for the instruction caches. They are accessible as the DMinLine and IMinLine1633

bitfields of the CTR_EL0 register, which encode log2 the number of (32-bit) words in the smallest cache-line1634

size1, for the data and instruction caches, respectively.1635

Accesses being within the same cache line does not impose additional ordering constraints [16], unless one1636

of the accesses is a cache maintenance operation. For example, the SB+scls test (Figure 3.25), which is a1637

variation of the classic store buffering example where the two locations are to the same cache line, is still1638

allowed as the reads and writes of different locations (even within the same cache line) are not ordered.1639

In this test, X is an array of size 22+DMinLine bytes, and X is aligned on a cache boundary, therefore X and1640

X+4 are 32-bit aligned addresses in the same (data) cache line of minimum size.1641

This is separate to concerns about mixed-size accesses, which we consider in §3.14, where a program writes1642

to the same location with architected writes of different size.1643

STR W0,[X1]
LDR W2,[X3,#4]

Thread 0

STR W0,[X1,#4]
LDR W2,[X3]

Thread 1

Initial state:
uint32_t x[DMinLine];
0:X0=1, 0:X1=x, 0:X3=x
1:X0=1, 1:X1=x, 1:X3=x
DMinLine1≥1

SB+scls AArch64

Allow?: 0:W2=0, 1:W2=0

hw-refs: -----

write x=1a:

read x+4=0b:

Thread 0

write x+4=1c:

read x=0d:

Thread 1

scl sclfr
fr

Figure 3.25: Code listing and execution diagram for SB+scls.

1Note that, while the encoding allows DMinLine and IMinLine to be zero, this assignment does not make much sense for
hardware, and it is likely no implementation exists with either less than the size of the largest implemented single-copy
atomic access size.
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DC to same cache line Given two locations f and g in the same cache line of minimum size, performing1644

the cache clearing sequence for one will also clear the other, as in SM+sclcachesync-isb (Figure 3.26)1645

STR W0,[X1]
DC CVAU, [X2]
DSB ISH
IC IVAU, [X2]
DSB ISH
ISB
BL f

Thread 0

f: B l0
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state:
0:W0="B l1", 0:X1=f, 0:X2=g

SM+sclcachesync-isb
AArch64

Forbidden: 0:X0=1

hw-refs: -----

write f=B l1a:

DC gb:

IC gc:

ISBd:

fetch f=B l0e:

Thread 0

scl

dsb

dsb

isb

ifr

scl

scl

Figure 3.26: Code listing and execution diagram for SM+sclcachesync-isb.

3.14 Mixed-size instruction fetching1646

In the tests so far we have always replaced a single instruction with another whole instruction, with a1647

single write. However, it is easy to imagine code that replaces an instruction byte-by-byte, or perhaps1648

even only replacing a single field in the instruction encoding.1649

It is clear that performing individual per-byte writes and then performing the full cache synchronization1650

sequence, without concurrently attempting to fetch the location, should give the desired result without1651

unpredictable behaviour.1652

For example, in the following SM8+sclcachesync-isb test (Figure 3.27, p.61), a new 32-bit instruction is1653

written byte-by-byte before performing a full cache synchronisation sequence on a single core. Here, it is1654

not a concurrent modification of the location, as it is all on a single core and the sequence is complete1655

before the fetch happens, and so the result is a well-defined forbidden outcome. This pattern can occur in1656

practice, as code often gets loaded from some other memory by means of some memory copying code,1657

which may copy bytes using instructions whose accesses are not naturally instruction-sized, before they1658

are executed.1659

Note that the 32-bit opcode for B l1 differs from that of B l0 only in the last byte (at f[0] since1660

instructions are always stored little-endian in Arm-A), so all combinations of the writes correspond to1661

instructions which are in the set of modifiable instructions. One can also delete the final three STRB1662

instructions (events b-d) from the test, and not affect the result (it is still forbidden).1663
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STRB W0,[X4,#0] //a
STRB W1,[X4,#1] //b
STRB W2,[X4,#2] //c
STRB W3,[X4,#3] //d
DC CVAU, [4] //e
DSB ISH
IC IVAU, [X4] //f
DSB ISH
ISB //g
BL f

Thread 0

f: B l0 // h
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state:
0:<W0,W1,W2,W3>="B l1"
0:X1=f, 0:X2=g

SM8+sclcachesync-isb AArch64

Forbidden: 0:X0=1

hw-refs: -----

write f[0]=B l1[0]a:

write f[1]=B l1[1]b:

write f[2]=B l1[2]c:

write f[3]=B l1[3]d:

DCe:

DCf:

ISBg:

fetch f=B l0h:

Thread 0

po

po

po

scl

dsb

dsb

isb

ifr

ifr

ifr

ifr

scl

scl

scl

Figure 3.27: Code listing and execution diagram for SM8+sclcachesync-isb.

It is less clear in the architectural prose (even as of the most recent version, J.a [72]) what happens1664

if one were to concurrently modify part of an instruction, either in a single thread without sufficient1665

synchronisation as in SM+mixed (Figure 3.28), or across multiple threads as in W+F+mixed (Figure 3.29).1666

We do not discuss this in detail, and we are not aware of any software patterns that rely on it. We leave1667

this question open for the architects to resolve at a later time.1668

STRB W0,[X1,#3] //a, b
BL f

Thread 0

f: B l0 // c
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state: 0:W0="B l1"[3], 0:X1=f
SM+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

fetcha: write f[3]=B l1[3]b:

fetch fc:

Thread 0
fe

fpo

Figure 3.28: Code listing and execution diagram for SM+mixed.

STRB W0,[X1,#3] //a

Thread 0

BL f //b

Thread 1

Initial state:
0:W0="B l1"[3], 0:X1=f

W+F+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

write f[3]=B l1[3]a:

Thread 0

fetch fb:

Thread 1

Figure 3.29: Code listing and execution diagram for W+F+mixed.
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3.15 Cache type strengthening: IDC and DIC1669

Implementations may announce that they provide stronger guarantees through two fields in the cache1670

type identification register (CTR_EL0). They are the IDC and DIC fields. The value of these fields then1671

inform software whether each of the cache maintenance instructions are required.1672

IDC is related to instruction-to-data coherence, and requirements on data cache maintenance. DIC is1673

related to data-to-instruction coherence, and the requirement for instruction cache maintenance. As the1674

names suggest, these fields are related to the kinds of coherence introduced in Section 3.4.1675

If implementations choose to advertise that one or other of the cache maintenance operations are not1676

required, then those cache maintenance instructions simply become hints or NOPs, so defensive cleans and1677

invalidations will not be harmful to the program.1678

None of the devices we tested had either strengthening enabled.1679

3.15.1 IDC1680

When CTR_EL0.IDC is 1, the DC instruction is not required as part of the sequence [72, p. 201].1681

Point of Unification When the DC instruction is not required, it means that writes must reach the1682

Point-of-Unification before being propagated to other threads. This means, under IDC=1, the earlier1683

SM.F+ic test (Figure 3.19, p.54) is forbidden.1684

3.15.2 DIC1685

When CTR_EL0.DIC is 1, the IC instruction is not required as part of the sequence [72, p. 201].1686

In-order fetching Recall that instruction fetches must either happen in-order, or the IC instruction must1687

touch the internal fetch queues of the individual threads (§3.5). When DIC=1, the IC instruction is not1688

required, and this forces fetches to be satisfied from the instruction cache in the order they are fetched into1689

the fetch queue. This is exactly how our operational model is expressed (which we shall see in Chapter 4).1690
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3.16 Related Work1691

Explicit cache maintenance makes these tests, and the models presented in the next two chapters, quite1692

different to the ‘user mode’ relaxed memory models discussed in Chapter 2.1693

Previous work on verification, of operating systems, hypervisors, and JITs, has had to work with idealised1694

models of the underlying hardware.1695

Myreen’s JIT compiler verification [62] models x86 icache behaviour with an abstract cache that can be1696

arbitrarily updated, cleared on a jmp.1697

Cai, Shao, and Vaynberg produce a Hoare-style logic for certifying programs which contain self-modifying1698

patterns [79], extending a version of Concurrent Abstract Predicates (CAP) [80] for generalised von-1699

Neumann machines.1700

Goel et al.’s work on verification of x86 machine code programs [81, 82] includes a system step relation,1701

based on their idealised x86 instruction models in ACL2. This model fetches instructions from memory,1702

but avoids the complexity of caches and pipelines [83].1703

Lustig et al. describe a framework for concurrent models, with relaxed behaviours, for machine code1704

x86 programs based on stages of hardware micro-operations [84]. They produce some models in this1705

framework which include instruction fetching and the (data and TLB, not instruction) caches of a specific1706

hardware implementation. These models explain behaviours seen based on knowledge of the underlying1707

microarchitecture, but are not intended to be architectural models.1708

The verification of seL4 [52] included self-modifying patterns, but assumed the correctness of the required1709

cache maintenance, without producing tight architectural models of the individual instructions.1710

CertiKOS [53, 54] verifies an assortment of safety and security properties (no code injection, no buffer1711

overflows, no data races, and so on) for a custom-written kernel, with respect to an underlying concurrent,1712

but not relaxed, x86 hardware machine model (‘x86mc’) without self-modifying code .1713

SeKVM [85] similarly verified a custom-written (in this case, for Arm) micro-kernel, with respect to an1714

underlying concurrent, and somewhat relaxed, hardware model. This model is far less idealised than1715

those used in earlier verification efforts (but still not an architectural definition by any means), such as1716

those in the seL4 and CertiKOS projects. The KCore kernel itself does not require self-modifying code,1717

and the contextual refinement did not consider programs with concurrent or self-modifying code, and the1718

underlying hardware model did not support data or instruction cache maintenance operations.1719

For architectural models which include cache maintenance, the closest is Raad et al.’s work on non-volatile1720

memory. They model the required cache maintenance for persistent storage in ARMv8-A [86], as an1721

extension to the ARMv8-A axiomatic model, and for Intel x86 [87] as an operational model.1722

There is also some work on address translation and TLB maintenance, which has a very similar flavour to1723

cache maintenance. We explain the related work on TLBs in more detail later (§8.10).1724

During this work, Arm informally confirmed they would adopt the model (subject to necessary updates1725

and changes of architectural intent) [64].1726

Independent work by Arm, which happened concurrently with this work, extended the herdtools suite1727

of tools, models, and tests, for instruction fetching and cache maintenance. This work has not yet been1728

published, nor any documents describing the models or tests released. It is therefore difficult for now1729

to give a comprehensive comparison between the model developed by Arm and the one that shall be1730

presented here.1731
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Chapter 41732

Operational instruction fetching1733

4.1 An Operational Semantics for Instruction Fetch1734

Previous work on operational models for IBM Power and Arm ‘user-mode’ concurrency (see Chapter 2) has1735

shown, perhaps surprisingly, that one can capture the architecturally intended envelope of programmer-1736

visible behaviour while abstracting from almost all hardware implementation details of the memory system1737

(store queues, the cache hierarchy, the cache protocol, and so on). For Arm-A, following their 2018 shift to1738

a multicopy-atomic architecture [7], one can do so completely: the Flat model has a shared flat memory,1739

with a per-thread out-of-order thread subsystem. This out-of-order thread subsystem abstractly models1740

pipeline effects, which are alone sufficient to explain all the observable relaxed behaviours — subsuming1741

relaxations which arise from store queues and caches and suchlike.1742

For instruction fetch, and the required cache maintenance, it is no longer possible to abstract completely1743

from the data and instruction cache hierarchy. However, we can still abstract from some of its complexity.1744

Flat has a fixed instruction memory, and fetches instructions from that fixed instruction memory. This1745

transition could be taken at any time, for any in-flight (non-finished) instruction, for any address of a1746

potential (even speculative) program-order successor of that in-flight instruction. We now extend Flat1747

by removing that fixed instruction memory, enabling instructions to be fetched from the flat memory,1748

with values written by normal ‘data’ writes, along with adding the additional instruction-fetch related1749

structures: per-thread fetch queues and instruction caches, and a global data cache, as shown in Figure 4.1.1750

We call this extended model iFlat. The remainder of this chapter will describe these new structures in1751

detail, and enumerate the transitions of iFlat.1752
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Figure 4.1: Structure of the iFlat state: per-thread fetch queues and instruction caches, with a global
abstracted data cache.
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4.2 The iFlat state1753

We extend the original Flat state, to include: per-thread fetch queues; per-thread instruction caches; and,1754

a global abstracted data cache.1755

As is usual for an architectural definition, these are all of unbounded size abstracting from, and thus1756

overapproximating, the hardware.1757

4.2.1 Fetch queues1758

Each thread has a dedicated ‘fetch queue’, which buffers the in-flight instruction fetches. Fetch queues1759

allow the model to speculate and pre-fetch instructions, potentially satisfying them out-of-order.1760

The thread subsystem fetches instructions by inserting a new entry into the fetch queue. This entry is a1761

request, containing the address to be fetched. The entries in the fetch queue can then be satisfied from1762

memory at any point in time, in any order. Entries are removed and decoded in-order from the fetch1763

queue.1764

Entries are either a yet unsatisfied (‘unfetched’) request, or, a fetched 32-bit opcode.1765

The model permits entries to be added to the fetch queue for any arbitrary address; as earlier instructions1766

become finished, they will discard successor instructions whose program counter value does not match the1767

one computed from the instruction semantics.1768

In this way the fetch queues abstract from multiple hardware structures: instruction queues, line-fill1769

buffers, loop buffers, slots objects, and others.1770

Out-of-order fetching We believe the out-of-order satisfaction of instruction fetches is not observable on1771

real hardware (in part due to the general lack of coherence in instruction caches subsuming this behaviour,1772

see §3.5), and that the model is equivalent to one that fetches in order. However, this presentation of the1773

model is more consistent with the description in the Arm reference manuals, and we believe has a closer1774

correspondence with the underlying microarchitecture.1775

Interaction with the instruction tree Flat keeps a per-thread tree of in-flight instructions. There is1776

a model design choice between constructing an explicit fetch queue as an independent structure in the1777

iFlat state, or adding a new unfetched state to the instruction instances in the tree and interpreting the1778

po-suffix of any unfetched entries in the tree as the fetch queue. The latter has the advantage of allowing1779

model speculation down multiple branches simultaneously, although this does not introduce additional1780

behaviours.1781

4.2.2 Abstract instruction caches1782

Each thread has an abstract instruction cache, which is a set of writes which the fetch queue entries can1783

be satisfied from.1784

An unsatisfied fetch request in the fetch queue may be be satisfied from that thread’s abstract instruction1785

cache, at any point in time.1786

The instruction cache can contain many possible writes for each location (§3.9), and can be spontaneously1787

updated with new writes in the system at any time ([71, B2.4.4]), or spontaneously drop entries.1788

Unlike the flat memory, the instruction caches are not updated on a write. There is no guarantee values1789

are ever dropped from the instruction cache, unless an explicit instruction cache maintenance operation is1790

performed. Therefore, the instruction cache may contain values which are arbitrarily stale.1791

Instruction caches can be maintained by software, by issuing instruction cache invalidation instructions1792

(IC). An IC instruction sends messages to each core (including its own), requesting they clear their1793

instruction caches, and then waits for all the cores to reply. Other instructions may execute out-of-order1794

with respect to these messages, except for DSBs: the requests are only sent after any program-order earlier1795

DSB instructions are complete, and no program-order later DSB can complete until all the replies have1796

returned. To handle this, each thread keeps a set of addresses yet to be invalidated by any in-flight ICs.1797
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4.2.3 Global abstract data cache1798

Before the single shared flat memory for the entire system, we insert a shared buffer (a list of writes)1799

abstracting from the many possible coherent data cache hierarchies. Explicit reads (e.g. those from load1800

instructions) must be coherent, reading from the most recent write to the same address in the buffer or1801

memory. Instruction fetches may read from any write of the same location from the buffer or memory1802

(§3.4).1803

As writes are propagated to memory, they are initially placed into the abstract data cache buffer. At1804

any point in time, the coherence-earliest write in the buffer can spontaneously flow into the shared flat1805

memory, making coherence-earlier writes no longer visible to instruction fetches.1806

In this way, the shared flat memory acts as the system-wide Point of Unification; writes before that point1807

may or may not be seen by the threads, but once they reach the shared flat memory an instruction cache1808

fill must see that write, or something coherence newer.1809

4.2.4 Outcome types1810

To link the model transitions to the execution of the instructions in the program, the interface’s outcome1811

types (described in §2.2) must be extended to cope with the new instructions: namely, we must add1812

outcomes for the two cache maintenance operations, one for the data cache clean, and two for instruction1813

cache invalidation (for the separation of propagation of messages and completion of the whole invalidation).1814

The full list of outcomes for the iFlat model can be found in Figure 4.2.1815

Read_mem(read_kind, address, size, read_continuation) Read request
Perform_IC(address, res_continuation) Propagate an ic ivau
Wait_IC(address, res_continuation) Wait for an ic ivau to complete
Perform_DC(address, res_continuation) Propagate a dc cvau
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 4.2: iFlat outcomes (new outcomes highlighted in blue).

4.2.5 Pseudocode states1816

We extend the intra-instruction semantics, and associated pseudocode states, to include the fetch-queue1817

fetch states, either fetched or unfetched, and ‘pending’ IC instructions, as they do not happen atomically.1818

Figure 4.3 lists all the pseudocode states in iFlat, with the new ones highlighted.1819

Plain(next_state) Ready to make a pseudocode step
Unfetched(pc) Placed into fetch queue but pending satisfaction of the fetch itself
Fetched(opcode) Fetch satisfied but not yet begun pseudocode execution
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store
Pending_IC(ic_cont) Performing an IC IVAU to some address and waiting for the result

Figure 4.3: iFlat pseudocode states (new states highlighted in blue).
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4.3 Transitions of iFlat1820

This section is based on the appendix of our published ESOP’20 paper [32], which contains a prose1821

description of the all the transitions of iFlat.1822

To accommodate instruction fetch and cache maintenance, we introduce the following new transitions1:1823

◦ Fetch request1824

. Fetch instruction1825

. Fetch instruction (unpredictable)1826

. Fetch instruction (B.cond)1827

◦ Decode instruction1828

. Begin IC1829

◦ Propagate IC to thread1830

. Complete IC1831

. Perform DC1832

◦ Add to instruction cache for thread1833

In addition to these transitions, we modify some existing ones:1834

. Commit barrier1835

. Satisfy memory read by forwarding from writes1836

. Satisfy memory read from memory1837

◦ Commit store instruction1838

. Propagate memory write1839

◦ Complete store instruction (when its writes are all propagated)1840

Together, these transitions define the lifecycle of each instruction a request gets issued for the fetch, then1841

at some later point the fetch gets satisfied from the instruction cache, the instruction is then decoded (in1842

program-order), and then handed to the existing semantics to be executed.1843

4.3.1 New transitions1844

Transitions for all instructions:1845

◦ Fetch request: This transition (perhaps speculatively) requests to fetch the next-instruction address,1846

as a po-successor of a previous instruction.1847

. Fetch instruction: Satisfy the fetch request from the instruction cache.1848

◦ Decode instruction: Decode the instruction.1849

Cache maintenance instructions:1850

. Begin IC: Initiate instruction cache maintenance.1851

◦ Propagate IC to thread: Do instruction cache maintenance for a specific thread.1852

. Perform DC: Clean the abstract data cache for a specific cache line.1853

Instruction cache updates:1854

. Add to instruction cache for thread: Update instruction cache for thread with write.1855

Fetch request For some instruction i, any possible next fetch address loc can be requested, adding it to1856

the fetch queue, if:1857

1858 1. it has not already been requested, i.e., none of the immediate successors of i in the thread’s1859

instruction_tree are from loc; and1860

2. either i is not decoded, or, if it has been, loc is a possible next fetch address for i:1861

(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4);1862

(b) for a conditional branch, either the successor address or the branch target address2; or1863

(c) for a jump to an address which is not yet determined, any address (this is approximated in our1864

tool implementation, necessarily).1865

1Transitions which can safely be taken eagerly are marked with a circular bullet.
2In AArch64, all the conditional branch instructions have statically determined addresses.
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Action: add an unfetched entry for loc to the fetch queue for i’s thread.1866

Note that this allows speculation past conditional branches and calculated jumps.1867

Fetch instruction For any fetch-queue entry in the Unfetched state, its fetch can be satisfied from the1868

instruction cache, from write-slices ws, if:1869

1870 1. the write-slices (parts of writes) ws have the 4-byte footprint of the entry and can be constructed1871

from a write in the instruction cache.1872

Action: change the fetch-queue entry’s state to Fetched(ws).1873

Fetch instruction (unpredictable) For any fetch-queue entry in the Unfetched state, its fetch can be1874

satisfied from the instruction cache in a constrained-unpredictable way, if:1875

1876 1. there exists a set of sets of write-slices, each of which can be constructed in the same way as above;1877

2. that set contains multiple distinct values, and at least one of those values corresponds to an1878

instruction that is not B.cond or one of {B, BL, BRK, HVC, SMC, SVC, ISB, NOP}, and they are not all1879

B.cond instructions.1880

Action: record the fetch-queue entry as Constrained_unpredictable. When this has reached decode1881

and the corresponding point in the instruction tree becomes non-speculative, the entire thread state will1882

become Constrained_unpredictable.1883

Fetch instruction (B.cond) For any fetch-queue entry in the Unfetched state, its fetch can be satisfied1884

from the instruction cache, from write-slices ws and ws', with value ws'', if:1885

1886 1. there exists write-slices ws and ws', each of which can be constructed in the same way as above;1887

2. ws and ws' correspond to the encoding of two conditional branch instructions b and b';1888

3. the write-slices ws'' can be constructed as the combination of ws and ws' such that ws'' is the1889

encoding of the branch instruction with b’s condition and b'’s target.1890

Action: record the fetch-queue entry as Fetched(ws'').1891

Decode instruction If the last entry in the fetch queue is in Fetched(ws) state, it can be removed from1892

the queue, decoded, and begin execution, if all po-previous ISB instructions in the instruction tree have1893

finished.1894

Action:1895

1. Construct a new instruction instance i with the correct instruction kind and state, for i’s program1896

location, and add it to the instruction tree.1897

2. Discard all speculative entries in the instruction tree that are successors of i that are now known to1898

be incorrect speculations.1899

Note that this transition is a proxy for the point the instructions will be decoded, but that it is the1900

intra-instruction semantics that actually performs the decoding, with this transition merely starting the1901

execution of the pseudocode.1902

Begin IC An instruction i (with unique instruction instance ID iiid) in state Perform_IC(address,1903

state_cont) can begin performing the IC behaviour if all po-previous DSB ISH instructions have finished.1904

Action:1905

1906 1. For each thread tid' (including this one), add (iiid, address) to that thread’s ic_writes;1907

2. Set the state of i to Propagate_IC(address, state_cont).1908

Propagate IC to thread An instruction i (with ID iiid) in state Wait_IC(address, state_cont) can1909

do the relevant invalidate for any thread tid', modifying that thread’s instruction cache and fetch queue,1910

if there exists a pending entry (iiid, address) in that thread’s ic_writes.1911

Action:1912

1913 1. For any entry in the fetch queue for thread tid, whose program_loc is in the same minimum-size1914

instruction cache line as address, and is in Fetched(_) state, set it to the Unfetched state.1915
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2. For the instruction cache of thread tid, remove any write-slices which are in the same instruction1916

cache line of minimum size as address.1917

Complete IC An instruction i (with instruction instance ID iiid) in the state Wait_IC(address,1918

state_cont) can complete if there exists no entry for iiid in any thread’s ic_writes.1919

Action: set the state of i to Plain(state_cont).1920

Perform DC An instruction i in the state Perform_DC(address, state_cont) can complete if all1921

po-previous DMB ISH and DSB ISH instructions have finished.1922

Action:1923

1924 1. For the most recent write slices wss which are in the same data cache line of minimum size in the1925

abstract data cache as address, update the memory with wss.1926

2. Remove all those writes from the abstract data cache.1927

3. Set the state of i to Plain(state_cont).1928

Add to instruction cache for thread A thread tid’s instruction cache can be spontaneously updated1929

with a write w from the storage subsystem, if this write (as a single slice) does not already exist in the1930

instruction cache.1931

Action: Add this write (as a single slice) to thread tid’s instruction cache.1932

4.3.2 Updated transitions1933

For those transitions which we update the guard or action, sometimes the change is minor but the full1934

text of the transition is reproduced here, with the delta highlighted.1935

Commit barrier A barrier instruction i in state Plain(next_state) where next_state is1936

Barrier(barrier_kind, next_state′) can be committed if:1937

1938 1. all po-previous conditional branch instructions are finished;1939

2. all po-previous dmb sy barriers are finished;1940

3. [ ifetch ] all po-previous dsb sy barriers are finished; and1941

4. if i is an isb instruction, all po-previous memory access instructions have fully determined memory1942

footprints; and1943

5. if i is a dmb sy instruction, all po-previous memory access instructions and barriers are finished;;1944

and1945

6. [ ifetch ] if i is a dsb sy instruction, all po-previous memory access instructions, barriers, and cache1946

maintenance instructions have finished.1947

Note that this differs from the previous Flowing and POP models: there, barriers committed in program-1948

order and potentially re-ordered in the storage subsystem. Here the thread subsystem is weakened to1949

subsume the re-ordering of Flowing’s (and POP’s) storage subsystem.1950

Action:1951

1952 1. Update the state of i to Plain(next_state′);1953

2. [ ifetch ] If i is an isb instruction, for any instruction instance in this thread’s instruction tree, if that1954

instruction instance is in the Fetched state, set it to the Unfetched state.1955

Note that this corresponds to an ISB discarding any already-fetched entries from the fetch queue.1956

Satisfy memory read by forwarding from writes For a load instruction instance i in state Pend-1957

ing_mem_reads(read_cont), and a read request, r in i.mem_reads that has unsatisfied slices, the read1958

request can be partially or entirely satisfied by forwarding from unpropagated writes by store instruction1959

instances that are po-before i, if the read-request-condition predicate holds. This is if:1960

1961 1. [ ifetch ] all po-previous dsb sy instructions are finished; and1962

2. all po-previous dmb sy and isb instructions are finished.1963
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Let wss be the maximal set of unpropagated write slices from store instruction instances po-before i, that1964

overlap with the unsatisfied slices of r, and which are not superseded by intervening stores that are either1965

propagated or read from by this thread. That last condition requires, for each write slice ws in wss from1966

instruction i′:1967

. that there is no store instruction po-between i and i′ with a write overlapping ws, and1968

. that there is no load instruction po-between i and i′ that was satisfied from an overlapping write1969

slice from a different thread.1970

Action:1971

1972 1. Update r to indicate that it was satisfied by wss.1973

2. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every1974

non-finished instruction i′ that is a po-successor of i, and every read request r′ of i′ that was1975

satisfied from wss′, if there exists a write slice ws′ in wss′, and an overlapping write slice from a1976

different write in wss, and ws′ is not from an instruction that is a po-successor of i, or if i′ was a1977

data-cache maintenance by virtual address to a cache line that overlaps with any of the write slices1978

in wss′, restart i′ and its data-flow dependents.1979

Satisfy memory read from memory For a load instruction instance i in state Pending_mem_reads(1980

read_cont), and a read request r in i.mem_reads, that has unsatisfied slices, the read request can be satisfied1981

from memory, if:1982

1. the read-request-condition holds (see previous transition).1983

Action:1984

1985 let wss be the write slices from memory or the data cache network, whichever is newer, covering the1986

unsatisfied slices of r, and apply the action of Satisfy memory read by forwarding from writes.1987

Note that Satisfy memory read by forwarding from writes might leave some slices of the read request1988

unsatisfied. Satisfy memory read from memory, on the other hand, will always satisfy all the unsatisfied1989

slices of the read request.1990

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes(1991

write_cont), i can commit if:1992

1993 1. i has fully determined data (i.e., the register reads cannot change);1994

2. all po-previous conditional branch instructions are finished;1995

3. all po-previous dmb sy and isb instructions are finished;1996

4. [ ifetch ] all po-previous dsb sy instructions are finished;1997

5. all po-previous store instructionshave initiated and so have non-empty mem_writes;1998

6. all po-previous memory access instructions have a fully determined memory footprint; and1999

7. all po-previous load instructions have initiated and so have non-empty mem_reads.2000

Action: record i as committed.2001

Propagate memory write For an instruction i in state Pending_mem_writes(write_cont), and an2002

unpropagated write, w in i.mem_writes, the write can be propagated if:2003

2004 1. all memory writes of po-previous store instructions that overlap w have already propagated;2005

2. all read requests of po-previous load instructions that overlap with w have already been satisfied,2006

and the load instruction is non-restartable; and2007

3. all read requests satisfied by forwarding w are entirely satisfied.2008

Action:2009

2010 1. Restart any speculative instructions which have violated coherence as a result of this, i.e., for every2011

non-finished instruction i′ po-after i and every read request r′ of i′ that was satisfied from wss′, if2012

there exists a write slice ws′ in wss′ that overlaps with w and is not from w, and ws′ is not from a2013

po-successor of i, or if i′ is a data-cache maintenance instruction to a cache line whose footprint2014

overlaps with w, restart i′ and its data-flow dependents.2015

2. Record w as propagated.2016

3. Add w as a complete slice to the data cache network.2017
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Complete store instruction (when its writes are all propagated) A store instruction i in state Pend-2018

ing_mem_writes(write_cont), for which all the memory writes in i.mem_writes have been propagated,2019

can be completed.2020

Action:2021

2022 Update the state of i to Plain(write_cont(true)).2023

4.3.3 Auxiliary definition – cache line of minimum size2024

Cache maintenance operations work over entire cache lines, not individual addresses (§3.13). Each address2025

is associated with at least one cache line for the data (and unified) caches, and one for the instruction2026

caches. The data and instruction cache line of minimum size is the smallest possible cache line, for the2027

data or instruction caches respectively. The CTR_EL0.{DMinLine, IMinLine} register fields describe the2028

cache lines of minimum size for the data and instruction caches as log2 of the number of words in the2029

cache line.2030

Caches lines are always aligned on their minimum size, and we define a write slice overlapping with a2031

cache line if the footprint of the write slice overlaps with the 22+DMinLine (or 22+IMinLine for instruction2032

cache lines) byte slice starting from the beginning of the aligned cache line region.2033

4.3.4 Handling cache type strengthenings2034

When CTR_EL0.DIC is 1, and therefore the IC instruction is not required, the following transitions are2035

modified:2036

. Fetch instruction:2037

– Instead of satisfying from the instruction cache, the request must be satisfied from composing2038

combinations of writes from the abstract data cache buffer and flat memory.2039

– Fetch requests may be only be satisfied if all po-previous in-flight fetch requests are also satisfied2040

(no out-of-order satisfaction).2041

. Fetch instruction (unpredictable) (same modification as previous).2042

. Fetch instruction (B.cond) (same modification as previous).2043

. Begin IC:2044

– Replace action with that of Complete IC.2045

. Add to instruction cache for thread (removed).2046

Together these effectively remove the instruction cache from the model, forcing in-order fetching, and2047

satisfaction of fetch requests from memory (or the abstract data cache).2048

When CTR_EL0.IDC is 1, and therefore the DC instruction is not required, the following transitions are2049

modified:2050

. Propagate memory write:2051

– Update Action (3) to add w to the flat memory, instead of the abstract data cache buffer.2052

This effectively removes the abstract data cache buffer from the model, causing all writes to immediately2053

reach the system-wide Point of Unification on propagation.2054
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Chapter 52055

An axiomatic instruction fetch model2056

Based on the operational model, we develop an axiomatic semantics, as an extension of the Arm-A2057

axiomatic model [50, 7] described in Chapter 2. Throughout this chapter, references to the base Arm-A2058

axiomatic model refer to the one presented in that chapter.2059

The existing axiomatic model is given as a predicate on candidate executions, hypothetical complete2060

executions of the given program which satisfy some basic well-formedness conditions, defining the set of2061

valid executions to be those satisfying its axioms.2062

We now extend this model, both extending the base events and candidate relations, as well as modifying2063

the axioms over those events. We do this in a way that tries to retain the original model events, relations,2064

and axioms, as unchanged as is reasonable to do so.2065

5.1 Candidates for self-modifying programs2066

We add new events:2067

. instruction-fetch (IF) events for each executed instruction, representing the read of the 32-bit opcode2068

from memory.2069

. DC events, for the propagation of a DC CVAU instruction.2070

. IC events, for the propagation of a IC IVAU or IC IALLU instruction.2071

. DSB events for the data synchronization barrier instruction.2072

5.1.1 Program order2073

We keep program order (po) between the explicit memory events and barriers, just adding the cache2074

operations (DC,IC) and the new barrier (DSB) to this set. Specifically, we do not include any of the implicit2075

reads caused by instruction fetches in program-order.2076

By adding an instruction fetch event we now potentially have multiple events per instruction, such as in2077

mixed-size [16], but also events for instructions with no associated explicit events at all. To keep track of2078

the order of events within a single instruction, and between multiple instructions of the same thread, we2079

add two new relations:2080

. fetch-to-execute (fe) which relates the instruction fetch (IF) event with the intra-instruction-ordered-2081

later explicit memory access, barrier, or cache-op events of the instruction.2082

. fetch-program-order (fpo) relates each instruction-fetch (IF) event with all IF events of program-order2083

later instructions.2084

We make fpo the fundamental relation in candidates, instead of po, which we now derive:2085

po = fe−1; fpo+; fe

Figure 5.1 shows an example execution graph from a program with three instructions, a load, a move,2086

and, a store, with the fpo and fe relations highlighted.2087
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a: IF ldr x0,[x1] b: R x=1fe

c: IF mov x2,x0

fpo

d: IF str x2,[x3] e: W y=1

fpo

fe

po

Figure 5.1: fpo,fe example, showing how po is derived from fpo and fe.

5.1.2 Same-location2088

We extend loc to relate same-address reads, writes, instruction fetches and IC/DC events.2089

Cache maintenance operations which affect all addresses, for example the IC IALLU instruction, are related2090

to all memory and ifetch events.2091

Same-cache-line Many of the operations now operate not over a single location but an entire cache line.2092

To handle these operations, we add to the candidate relations a pair of same-cache-line relations, relating2093

reads, writes, fetches, DC, and IC events to addresses in the same cache line of minimum size.2094

Since the DC and IC instructions operate over different cache line sizes, we have separate same-dcache-line2095

and same-icache-line relations, to relate events in the same data or instruction cache line of minimum2096

size. Note that the same-icache-line and same-dcache-line relations also relate non-cache-op events.2097

We combine these relations to get a single scl (same cache line), between memory (including ifetch) events2098

and cache ops, where that memory event is to the same cache line, for that particular cache op:2099

1 scl0 = [DC]; same -dcache -line | [IC]; same -icache -line | [W]; loc2100

2 scl = scl0 | scl0−1
2101

5.1.3 Generalised Coherence2102

We add an acyclic, transitively closed, relation; wco. This wco relation is a generalised coherence-order, an2103

extension of co, with orderings for cache maintenance (DC and IC) events: it includes an ordering (e, e′) or2104

(e′, e) for any cache maintenance event e and scl event e′ if e′ is a write or another cache maintenance2105

event.2106

Since wco relates events in the same cache line, and is transitively closed, it may end up relating writes2107

that are not the same location. So [a:W];wco;[b:W] does not imply [a:W];co;[b:W] (although co does2108

imply wco).2109

This relation forms part of the witness, and abstractly captures the order that cache maintenance operations2110

and propagation of writes would happen in the operational model.2111

5.1.4 Dependencies2112

We extend the control dependency relation ctrl to include cache operations, but not instruction fetches.2113

This ensures that ctrl remains a subset of po, and that [a]; ctrl; [b]; po; [c] implies [a]; ctrl; [c].2114

We extend addr to include cache operations, so that (e, e′) ∈ addr when: e is a read and e′ is a cache2115

operation (DC or IC) whose address (cache line) is determined by the value read by e.2116

Since cache operations do not have any data associated with them, the data relation is left unchanged.2117
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1 include "cos.cat"
2 include "arm -common.cat" (*5.2.1*)3
4 (* might -be speculatively executed *)
5 let speculative =
6 ctrl
7 | addr; po8
9 (* Fetch -ordered -before *)

10 let fob =
11 [IF]; fpo; [IF] (*5.2.4*)
12 | [IF]; fe (*5.2.4*)
13 | [ISB]; fe−1 ; fpo (*5.2.5*)14
15 (* Cache -op -ordered -before *)
16 let cob = (*5.2.8*)
17 [R|W]; (po & scl); [DC]
18 | [DC]; (po & scl); [DC]19
20 (* DC synchronised required after a write *)
21 let dcsync =
22 if IDC
23 then id
24 else [W]; (wco & same -dcache -line); [DC]25
26 (* IC sync required after a write or DC *)
27 let icsync =
28 if DIC
29 then id
30 else (
31 [W]; (wco & same -icache -line); [IC]
32 | [DC]; wco; [IC]
33 )34
35 let cachesync =
36 dcsync; icsync37
38 (* instruction synchronised ordered before

*)
39 let isyncob = (*5.2.2*)
40 (ifr; cachesync) & scl−1

1 (* observed by *)
2 let obs = rfe | fr | wco | irf3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | speculative; [W]
8 | speculative; [ISB]
9 | (addr | data); rfi10

11 (* atomic -ordered -before *)
12 let aob =
13 rmw
14 | [range(rmw)]; rfi; [A|Q]15
16 (* barrier -ordered -before *)
17 let bob =
18 [R]; po; [dmbld]
19 | [W]; po; [dmbst]
20 | [dmbst]; po; [W]
21 | [dmbld]; po; [R|W]
22 | [L]; po; [A]
23 | [A|Q]; po; [R|W]
24 | [R|W]; po; [L]
25 | [F|C]; po; [dsbsy] (*5.2.6*)
26 | [dsb]; po (*5.2.6*)
27 | [dmbsy]; po; [DC] (*5.2.7*)28
29 (* Ordered -before *)
30 let ob1 =
31 obs | dob | aob | bob
32 | fob | cob | isyncob
33 let ob = ob1+34
35 (* Internal visibility

requirement *)
36 acyclic po-loc | fr | co | rf as

internal37
38 (* External visibility

requirement *)
39 irreflexive ob as external40
41 (* Atomic *)
42 empty rmw & (fre; coe) as atomic

Figure 5.2: Ifetch Axiomatic model

5.1.5 Reads-from2118

We add an instruction-read-from (irf) relation to the witness. It is the analogue of rf for instruction2119

fetches, relating writes to the IF event that fetches from it. We derive the analogous from-reads relation,2120

instruction-from-reads (ifr), from a fetch to all writes coherence-after the one it fetched from 1:2121

ifr = irf−1; co

5.2 Axioms and auxiliary relations2122

We now make the following changes and additions to the model. The full model is shown in Figure 5.2,2123

with comments referring to the items in the following explanation.2124

5.2.1 Arm ifetch events and relations2125

The arm-common.cat file contains all the Arm-specific event names and relations, as defined in Chapter 2,2126

and can be found in the full isla sources for these models in [88]. Figure 5.3 lists the events and relations2127

defined by that file; we elide the full isla-cat definition of these relations here.2128

1Note the use of co not wco.
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Events Relations

R Reads po,fpo program-order and fetch-program-order
IF Instruction-fetch id,loc identity and same-location
W Writes fe fetch-to-execute
M Explicit memory event (R|W) po-loc program-order same-location (po & loc)
A Read-acquire addr,ctrl,data dependencies
L Write-release wco,irf,rf Witness relations
Q Weak read-acquire rfe,rfi rf-external (rf&ext), rf-internal (rf&~ext)
F All fences (barriers) coe,coi co-external, co-internal
C All cache-ops (DC | IC) co coherence-order ([W];wco&loc;[W])

DC Data cache clean ifr instruction-from-reads (irf−1;co)
IC Instruction cache invalidate rmw read-modify-write
ISB Instruction barrier

dmbXY Memory Barrier
dsbXY DSB Barrier

scl same-cache-line
same-dcache-line,same-icache-line same data/instruction cache line

Variants
DIC,IDC Boolean flags for CTR_EL0.{DIC,IDC} identity

Figure 5.3: Arm ifetch events and relations. New and updated are highlighted in blue.

5.2.2 Cache maintenance2129

We derive the relation isyncob (instruction-synchronisation-ordered-before), relating some instruction fetch2130

f , in the most general case, to an IC which completes a cache synchronisation sequence (not necessarily2131

on a single thread) which affects the location fetched. Consequently, any instruction fetch must have2132

been satisfied before the completion of any cache maintenance that it is isyncob-ordered before. Precisely,2133

f isyncob i iff f reads-from a write w0 which was coherence-before some other write w, and w is wco-before2134

by a DC event d to some same-dcache-line address Adc, which is in turn was wco-before by an IC event2135

i to some address Aic which was same-icache-line as the original f . This general isyncob shape is2136

shown in Figure 5.4. In operational model terms, this captures traces that propagated w to memory, then2137

subsequently performed a same-cache-line DC, and then began an IC (and eagerly propagated the IC to all2138

threads). In any state after this sequence it is guaranteed that w, or a coherence-newer same-address2139

write, is in the instruction cache of all threads: performing the DC has cleared the abstract data cache2140

of writes to x, and the subsequent IC has removed old instructions for location x from the instruction2141

caches, so that any subsequent updates to the instruction caches have been with w, or co-newer writes.2142

Therefore, the fetch f must have happened before the IC had completed, otherwise it would have been2143

required to have read from w or something coherence after it.2144

w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

i: IC Aic

f: IF f

co

wco & scl

wco

irf

scl
isyncob

Figure 5.4: General isyncob shape.
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This corresponds to the operational model in the following way: because w0 was coherence-before w, w02145

was propagated before w was propagated in the trace, and because w was wco-earlier than the cache2146

synchronisation sequence, w was propagated before any of the cache maintenance transitions in the trace.2147

If the fetch transition corresponding to f were to satisfy its fetch in a subsequent state, it would be2148

guaranteed that w (or a coherence-newer write) would be in the instruction cache, and i would not be2149

able to fetch from w. Hence, f must have happened before the IC completing the cache synchronisation2150

sequence.2151

Cache type strengthening If the IDC or DIC variants are set, then either the DC or IC instruction is not2152

required. This affects the isyncob in the following way:2153

. If DIC, then the IC instruction is not required, and therefore f must be ordered before the propagation2154

of the DC, see Figure 5.5 (top left).2155

. If IDC, then the DC instruction is not required, and therefore f must be ordered before the propagation2156

of the IC, without the need of an intervening DC, see Figure 5.5 (top right).2157

. If both, then f must be ordered before any coherence-later same-location write than w0, as in2158

Figure 5.5 (below).2159

w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

f: IF f

co

wco & scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

i: IC Aic

f: IF f

co

wco scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

f: IF f

co

irf

isyncob

Figure 5.5: Modified isyncob shape, for variants DIC (above left), IDC (above right), and both (below).

To achieve this, the isyncob relation is derived from the composition of two smaller relations:2160

. dcsync, which broadly captures the ‘data cache’ requirements, either from a write to a same cache2161

line DC if not IDC, otherwise, from a write to itself, capturing that with IDC that a write is past the2162

PoU the moment it has propagated.2163

. icsync, which captures the ‘instruction cache’ requirements, either from a DC (or same-icache-line2164

write), to a wco-later IC, or, if DIC, back to the DC or write itself.2165

The sequential composition of these two relations (called cachesync) captures the synchronisation required2166

from a write to the point sufficient cache maintenance has been performed to ensure a same-cache-line2167

instruction fetch would see it. We then finally define isyncob between any instruction fetch, and any2168

cache maintenance operation which is cachesync-after any write coherence-after the one the fetch read2169

from, that is, a write which has had sufficient cache synchronisation to have made earlier writes invisible2170

to the fetch machinery.2171

5.2.3 Coherence2172

The original model includes co in obs; we instead include the relation wco. Including wco in ordered-before2173

corresponds to the intuition that wco records the ordering of the Propagate memory write, Begin IC (and2174

eagerly taking all Propagate IC to thread transitions), and Perform DC transitions in the matching trace.2175
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We also include irf in obs: informally, for an instruction to be fetched from a write, the write has to have2176

been done before. Correspondingly, in the operational model, a write has to have been propagated before2177

it can satisfy fetches in the storage subsystem.2178

5.2.4 Program order2179

We add a derived relation fetch-ordered-before (fob), which is included in ordered-before.2180

The fob relation includes fpo, informally requiring fetches to be ordered according to their order in the2181

control-flow unfolding of the execution. Correspondingly in the operational model: fetch requests for2182

instructions within the same thread appear to be satisfied in program order.2183

We also include the fe fetch-to-execute relation in fob, capturing the idea that an instruction must2184

be fetched before it can execute. In the operational model, a read can only satisfy/a write can only2185

propagate/a barrier can only commit/etc. after its instruction’s fetch is satisfied.2186

5.2.5 Instruction synchronisation (ISB)2187

We include the edge [ISB];fe−1;fpo in fetch-ordered-before (fob), ordering the fetch of any instruction2188

program-order-succeeding an ISB instruction after the ISB event.2189

Operationally, a decoded ISB instruction prevents any program-order-later instructions from being removed2190

from the fetch queue and decoded, and when an ISB is executed, it returns all entries in this thread’s2191

fetch queue (so any program-order-later instructions) to the Unfetched state, forcing the satisfaction of2192

the instruction fetch for those instructions to happen after the ISB completes.2193

The rule [ISB];po;[R] in dob is no longer required, as the combination of rules in fob (in particular2194

[ISB];fe−1;fpo and [IF];fe) subsume it.2195

5.2.6 Data synchronisation (DSB)2196

For DSB ISH instructions we include po to and from DSB in the standard barrier-ordered-before relation2197

(bob).2198

We do this in three ways: (1) by extending the barrier hierarchy relations dmbst and dmbld to cover2199

the memory barrier effects of a DSB; (2) by adding [F|C];po;[dsbsy] to capture DSBs waiting for the2200

completion of fences and cache-ops, when using DSBs affecting both reads and writes; and (3) by adding2201

[dsb];po to capture the remaining completion fence properties that program-order later events cannot go2202

ahead until the DSB is complete.2203

Importantly, DSB events do not order IF (ifetch) events in either direction.2204

5.2.7 Data cache maintenance (DC) is ordered like a read2205

Barrier-ordered-before also includes the relation [dmbsy];po;[DC], ordering DC events after program-order-2206

preceding DMB SYs. Correspondingly, in the operational model, a DC can only be performed when all2207

preceding DMB SY are finished.2208

5.2.8 Cache maintenance operations and cache lines2209

We include the relation cache-op-ordered-before (cob) in ob. This relation contains the edge [R|W];(po&2210

scl);[DC], ordering DC events after program-order-preceding same-dcache-line read and write events.2211

Operationally, a DC will be restarted by a program-order-preceding same-cache-line load if it was performed2212

before the load was satisfied, and by a program-order-preceding same-cache-line store if it was performed2213

before the store propagated its write.2214

Moreover, cob contains the edge [DC];(po&scl);[DC], ordering two same-cache-line, same-thread DC events2215

in program-order. In the operational model, a DC can only be performed when program-order-preceding2216

same-cache-line DC instructions have been performed.2217
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5.2.9 Constrained Unpredictable2218

We do not give precise semantics to programs that exhibit constrained unpredictable behaviour. Instead,2219

we add a mechanism to flag such programs.2220

1 (* include base ifetch model *)
2 include "aarch64_ifetch.cat"3
4 (* could -fetch -from *)
5 let cff =
6 ([W]; loc; [IF])
7 \ ob−1

8 \ (isyncob−1 ; ob)9
10 (* cmodx(opcode) is True
11 * if it is in the list of

concurrently modifiable
instructions

12 *)
13 define cmodx(v: bits (32)): bool =
14 ...

1 define cff_bad(
2 ev1: Event ,
3 ev2: Event ,
4 ev3: Event
5 ): bool =
6 W(ev1) & IF(ev2) & W(ev3)
7 & ~(ev1 == ev3)
8 & cff(ev1 , ev2) & cff(ev3 , ev2

)
9 & (~cmodx(ev1.value)

10 |~cmodx(ev3.value))11
12 (* assert CU *)
13 assert exists
14 ev1: Event ,
15 ev2: Event ,
16 ev3: Event
17 =>
18 cff_bad(ev1 , ev2 , ev3) :named

CU

Figure 5.6: Constrained unpredictable check model (ifetch).

We do this through the definition of an auxiliary could-fetch-from (cff) relation, capturing, for each fetch2221

i, the writes it could have fetched from (including the one it did fetch from), as the set of same-address2222

writes that are not ordered-after i, and which are not overwritten by coherence-newer writes that were2223

followed by a cachesync sequence ordered-before i. Operationally, this captures writes that could have2224

been in the instruction cache of i’s thread: writes that did not happen after i in the trace, and excluding2225

writes cleared by earlier cache synchronisation sequences.2226

We then add an axiom, asserting the existence of a bad pair of writes (w1, w2) which i could have fetched2227

from, where at least one of w1 and w2 are not in the list of concurrently-modifiable instructions (as2228

described in §3.2). We identify these (i, w1, w2) triples with a ternary relation (cff_bad(w1,i,w2)), whose2229

non-emptiness implies the existence of such a triple. This gives us an extended ‘checker’ model, where2230

executions which are allowed in the checker model, are also allowed in the original ifetch model, but also2231

exhibit constrained unpredictable behaviour, and so the test should be flagged and any results discarded.2232

2233
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Chapter 62234

Validating the ifetch models2235

We gain confidence in the models presented in the previous chapters by validating those models against2236

the Arm architectural intent, against each other, and against a selection of real hardware.2237

6.1 The models correctly captures the architectural intent2238

This property is an important one, but not one that can be objectively demonstrated.2239

We ensure that the models do reflect the architecture, to the best of our understanding, by engaging in2240

detailed and robust discussions with the Arm chief architect, as well as microarchitects involved in the2241

design of individual processors.2242

This process is an iterative one, where we produce litmus tests, discuss whether they are allowed or2243

forbidden (and by which mechanisms), build models that capture those described mechanisms, and produce2244

more litmus tests that show edge cases or interactions. This process is not necessarily terminating, but it2245

usually results in reaching a natural fixed point, for a core set of architectural features.2246

The structure of the operational model presented in Chapter 4 is based on our discussions with Arm;2247

it carefully includes structures which capture the behaviour they described, and has limits where the2248

architects decided no reasonable hardware could explore.2249

The axiomatic model, presented in Chapter 5, is also a product of the discussions with Arm.2250

6.2 Correspondence between the models2251

We experimentally test the correspondence between the operational and axiomatic models. We do this by2252

making executable-as-a-test-oracle models, allowing us to run a suite of litmus tests over both models,2253

containing a mix of hand-written and autogenerated tests, and check that both models give the same2254

result in all cases.2255

To automatically generate families of interesting instruction-fetch tests, Luc Maranget (a co-author of2256

this work) extended the ‘diy’ test generation tool [67] to support instruction-fetch reads-from (irf) and2257

instruction-fetch from-reads (ifr) edges, in both internal (same-thread) and external (inter-thread) forms,2258

and the cachesync edge. We used this to generate 1456 tests involving those edges together with po,2259

rf, fr, addr, (but no data), ctrl, ctrlisb, and dmb.sy. diy does not currently support bare DC or IC2260

instructions, locations which are both fetched and read from, nor repeated fetches from the same location.2261

6.2.1 Making the operational model executable as a test oracle2262

To make the operational model presented in Chapter 4 executable, that is, capable of computing the set of2263

all allowed executions of a litmus test, we must be able to exhaustively enumerate all possible traces. For2264

the model as presented, doing this naively is infeasible: for each instruction it is theoretically possible to2265

speculate any of the 264 addresses as the address of a potential successor instruction, and the interleaving2266

of the new fetch transitions with others leads to an additional combinatorial explosion.2267
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We address these with two new optimisations. First, we extend the fixed-point optimisation in RMEM,2268

which incrementally builds the set of possible branch targets by repeated exhaustive searches [7], to track2269

not only the indirect branch instructions but the successors of every program location. Additionally, we2270

track during a test which locations were both fetched and modified during the test, and eagerly take fetch2271

and decode transitions for all other locations. As before, the search then runs until the set of branch2272

targets and the set of modified program-locations reaches a fixed point.2273

Confluence2274

We also take some of the transitions eagerly to reduce the search space, in cases where this cannot remove2275

behaviour: ‘Propagate IC to thread’, ‘Complete IC’, ‘Fetch request’, and ‘Add to instruction cache for2276

thread’.2277

Eagerly taking ‘Add to instruction cache for thread’ is ok, as this always increases the visible behaviours:2278

adding a write to an instruction cache does not hide writes that were visible before. ‘Complete IC’ and2279

‘Fetch request’ are also safe to take eagerly, as these advance thread-local state in a way that makes2280

further transitions available without preventing any others.2281

Taking ‘Propagate IC to thread’ eagerly is more subtle; this transition updates the state of another thread2282

and potentially removes transitions it had available to it. If we take an arbitrary trace, containing a2283

propagation of an IC to some thread, then it is safe (by the aforementioned logic) to immediately fill2284

that icache back in. If we have a trace with two IC propagations, to separate threads, from the same2285

instruction, with propagations of writes and DCs in between, then we know that the second ‘Propagate IC2286

to thread’ must have been an available transition when taking those write and DC propagation transitions,2287

and therefore there must have been another trace where those write and DC propagations happened after2288

the second IC propagation, and where the icache is filled immediately after each of those writes.2289

. . .2290

Propagate IC to X on Thread 12291

Write to X2292

Propagate DC to X2293

Write to X2294

Propagate IC to X on Thread 22295

. . .2296

⇒2297

. . .2298

Propagate IC to X on Thread 12299

Propagate IC to X on Thread 22300

Write to X2301

Eagerly fill icache2302

Propagate DC to X2303

Write to X2304

Eagerly fill icache2305

. . .2306

This new trace groups the propagation of the instruction cache invalidations together as early as possible,2307

maximising the visible behaviour. Therefore, it is safe to always perform all the icache invalidates at once,2308

atomically.2309

6.2.2 Making the axiomatic model executable as a test oracle2310

We give the axiomatic model in the isla-cat memory modelling language (see §2.4.2).2311

As isla-axiomatic already executes a fetch-decode-execute loop, defined by the Arm intra-instruction2312

semantics, the changes required of the ISA definition are only minor; we need only create outcomes for2313

the fetch memory accesses, and pass them as events to the axiomatic model.2314

This is sufficient for making the test executable, but exhaustive enumeration becomes intractable, as2315

the fetch events in the candidates should, in theory, be totally unconstrained. To support exhaustive2316

enumeration we must reduce the set of candidates we are required to check. Even permitting the fetch2317

6.2. CORRESPONDENCE BETWEEN THE MODELS 80



part of the loop to be entirely symbolic (in location and opcode) would lead to far too many candidate2318

executions. Even if the vast majority of them would be dismissed quickly, with trivially unsatisfiable irf2319

constraints they would still take time to generate and discharge. To avoid this, we instead require the user2320

to provide the possible set of program-counter values, and the sets of opcodes those locations’ values can2321

be. This ensures that while generating candidates we only need to generate those that actually contain2322

the control-flow and instruction opcodes that are interesting for the test.2323

Figure 6.1 contains the isla-axiomatic-compatible sources for the earlier SM.F+ic test (Figure 3.19, p.54)2324

as an example. Lines 7-131 define the self-modifiable locations used in the test (for this test that is only2325

label ‘f:’), and the fully-concrete opcodes those locations may be; recall that all isla traces are a single2326

control-flow path with fully concrete opcodes for each instruction.2327

6.3 Equivalence of the models2328

Ideally, one would have a formal proof that the operational and axiomatic models coincide, or at least a2329

detailed proof of some properties we expect the operational model to have: that the model is equivalent2330

to one that fetches in-order, that the transitions we take eagerly are safe to do so, that the fixed-point2331

calculation is not unsound for the model, and so on. However, this represents a large undertaking, as any2332

detailed proof above the actual definitions of the microarchitectural-flavoured operational semantics have2333

historically been very resource intensive, up to being the subject of entire Ph.D. theses [6]. Therefore, we2334

— sadly — defer such formal proof to future work.2335

In lieu of such formal proof, we compare the models empirically. First, to check for regressions, we ran2336

the operational model on all the 8950 non-mixed-size tests used for developing the original Flat model2337

(without instruction fetch or cache maintenance). The results are identical, except for 23 tests which did2338

not terminate within two hours. We used a 160 hardware-thread POWER9 server to run the tests.2339

We have also run the axiomatic model on the 90 basic two-thread tests that do not use Arm release/acquire2340

instructions (not supported by the ISA semantics used for this); the results are all as they should be. This2341

takes around 30 minutes on 8 cores of a Xeon Gold 6140.2342

We experimentally test the equivalence of the operational and axiomatic models on the 52 hand-written2343

and the 1456 diy-generated tests, checking that the models give the same sets of allowed final states.2344

6.4 Validating against hardware2345

To run instruction-fetch tests on hardware, we extended the litmus tool [66]. The most significant extension2346

consists in handling code that can be modified, and thus has to be restored between experiments. To that2347

end, we make litmus execute copies of the code, which reside in mmap’d memory with execute permission2348

granted. Copies are made from ‘master’ copies, which are, in effect, C functions whose contents consist2349

of gcc extended inline assembly. Of course, such code has to be position independent, and explicit code2350

addresses in test initialisation sections (such as in 0:X1=l in the test of §3.3) are specific to each copy. All2351

the cache handling instructions used in our experiments are all allowed to execute at exception level 02352

(user-mode), and therefore no additional privilege is needed to run the tests.2353

6.4.1 Results from hardware2354

We ran the hand-written instruction-fetch litmus tests on various hardware implementations. A short2355

table of the results can be found in Fig 6.2.2356

1Note the use of the array-of-tables feature of TOML here, which allows the user to specify multiple [[self_modify]]
blocks if they wish [https://toml.io/en/v1.0.0#array-of-tables].
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1 arch = "AArch64"
2 name = "SM.F+ic"
3 hash = "de102a920be43ce10482e59700a7c976"
4 stable = "X10"
5 symbolic = ["x"]
6
7 [[ self_modify ]]
8 address = "f:"
9 bytes = 4

10 values = [
11 "0x14000001",
12 "0x14000003"
13 ]
14
15 [thread .0]
16 init = { X3 = "x", X4 = "f:", X0 = "0x14000001" }
17 code = """
18         STR W0 ,[X4]
19         LDR W2 ,[X3]
20         CBZ W2 , l
21 l:
22         ISB
23         BL f
24         MOV W1 ,W10
25         B Lout
26 f:
27         B l0
28 l1:
29         MOV W10 ,#2
30         RET
31 l0:
32         MOV W10 ,#1
33         RET
34 Lout:
35 """
36
37 [thread .1]
38 init = { X3 = "x", X2 = "1", X1 = "f:" }
39 code = """
40         BLR X1
41         MOV W0 ,W10
42         IC IVAU , X1
43         DSB SY
44         STR W2 ,[X3]
45 """
46
47 [final]
48 expect = "sat"
49 assertion = "1:X0 = 2 & 0:X2 = 1 & 0:X1 = 1"

Figure 6.1: Test SM.F+ic isla-axiomatic compatible version.
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Test Arch. Intent H/W Obs.
CoFF allow 42.6k/13G
CoFR forbid 0/13G
CoRF+ctrl-isb allow 3.02G/13G
SM allow 25.8G/25.9G
SM+cachesync-isb forbid 0/25.9G
MP.RF+dmb+ctrl-isb allow 480M/6.36G
MP.RF+cachesync+ctrl-isb forbid 0/13G
MP.FR+dmb+fpo-fe forbid 0/13G
MP.FF+dmb+fpo allow 447M/13G
MP.FF+cachesync+fpo forbid F2.3k/13G
ISA2.F+dc+ic+ctrl-isb forbid 0/6.98G
SM.F+ic allow U0/12.9G
FOW allow U0/7G
MP.RF+dc+ctrl-isb-isb allow U0/12.94G
MP.R.RF+addr-cachesync+dmb+ctrl-isb forbid 0/6.97G
MP.RF+dmb+addr-cachesync allow U0/6.34G

Figure 6.2: Instruction-fetch hardware results
The hardware observations are the sum of testing seven devices: a Snapdragon 810 (4x Arm A53 + 4x Arm
A57 cores), Tegra K1 (2x NVIDIA Denver cores), Snapdragon 820 (4x Qualcomm Kryo cores), Exynos
8895 (4x Arm A53 + 4x Samsung Mongoose 2 cores), Snapdragon 425 (4x Arm A53), Amlogic 905 (4x
Arm A53 cores), and Amlogic 922X (4x Arm A73 + 2x Arm A53 cores). U: allowed but unobserved. F:
forbidden but observed.

Our testing revealed a hardware bug in a Snapdragon 820 (4 Qualcomm Kryo cores): MP.RF+cachesync+ctrl-2357

isb test (Figure 3.11, p.50) exhibited an illegal outcome in 84/1.1G runs (not shown in the table), which2358

we have reported. We have also seen an anomaly for MP.FF+cachesync+fpo (Figure 3.13, p.51), on2359

an Arm-designed core, although this core had (in previous work) been discovered to suffer a read/read2360

coherence violation. Apart from these, the hardware observations are all allowed by our models. As usual,2361

specific hardware implementations are sometimes stronger, and there are a number of tests which we did2362

not observe on any hardware despite the architecture allowing them.2363

Finally, we ran the 1456 new instruction-fetch diy tests on the same range of hardware, for around 10M2364

iterations each. The models are sound with respect to the observed hardware behaviour, except for that2365

same Snapdragon 820 device with known coherence violations.2366

We therefore draw high confidence that the presented models correctly capture the architectural intent,2367

and are consistent with existing hardware. There were no existing hardware with either IDC or DIC enabled2368

at the time of the work, and so, while we believe the models consistent with the architectural intent, we2369

were unable to assess whether the models are consistent with hardware in those configurations. However,2370

overall we believe the models are strong enough to forbid the key behaviours guaranteed by hardware,2371

and relied on by software, while still being loose enough to be consistent with expected potential future2372

designs.2373
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Part II2374

Virtual memory2375
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Chapter 72376

Pagetables and the VMSA2377

This part is based, in part, on: Chapter D5 of the Arm Architecture Reference Manual DDI 0487H.a; and,2378

Relaxed virtual memory in Armv8-A [34] by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod,2379

Christopher Pulte, Richard Grisenthwaite, and Peter Sewell, published in the proceedings of the 31st2380

European Symposium on Programming (ESOP, 2022).2381

7.1 Introduction2382

Modern computers heavily rely on virtual memory to enforce security boundaries: hypervisors and2383

operating systems manage mappings from virtual to physical addresses in order to restrict the access2384

individual processes and guest operating systems have to the underlying physical memory, and to memory-2385

mapped devices. With the endemic use of memory-unsafe languages, even for critical infrastructure,2386

understanding and verifying the programs which manage virtual memory mappings is more vital than2387

ever, driving current interests in hypervisors. The virtual machines those hypervisors enable are the key2388

pieces of software which have become solely responsible for implementing such critical security properties.2389

The following chapters focus on these aspects of the architecture, on virtual memory and virtualisation2390

and the software they enable, with the aim of giving a precise formal semantics for the purpose of verifying2391

real systems software which use those features.2392

I first give a description of the sequential behaviour of Arm’s virtual memory (this chapter); then describe2393

the relaxed behaviours and any open questions about Arm’s virtual memory (Chapter 8); give our precise2394

axiomatic semantics that capture these behaviours (Chapter 9); and, finally, give an overview of the2395

tooling and validation of the presented models (Chapter 10).2396

This chapter continues with a brief, but necessary, overview of Arm’s virtual memory systems architecture,2397

in enough detail to understand the subsequent chapters; it is not presenting any new contributions or2398

novel research.2399

7.2 Virtual Memory2400

Arm’s virtual memory system architecture (VMSA) defines the virtual memory and virtualisation features2401

of the Arm architecture. Its structure is described, in detail, in Chapter D5 of the Arm Architecture2402

Reference Manual [12].2403

Conventionally, memory is imagined as a flat array of bytes, indexed by physical addresses. Larger2404

‘application’ class processors rely heavily on virtual memory: interposing one or more layers of indirection2405

between the accesses of a program (using virtual addresses) and the ‘true’ physical addresses of memory.2406

This indirection allows systems running on those processors to:2407

1. partition the physical resources between different programs, giving access to only those resources2408

that each program needs, and protecting those resources from other programs that do not need to2409

access them; and2410
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2. indirect accesses through specific ranges of addresses with convenient numeric values or different2411

permissions e.g. to obfuscate the true allocation of resources or to split permissions of a resource for2412

compartmentalisation; and2413

3. update those indirections at runtime to add, remove, or otherwise modify, the mappings to physical2414

memory, to support techniques such as copy-on-write and paging.2415

Typically, operating systems split individual programs into distinct processes, where each process is2416

associated with its own virtual to physical mapping. Such a mapping corresponds to a partial function,2417

from that process’ own (virtual) addresses to the real hardware physical addresses, with some permissions:2418

translate : VirtualAddress ⇀ PhysicalAddress× 2{Read,Write,Execute}

Note that this is a simplification. See The Arm translation table walk (§7.4) for a more detailed description2419

of the access permissions, memory types, and other attributes.2420

Typically operating systems create one such mapping for each process, thereby partitioning the physical2421

memory into distinct subsets of physical addresses (which become the range of the translate function),2422

and would allocate some convenient numeric values to be the virtual addresses the process interacts with2423

(which become the domain of the translate function). Having this separation allows the processes to be2424

given conveniently aligned contiguous chunks of virtual address space even if the underlying physical2425

resources are highly fragmented, or, in the case of paging, perhaps not present at all. Additionally,2426

operating systems can provide many processes with mappings to the same physical resource (such as2427

memory-mapped devices) and control which processes have access to such devices at any point in time.2428

P0

0

P1

0

RAM

0

Figure 7.1: Example virtual and physical address spaces for two processes.

The mapping defines an address space: the range of virtual addresses a program has access to, and what2429

they correspond to. The diagram in Figure 7.1 illustrates an example for two processes. The diagram2430

represents the mappings:2431

. For P0:2432

– virtual addresses in pages 1, and 3 are unmapped.2433

– virtual addresses in pages 2 and 4 map to physical addresses in physical page 8.2434

– virtual addresses in page 0 map to physical addresses in physical page 5.2435

. For P1:2436

– virtual addresses in pages 0 and 4 are unmapped.2437

– virtual addresses in page 1 map to physical addresses in physical page 1.2438

– virtual addresses in page 2 map to physical addresses in physical page 2.2439

– virtual addresses in page 3 map to physical addresses in physical page 4.2440

For example, if process P0 reads or writes the address 0x2305 it will actually access physical location2441

0x8305, since virtual page 2 was mapped to physical page 8 in P0’s address space, and the offset within a2442

page is preserved.2443

Each address space corresponds to a distinct translation function. These mappings may be: non-injective2444

(contain aliasing of multiple virtual addresses to the same physical address); partial (where some virtual2445

addresses do not map to a physical address at all); or overlapping with other processes’ address spaces, in2446

either the domain or the range or both.2447
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level 0 …

ttbr

level 1 … … …

level 2 … …

level 3 …

1GiB block 1GiB block

2MiB block

4KiB page

Figure 7.2: Schematic view of an example tree of translation tables. There are seven individual translation
tables, over four levels, which defines an address space that maps four separate spans of virtual addresses
to (unspecified) physical addresses. In this example, the 2 megabyte block at level 2 encodes the mapping
– the output address, permissions, and memory type – for addresses in the range 0x8140200000 up to
0x81403fffff inclusive, which is determined from the (highlighted) path in the tree: it is the second level 2
(2M span) entry, for the 6th level 1 (1G span) entry, for the second level 0 (512G span) entry, from the
root.

Large application-class processor architectures often provide hardware support in the form of the memory2448

management unit (MMU), which, once configured by software, will perform the translation from virtual to2449

physical addresses and any checking of permissions automatically. Software then needs only manage a set2450

of translation functions, in whichever encoding the architecture prescribes (see §7.3 for the encoding used2451

by Arm), switch between translation functions on a context switch, and handle any processor exceptions2452

generated by the MMU.2453

7.3 Arm Translation Tables2454

On Arm, software can configure the MMU through the creation and modification of sets of translation2455

tables (also referred to as page tables).2456

The translation tables form an in-memory tree data structure which encode a translation function. Software2457

creates and maintains these trees, and controls which tree the MMU uses at runtime. On each memory2458

access, the hardware reads from this tree structure to perform the translation, or from one of the various2459

caching structures (described in §7.7).2460

A pointer to the root of the tree is stored in a TTBR (“Translation table base register”), which is one of a2461

family of related registers (see §7.6) that determines which tree of translation tables is currently in use by2462

that processor.2463

Each node in the tree is a page-aligned chunk of memory whose interpretation is an array of 64-bit entries,2464

where each entry controls the mapping for a particular span of the domain, defining whether the virtual2465

addresses in that span are defined for that process, and, if so, what the output physical address is and2466

what permissions the process has for that memory. The root table controls the entire address space. The2467

tree may recursively split spans into sub-trees. The width of the span mapped by each entry depends on2468

its ‘level’, which increases with depth. Typically, the root is at level 0, and the tree has maximum depth2469

of 4 (up to level 3) with a page size of 4 KiB. Thus, each pagetable contains 512 entries, with entries2470

in the root table each corresponding to a 512 GiB span. Note that Arm is highly configurable and this2471

merely represents one common configuration.2472

Figure 7.2 shows a view of an example set of translation tables, with four mapped regions defined in a tree2473

of seven tables. Each rectangular array represents one contiguous page-aligned block of memory, made2474

up of 512 64-bit entries. The base register points to the start of the level 0 table (the ‘root’ table). The2475

second, seventh, and eleventh, indexes in the root table contain pointers to subsequent (level 1) tables,2476

and so on. The exact format of these entries is described in the next section (see §7.3.1).2477
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7.3.1 Translation table format2478

Arm’s virtual memory system architecture is highly configurable. Writing to the SCTLR (“System control2479

register”) and TCR (“Translation control register”) system registers allow the programmer to configure the2480

processor with a variety of options. To give just a flavour of this configurability, some of those options2481

include: the size of virtual addresses; the number of levels in the tree; the starting level; the size of a single2482

page (or in Arm terminology, the size of the translation granule); the number of address space identifiers2483

(ASIDs and VMIDs, used for indexing the caches, see §7.7); alignment requirements; memory attributes2484

for hardware walks; enabling hardware management of access flags and dirty bits; write-execute-never2485

permissions; and so on. To simplify things, in this work, we consider just one common configuration, the2486

one currently used by the Linux kernel: a tree of translation tables with maximum depth 4, with 4KiB2487

pages with 48-bit addresses, unless explicitly stated otherwise.2488

In this configuration, each node is a table of 512 64-bit entries, bound as one 4096-byte block of memory.2489

Each of those entries can be one of:2490

1. An invalid entry, which indicates that this slice of the domain is unmapped.2491

2. A table entry, pointing to a next-level table (a child tree) which recursively maps this slice of the2492

domain.2493

3. A page (last-level) or block (non-last-level) entry which defines a single fixed-size mapping for this2494

slice of the domain.2495

Invalid entries An invalid entry is defined by the least-significant bit of the entry being 0. The top 632496

bits of an invalid entry are ignored by hardware, and software is free to use those bits to store metadata.2497

Invalid entries may exist at any level in the tree.2498

0

0
63 1

ignored
2499

Block or page entries Block and page entries are similar to each other: both create a mapping for2500

a contiguous slice of the domain mapped by the entry, encoded as an output address (OA) with some2501

metadata (including access permissions, memory type, and some software-defined bits).2502

The OA is aligned to the size of the slice of the domain being mapped. For page entries, the OA is aligned2503

on a page boundary. A block entry’s OA at level 2 would be 2MiB aligned, and a block entry’s OA at2504

level 1 would be GiB aligned. This corresponds to the hardware reserving bits[n:12] of the entry to be2505

0 depending on how deep the entry is: at level 1, n==30; at level 2, n==21; and at level 3, n==12.2506

Block entries can exist at levels 1 and 2. Page entries can only exist at level 3.2507

For block entries, bit[1] is 0, for page entries, bit[1] is 1.2508

Metadata (access permissions, shareability, memory type) are encoded into the attrs bits, described more2509

in §7.3.2.2510

0

1
1
p

11 2

attrs
n-1 12

ignored
47 n

output address
48

0
49

0
63 50

attrs
2511

Table entries A table entry contains a page-aligned pointer to a child table, but can also contain2512

similar metadata as the block or page entry, including access permissions (read/write/execute), which are2513

combined with any permissions from the child table.2514

Table entries are allowed only at levels 0–2.2515

0

1
1

1
11 2

Res01
47 12

table pointer
48

0
49

0
63 50

attrs
2516

1The Arm architecture requires these bits are 0 and are reserved for future use.
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7.3.2 Attributes2517

The encoding of the attributes are split into upper and lower attribute fields:2518

1 011 2

Lower attrs
49 12

…
63 50

Upper attrs
2519

These fields can be further split (see the Arm ARM D8.3.2 for a more comprehensive breakdown) [72]:2520

5051

DBM

52

Contiguous

5354

XN

58 55

Reserved

62 5963
Upper attributes (block/page)

014 2

AttrIndx

57 6

AP[2:1]

9 8

SH[1:0]

10

AF

16 11
Lower attributes (block/page)

58 51

Ignored
5960

XNTable

6261

APTable

63
Upper attributes (table)

0116 2

ignored

Lower attributes (table)

Figure 7.3: Upper and lower attribute encodings for Stage 1 pagetable entries for the 4KiB granule.

Some fields are elided, either because they are for out-of-scope features or otherwise uninteresting, leaving2521

just the following fields of interest:2522

. XN/XNTable: Execute-Never; when set, this mapping (or child mappings if XNTable) does not have2523

execute permissions.2524

. Contiguous: allows software to inform hardware that a sequence of entries point to contiguous2525

blocks of output memory, to enable more efficient TLB packing.2526

. DBM/AF: Dirty bit modifier and access flag; these bits allow software to monitor accesses to locations,2527

these are out-of-scope for this work.2528

. SH: Shareability; how ‘far’ into the system the memory must be kept coherent for, e.g. memory2529

marked non-shareable need not be coherent for multiple cores. We do not model shareability domains2530

here, so always assume ‘Inner Shareable’.2531

. AP/APTable: Access permissions; described below in ‘Access permissions’.2532

. AttrIndx: Memory attribute; described below in ‘Memory Attributes’.2533

Access permissions2534

Once the walk is complete, and the final output address calculated, the MMU checks to see whether the2535

requested access is permitted. Each level of the table can contain some access permissions which are2536

combined at the end to calculate the final permissions.2537

For data accesses (reading and writing), table entries have an APTable field (bits[62:61]), and block/page2538

entries have an AP[2:1] 1 field (bits[7:6]). These fields can be decoded using the following table:2539

Field When set (1) When unset (0)
AP[2] Read-only Read&Write
AP[1] Allow at EL1&0 Allow at EL1 only
APTable[1] Force read-only No effect on permissions.
APTable[0] Force forbid access at EL0 No effect on EL0 permissions.

2540

For executable permissions, which permit or forbid instruction fetching from some region of memory,2541

there are no dedicated encodings of the access permission bits. Instead, all mappings are executable by2542

1Block/page entries do not store the entire AP field but only AP[2:1] AP[0] is not present in AArch64.
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]

EL1 EL0
R W X R W X

0 0 0 0 X X X × × X
0 0 0 1 X X × X X X
0 0 1 0 X × × × × X
0 0 1 1 X × X X × ×
0 1 0 0 X X X × × X
0 1 0 1 X X × ×† ×† X
0 1 1 0 X × × × × X
0 1 1 1 X × X ×† × ×
1 0 0 0 X ×† X × × X
1 0 0 1 X ×† × X ×† X
1 0 1 0 X × × × × X
1 0 1 1 X × X X × ×
1 1 0 0 X ×† X × × X
1 1 0 1 X ×† × ×† ×† X
1 1 1 0 X × × × × X
1 1 1 1 X × X ×† × ×

Figure 7.4: Merging Access Permissions (Stage 1, EL1&0).
Entries with a † highlight differences from the APTable=00.

default, unless one of the following applies: the region is mapped writeable at EL0, as writeable EL02543

regions are never executable at EL1; a global WXN (“Write-execute-never”) configuration bit is set, and the2544

entry was writeable; or, when one of the various translation table entry XN (“Execute-never”) bits are set.2545

For simplicity, we assume the execute-never bits are always disabled.2546

To combine access permissions from the whole walk, the MMU takes the bitwise union of each of the2547

APTable fields from each table entry, and then intersects the result with the final AP[2:1] field to produce2548

a final set of permissions. Figure 7.4 contains a decoding table for a given table and leaf access permissions,2549

for testing whether a requested access is permitted. If the requested access is not permitted, then the2550

MMU generates a permission fault, which is reported back to the processor.2551

Memory Attributes2552

The processor does not necessarily know what is located at any physical address. There may be some2553

dynamic random-access memory (DRAM, what one would generally consider ‘memory’), but there may2554

also be other memory-mapped devices, or non-volatile memory, or other peripherals, or possibly nothing2555

at all.2556

To help accommodate this, hardware allows software to mark regions of memory as one of either device2557

memory, normal cacheable memory, or normal non-cacheable memory, using the translation tables.2558

The desired memory type is determined from the AttrIndx field (bits[4:2]) in block and page entries.2559

Instead of being directly encoded into this field, Arm chose to have the actual attributes stored in a2560

separate register: the MAIR (“Memory attribute indirection register”) register. The MAIR stores an array of2561

eight 8-bit fields each of which contains an encoding of a memory type. The AttrIndx field in the entry is2562

an integer in the range 0–7, which is used as to index the fields in the MAIR register.2563

This indirection means that the final result of translation depends not only on the value of the final leaf2564

entry in memory, but on the value of certain system registers, such as the MAIR.2565

Below are the three most common encodings for a MAIR field, and the ones that will be useful later when2566
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discussing tests:2567

. 0b0000_0000: device memory.2568

. 0b0100_0100: normal non-cacheable memory.2569

. 0b1111_1111: normal cacheable memory, inner&outer write-back non-transient, read&write-allocating.2570

Memory locations marked as device tell the hardware that reads or writes to those locations may have2571

side-effects. This means hardware treats those locations differently: there will be no speculative instruction2572

fetches, reads, or writes to those locations; writes to those locations will not gather into larger writes;2573

reads and writes to those locations will not re-order with respect to others; those locations generally will2574

not get cached; and other thread-local optimizations get disabled. Note that Arm define a wide range of2575

device memory types, allowing the systems programmer to selectively re-enable some of the previously2576

described behaviours to enable better performance where they deem it safe to do so.2577

For normal memory, the software can choose between cacheable or non-cacheable memory. Arm provide a2578

range of different options for the cacheability:2579

. non-cacheable2580

. write-back cacheable2581

. write-through cacheable2582

As with other features, there is a wide scope for configuration: separately configuring inner (L1, L2) and2583

outer (L3) caches, and adding cache allocation hints (allocating on reads, writes or both).2584

7.4 The Arm translation table walk2585

When the processor executes an instruction which takes an address, such as a load or store, the (virtual)2586

address is converted to a physical address by the MMU, by doing a hardware translation table walk. The2587

MMU reads the relevant TTBR to get the currently in-use tree of translation tables, and performs a walk of2588

the tree. The hardware walker first slices up the input virtual address into chunks: the most-significant2589

bit (the sign) is used to determine which base register to use (see §7.6); the next 15 bits are required to2590

be zero; the rest of the address is split into 9-bit fields which here we call a—d, with the remaining bits as2591

field e. Fields a—d are used for indexing into the tables; and field e is the offset in the page, which is2592

always preserved.2593

Input address (VA)

11 0

e
20 12

d
29 21

c
38 30

b
47 39

a
62 48

Reserved0
63

s
2594

Figure 7.5 gives a simplified algorithm for the hardware walk the MMU does on Arm-A, fixed to the2595

configuration we consider here, eliding the permissions check and hierarchical attribute calculations.2596

Reading the TTBR The base address register contains three fields: the higher bits store the ASID (see2597

§7.7), or the VMID if for the second stage of a two-stage regime (see §7.5,§7.6); bits 47-1 contain bits 47-12598

of the physical address of the root of the translation tables; the final bit is the “Common not Private”2599

(CnP) bit, which is used to indicate when a cluster of processors share the same address space and base2600

address which enables further performance optimisations.2601

TTBR

0

CnP
47 1

baddr[47:1]
63 48

ASID/VMID
2602
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1: procedure TranslateAddress(VA, isRWX) . Input address, and access kind (read/write/execute)
2: t← read_TTBR().base_address . See §7.6, and Reading the TTBR below
3: attrs← 0
4: for i = 0, . . . , 3 do
5: s← Bitslice(VA, 47− 9i, 47− 9i− 9 + 1) . Slice out fields a—d depending on index
6: entry← Mem[t+ 8s] . Access entry in table
7: if entry[0] = 0 then . Invalid entry
8: return TranslationFault(VA, Invalid) . See Faults below
9: else if entry[1] = 1 ∧ i < 3 then . Table entry

10: t← entry.table_pointer
11: attrs← attrs | entry.attrs
12: else if entry[1] = 0 ∧ (i = 0 ∨ i = 3) then
13: return TranslationFault(VA, Reserved encoding)
14: else . Block/page entry
15: attrs← attrs | entry.attrs
16: offset← Bitslice(VA, 47− 9i− 9, 0)
17: OA← entry.output_address :: offset . See Computing the final output address below
18: if !CheckPermissions(attrs, isRWX) then . See §7.3.2 ‘Access permissions’ above
19: return TranslationFault(VA, Permission error)
20: else
21: return OA
22: end if
23: end if
24: end for
25: end procedure

Figure 7.5: Simplified single-stage translation table walk for a 4K pagetable.

Computing the final output address The output address (OA) of the final descriptor is the start of the2603

range mapped by the entry. The offset into the range must be added to the start, in order to compute the2604

final output address of the translation.2605

To compute this address, the MMU takes the OA field from the entry, and the level in the tree the entry2606

is at, and ‘completes’ the address by bitwise appending the remaining fields to create the complete 48-bit2607

output address. Recall that the OA field of the block mappings gets wider the deeper in the tree you are,2608

and so for a 1GiB entry the OA field is only 18 bits wide, but for a 4KiB page entry its OA field is the full2609

36 bits.2610

. For a 1GiB (level 1) block entry; PA = OA::c::d::e2611

. For a 2MiB (level 2) block entry; PA = OA::d::e2612

. For a 4KiB (level 3) page entry; PA = OA::e2613

Note that this process means that the least-significant 12 bits of the input VA are unchanged and remain2614

the same in the final output PA, regardless of how the translation function is configured.2615

Faults The MMU may emit one of several fault types during a translation table walk (these are referred2616

to by Arm as the MMU fault types):2617

. Translation fault.2618

These are generated when the mapping in the translation table is invalid, either because bit[0]2619

was 0, or because the descriptor encoding was reserved-as-invalid. Translation faults also result2620

from trying to translate an address that is outside the 48-bit input address range (i.e. the bits2621

reserved-as-zero in the address were set).2622

. Permission fault.2623

Generated when the mapping was valid, but the access permissions do not permit the requested2624

access (for example, trying to write to a read-only address).2625

. Access flag fault.2626

These are generated when hardware management of access flags is disabled and the access flag bit is2627

set.2628

. TLB Conflict aborts.2629
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. Alignment fault.2630

Generated when an operation requires an aligned memory address, but is given a misaligned one.2631

. Address size fault.2632

Generated when the OA, or TTBR, has a value that is out of the physical address range.2633

. Synchronous external abort on a translation table walk.2634

These are external aborts (that come from the system not from the MMU) that happen due to2635

accesses that the MMU generated. For example, if the next-level table field pointed to an address2636

for which there was no memory or device, the system-on-chip would return a fault to the processor.2637

These faults lead to processor exceptions. The fault type is stored in the ESR (“exception syndrome2638

register”) register, in its EC (“exception class”) field, and any supplementary information is stored in its2639

ISS (“instruction specific syndrome”) field (such as which level in the tree the fault came from, whether2640

the originating instruction was a read or a write, and so on). Exception handling code can read the2641

ESR register to determine the fault type and cause, and can read the FAR (“fault address register”) to2642

determine the virtual address which triggered the fault, and handle the fault appropriately.2643

7.5 Virtualisation2644

So far, this chapter has focused on operating systems and processes. However, modern systems isolate2645

not just processes within an operating system, but entire operating systems from one another within a2646

hypervisor.2647

To achieve, hardware adds another layer of virtual memory, in addition to the existing one, creating2648

two stages of translation. Processes use virtual addresses, which are converted to intermediate physical2649

addresses (IPAs, also sometimes known as guest-physical addresses) using the operating system’s configured2650

translation tables. These then go through another stage of translation, typically controlled by the2651

hypervisor, converting those IPAs into physical addresses.2652

Software manages both sets of translation tables: operating systems manage Stage 1 tables to convert VAs2653

to IPAs; and hypervisors manage Stage 2 tables to convert those IPAs to PAs. This gives two separate2654

translation functions, which the hardware composes together at runtime:2655

translate_stage1 : VirtualAddress ⇀ IPA× Permissions× MemoryType
translate_stage2 : IPA ⇀ PhysicalAddress× Permissions× MemoryType

Hypervisors (running at EL2) configure the second-stage translation in much the same way as operating2656

systems configure the first stage: by creating a tree of translation tables, with an almost identical format2657

as before, and storing a pointer to the root of this tree in the VTTBR (“Virtualization translation table2658

base register”). The hardware reads the VTTBR to perform a second-stage translation to convert an IPA to2659

a PA, and will do the translation table walk over that tree in much the same way as described earlier for2660

(what we can now call) the first-stage translation.2661

This results in two address spaces, a virtual address space and an intermediate-physical address space.2662

Figure 7.6 contains an example layout of these address spaces for a machine running three processes (P0, P1,2663

P2) in two operating systems (OS0, OS1). As with the earlier diagram in Figure 7.1, each column is a (set2664

of) address spaces, with transformations between them defined by their respective translation functions.2665

On the left-hand side are the virtual address spaces of the various processes, whose virtual addresses2666

are translated (using the translation tables pointed to by the TTBR register) into intermediate-physical2667

addresses in the central address spaces (for the respective OS). Those IPAs are then translated (using the2668

VTTBR) into physical addresses.2669

Concretely, if P1 reads from address 0x1001, it will be translated into the IPA 0x3001, in OS0’s address2670

space. This IPA is then is then translated again into the physical address 0x6001, by a second stage of2671

translation controlled by the hypervisor, and the processor will actually read from the RAM at location2672

0x6001.2673
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Figure 7.6: Example virtual, intermediate physical, and physical address spaces for three processes running
on two operating systems.
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Figure 7.7: Attribute encodings for Stage 2 pagetable entries for the 4KiB granule [72, D8.3].

Field When set (1) When unset (0)
S2AP[1] Writeable not Writeable
S2AP[0] Readable not Readable

Figure 7.8: S2AP field encoding.

Stage 2 attributes encoding Stage 2 translation tables are encoded similar to their stage 1 counterparts:2674

but there are some minor differences:2675

. Stage 2 table entries do not have any additional attributes, and so do not have an APTable field.2676

. The Stage 2 AP field (called S2AP) has a slightly different (and simpler) format, see Figure 7.8.2677

. Stage 2 block and page entries do not have a MemAttrIndx field but rather encode the memory type2678

directly into the MemAttr field bits[5:2] (see the full description in the Arm ARM [12, D5-4874]2679

for all possible encodings):2680

– 0b0000: Device memory.2681

– 0b0101: Normal non-cacheable.2682

– 0b1111: Normal write-back inner&outer cacheable.2683

These are interesting as they mean that the stage 1 and stage 2 attributes (permissions and memory types)2684

must be combined in order to produce the final output. This combination is not just a case of letting2685

stage 2 overrule the stage 1 settings, but rather that both stages get a veto: if stage 1 sets the memory2686

type to be device or non-cacheable then it overrules what stage 2 sets. Similarly, if stage 1 permissions2687

forbid an access then the stage 2 permissions cannot overrule that.2688

Second-stage translations during a first-stage walk There is a complication with the story so far. The2689

stage 1 tables are created by the operating system, which is using an intermediate physical address space,2690

not a physical one. The writes the OS does to the tables will be translated, as they are normal data2691

writes. But, the tables themselves contain references to other tables, and those entries will be intermediate2692

physical addresses, and so, they must also be translated, including the value of the TTBR itself.2693

In our assumed configuration of 4KiB pages and 4 levels of translation, this leads to a maximum of 242694

memory accesses to perform the translation: 4 reads of stage 1 translation tables, 16 reads of stage 22695

translation tables during those stage 1 walks, and a final 4 reads of the stage 2 translation tables to2696

translate the output IPA into the final PA.2697

Figure 7.10 gives a simplified algorithm for a two-stage translation-table-walk, with some detail elided:2698

the permissions combining and checking, determining current regime, routing of exceptions, and so on.2699

Arm give a full and precise definition of the translation table walk as part of the ASL defining the2700

intra-instruction semantics.2701

An example Consider the Arm STR Xn,[Xt] instruction. It writes data stored in register Xn to an2702

address stored in register Xt. Figure 7.9 is an example trace of one execution of the aforementioned2703

store instruction. It is just as the Arm intra-instruction semantics would generate when executed at2704

EL0 in the two-stage EL1&0 regime, in the worst case setting where the address is mapped by last level2705

entries, in both the stage 1 and stage 2 pagetables. Each node represents an event in the trace (a memory2706

or register access), and the arrows between them represent control flow within the intra-instruction2707

semantics. The events in the dotted region come from the translation table walk (calls to the Arm2708

AArch64.TranslateAddress pseudocode function).2709

Translation starts by reading the base address for the stage 1 walk, from the relevant TTBR, and performing2710
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Rreg(Xn)=va

Rreg(Xt)=data

Rreg(TTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR)

R S2 L0 R S2 L0 R S2 L0 R S2 L0

R S2 L1 R S2 L1 R S2 L1 R S2 L1

R S2 L2 R S2 L2 R S2 L2 R S2 L2

R S2 L3 R S2 L3 R S2 L3 R S2 L3

R S1 L0 R S1 L1 R S1 L2 R S1 L3

R S2 L0

R S2 L1

R S2 L2

R S2 L3

W [pa]=data

AArch64.TranslateAddress

Figure 7.9: Memory and register accesses during a ‘STR Xt,[Xn]’ instruction.

a second-stage translation (the events marked as R S2 Li) to get the physical address of the stage 0 level 02711

table. It proceeds to read from that table (the event R S1 L0), repeating the process again, once for each2712

level in the stage 1 table. Once the final result from the stage 1 walk is obtained (from the event R S12713

L3), the final stage 2 walk is done to calculate the final physical address to be accessed. When the full2714

walk is complete, and the pseudocode returns from the walk, it performs the actual memory access (the W2715

[pa]=data event in the diagram).2716
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1: procedure Walk(Stage, IA, isRWX) . IA is now input address, which may be VA or IPA.
2: if Stage = 1 then
3: t← read_TTBR().base_address . See §7.6
4: else
5: t← VTTBR_EL2.base_address
6: end if
7: attrs← 0
8: for i = 0, . . . , 3 do
9: s← Bitslice(IA, 47− 9i, 47− 9i− 9 + 1) . Slice out fields a—d depending on index

10: addr ← t+ 8s . Address of entry in the table
11: if IsInTwoStageRegime() ∧ Stage = 1 then
12: addr ←Walk(Stage 2, addr,R) . Do a stage 2 walk to get physical address
13: if addr is TranslationFault then . . . . which may fail
14: return TranslationFault(IA, Stage 2 during Stage 1)
15: end if
16: end if
17: entry← Mem[addr]
18: if entry[0] = 0 then . Invalid entry
19: return TranslationFault(IA, Stage, Invalid)
20: else if entry[1] = 1 ∧ i < 3 then . Table entry
21: t← entry.table_pointer
22: attrs← attrs | entry.attrs
23: else if entry[1] = 0 ∧ (i = 0 ∨ i = 3) then
24: return TranslationFault(IA, Stage, Reserved encoding)
25: else . Block/page entry
26: attrs← attrs | entry.attrs
27: offset← Bitslice(IA, 47− 9i− 9, 0)
28: OA← entry.output_address :: offset
29: if !CheckPermissions(Stage, attrs, isRWX) then . See Stage 2 attributes encoding above
30: return TranslationFault(IA, Stage, Permission error)
31: else
32: return PA
33: end if
34: end if
35: end for
36: end procedure
37:
38: procedure TranslateAddress(VA, isRWX)
39: if IsInSingleStageRegime( ) then
40: PA_or_Fault←Walk(Stage 1, VA, isRWX)
41: return PA_or_Fault
42: else
43: IPA_or_Fault←Walk(Stage 1, VA, isRWX)
44: if IPA_or_Fault is TranslationFault then
45: return IPA_or_Fault
46: end if
47: IPA← IPA_or_Fault
48: PA_or_Fault←Walk(Stage 2, IPA, isRWX)
49: return PA_or_Fault
50: end if
51: end procedure

Figure 7.10: Simplified two-stage translation table walk for a 4K pagetable.
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Figure 7.11: Translation regimes that apply to execution at EL0, EL1, and EL2.

7.6 Translation regimes2717

As mentioned earlier, there are multiple translation table base registers. Each of them defines a translation2718

function, pointing to the root of the tree of translation tables which define it. These translation functions2719

are then composed together into various translation regimes, each defining the set of translation functions2720

(and therefore which translation table base registers) which will be used for translations done by the2721

processor.2722

Arm define a set of these translation regimes. Figure 7.11 gives an overview of three of the most common2723

regimes, which are:2724

. EL1&0 (two-stage)2725

– For programs executing at EL0 or EL1 when virtualisation is enabled.2726

– VAs with the high bit set are translated into IPAs using the EL1-configured register, TTBR1_EL1.2727

VAs are typically split into ‘high’ and ‘low’ regions with different translations, primarily used2728

for separate kernel and user address spaces.2729

– VAs without the high bit set are translated into IPAs using the EL1-configured register,2730

TTBR0_EL1.2731

– IPAs are translated to PAs using the EL2-configured VTTBR_EL2 register.2732

. EL1&0 (single-stage)2733

– For programs executing at EL0 or EL1 when virtualisation is disabled.2734

– VAs with the high bit set are translated into PAs using the EL1-configured register, TTBR1_EL1.2735

– VAs without the high bit set are translated into PAs using the EL1-configured register,2736

TTBR0_EL1.2737

. EL22738

– For programs executing at EL2.2739

– VAs without the high bit set are translated into PAs using the EL2-configured register,2740

TTBR0_EL2.2741

– VAs with the high bit set are always unmapped.2742

Which translation regime is being used is defined by various system registers and the current system state.2743

. Translations at EL1 or EL0 use one of the EL1&0 regimes.2744

. Translations at EL2 use the EL2 regime.2745

. TCR_EL2 (set at EL2) determines whether the EL1&0 is a single-stage or two-stage regime.2746

. TTBR0_EL1, TTBR1_EL1 determine the stage 1 of the EL1&0 regimes, and can only be set at EL1 or2747

higher.2748

. TTBR0_EL2 determines the stage 1 of the EL2 regime, and can only be set at EL2 or higher.2749

. VTTBR_EL2 determines the stage 2 of the EL1&0 regime, and can only be set at EL2 or higher.2750

Arm define a wide range of other regimes which we do not cover here, including for EL3, secure mode,2751

and the virtualised host extension (FEAT_VHE), see the Arm ARM [72, §D8.1.2] for more information.2752

1EL2 is always a single-stage regime. Note that there is a two-stage EL2&0 regime, which is not discussed here.
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7.7 Caching in TLBs2753

It would have an unacceptable performance penalty to simply perform the (up to) 24 additional memory2754

accesses for every instruction-fetch, read, or write. Therefore, the hardware does not do this. Instead, the2755

results of previous translations of the same address are cached in specialised structures called Translation2756

Lookaside Buffers (TLBs). These TLBs can store whole translation results, or the separate virtual and2757

intermediate-physical mappings, or individual translation table entries, or a mix of the above, which we2758

will explore more in the next chapter.2759

When the processor translates a virtual address, it first looks for it in the TLB. If there is no entry, then2760

this is called a TLB miss and a translation table walk must be performed. The results of this walk are2761

typically then cached in the TLB, so future translations of the same address can directly grab the physical2762

address, memory attributes, and permissions, without needing to do another translation table walk. This2763

process and the various microarchitectural structures are explored more in §8.3.1.2764

If there is an entry, this is referred to as a TLB hit. In this case, the result can be taken directly from the2765

TLB.2766

Under normal circumstances, the TLB is invisible to userspace programs. However, systems code is2767

expected to manage the TLBs explicitly, using a set of instructions which Arm provide specifically for2768

this purpose: the family of TLBI TLB-maintenance instructions. When context switching, the systems2769

software must manually manage the TLB, invalidating stale entries for old mappings out of the cache.2770

The behaviours that arise from reading from potentially stale TLB entries are explored in detail in §8.5.2771

Address space identifiers TLB maintenance operations, and the TLB cache misses they subsequently2772

create, impose additional performance penalties on the software using them. To reduce this burden, Arm2773

provide a mechanism to permit multiple processes’ address spaces to be loaded into the TLB at the same2774

time, by allowing the software to mark each address space with a numeric label. Arm call these address2775

space identifiers (ASIDs), for Stage 1 address spaces, and virtual machine identifiers (VMIDs), for Stage 22776

address spaces.2777

Entries in the TLB are tagged with the current ASID and VMID, and only that address space will see2778

entries in the TLB with that combination.2779

The current identifier is encoded in the high-order bits of the current TTBR. During a context switch, the2780

system software needs only switch to the new translation tables for the new address space of the other2781

process. It is not necessary to do TLB maintenance, so long as it ensures the identifiers are distinct.2782

As there are only finitely many identifiers available (typically it is an 8-bit field), eventually TLB2783

maintenance is required in order to re-use a previously allocated identifier, for a new address space.2784

But, this typically happens far less frequently than context switches between pre-existing address spaces.2785

The provided TLB maintenance instructions can target specific ASIDs or VMIDs, avoiding the need to2786

over-invalidate other cached address space translations, preventing a cascade of TLB misses in other2787

processes, further improving the runtime performance for a small amount of additional effort on the2788

software side.2789

TLB maintenance instructions Arm define a whole family of instructions under the TLBI mnemonic.2790

The format for a TLBI instruction is a product of fields:2791

1 TLBI <type ><regime ><broadcast >{,<reg >}2792
22793

3 <type > =2794

4 ALL | VMALL | ASID | VA{A|L} | IPAS22795

5 <regime > =2796

6 E1 | E22797

7 <broadcast > =2798

8 IS | ""2799

9 <reg > =2800

10 X0 | X1 | ... | X302801
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The most common, and the ones that will be discussed in the following chapters, are as follows:2802

. TLBI VAE1,Xn: Invalidate this CPU’s cached copies of entries used to translate the virtual address2803

in register Xn, for the EL1&0 regime, for the current ASID and VMID.2804

. TLBI VALE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the2805

virtual address in register Xn, for the EL1&0 regime, for the current ASID and VMID.2806

. TLBI VAAE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the2807

virtual address in register Xn, for the EL1&0 regime, for the current VMID, for any ASID.2808

. TLBI VAE1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the virtual address2809

in register Xn, for the EL1&0 regime, for the current ASID and VMID.2810

(. . . and equivalent TLBI VAE2, TLBI VALE2, TLBI VAE2IS instructions for virtual addresses in the2811

EL2 regime)2812

. TLBI IPAS2E1,Xn: Invalidate this CPU’s cached copies of entries used to translate the intermediate2813

physical address in register Xn, for the EL1&0 regime, for the current VMID.2814

. TLBI IPAS2LE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate2815

the intermediate physical address in register Xn, for the EL1&0 regime, for the current VMID.2816

. TLBI IPAS2E1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the intermediate2817

physical address in register Xn, for the EL1&0 regime, for the current VMID.2818

. TLBI VMALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the current2819

VMID.2820

. TLBI VMALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for the current2821

VMID.2822

. TLBI ALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for any ASID or2823

VMID.2824

. TLBI ALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for any ASID or2825

VMID.2826

(. . . and equivalent TLBI ALLE2, and TLBI ALLE2IS instructions for the EL2 regime)2827

. TLBI ASIDE1,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the ASID2828

specified in register Xn.2829

. TLBI ASIDE1IS,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the2830

ASID specified in register Xn.2831

(Note that the EL2 regime does not have ASIDs)2832

This is not an exhaustive list, see the full description in the Arm manual for a more complete description2833

[12, D5-4915], but covers all those that appear in the following chapters.2834

7.7. CACHING IN TLBS 100



Chapter 82835

Relaxed virtual memory2836

Now, we introduce the main concurrency architecture design questions that arise for virtual memory in2837

Arm. As usual, the architecture defines the envelope of behaviours which hardware must guarantee and2838

on which software may rely. This envelope must be tight enough to give the guarantees software needs to2839

function, but still loose enough to admit the range of existing and conceivable microarchitectures whose2840

optimization techniques are necessary for performance.2841

This chapter discusses both the relevant microarchitecture as we understand it, and also the behaviours2842

which software relies upon. The discussion will touch on points of several kinds: some which are clear2843

in the current Arm prose documentation; some where Arm are in the process of architecting a change;2844

some that are not documented but where the semantics is (perhaps, after discussion with Arm) clear or2845

constrained by current hardware or software practice; and, some where their modelling raised questions2846

for which the architecture is not yet well-defined and Arm must make an architectural decision.2847

Ideally, we would be able to specify which points belong to which kind. It is, however, not so easy. There2848

is no clean separation between aspects there are clearly defined in the architecture reference, and those2849

that are not; instead, the manual has a shallow covering of many of the behaviours described here. In2850

other places, the reference may have been updated or changed over the course of the work, clarifying2851

parts of the architecture, and while this may have happened concurrently with discussing those and other2852

points with Arm, the reference text itself is solely the responsibility of Arm. In §8.9 we will return to this2853

question, and more directly address the kinds of each point discussed.2854

Chapter overview The body of this chapter will explore a sequence of key behaviours, some of which the2855

architecture permits, and some that it does not. Each contains a description of the behaviour, including2856

whether software relies on it or known hardware guarantees it; a short discussion of the architectural2857

intent as we understand it; and any associated litmus tests.2858

This chapter will discuss a variety of interesting behaviours. In an attempt to make this chapter more2859

approachable, it is broken down into a logical progression: slowly building up from the most simple and2860

fundamental parts of the architecture, to increasingly more complex cases.2861

We first discuss (in §8.2) how translation affects the prior usermode tests covered in previous work,2862

primarily for the case where locations are aliased. Then, we explore how translation entries may be cached2863

(§8.3) and the fundamental behaviours which arise from translation and the walk (§8.4), and building2864

upon that, we will see how those caches affect the discussed behaviours (§8.5). Then, we will explore how2865

the various kinds of TLB maintenance interact with those cached translations (§8.6), and other translation2866

table walks. Finally, we touch on how all of the above fit together with system registers and other context2867

changing and synchronising operations (§8.7).2868
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8.1 Virtual memory litmus tests2911

As we explore deeper into the systems semantics, we are exposed to more and more of the microarchitectural2912

machine state; understanding that state is integral to understanding the behaviour of the machine. Virtual2913

memory poses its own specific challenges, but is fundamentally no different than the other fragments2914

of Arm we have seen. As such, exploring the architectural intent is best done through the creation,2915

discussion, and evaluation of, small test programs which are representative examples of common software2916

patterns or interesting hardware behaviours. Therefore, litmus tests exploring those behaviours must2917

include information about not only the memory locations of the test, but also the setup of the pagetables2918

which map them. This is best demonstrated by an example.2919

A virtual memory litmus test Much as in usermode (and ifetch, see Chapter 3) we examine litmus2920

tests containing a relatively small amount of code corresponding to some interesting behaviour we wish2921

to investigate. To illustrate this, Figure 8.1 contains the test listing for a simple (but non-trivial)2922

virtual-memory litmus test, MP.RTf.inv+dmb+po.2923

STR X0,[X1]
DMB ST
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1,
y |-> pa2, 0:X0=desc3(z), 0:X1=pte3(x), 0:X2=1, 0:X3=y,
1:X1=y, 1:X3=x

MP.RTf.inv+dmb+po AArch64

Allowed: 1:X0 = 1 & 1:X2=0

Figure 8.1: Test MP.RTf.inv+dmb+po: code listing.

This test is a variant of the classic message-passing test, but where one of the reads in the relaxed cycle2924

of events is an implicit read due to a translation table walk. More specifically, the second read in the2925

right-hand thread is the implicit read of the last-level entry of the stage 1 translation table walk, which in2926

this case was initially invalid and so the interesting executions results in a translation fault. I explain the2927

test in more detail below. In general we can take the classic usermode litmus test shapes, and re-imagine2928

them in a virtual memory context, replacing one or more of the explicit memory events in the cycle with2929

implicit ones from one or more translation table walks. We can then assign a relatively lightweight naming2930

scheme for such litmus tests: for example, in MP.RTf.inv+dmb+po, the name can be broken down into2931

separate fields representing the shape (family), which of the events are replaced by implicit ones, and2932

whether the initial state for those implicit accesses are valid or invalid:2933

MP RTf inv dmb po. . + +

Family
(A message-passing shape)

Variant
(Read then Translation-fault)

Initial state
(invalid)

Thread-local ordering
(Left thread)

Thread-local ordering
(Right thread)

2934

Not all litmus tests follow this convention, some do not correspond to a shape from the suite of usermode2935

litmus tests, and others are derived from virtual-memory-specific patterns which arise in software or from2936

discussion with architects.2937

In detail, this test mimics the usual message-passing pattern, with two locations x and y, with one thread2938

reading the locations sequentially (in the inverse order, reading the ‘flag’ y first, then the ‘data’ x second).2939

However, in this case, the data is not a value in a memory location, but the mapping of the memory2940

location itself. This can be seen in the ‘Initial State’ part of the code listing (Figure 8.1), which contains2941

not only the usual initial register and memory location values for the test, but also a terse description of2942
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the initial mappings of those locations: x is invalid, so any access results in a translation fault; z maps to2943

physical address pa1 which is initially 1; and y maps to pa2, which is initially zero. The initial register2944

state now also can reference parts of the pagetable: register X1 in Thread 0 contains the value pte3(x)2945

which is the address of the last-level (level 3) entry which is responsible for mapping x; and X0 contains2946

the value desc3(z), which is the initial value of the entry responsible for mapping z.2947

The test then begins in Thread 0 by copying the entry which maps z into the entry which maps x,2948

effectively making x an alias of z, before passing a message to Thread 1 via y. Thread 1 then reads y, and2949

then attempts to read x. The second load will either be translated using the new translation, in which2950

case it reads from pa1 and get 1, or be translated from the initial value and result in translation fault.2951

In the case where the second load faults, execution jumps to the ‘Thread 1 EL1 Handler’ block, which2952

writes 0 to X2 and advances the program counter to the next instruction1. The final state corresponds2953

to an execution in which the first load receives the message, and so reads 1, but the second fails with a2954

translation fault reading from a stale translation table entry.2955

The interesting relaxed execution can be seen as a set of events with some relations which witness the2956

order the events happened in. This test’s events diagram is shown in Figure 8.2.2957

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb stb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iiorf

po

po

po

po

Figure 8.2: Test MP.RTf.inv+dmb+po: execution diagram

These diagrams are much like the ones drawn for usermode tests, but with a few key differences:2958

. The implicit reads due to translation table walks are included in the execution, labelled with T (for2959

T ranslate), and ordered within an instruction by iio (intra-instruction-order), with each other and2960

with the associated explicit events of the instruction.2961

. Memory accesses are annotated with both their virtual and physical addresses, e.g. event d: R2962

y/pa2 = 0x1 says the read for a virtual address y, and read from the physical address pa2.2963

. We introduce a notation whereby some addresses and values are replaced by a symbolic functions,2964

e.g. in a: W s1:l3pte(x) = mkdesc(addr=page(pa1)) says the write is to the stage 1 level 3 pagetable2965

entry which maps x, with a value that corresponds to a 64-bit descriptor whose output-address field2966

is for pa1’s page.2967

. Accesses which fault generate a Fault event, annotated with the access kind (read/write/execute).2968

We elide translation read events, physical address labels, and other uninteresting and extraneous details.2969

Register translation helpers These symbolic functions are implemented as part of the isla-cat language,2970

accepted by isla-axiomatic. Here are the helpers used by most of the tests in this section. Entries listed2971

as f<N> mean a family of functions f1, f2, f3 and so on, where N is typically the level.2972

. pte<N>(va): The (intermediate) physical address of the level N entry in the default translation2973

tables that maps va.2974

. desc<N>(va): The 64-bit descriptor from the initial state of the level N entry that maps va (the2975

value of pte<N>(va) in the initial state).2976

. page(va): The page number that va is in (equivalently: va >> 12).2977

. mkdesc<N>(oa=pa): A 64-bit descriptor for a valid leaf entry at level N where the output address is2978

given by the oa parameter.2979

. mkdesc<N>(table=pa): A 64-bit descriptor for a valid table entry at level N where the next-level-table2980

address is given by the table parameter.2981

1The ELR_ELx (Exception-link-register) defines the return address of an exception to ELx. Translation faults, by default,
return to the instruction that generated them.
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STR X0,[X1]
LDR X2,[X3]

Thread 0

Initial state: x |-> pa1,
y |-> pa1, *pa1 = 0,
0:X0=1, 0:X1=x, 0:X3=y

CoWR.alias AArch64

Forbidden: 0:X2 = 0

W x/pa1 = 0x1a:

R y/pa1 = 0x0b:

Thread 0

rf po

This test is a variation on the standard write-read coherence test, CoWR, but where the VA is
replaced with two distinct VAs, which both alias to the same PA.
The initial state is a configuration with two virtual addresses, x and y, which are both mapped
to the physical address pa1, whose initial value is 0. The thread then stores 1 to x, then loads
y. It is then forbidden for this load to read 0.
While the Armv8-A architecture reference manual describes data caches as being physically-
indexed [12, D5.11.1 (p4931)] and so accesses via the same PA are ‘fully coherent’. Further
discussions with Arm clarify that this implies not just this coherence test, but that all prior
data memory behaviours previously examined still apply when subjected to aliasing.

Figure 8.3: Test CoWR.alias

8.2 Aliased data memory2982

Much of the previous work on relaxed memory has been concerned with what we shall call ‘data memory’:2983

the weak behaviour of concurrent loads and stores to memory, in the usermode fragments of the ISA. For2984

Arm, we shall see that these previous models were implicitly assuming that all locations in the test were2985

virtual addresses, with well-formed, constant, and injective, address translation mappings, which mapped2986

all locations as readable, writable, and executable, normal cacheable memory.2987

Consider a non-injective mapping. Such mappings give rise to aliasing: the situation where two distinct2988

virtual addresses in the same address space map to the same output physical address. This section will2989

explore how the behaviours of those data memory tests change in the presence of aliasing.2990

8.2.1 Virtual coherence2991

For data memory accesses, one of the most fundamental guarantee that architectures provide is coherence:2992

in any execution, for each memory location, there is a total order of the accesses to that location, consistent2993

with the program order of each thread, with reads reading from the most recent write in that order.2994

Hardware implementations provide this, despite their elaborate cache hierarchies and out-of-order pipelines,2995

by a combination of coherent cache protocols and pipeline hazard checking, identifying and restarting2996

instructions when possible coherence violations are detected.2997

For Arm, coherence is with respect to physical addresses [12, B2.3.1 (p157)][12, D5.11.1 (p4931)]. This2998

means that if two virtual addresses alias to the same physical address, then:2999

. A load from one virtual address cannot ignore a program-order previous store to the other, as seen3000

in the CoWR.alias test (Figure 8.3).3001

. A load from one virtual address cannot ignore the write that a program-order previous load of the3002

other address saw (CoRR0.alias+po (Figure 8.4, p.106), CoRR2.alias+po (Figure 8.5, p.106)).3003

. A load from one virtual address can have its value forwarded from a store to the other, and3004

similarly on a speculative branch (MP.alias3+rfi-data+dmb (Figure 8.6, p.107), PPOCA.alias3005

(Figure 8.6, p.107)).3006
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STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=1, 0:X1=x, 1:X1=x,
1:X3=y

CoRR0.alias+po AArch64

Forbidden: 1:X0=1 & 1:X2=0

W x/pa1 = 0x1a:

Thread 0

R x/pa1 = 0x1b:

R y/pa1 = 0x0c:

Thread 1

rf

rf

po

This test is a variation of the data memory CoRR0 test, where one of the loads has been
replaced with a load of a distinct virtual address which aliases to the same underlying physical
address. Note that, like the original test, it is forbidden to read from the initial state in the later
load, as this would violate coherence: exactly what the earlier text from the manual explicitly
forbade.

Figure 8.4: Test CoRR0.alias+po

STR X0,[X1]

Thread 0

STR X0,[X1]

Thread 1

LDR X0,[X1]
LDR X2,[X3]

Thread 2

LDR X0,[X1]
LDR X2,[X3]

Thread 3

Initial state: u |-> pa1, v |-> pa1, w |-> pa1, x |-> pa1, y |-> pa1,
z |-> pa1, *pa1 = 0, 0:X0=1, 0:X1=u, 1:X0=2, 1:X1=v, 2:X1=w, 2:X3=x,
3:X1=y, 3:X3=z

CoRR2.alias+po AArch64

Forbidden: 2:X0=1 & 2:X2=2 & 3:X0=2 & 3:X2=1

W u/pa1 = 0x1a:

Thread 0

W v/pa1 = 0x2b:

Thread 1

R w/pa1 = 0x1c:

R x/pa1 = 0x2d:

Thread 2

R y/pa1 = 0x2e:

R z/pa1 = 0x1f:

Thread 3

co

rf

rf

rf

rf

po po

This test is a variation of the data memory CoRR2 test. Here, there are many options for adding aliasing,
so we choose the maximally aliased version where each individual store and load uses a distinct virtual
address, but where all those virtual addresses alias to the same physical one. This gives us a classic
coherence shape, where it is forbidden for different threads to observe writes to the same physical location
in different orders.

Figure 8.5: Test CoRR2.alias+po
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STR X0,[X1]
LDR X2,[X3]
STR X2,[X5]

Thread 0

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa2,
z |-> pa1, *pa1 = 0, *pa2 = 0, 0:X0=1,
0:X1=x, 0:X3=z, 0:X5=y, 1:X1=y, 1:X3=x

MP.alias3+rfi-data+dmb AArch64

Allowed: 1:X0 = 1 & 1:X2 = 0

STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
STR X2,[X3]
LDR X4,[X5]
EOR X8,X4,X4
LDR X6,[X7,X8]

Thread 1

Initial state: w |-> pa1, x |-> pa1, y |-> pa2,
z |-> pa3, *pa1 = 0, *pa2 = 0, *pa3 = 0, 0:X0=1,
0:X1=z, 0:X2=1, 0:X3=y, 1:X1=y, 1:X2=1, 1:X3=x,
1:X5=w, 1:X7=z

PPOCA.alias AArch64

Allowed: 1:X0 = 1 & 1:X4 = 1 & 1:X6 = 0

W x/pa1 = 0x1a:

R z/pa1 = 0x1b:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

dmb sye:

R x/pa1 = 0x0f:

Thread 1

rf

rf

data

rf

po

po

W z/pa3 = 0x1a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

W x/pa1 = 0x1e:

R w/pa1 = 0x1f:

R z/pa3 = 0x0g:

Thread 1

rf

rf

po

po ctrl

addr

rf

These tests are variations of the standard PPOCA and MP+rfi-data+dmb tests, but with some aliasing.
Both are examples of forwarding: thread-locally reading from a write it has been propagated to memory.
These two tests, determined to be allowed architecturally from our discussions with Arm, show that the

processor can forward from a write even if the read was for a different virtual address so long as the
physical addresses match, even down a speculative path.

Figure 8.6: PPOCA.alias and MP.alias3+rfi-data+dmb: forwarding tests with aliasing.
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8.2.2 Aliasing different locations3007

In the previous section, we explored taking tests over a single location, and rewriting the test to use many3008

locations, which all alias to the same address. One can also take a test that has multiple locations and3009

make some of them alias to the same address.3010

Multi-location data memory tests, which are architecturally allowed, may become forbidden in the presence3011

of aliasing. For example, starting from the traditional MP+pos test, aliasing the two locations to the3012

same physical address gives the forbidden MP.alias+pos test (Figure 8.7). This new test is, essentially,3013

equivalent to the old CoRR0 test: coherence with two writes and two reads to the same location.3014

STR X0,[X1]
STR X2,[X3]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=1, 0:X1=x, 0:X2=1,
0:X3=y, 1:X1=y, 1:X3=x

MP.alias+pos AArch64

Forbidden: 1:X0 = 1 & 1:X2 = 0

W x/pa1 = 0x1a:

W y/pa1 = 0x1b:

Thread 0

R y/pa1 = 0x1c:

R x/pa1 = 0x0d:

Thread 1

rf

rf

co po

Because x and y alias to the same physical address pa1, the two loads (c and d) read the same
location, and so cannot read different writes out-of-order.

Figure 8.7: Test MP.alias+pos

8.2.3 Might be same (physical) address3015

There is a corner case that we now should consider. For load and store instructions, when the last register3016

used in the calculation of the address is read, the address becomes known. This allows, in the Flat model,3017

for program-order-later instructions to begin execution or at least know they will not be restarted, at that3018

point.3019

With the introduction of address translation, however, this point happens much later, after the whole3020

translation table walk is performed. Between the read of the register and the completion of the translation3021

table walk, other instructions may perform some part of their functionality. This may include reading3022

from a different virtual address, before the physical address of a program-order-previous instruction is3023

known, but after the virtual address is known.3024

One might expect that, when deciding whether to propagate a store, if the page offset of the virtual3025

address is different to that of the in-flight program-order earlier instructions, then the write could go3026

ahead early, knowing that the access could not be to the same physical address as any of those instructions.3027

However, this is not the case: although the accesses definitely will not access the same physical address,3028

the program-order earlier access may still fault, meaning the write will not be reached. This means that3029

writes must wait for program-order-earlier translations to finish (or at least, be known to not fault) before3030

they can be propagated to other threads.3031

8.3 What can be cached in TLBs3032

As was described in §7.7, Arm hardware can have TLBs, caching previously seen translations. But, there3033

are some restrictions to this; both in what information a TLB must cache when it does so, but also in3034

what kind of information it is not permitted to cache at all.3035

8.3.1 Microarchitectural TLBs3036

Here we make a clear distinction between the actual microarchitectural translation caching one may3037

encounter inspecting hardware, and the architectural model being discussed here.3038
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Figure 8.8: Block diagram of the Arm Cortex-A53 memory-management-unit [69].

While there are possibly many different ways to describe the same architectural intent, here, we carefully3039

choose one which will make building tooling, extending the model, discussions with architects, and3040

explaining individual tests easier. We will first look at a specific example to pin down terminology and3041

gain some intuition for hardware, before giving a model MMU and TLB that abstracts away from the3042

details.3043

Microarchitectural MMU – A53 Let us explore more closely how the actual hardware fill and walk3044

works on a modern microprocessor. The Arm Cortex A53 is an Arm-designed application class processor.3045

Previous relaxed memory work included exercising this core design extensively during litmus testing3046

validation of the models, finding it to be relaxed, exhibiting many relaxed behaviours, but not aggressively3047

so. This makes the A53 a good candidate as a demonstrator of an average relaxed processor design. While3048

other processors by Arm are more aggressive in their optimisations, the MMU and TLB layout of the A533049

seems typical: other cores generally have comparable TLB configurations [89, 90, 91, 92, 93].3050

The Arm A53 Technical Reference Manual (TRM) describes, in detail, the structure of the memory3051

management unit [69, 5-2] of the A53, and its constituent parts. Figure 8.8 contains a block diagram3052

representing the key structures in the A53’s memory management unit.3053

Each core has its own MMU, and each MMU contains:3054

. the walker, which actually does the translation table walk;3055

. one instruction micro-TLB;3056

. one data micro-TLB;3057

. one unified TLB;3058

. one walk cache; and,3059

. one IPA cache.3060

The microarchitectural TLBs store translations: virtual to physical mappings, plus permissions and so-on,3061

tagged with their context. The TLBs are arranged hierarchically, with small, 10-entry, ‘micro’ TLBs for3062

instruction and data streams separately, and one large 512-entry unified TLB. On a TLB miss, the MMU3063

performs a translation table walk using the walker.3064

When it begins this walk, the MMU first checks the walk cache. Walk caches store mappings from virtual3065

address to the physical address of the last level translation table. When the walk cache has an entry, the3066

walker can skip over most of the walk and directly read the leaf entry.3067

If a second stage of translation is required during the walk, the IPA cache is used (and may be used many3068

times during the same walk). The IPA cache stores mappings from intermediate physical to physical3069

memory — without an associated virtual address — which can be used during both the final stage 2 walk,3070

and any intermediate stage 2 walks during a stage 1 walk.3071

The MMU is free to save the result of any translation table walk into these structures, including for walks3072

due to speculation, prefetching, or architectural execution. This, essentially, allows the MMU to perform3073

a walk for any arbitrary VA or IPA, at any point in time.3074

8.3.2 Model MMU3075

To abstract away from any specific microarchitecture, we will model the MMU as if it were a separate3076

asynchronous unit, one for each thread, each with an overapproximate ‘TLB’.3077
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Later, we will see tests that justify and ground this particular choice of abstraction, and we will explore3078

the consequences of this model in more rigorous detail. But for now, we can imagine this model MMU as3079

a set of (concurrently) executing translation table walks and a ‘model TLB’ cache of translation table3080

entries.3081

Model TLB entries In general, the architecture permits hardware to cache whatever information from3082

the translation process the hardware sees fit, this may include the output of whole translation table walks3083

(complete virtual to physical mappings) or individual translation table entries, or even the result of partial3084

walks (the address of the last-level table, for example).3085

It would not be feasible to enumerate all the possible shapes of TLBs, and the kinds of information they3086

can cache. Instead, we define a model TLB. This model TLB acts as a cache of writes of translation table3087

entries, each tagged with some context. This allows the model to cache any combination of valid entries3088

in a translation table walk: weak enough to allow all currently known TLB implementations, but strong3089

enough to not break any of the guarantees software requires. These guarantees are explored, in detail, in3090

§8.4 and §8.5.3091

Each entry in the model TLB contains the information about the write itself: the physical address of3092

the entry, and the cached 64-bit entry. But it must also be tagged with some contextual information,3093

some used during TLB lookup and some used to identify cached entries during TLB invalidation. This3094

contextual information includes:3095

. the architectural context information of the translation: the VMID, ASID (or a ‘global indicator’),3096

and the translation regime;3097

. some extended context information, required for implementing TLB maintenance:3098

– the virtual address, intermediate physical address, and/or physical address of the translation;3099

– the translation stage and level at which the write was used;3100

– the system register values used in the translation (those which can be cached); and,3101

– for an entry used for a Stage 1 translation, whether it has been invalidated at both stages.3102

Operationally, one can imagine performing a translation using the model MMU by doing a full translation3103

table walk, but being able to optionally satisfy any read during that walk from a matching entry in the3104

model TLB which matches the architectural context and input address. We imagine that any behaviour3105

exhibited by a specific micro-architectural MMU and TLB configuration, and therefore all the litmus tests3106

in this chapter, would be explained under this model.3107

TLB fills Hardware has a variety of mechanisms which may lead to a translation table walk: direct3108

architectural execution of instructions, pre-fetching of data or instructions, and speculation down branches.3109

These translation table walks may result in TLB misses, and those misses then result in reads from3110

memory and the MMU ‘filling’ the TLB with a copy of the information it can use in future.3111

Arm do not wish to enumerate all the possible speculation machinery or prefetchers so instead opt for a3112

model that is weaker: at any point in time, any thread’s MMU can spontaneously perform a translation3113

table walk for any virtual or intermediate-physical address for the current architectural context (VMID,3114

ASID, etc, as in §8.3.2), and any reads that the translation table walk performs can either read from other3115

TLB entries, or perform a non-TLB read of memory and then potentially cache a copy of the write it3116

reads from in the TLB tagged with the extended context information from the walk. The behaviour of3117

those non-TLB reads are explored more in §8.4.3118

8.3.3 Invalid entries3119

It is architecturally forbidden to cache information from attempted translations which result in translation3120

faults, access flag faults, or address size faults (Note that a translation table walk may give rise to other3121

faults as well, as discussed in §7.4, such as permission faults and alignment faults, which do not impose3122

restrictions on TLB caching). More specifically, a TLB entry cannot be a write of a translation table3123

entry which is the direct cause of such a fault. In particular, the TLB cannot cache translation table3124

entries whose valid bit is not set.3125

This is important, as it gives software a mechanism in which it can safely write a new mapping without3126

potentially having multiple entries in the TLB for the same virtual address, as can be seen in the tests in3127

§8.4.3128
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STR X0,[X1]
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+po AArch64

Allowed: 0:X2 = 0

Thread local re-ordering lets the
translation (b1) of the load instruc-
tion happen earlier than the write
to the translation table (a). This
allows the load to trigger a data
abort (a translation fault, b2).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

T s1:l3pte(x)b1: Fault (R)b2:

eretc:

Thread 0

trf
iio

po

po

Figure 8.9: Test CoWTf.inv+po

The inability for invalid entries to be cached in a TLB also forms the base of the standard software pattern3129

for updating a previously-valid pagetable entry: break-before-make, discussed in §8.6.5.3130

8.4 Reads not from TLB3131

The requirement that invalid entries are not cached in the TLB gives us a way to directly observe non-TLB3132

reads: translation table reads which result in a translation fault must have come from a non-TLB read.3133

We will see that these reads have some important properties that software can rely on, but that some of3134

those properties will depend on certain architecture features being enabled (namely FEAT_ETS).3135

In this section we will explore the properties these reads have, and the guarantees software can rely on.3136

We shall see that these reads are affected by thread-local re-ordering, even to a greater extent than data3137

memory reads, and the synchronization that recovers the sequential semantics. We will see how these3138

reads from the translation table walk relate to data memory reads, with respect to coherence, multi-copy3139

atomicity, write forwarding and so on. Finally, we will see how the FEAT_ETS architectural feature can3140

change the required synchronization software needs to perform.3141

8.4.1 Out-of-order execution3142

First, let us consider whether reads that do not come from the TLB preserve the original program order.3143

One of the simplest questions one might ask is whether a translation-table-walk non-TLB read can ignore3144

a program-order previous store.3145

This scenario is captured by the CoWTf.inv+po test (Figure 8.9). Starting with a VA (‘x’) initially invalid3146

at level 3, so cannot have its level 3 entry cached in any TLB (directly or indirectly), the test overwrites3147

the invalid entry with a new valid entry pointing to the physical address pa1. Program-order later, the3148

thread then attempts to read x. The question is whether the read of x can read-from the old translation3149

table entry, and therefore generate a translation fault.3150

We see that the thread can take a translation fault. This fault is caused by reading an invalid entry, which3151

was read from a stale entry in memory, ignoring the program-order previous store to the translation table3152

entry’s location.3153

One explanation that suffices to allow this outcome is that the instructions can be locally re-ordered;3154

the translation table walk of the later load instruction can happen much earlier than the program-order3155
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STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+po AArch64

Allowed: 1:X0 = desc3(y) & 1:X2=0

The translation read (event c1)
can be re-ordered with respect to
the program-order previous load of
l3pte(x) (b), even though the load
read the new translation table en-
try, for the same location the trans-
lation reads from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf
iio

rf

po

po

Figure 8.10: Test CoRpteTf.inv+po

previous store, and satisfy its read from memory first.3156

Similarly, the reads of a translation table walk can be locally re-ordered with respect to program-order3157

earlier loads of the translation table entry, as demonstrated in the CoRpteTf.inv+po test (Figure 8.10).3158

A translation table walk read may not, in general, be re-ordered past program-order-later stores. This3159

is consistent with the description in §8.2.3, as the program-order later store might not architecturally3160

happen if the translation table walk read were to fault. So, the later writes are speculative until the3161

translation has finished, preventing the write from propagating until then.3162

This forbids both the re-ordering of the propagation of the write to other threads (LB.TT.inv+pos3163

(Figure 8.11, p.113)) with program-order earlier translation table walks, and translations reading from3164

program-order later writes (CoTW1.inv (Figure 8.12, p.113)).3165

8.4.2 Enforcing thread-local ordering3166

Since non-TLB reads do not necessarily preserve the program order, it appears that there are no coherence3167

guarantees one can make about them. However, by introducing some thread-local ordering constructs, we3168

can recover some of the strong guarantees we are used to.3169

To force a non-TLB read to happen after some program-order earlier event, we can insert the two-3170

instruction sequence DSB SY ; ISB between them. The DSB (‘Data Synchronization Barrier’) waits for3171

all loads to satisfy and for all stores to have finished and be visible to translation table walkers, before3172

the ISB (‘Instruction Synchronization Barrier’) flushes the pipeline and restarts any program-order later3173

instructions, including any translation table walks they perform.3174

Locally-ordered-previous writes If we introduce this sequence into the previous CoWTf.inv+po test, we3175

obtain the CoWTf.inv+dsb-isb test (Figure 8.13, p.114), which is forbidden by Arm. This is because the3176

non-TLB reads, in the absence of non-coherent TLB caching structures (discussed more in §8.6.1), will3177

read from the coherent storage subsystem, and so will be required to see the new write, or something3178

coherence-after it.3179

Locally-ordered-previous reads If a program-order-previous load has already seen some other-thread3180

write, either through a translation (CoTTf.inv+dsb-isb (Figure 8.14, p.115)), or through a normal data3181

load of the translation table (CoRpteTf.inv+dsb-isb (Figure 8.15, p.115)), then translation table non-TLB3182
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MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

Thread 0

MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1
Handler

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> invalid, *pa1 = 1,
0:X1=x, 0:X2=mkdesc3(oa=pa1), 0:X3=pte3(y), 1:X1=y,
1:X2=mkdesc3(oa=pa1), 1:X3=pte3(x)

LB.TT.inv+pos AArch64

Forbidden: 0:X0 = 1 & 1:X0=1

T s1:l3pte(x)a1: R x/pa1 = 0x1a2:

W s1:l3pte(y)b:

Thread 0

T s1:l3pte(y)c1: R y/pa1 = 0x1c2:

W s1:l3pte(x)d:

Thread 1

iio iio

trf

trf

po po

The writes to the translation tables (b and d) are forbidden from propagating to other threads before the
program-order earlier translations (a1 and c1) are satisfied, forbidding them from reading from each

other’s writes.
Figure 8.11: Test LB.TT.inv+pos

LDR X0,[X1]
STR X2,[X3]

Thread 0

MOV X0,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X1=x, 0:X2=desc3(y),
0:X3=pte3(x)

CoTW1.inv AArch64

Forbidden: 0:X0 = 1

The store to the translation table
(b) cannot be re-ordered with the
program-order earlier translation
table walk (a), preventing that walk
from reading from the store.

T s1:l3pte(x)a1: R x/pa1 = 0x1a2:

W s1:l3pte(x) = mkdesc(addr=page(pa1))b:

Thread 0

iio

trf

po

Figure 8.12: Test CoTW1.inv
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STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+dsb-isb AArch64

Forbidden: 0:X2 = 0

The write to the translation table
(a) is ordered before the non-TLB
read of the entry (d1) because of
the intervening DSB;ISB sequence,
creating local order. This ordering
ensures that the non-TLB read re-
spects the coherence order up to
the point of the write a, prevent-
ing the non-TLB read from reading
from a write coherence-before a.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dsb syb:

isbc:

T s1:l3pte(x)d1: Fault (R)d2:

erete:

Thread 0

trf
iio

po

po

po

po

Figure 8.13: Test CoWTf.inv+dsb-isb

reads which are ordered after that read must also see that write, or a write coherence-after it. These tests3183

use the DSB; ISB sequence previously described, but any ordering to the translation table walk (described3184

in §8.4.3) suffices.3185

Microarchitecturally this is because translation table walkers are ‘separate observers’. The idea is that the3186

MMU performs reads of memory the same way any of the other observers (threads) do, meaning that3187

those reads behave almost exactly like normal data memory reads.3188

This ‘separate observers’ principle is a reasonable model, however, we will see later on in §8.4.4 where it3189

begins to break down.3190

Instruction synchronisation barrier and control dependencies The ISB instruction naturally orders all3191

translation table walks of program-order later instructions with the ISB itself. This is because the ISB3192

effectively restarts all program-order later instructions, including any translations they do.3193

However, an ISB is not naturally ordered with respect to program-order earlier instructions. That3194

is why we introduced a DSB in the previous tests. A control-dependency to the ISB would also work3195

(CoTTf.inv+ctrl-isb (Figure 8.16, p.116)).3196

Address dependencies In previous work, address dependencies were assumed fundamental. Now we can3197

define what an address dependency is: dataflow into the translation table walk. Address dependencies3198

remain a strong way to order events. Arm does not permit speculation of the values or addresses of explicit3199

reads and writes to memory. This means that a translation table walk will not start until after its address3200

dataflow-dependent registers are fully determined. Note, that this does not mean that pre-fetching and3201

caching of the walk cannot happen: it’s just that the architectural translation table walk must retrieve3202

any cached values after it is known what the address will be.3203

Therefore, non-TLB translation reads are locally-ordered-after any read whose value flows into that3204

non-TLB read, as demonstrated in CoRpteTf.inv+addr (Figure 8.17, p.116).3205

Memory barriers Much of the earlier work in relaxed-memory concurrency was dedicated to the behaviour3206

of barriers. The Arm data memory barrier (DMB) creates ordering between memory events program-order3207
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STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+dsb-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

The second translation-table non-
TLB read of x (e1) is locally or-
dered after the first translation ta-
ble walk (b1) because of the in-
tervening dsb; isb sequence, and
so cannot see a write coherence-
before the write the earlier (b1)
translation-read read from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

dsb syc:

isbd:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf

iio

iio

trf

po

po

po

po

Figure 8.14: Test CoTTf.inv+dsb-isb

STR X0,[X1]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+dsb-isb AArch64

Forbidden: 1:X0 = desc3(y) & 1:X2=0

The final translation table walk of
x (e1) cannot be re-ordered with
the program-order previous load of
pte3(x) (b), because of the inter-
vening DSB;ISB sequence. The non-
TLB translation read of pte3(x)
(e1) therefore must read from the
same write as the earlier load, or
something coherence-after it.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

dsb syc:

isbd:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iio

rf

po

po

po

po

Figure 8.15: Test CoRpteTf.inv+dsb-isb
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STR X0,[X1]

Thread 0

MOV X0,#0
LDR X0,[X1]
EOR X4,X0,X0
CBNZ X4,LC00

LC00:
ISB
MOV X2,#0
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+ctrl-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

Control-ISB locally-orders the later
translation table walk (d1) after the
resolution of the control flow, which
happens only after the satisfaction
of the read b2.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

isbc:

T s1:l3pte(x)d1: Fault (R)d2:

erete:

Thread 1

trf

iio

iio

trf

po

po

ctrl

Figure 8.16: Test CoTTf.inv+ctrl-isb

STR X0,[X1]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
1:X1=pte3(x), 1:X3=x

CoRpteTf.inv+addr AArch64

Forbidden: 1:X0 = desc3(y) & 1:X2=0

The address dependency from the
load b to the second load, orders the
reads due to the translation table
walk of that load (c1) after b. Since
c1 is a non-TLB read, it cannot
read from a write coherence-before
the write b read from.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

R s1:l3pte(x) = mkdesc(addr=page(pa1))b:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf
addr

iio

rf

po

po

Figure 8.17: Test CoRpteTf.inv+addr
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STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x),
0:X3=x

CoWTf.inv+dmb AArch64

Forbidden if ETS0:X2 = 0

The non-TLB read c1 is not locally
ordered after the write a, despite
the intervening dmb sy barrier (b).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 0

trf
iio

po

po

po

Figure 8.18: Test CoWTf.inv+dmb

earlier than the barrier, and memory events program-order after the barrier.3208

We will see that this applies to explicit memory events only: the principal reads and writes that load and3209

store instructions perform, not the implicit reads and writes they do during translations (or instruction3210

fetching, see Part I).3211

Ordering of the explicit memory events does not, automatically, induce ordering between those explicit3212

events and any reads due to translation table walks performed by those instructions. In the next subsection,3213

we will see how FEAT_ETS (§8.4.3) extends the architecture to include more orderings between translations3214

and other memory events in the same thread.3215

Figure 8.18 shows a simple coherence test, with a data memory barrier between a store to the translation3216

tables and a load whose translation table walk might read from that. We see that the DMB does not enforce3217

that the translation table walk sees the update to the translation tables. From the previous tests, we3218

know this means that the translation table walk happened (microarchitecturally) before the store was3219

propagated to memory.3220

The Arm DMB vs DSB instructions Arm provides two memory barrier instructions: DMB (‘data memory3221

barrier’) and DSB (‘data synchronisation barrier’). The base intent is that DMB orders explicit memory3222

accesses, whereas DSB is a strictly stronger barrier also ordering some implicit accesses, and other barriers3223

and cache maintenance (including TLB invalidation).3224

This means that, for any litmus test with a DMB, a DSB of the same access kind could be substituted, and3225

the resulting test is no weaker.3226

Over time, the architectural intent around how barriers order implicit events has changed, and is still3227

subject to change.3228
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8.4.3 Enhanced Translation Synchronization3229

Note: this section is, of the time of writing, very outdated, and this feature no
longer exists in the architecture, having been superseded by newer versions of a
similar feature.

3230

Recent versions of the Arm architecture require support for FEAT_ETS: Enhanced Translation Synchroniza-3231

tion. This feature does not change the ISA directly, but instead requires implementations to enforce extra3232

ordering.3233

The Arm Architecture Reference Manual says the following [12, D5.2.5 (p4802)]:3234

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second
memory access RW2, then RW1 is also Ordered-before any translation table walk
generated by RW2 that generates any of the following:

. A Translation fault.

. An Address size fault.

. An Access flag fault.
3235

This prose description is ambiguous and requires some clarification: the scenario being described here is a3236

case with two instructions, I1 and I2, each either a load or store. Imagine I1 and I2 both executing to3237

completion, without generating any translation, address size, or access flag faults. Then, each instruction3238

would have generated one or more explicit memory events. For example, a store might generate up to 83239

separate write events (one for each byte). Call those events Eij for the jth explicit event of instruction Ii.3240

Each explicit event Eij would have required a translation table walk, generating translation read events3241

which we can call Tijk for the kth translation-table-walk read for the jth explicit memory event for3242

instruction Ii.3243

Then, if I2 generates a translation fault, address size fault, or access flag fault, and E1n would have been3244

locally-ordered-before E2,m in the imagined execution without the fault (and which we can consider a3245

kind of ghost event in the real execution), and FEAT_ETS is enabled, then, E1n is locally-ordered-before any3246

translation table read T2,m,_ in the execution with the fault. This scenario is illustrated in Figure 8.19.3247

The intuition here is that, microarchitecturally, on implementations that support FEAT_ETS, when an3248

instruction takes an exception, the access that caused it is re-tried once the prefix of instructions is3249

non-restartable. This reduces spurious aborts: faults that come from an out-of-order read of a (what is3250

now) stale value from memory.3251

T100 T101 E10: R x

T200 Tf201 E20: Fault (W)

iio iio

iio iio

addrob

I1:

I2:

Figure 8.19: ETS Ghost events example: A load instruction (I1) followed followed (in program order)
by a store instruction (I2), which faults. The address dependency means that the read event E10 is
syntactically ordered-before the (ghost) write event E20, and so the read event is ordered before the reads
of the translation table walk for I2 read from the TLB or memory (represented by the dashed ob line).

Other effects The architecturally desired effect of FEAT_ETS seems to be that no additional context-3252

synchronisation should be required to prevent spurious aborts, and that simple local orderings (barriers,3253

dependencies) should be enough. To make this so, ETS must implicitly enforce more than just the3254

aforementioned ordering constraints.3255

Specifically, TLBI instructions must have stronger thread-local orderings to translation-table walks (de-3256

scribed in more detail later); translation table walks must be (other) multi-copy atomic; and, translation3257

table walk reads must be coherent and single-copy atomic.3258
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non-ETS fragment There is a question here as to whether we should consider the non-ETS behaviours3259

of the architecture. On the one hand, hardware in use today is from a pre-ETS version of the architecture3260

and so we cannot assume that the behaviour of those devices are consistent with ETS. On the other hand,3261

ETS is a feature that is widely assumed by software, even if not present on hardware.3262

Linux, for example, assumes implementations are ETS compatible even when they are not. Building3263

models that capture the full extent of the non-ETS fragment would have questionable benefits as one3264

would have to assume an ETS model when verifying software. Additionally, as ETS is becoming a3265

mandatory feature, the concerns over non-ETS hardware will diminish over time. Perhaps even by the3266

time of publication of this thesis. Finally, the semantics of this non-ETS fragment is still unclear; there3267

are numerous questions, especially around forwarding and multi-copy atomicity generally, which are grey3268

areas in the non-ETS fragment which Arm have yet to explicitly decide one way or another.3269

For these reasons we will assume FEAT_ETS is present and enabled, unless explicitly stated otherwise.3270

Ordering to the translation table walk We can now define which constructs give rise to local ordering3271

into a translation table walk. Address dependencies, and locally-ordered context-synchronisation (in3272

particular, the DSB; ISB sequence) always give rise to ordering to the translation table walks. Control3273

dependencies, on their own, never give rise to such ordering. If using FEAT_ETS, then a plain DSB orders3274

translation table walks of program-order later instructions after it. Other barriers may give ordering to3275

the translation table walker, if using FEAT_ETS and the translation results in a translation fault, and those3276

barriers would have ordered the event that would have happened otherwise.3277

8.4.4 Forwarding to the translation table walker3278

Writes take time to propagate out to memory to other cores. One common performance optimization is3279

gathering: collecting multiple writes together in a store buffer and propagating them all out together.3280

To maintain uniprocessor semantics, the core reads from its own store buffer, in effect, allowing it to read3281

from writes before they’ve been propagated out to other cores. This behaviour is referred to as write3282

forwarding.3283

Although the translation table walker is described as a ‘separate’ observer, it is also part of the core that3284

hosts it, and is allowed to read from that core’s store buffer, effectively allowing writes to be ‘forwarded’3285

to the walker, as shown in the R.TR.inv+dmb+trfi test (Figure 8.20, p.120).3286

The simplest model here is one where non-TLB translation reads behave as a normal data memory read,3287

reading either from forwarding from the store buffer, or from the coherence-latest write in the storage3288

subsystem.3289

8.4.5 Speculative execution3290

To facilitate fast out-of-order pipelines, the machine begins fetching and executing the next instruction3291

before earlier instructions are finished. However, those instructions might control the flow of execution3292

through the program. Executing later instructions before they are finished means that those later3293

instructions are being executed speculatively: the predicted control flow, or assumptions of independence3294

between instructions, may turn out to be incorrect. When a branch is mispredicted, or a speculative access3295

leads a coherence violation, the incorrectly speculated effects need to be discarded, and the instruction3296

restarted.3297

When executing down a speculative path like this, there are additional restrictions that the core must3298

adhere to. For example, stores should not be propagated out to memory, although they can still be read3299

from by program-order-later reads in the same thread.3300

Since we know reads and writes can be performed speculatively, their associated translations must3301

also be allowed to be performed speculatively. This is what allows the MP.RTf.inv+dmb+ctrl test3302

(Figure 8.21, p.120) to see an old value for the translation table entry, as the translation can be performed3303

speculatively.3304

However, forwarding from a speculative write to the translation table walker is disallowed. Since reads3305

to read-sensitive locations (such as devices) can have side-effects, software can protect those locations3306
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

STR X0,[X1]
MOV X2,#1
LDR X2,[X3]

Thread 1

LDR X0,[X1]
LDR X2,[X1]

Thread 2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: w |-> invalid, x |-> pa1, *pa1 = 0, 0:X0=2, 0:X1=x, 0:X2=2,
0:X3=pte3(w), 1:X0=mkdesc3(oa=pa1), 1:X1=pte3(w), 1:X3=w, 2:X1=pte3(w)

R.TR.inv+dmb+trfi AArch64

Allowed: 1:X2=0 & 2:X0=2 & 2:X2=mkdesc3(oa=pa1)

W x/pa1 = 0x2a:

dmb syb:

W s1:l3pte(w) = 0x2c:

Thread 0

W s1:l3pte(w)d:

T s1:l3pte(w)e1: R w/pa1 = 0x0e2:

Thread 1

R s1:l3pte(w) = 0x2f:

R s1:l3pte(w)g:

Thread 2

rf
iio

rftrf
co

rfpo

po po po

The write of the new valid entry (d) can be forwarded locally to the translation of w (e1) allowing the read
of w (e2) to satisfy early. Thread 2 is an observer thread, witnessing that the write d happens after c.

Figure 8.20: Test R.TR.inv+dmb+trfi

STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1,
y |-> pa2, 0:X0=desc3(z), 0:X1=pte3(x), 0:X2=1, 0:X3=y,
1:X1=y, 1:X3=x

MP.RTf.inv+dmb+ctrl AArch64

Allowed: 1:X0 = 1 & 1:X2=0

The non-TLB read in Thread 1 (e1)
is not locally ordered after the ear-
lier load (d), despite the control
dependency. This is because the
processor can speculatively perform
the translation table walk, before
the earlier read is satisfied.

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

T s1:l3pte(x)e1: Fault (R)e2:

eretf:

Thread 1

trf
iiorf

po

po

po

ctrl

Figure 8.21: Test MP.RTf.inv+dmb+ctrl
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBZ X0,LC00

LC00:
STR X2,[X3]
LDR X4,[X5]

Thread 1

MOV X4,#2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: w |-> invalid, x |-> pa1, *pa1 = 0,
y |-> pa2, 0:X0=1, 0:X1=x, 0:X2=1, 0:X3=y, 1:X1=y,
1:X2=mkdesc3(oa=pa1), 1:X3=pte3(w), 1:X5=w

MP.RT.inv+dmb+ctrl-trfi AArch64

Forbidden: 1:X0 = 1 & 1:X4=0

The non-TLB read of the transla-
tion table entry (f1) cannot read
from a forwarded thread-local write
(event e) when on a speculative
path, requiring that f1 be ordered
after d.

W x/pa1 = 0x1a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

R y/pa2 = 0x1d:

W s1:l3pte(w) = mkdesc(addr=page(pa1))e:

T s1:l3pte(w)f1: R w/pa1 = 0x0f2:

Thread 1

rf
iio

rf

trfpo

po ctrl

po

Figure 8.22: Test MP.RT.inv+dmb+ctrl-trfi

by marking them as device memory in the translation tables, or leaving them unmapped altogether. A3307

speculative write could update the translation tables arbitrarily, including allowing reads to read-sensitive3308

locations, so it must be forbidden for a translation read to read from a still speculative write. The3309

MP.RT.inv+dmb+ctrl-trfi test (Figure 8.22, p.121) demonstrates this, requiring that the translation table3310

walk on the speculative path cannot read from the still-speculative store to the translation tables.3311

Instruction restarts A related, but separate, concept is that of instruction restarting. In the usermode3312

memory model a read might be satisfied early, out-of-order with respect to program-order previous3313

instructions, even before those instructions’ accesses addresses are known. If such an earlier access turned3314

out to be to the same address, and the later access is not a read of the same write, then the later access3315

must be restarted to avoid coherence violations.3316

Translation table walk reads, while they are reads, do not do this hazard checking, and so are not required3317

to be restarted to recover coherence. This is most obvious in the CoTTf.inv+po (Figure 8.23, p.122),3318

where the two translations for the two same-address loads in Thread 1 are performed out-of-order.3319

8.4.6 Single-copy atomicity3320

In the base memory model, there are two key guarantees on the atomicity of reads and writes: single-copy3321

atomicity and multi-copy atomicity.3322

Recall that single-copy atomic reads always read the maximum it can from another single-copy atomic3323

write; in particular a 64-bit atomic never partially reads from another 64-bit atomic write.3324

Translation table walk reads are 64-bit single-copy-atomic reads of memory. This means that each of the3325

reads generated by a translation table walk will read the entire descriptor in one shot. This causes the3326

CoWroW.inv+dsb-isb test (Figure 8.24, p.122) to be forbidden, disallowing reading the output address3327

obtained from one write, and access permissions from another.3328

8.4.7 Multi-copy atomicity3329

Multi-copy atomicity is a guarantee that requires any update to memory to propagate to all other threads3330

simultaneously. This is one of the core guarantees Arm and RISC-V give, but earlier versions of Arm3331

and IBM’s current Power architectures do not. This has a caveat on Arm: threads can observe their3332
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STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
LDR X2,[X3]

Thread 1

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa1,
*pa1 = 1, 0:X0=desc3(y), 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTTf.inv+po AArch64

Allowed: 1:X0 = 1 & 1:X2=0

The translation-table-walks of the
two same-address loads of x can ex-
ecute out-of-order, even when the
later translation table read (c1)
reads from a different write than
the program-order-earlier one (b1).

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

T s1:l3pte(x)c1: Fault (R)c2:

eretd:

Thread 1

trf

iio

iio

trf

po

po

Figure 8.23: Test CoTTf.inv+po

STR X0,[X1]
DSB SY
ISB
STR X2,[X3]

Thread 0

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> invalid, *pa1 = 0,
0:X0=mkdesc3(oa=pa1, AP=3), 0:X1=pte3(x),
0:X2=1, 0:X3=x

CoWroW.inv+dsb-isb AArch64

Forbidden: *pa1=1

The translation table walk of the second store must read from the entire write from the earlier store, or
not at all, forbidding its translation walk from reading a mix of both the initial state and the earlier write.
This means there should be no way the final store can happen, as it must either be invalid or read-only.
Note that isla does not generate candidates with non-atomic reads which are supposed to be single-copy

atomic, so there is no generated events diagram for this test.

Figure 8.24: Test CoWroW.inv+dsb-isb
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STR X0,[X1]

Thread 0

LDR X0,[X1]
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 2

MOV X0,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread2 El1
Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1, y |-> pa2, 0:X0=desc3(z),
0:X1=pte3(x), 1:X1=x, 1:X2=1, 1:X3=y, 2:X1=y, 2:X3=x

WRC.TRTf.inv+po+dsb-isb AArch64

Forbidden: 1:X0=1 & 2:X0=1 & 2:X2=0

W s1:l3(x)a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

W y/pa2 = 0x1c:

Thread 1

R y/pa2 = 0x1d:

dsb sye:

isbf:

T s1:l3pte(x)g1: Fault (R)g2:

ereth:

Thread 2

trf

iio

iio

trf

rfpo

po

po

po

po

The translation-read of x (g1) is ordered after another translation-read of the same address x (b1), so by
multi-copy-atomicity g1 may not read from an older write than b1 did.

Figure 8.25: Test WRC.TRTf.inv+po+dsb-isb

own writes early, through write forwarding, giving a weaker form of multi-copy atomicity referred to as3333

other-multi-copy atomicity by Arm.3334

Microarchitecturally, a thread can only read another thread’s write by reading from a global coherent3335

storage subsystem. This ensures that after the thread reads from that write, any other thread must also3336

see that write, or something coherence after it. While this is a property that the base model seems to3337

have, whether it is true for accesses during translation table walks is a separate question.3338

The non-TLB reads during a translation table walk, in fact, do seem to respect this property: if one other3339

thread has observed a write through a translation table walk, then future translation table walk non-TLB3340

reads by other threads will also observe that write (or something newer). Axiomatically, if one thread3341

translation-reads-from a write, then all translation-table-walk reads locally-ordered after another memory3342

event, which is itself ordered after the other thread’s translation-table-walk read, will be ordered after3343

that translation-table-walk read.3344

There are three combinations of multi-thread reads of interest, where a weaker architecture (with separate3345

pagetable and data memory storage) might have mixed non-multi-copy atomic behaviours. The first3346

of these is the most basic: translation-read to translation-read, that is, the pagetable accesses are3347

multi-copy atomic, and this is what forbids reading the old translation table value in Thread 2 in the3348

WRC.TRTf.inv+po+dsb-isb test (Figure 8.25). The other two are combinations of read-to-translation-3349

read and translation-read-to-read; these show us that translation accesses and explicit data accesses are3350

architecturally unified: information about the memory state learned through one kind of access applies to3351

accesses of the other. This is what forbids the WRC.RRTf.inv+dmb+dsb-isb (Figure 8.26, p.124) and3352

WRC.TRR.inv+po+dsb (Figure 8.27, p.124) tests, from reading the old value from memory at the end of3353

Thread 2.3354
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STR X0,[X1]

Thread 0

LDR X0,[X1]
DSB SY
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 2

MOV X2,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread2 El1
Handler

Initial state: x |-> invalid, z |-> pa1, *pa1 = 1, y |-> pa2,
0:X0=desc3(z), 0:X1=pte3(x), 1:X1=pte3(x), 1:X2=1, 1:X3=y,
2:X1=y, 2:X3=x

WRC.RRTf.inv+dmb+dsb-isb AArch64

Forbidden: 1:X0=desc3(z) & 2:X0=1 & 2:X2=0

The translation-read of x (h1)
is ordered after the read of
the translation table entry (b)
and so by multi-copy-atomicity
it cannot read from an older
write than b did. The dsb-isb
sequence in Thread 2 ensures

the translation-table-walk of g
is ordered after the program-
order earlier read even without
FEAT_ETS (see §8.4.3).

W s1:l3(x)a:

Thread 0

R s1:l3(x)b:

dsb syc:

W y/pa2 = 0x1d:

Thread 1

R y/pa2 = 0x1e:

dsb syf:

isbg:

T s1:l3pte(x)h1: Fault (R)h2:

ereti:

Thread 2

trf
iio

rf

rf

po

po

po

po

po

po

Figure 8.26: Test WRC.RRTf.inv+dmb+dsb-isb

STR X0,[X1]

Thread 0

LDR X0,[X1]
STR X2,[X3]

Thread 1

LDR X0,[X1]
DSB SY
LDR X2,[X3]

Thread 2

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> invalid, y |-> pa2, *pa1 = 1,
0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x), 1:X0=0, 1:X1=x,
1:X2=1, 1:X3=y, 2:X1=y, 2:X3=pte3(x)

WRC.TRR.inv+po+dsb AArch64

Allowed: 1:X0=1 & 2:X0=1 & ~2:X2=0

The read of the translation table
entry for x (f) is ordered after the
translation read of x (b1) and so by
multi-copy-atomicity it cannot read
from an older write than b1 did.
The dsb in Thread 2 is sufficient
to order the reads, any preserved
read-to-read thread-local ordering
suffices.

W s1:l3pte(x)a:

Thread 0

T s1:l3pte(x)b1: R x/pa1 = 0x1b2:

W y/pa2 = 0x1c:

Thread 1

R y/pa2 = 0x1d:

dsb sye:

R s1:l3pte(x)f:

Thread 2

iiotrf

rf

rfpo

po

po

Figure 8.27: Test WRC.TRR.inv+po+dsb
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8.4.8 Translation-table-walk intra-walk ordering3355

All the tests so far have been concerned with changes to at most one of the translation table entries during3356

a single walk. However, as we saw in §7, a translation table walk may perform many reads for a single3357

translation.3358

The ASL for the translation table walker performs each translation, in order, starting with the root, and3359

ending with the leaf entry. While reads in a thread can be executed out-of-rder, translation-reads within a3360

translation table walk cannot, as this would require the hardware to do value speculation on the next-level3361

table address, and as discussed in §8.4.5, reading from speculative values in a translation table walk is3362

generally forbidden.3363

Requiring the translation reads from a translation table walk to be satisfied in translation walk order has3364

an observable effect. For example, in the ROT.inv+dsb test (Figure 8.28, p.126), the translation table3365

walk of the read in Thread 1 must see the writes to the translation table done by Thread 0 in the order3366

they were propagated out to memory, and so reading from the old level 3 entry is forbidden.3367

8.4.9 Multiple translations within a single instruction3368

Some instructions generate multiple explicit memory events, such as for the ‘load pair’ and ‘store pair’3369

instructions, or misaligned accesses, or potentially some read-modify-writes. When there are multiple3370

explicit memory events, there will be a dedicated translation for each of them, with its own translation3371

table walk.3372

Here, the architecture as it is written today is overly sequentialised: the ASL for these cases performs3373

each translation (and the respective access) in some order, but the architectural intent is that the separate3374

translations should be unordered with respect to each other.3375

Misaligned accesses, and the load pair and store pair instructions, should generate explicit memory events3376

and associated translations which are unordered with respect to each other.3377

8.5 Caching of translations in TLBs3378

We have seen in §8.4 that, while non-TLB reads do not necessarily preserve the program-order without3379

additional synchronisation due to the out-of-order execution of instructions, those translation table reads3380

get satisfied from the coherent storage subsystem or from forwarding from earlier stores, much like the3381

normal explicit data reads do. This section will explore what happens when translation table walk reads3382

may instead be satisfied from the TLB.3383

Unfortunately for the programmer, the TLB need not be coherent with memory: it can have stale values.3384

This section explores the behaviours that arise from this caching of stale values.3385

8.5.1 Cached translations3386

In the previous section we carefully constructed tests which began with an initially invalid translation,3387

to avoid TLB caching issues. Here, we will generally start with entries that are valid, and so might be3388

present in the TLB.3389

The following CoWinvT+po test (Figure 8.29, p.127) begins with an initially valid (and therefore3390

potentially initially cached in the TLB) translation for the virtual address x. It then updates the last-level3391

translation table entry for x, setting it to 0, making it invalid (and thus unmapping x). Then, program3392

order later, the same thread tries to read x.3393

The read can succeed, as its translation can read from the old value from memory. We saw earlier that3394

translation table walks can be executed out-of-order with respect to program order (§8.4.1), but even3395

inserting thread-local ordering to the translation, such as in test CoWinvT+dsb-isb (Figure 8.30, p.127),3396

does not forbid it.3397
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STR X0,[X1]
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]

Thread 1

// read ESR_EL1.ISS
// to see if fault at Level 2 or 3.
MRS X14,ESR_EL1
AND X14,X14,#7
CMP X14,#7
MOV X17,#1
MOV X18,#2
// if ESR_EL1.ISS.DFSC == Translation Level 3
// then x0 = 1 else x0 = 2
CSEL X0,X17,X18,eq

// advance ELR
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13

// return
ERET

Thread1 El1 Handler

Initial state: ipa1 |-> pa1, x |-> invalid at level 2,
s1table new_table 0x280000 { x |-> invalid }, 0:X0=mkdesc3(oa=ipa1),
0:X1=pte3(x, new_table), 0:X2=mkdesc2(table=0x283000), 0:X3=pte2(x),
0:PSTATE.EL=1, 1:X1=x

ROT.inv+dsb AArch64

Forbidden: 1:X0=1

W new_table:l3pte(x)a:

dsb syb:

W s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)c:

Thread 0

T s1:l2pte(x)d1:

T new_table:l3pte(x)d2: Fault (R)d3:

erete:

Thread 1

trf iio
iiotrf

po

po

po

The translation-table walk from the read of x in Thread 1 must perform its translation non-TLB reads in
the order they appear in the walk, forbidding reading from the new level 2 table entry in d1, but then

reading the stale initial value for that entry from memory. The test listing contains some concrete values
to make it executable in isla, namely fixing the location of the new table at 0x280000 so it is not

symbolic, and the exact location of the level 3 entry within the new table will be at 0x283000 (known
from the fixed isla configuration). Whether the exception comes from the level 2 or the level 3 entry can

be determined by reading the ISS field of the ESR_EL1 register, which the exception handler does.

Figure 8.28: Test ROT.inv+dsb
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STR X0,[X1]
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0,
0:X1=pte3(x), 0:X3=x

CoWinvT+po AArch64

Allowed: 0:X2 = 0

The translation read (b1) of the
last-level entry for x can be exe-
cuted out-of-order with respect to
the program-order earlier store (a)
to pte3(x).

W s1:l3pte(x) = 0x0a:

T s1:l3pte(x)b1: R x/pa1 = 0x0b2:

Thread 0

trf
iio

po

Figure 8.29: Test CoWinvT+po

STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0,
0:X1=pte3(x), 0:X3=x

CoWinvT+dsb-isb AArch64

Allowed: 0:X2 = 0

The translation read (d1) of the
last-level entry for x is required to
be satisfied after the earlier store
(a) to the entry’s location because
of the intervening dsb sy; isb se-
quence, but can be satisfied from a
cached value in the TLB, allowing
d1 to read from a stale value.

W s1:l3pte(x) = 0x0a:

dsb syb:

isbc:

T s1:l3pte(x)d1: R x/pa1 = 0x0d2:

Thread 0

trf
iio

po

po

po

Figure 8.30: Test CoWinvT+dsb-isb
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8.5.2 TLB fills3398

Translation table walks can be requested by the core in two different ways: (1) through the architectural3399

execution of an instruction; or, (2) from a spontaneous translation table walk (for example, due to3400

speculation and prefetching of data or instructions). In either case, the result of that walk can be cached3401

in the TLB and recalled for other translation table walks.3402

Architecturally, a TLB fill is no different to a normal translation table walk. Each TLB fill originates3403

from a non-TLB read, with all the behaviours described in the previous sections. Later translation table3404

walks are allowed, however, to recall an earlier value and then reuse that rather than doing a fresh read.3405

Spontaneous walks The hardware may, at any time, try to prefetch or speculatively read some address.3406

Architecturally, these appear as spontaneous translation table walks. Those spontaneous walks may be3407

cached. We can see this occurring in the following MP.RT.inv+poloc-dmb+ctrl-isb test (Figure 8.31, p.129),3408

where a spontaneous translation and the resulting TLB fill allows a future translation table walk to see a3409

stale value.3410

Speculative paths Since translation table walks, and therefore TLB fills from the result of those walks,3411

can happen at any point, there is no need to consider TLB fills of architectural translation table walks3412

down speculative paths as any such behaviour is subsumed by a spontaneous fill.3413

However, as described earlier, we saw that writes cannot be forwarded to translation table walks when3414

down speculative paths (§8.4.5), as this would lead to security violations. This naturally excludes TLB3415

fills of still speculative writes; since a speculative write cannot be used in the result of a translation table3416

walk, it cannot end up cached in a TLB.3417

8.5.3 microTLBs3418

So far we have spoken as if entries are, at any particular moment in time, either present in the TLB or not.3419

Hardware, however, may have multiple microTLBs for the same thread, each with their own potential3420

cached entry for the same address.3421

In effect, these microTLBs behave as if they were a larger non-deterministic TLB with potentially many3422

values for each entry. The presence of these smaller caching structures in a superscalar machine means3423

that different instructions may be accessing different TLBs at the same time. This allows later instructions3424

to ‘skip’ over a previously seen cached entry, and then see it again later.3425

These effects can be seen in the CoTfT+dsb-isb test (Figure 8.32, p.130), where the presence of these3426

micro-TLBs (or other distributed caching structures) permits later events (even locally-ordered later) to3427

see old cached entries after earlier events witnessed a TLB miss.3428

Break-before-make and restrictions We will see later that the ability to have multiple cached entries3429

for a single address causes problems for software managing coherence, and imposes extra restrictions on3430

software practice. This means that, in general, the effects of the micro-TLBs are restricted to only those3431

combinations that do not cause break-before-make violations (see §8.6.5).3432

8.5.4 Partial caching of walks3433

TLBs need not cache entire virtual to physical translations. Instead, they are free to cache any subset of3434

the reads from the walk separately.3435

Caching up to last-level table The most common kind of caching structure we are aware of in mi-3436

croarchitecture is the walk cache (see §8.3.1). Traditionally, a TLB would store entire virtual to physical3437

mappings, making it fast to lookup the translation (often a single cycle), but there was limited space,3438

and this induced heavy burden on a TLB miss or TLB invalidation. Walk caches store the last-level3439

table entry, allowing TLB invalidation of leaf entries and TLB misses to re-use a prefix of the walk and3440

perform a minimal number of accesses. This can be seen in the MP.RTT.inv3+dmb-dmb+dsb-isb test3441

(Figure 8.33, p.131), where a walk cache allows the table entry to be cached separately from the last-level3442

entry, allowing the last translation read to read from a much newer value.3443
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STR X0,[X1]
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
CBNZ X0,L0

L0:
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> invalid, y |-> pa2, *pa1 = 0, *pa2 = 0,
0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x), 0:X2=0, 0:X3=pte3(x), 0:X4=1,
0:X5=y, 1:X1=y, 1:X3=x

MP.RT.inv+poloc-dmb+ctrl-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = mkdesc(addr=page(pa1))a:

W s1:l3pte(x) = 0x0b:

dmb syc:

W y/pa2 = 0x1d:

Thread 0

R y/pa2 = 0x1e:

isbf:

T s1:l3pte(x)g1: R x/pa1 = 0x0g2:

Thread 1

iio

trf

rf

po

co

po po

ctrl

A spontaneous walk and fill can happen on Thread 1 after the write of the valid entry to pte3(x) (a), but
before the immediate re-invalidation of that entry (b), allowing the later translation table walk to see the
old cached entry (g1), even though the architectural translation table walk could not have happened while

the valid entry was visible.

Figure 8.31: Test MP.RT.inv+poloc-dmb+ctrl-isb
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STR X0,[X1]

Thread 0

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1
Handler

Initial state: x |-> pa1, y |-> pa1,
*pa1 = 0, 0:X0=0, 0:X1=pte3(x), 1:X1=x,
1:X3=x

CoTfT+dsb-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = 0x0a:

Thread 0

T s1:l3pte(x)b1: Fault (R)b2:

eretc:

dsb syd:

isbe:

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 1

trf
iio

iiotrf

po

po

po

po

The earlier translation read (b1) reads from the new invalid entry, reading from memory (as it cannot
have been in the TLB), but a later translation read (f1) of the same location can still potentially see a

stale cached entry.

Figure 8.32: Test CoTfT+dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: assert x[48..21] != y[48..21], x |-> invalid,
y |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0, 0:X1=pte2(x),
0:X2=mkdesc3(oa=pa1), 0:X3=pte3(x), 0:X4=1, 0:X5=y, 1:X1=y, 1:X3=x

MP.RTT.inv3+dmb-dmb+dsb-isb AArch64

Allowed: 1:X0 = 1 & 1:X2=0

W s1:l2pte(x) = 0a:

dmb syb:

W s1:l3pte(x) = mkdesc(addr=page(pa1))c:

dmb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

Ti1:

Ti2:

R x/pa1 = 0x0i3:

Thread 1

trf

iio

iio

trf

rfpo

po

po

po

po

po

po

The translation-read of the level 2 entry for x (i1) can read from stale writes from a translation that the
subsequent level 3 translation-read (i2) does not read from, as the level 2 entry could have been cached in

the ‘TLB’ (in this case, a co-located ‘walk cache’ structure), while the level 3 entry gets read from
memory. In the test, x is initially invalid at level 3, and x and y have different level 2 entries (by ensuring
they are not in the same 2 MiB region), and writes zero to the level 2 entry for x (a) and then overwrites
the previously-zero level 3 entry to point to pa1, such that the final read of x could only see a valid entry

if the walk read-from the new level 3 entry, but a stale cached level 2 entry. The magic numbers are
concrete instantiations from isla-axiomatic’s symbolic evaluation.

Figure 8.33: Test MP.RTT.inv3+dmb-dmb+dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

MOV X0,#0
LDR X0,[X1]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1, x |-> invalid at level 2, ipa1 |-> pa1,
*pa1 = 1, 0:X0=mkdesc3(oa=pa1), 0:X1=pte3(x, s2_page_table_base), 0:X2=0,
0:X3=pte3(x, s2_page_table_base), 0:X4=mkdesc3(oa=ipa1), 0:X5=pte3(x), 0:PSTATE.EL=1,
1:X1=x

ROT.invs1+dmb2 AArch64

Allowed: 1:X0=1

W s2:l3pte(x) = mkdesc(addr=page(pa1))a:

dmb syb:

W s2:l3pte(x) = 0x0c:

dmb syd:

W s1:l3pte(x) = mkdesc(addr=page(pa1))e:

Thread 0

T s1:l3pte(x)f1:

T s2:l3pte(x)f2: R x/pa1 = 0x1f3:

Thread 1

iio
iioco

trf

trf

po

po

po

po

The translation read of the stage 2 leaf entry for x (f2) can read from an old cached version, from the
write (a) even though it was not reachable by any translation table walk for any VA, as the IPA it maps
was not mapped by any stage 1 tables before it was overwritten by (b). This test relies on translation

table walks being naturally ordered (by iio), see §8.4.8.

Figure 8.34: Test ROT.invs1+dmb2

Caching of whole translation A common configuration for the TLB is to cache whole translation walks,3444

from virtual to physical. This kind of caching has an important caveat: there is no requirement for the3445

TLB to remember the intermediate physical address of any stage 2 translations that were done during the3446

walk, including the final stage 2 walk of the access address itself. This means that TLB invalidations by3447

IPA might not remove all the cached data associated with a cached entry for that IPA, if there is a whole3448

cached translation which is derived from that entry. See §8.6.4 for more discussion on how this affects3449

requirements on software.3450

Independent caching of IPAs In a two-stage regime, the virtual addresses are first translated into3451

intermediate physical address. The secondary translations based on the intermediate physical addresses,3452

either of the final output address or of any of the intermediate table addresses, may be cached in the TLB3453

without remembering the originating virtual address.3454

This means that these cached translations may be recalled for translations of different virtual addresses.3455

In addition, pre-fetching may perform translations of arbitrary IPAs. This means that any cached3456

translations might not correspond to any valid whole translation table walk, but may still be used during3457

such walks.3458

This is most clear in ROT.invs1+dmb2 (Figure 8.34), where, although the IPA was never reachable from3459

the stage 1 translations, the old IPA to PA mapping was cached and used later.3460

8.5. CACHING OF TRANSLATIONS IN TLBS 132



STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

MOV X0,#1
LDR X0,[X1]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: intermediate ipa1, assert pa1 == ipa1, ipa1 |-> pa1,
x |-> invalid at level 2, s1table new_table 0x280000 { x |-> ipa1 }, 0:X0=0,
0:X1=pte3(x, new_table), 0:X2=mkdesc2(table=0x283000), 0:X3=pte2(x),
0:PSTATE.EL=1, 1:X1=x

ROT.inv2+dmb AArch64

Allowed: 1:X0=0

W new_table:l3pte(x) = 0x0a:

dmb syb:

W s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)c:

Thread 0

T s1:l2pte(x)d1:

T new_table:l3pte(x)d2: R x/pa1 = 0x0d3:

Thread 1

trf iio
iiotrf

po

po

The translation-read of the level 3 entry (d2) can read from a stale cached translation, which was cached
before the write to the level 2 entry (c). Note that this test assumes that the original new_table was

reachable (and therefore could be cached) before the write c. See §8.8.1 for a discussion on this.

Figure 8.35: Test ROT.inv2+dmb

Caching of individual entries Architecturally, Arm wish to allow many more implementations of TLBs3461

and translation caching structures than currently known hardware contains.3462

The weakest variation on this is allowing each individual translation table entry to be cached separately3463

and independently.3464

One could construct litmus tests for each of the possible combination of translation table entries, but3465

there would be overwhelmingly many of these, or even a ‘most relaxed’ version where every translation3466

table entry comes from different previous translations, but this would be too large to show here. So, for3467

simplicity I show just one of them here, ROT.inv2+dmb (Figure 8.35); where the last-level entry came3468

from a newer value than the previous levels.3469

8.6 TLB maintenance3470

Recovering coherence for translation reads in the presence of TLB caching can be achieved through the3471

use of TLB maintenance instructions: namely, the TLBI (‘TLB invalidate’) family of instructions.3472

TLB maintenance generally causes two microarchitectural effects: erasing stale entries from the TLB,3473

ensuring future TLB fills (for example, due to a translation read) will see the coherent value from memory;3474

and discarding any partially executed instructions, on other cores, which had already begun execution3475

using a stale entry but had not yet finished executing. We now explore both of these effects and the subtle3476

interaction with other parts of the virtual memory systems architecture in more detail throughout this3477

section.3478

8.6.1 Recovering coherence3479

We saw in Section 8.5.1 that stale values cached in the TLB can cause coherence violations in the3480

translation, for example, in the CoWinvT+dsb-isb test (Figure 8.30, p.127). By inserting the correct3481
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STR X0,[X1]
DSB SY
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0, 0:X1=pte3(x),
0:X3=x, 0:X5=page(x), 0:PSTATE.EL=1

CoWinvT.EL1+dsb-tlbi-dsb-isb AArch64

Forbidden: 0:X2 = 0

The translation-read of the trans-
lation table entry for x (f1) is re-
quired to happen after the earlier
store (a), because of the interven-
ing dsb sy; isb sequence (d and
e), and cannot be satisfied from the
TLB, because of the TLBI (c), for-
bidding it from still seeing a stale
value. Note that TLBI instructions
can only be executed from EL1, so
this test starts execution at EL1
rather than the usual default of
EL0.

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.36: Test CoWinvT.EL1+dsb-tlbi-dsb-isb

TLBI sequence into that test, we produce a new test, CoWinvT.EL1+dsb-tlbi-dsb-isb (Figure 8.36, p.134),3482

which is now forbidden.3483

There are many flavours of TLBI that could have been inserted into this test. The one in the figure is3484

TLBI VAE1: TLB invalidation by virtual address, for the EL1&0 translation regime. Using a TLBI-by-VA3485

means the programmer has to provide the virtual page to invalidate, and the TLBI only affects addresses3486

for that specific invalidated entry, not all of them.3487

Using the incorrect TLBI leads to insufficient invalidation occurring. For example, in the aforementioned3488

CoWinvT.EL1+dsb-tlbi-dsb-isb test (Figure 8.36), if the TLBI had the wrong page then it would have no3489

effect and the test would remain allowed.3490

FEAT_nTLBPA3491

Armv8.4-A introduced a new optional Arm feature, FEAT_nTLBPA [12, A2.2.1 (p79)].3492

This feature adds a field to the memory model feature register (AA64MMFR1_EL1) which identifies whether3493

the current processor’s TLB (and related microarchitectural caching structures) may contain non-coherent3494

copies of stage 1 entries indexed by those entries intermediate physical address. Microarchitecturally, this3495

corresponds to there being non-coherent caches associated with the TLB, which must be flushed on a3496

TLBI.3497

These caches would allow TLB misses to read from a non-coherent cache, thus not seeing the most3498

up-to-date value from the coherent storage subsystem like described in §8.4.3499

Note that the text in the reference manual is a little ambiguous. The entry in A2.2.1 describes it as a3500
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STR X0,[X1]
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: x |-> pa1, 0:X0=0, 0:X1=pte3(x),
0:X3=x, 0:X5=page(x), 0:PSTATE.EL=1

CoWinvT.EL1+tlbi-dsb-isb AArch64

Final state: 0:X2 = 0

The TLBI (b) can be re-ordered
with program-order earlier events,
due to the lack of DSBs ordering it
after them, allowing the store (a)
to happen later, letting the final
translation read (e1) still see the
old stale translation.

W s1:l3pte(x) = 0x0a:

TLBI VAE1 page=page(x)b:

dsb syc:

isbd:

T s1:l3pte(x)e1: R x/pa1 = 0x0e2:

Thread 0

trf
iio

po

po

po

po

Figure 8.37: Test CoWinvT.EL1+tlbi-dsb-isb

‘mechanism to identify if [TLB caching] does not include non-coherent caches [of old translation entries]3501

since the last completed TLBI’. This change adds a field to the register, whose reserved value in Armv8.03502

corresponds to the non-coherent caches existing. This implies that the feature does not simply add the3503

possibility of non-coherent caches and an identification bit, but that implementing the feature forbids3504

it. This further implies that in processors without FEAT_nTLBPA, one should assume that TLBs may3505

contain non-coherent caching structures, including prior to the introduction of the FEAT_nTLBPA feature3506

entirely: it is not clear to us whether this is intentional. Therefore, some behaviours described here3507

may assume a setting that is too strong, erroneously assuming all non-TLB translation-reads read from3508

the coherent-latest write. The precise state of the architecture and extant hardware with respect to3509

FEAT_nTLBPA, is presently unclear to us.3510

8.6.2 Thread-local ordering and TLBI3511

TLB maintenance instructions are not naturally locally ordered with respect to other instructions in the3512

instruction stream. This means that they can be executed out-of-order with respect to other instructions.3513

To ensure they are synchronized with other instructions, the programmer can use the DSB barrier instruction3514

to impose order on the instructions before and after it.3515

Leaving out one or both of the DSBs around the TLBI leads to insufficient ordering around the TLBI, and3516

allows the invalidation to occur at the wrong time. For example, the CoWinvT.EL1+tlbi-dsb-isb test3517

(Figure 8.37) is allowed as the initial write and TLBI may be re-ordered, negating the architectural effect3518

of the TLBI.3519

8.6.3 Broadcast3520

Arm provide broadcast variants of the TLBI instructions. These are generally suffixed with the letters IS3521

(‘Inner-shareable’) in the mnemonic.3522

Broadcast TLBIs, sometimes referred to as TLB shootdowns, allow one processor to perform maintenance3523

on another core’s TLB.3524
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X4
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa2, 0:X0=0, 0:X1=pte3(x), 0:X2=1,
0:X3=y, 0:X4=page(x), 0:PSTATE.EL=1, 1:X1=y, 1:X3=x

MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb AArch64

Forbidden: 1:X0 = 1 & 1:X2=0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

T s1:l3pte(x)i1: R x/pa1 = 0x0i2:

Thread 1

trf
iio

rf

po

po

po

po

po

po

po

The broadcast TLBI on Thread 0 (c) ensures that the earlier unmapping (a) is seen by the ordered later
translation read on Thread 1 (i1), by ensuring Thread 1’s local TLB is cleaned of any stale entries for x.

Figure 8.38: Test MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb

This is in contrast to other systems, such as for x86, and IBM’s Power architecture, where maintenance of3525

other cores must be achieved in software through the use of only thread-local invalidation instructions.3526

TLB invalidation on another core One of the simplest examples of multi-core invalidation is a message3527

passing invalidation pattern, where the old entry is removed, and a message is sent to another core. This3528

can be seen in the MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb test (Figure 8.38).3529

Instruction restarts Broadcast TLBIs must do more than touch the other thread’s TLB. If the other3530

processor had already performed a translation, using the old stale value, but has not yet finished execution,3531

then that instruction must be restarted.3532

This ensures that Arm broadcast TLBIs have the same behaviour as the traditional software IPI-based3533

shootdown (with context synchronization), but also provides a needed security guarantee.3534

If a mapping is taken away from a process, then future writes to the physical location it used to map to,3535

should not be visible to that process any more.3536

This guarantee is captured in the RBS+dsb-tlbiis-dsb (Figure 8.39, p.137) (Read-Broken-Secret) test.3537

Once a mapping has been broken, and sufficient TLB maintenance performed, any future reads or writes3538

to the original physical location will not be visible through that mapping any more. Note, however, that3539

this does not mean that instructions which have already completed their execution will be restarted, even3540

if they occur after an earlier restarted instruction. This can be seen in the RBS+dsb-tlbiis-dsb+poloc test3541

(Figure 8.40, p.138), where the program-order later load can see the old value, even after the first faults.3542

While here we describe things in terms of instruction restarting, these behaviours can be (and presumably3543

are) implemented in terms of waiting: instead of the TLBI forcibly restarting instructions that already3544
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]

Thread 1

MOV X0,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa1, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X5=page(x), 0:X2=2, 0:X3=y, 0:PSTATE.EL=1, 1:X1=x

RBS+dsb-tlbiis-dsb AArch64

Forbidden: 1:X0 = 2

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa1 = 0x2e:

Thread 0

T s1:l3pte(x)f1: R x/pa1 = 0x2f2:

Thread 1
trf

iio

rf

po

po

po

po

The broadcast TLBI of x (c) ensures that the execution of the load of x in Thread 1 either entirely
executes using the old translation and finishes before the TLBI does, or begins execution after the TLBI

finishes.
Figure 8.39: Test RBS+dsb-tlbiis-dsb
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

Thread 0

MOV X0,#1
LDR X0,[X1]
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, y |-> pa1, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X5=page(x), 0:X2=2, 0:X3=y, 0:PSTATE.EL=1, 1:X1=x,
1:X3=x

RBS+dsb-tlbiis-dsb+poloc AArch64

Final state: 1:X0 = 1 & 1:X2 = 0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W y/pa1 = 0x2e:

Thread 0

T s1:l3pte(x)f1: Fault (R)f2:

eretg:

T s1:l3pte(x)h1: R x/pa1 = 0x0h2:

Thread 1

trf rf

iio

iio

trf

po

po

po

po po

po

Even though the broadcast TLBI on Thread 0 (c) ensures that not-yet-completed instructions using the
old mapping are restarted, it does not require that the second load of x in Thread 1 (h) be restarted if it

has already satisfied its value, as that value must have come from a write before the TLBI.

Figure 8.40: Test RBS+dsb-tlbiis-dsb+poloc
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started but haven’t finished, the TLBI can simply wait for them to complete. This phrasing of waiting for3545

completion is how this process is described in the Arm ARM [12, D5.10.2 (p4928)].3546

Atomic TLBIs In the previous RBS-shaped tests, we describe the behaviour in terms of writes that occur3547

‘before’ the TLBI.3548

Microarchitecturally, a TLBI instruction is very non-atomic: it sends messages to all other cores, performs3549

some action on those cores, and sends messages back to the originating core. The program-order-earlier3550

DSB ensures that program-order-earlier instructions are complete before sending the messages. The3551

program-order-later DSB ensures that all program-order-later instructions wait for those messages to3552

return.3553

The presence of these DSBs ensure that the TLBI’s effect happens entirely at that point in the instruction3554

stream, and cannot be broken up and re-ordered amongst the other instructions in the stream. This,3555

coupled with the fact that these messages strengthen and never weaken the behaviour of other cores,3556

means that you cannot observe a partial TLBI effect, as long as the programmer takes care to maintain3557

the required thread-local ordering.3558

Because of this, we can think of the TLBI as executing either before an instruction or after an instruction,3559

but do not need to consider a TLBI executing in the middle of another instruction. This allows us to3560

simplify things, fitting TLBIs into a (generalised) coherence order, with other writes occurring either before3561

or after.3562

8.6.4 Virtualization3563

Throughout this sectio, we have considered tests for a single-stage translation with virtual mappings.3564

However, many of these questions and behaviours also apply to the second-stage of a two-stage mapping3565

with intermediate physical addresses, with only a few differences.3566

Virtual to physical and IPA caches The existence of TLBs that cache virtual to physical mappings3567

(§8.5.4) complicates TLB maintenance requirements for changes to the intermediate physical mappings.3568

When invalidating stale second-stage entries from the TLB, it is required for the programmer to do two3569

sets of invalidations: first to invalidate any of the old cached IPA to PA entries; then, perhaps surprisingly,3570

a second invalidation to remove any stale cached end-to-end translations, comprising whole VA to PA3571

mappings (or combinations), as these could have indirectly cached the result of a second stage translation,3572

without remembering the IPA they went through.3573

This is illustrated in MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb (Figure 8.41, p.140), where invalidation of3574

just the IPA is not enough to forbid the relaxed behaviour. Adding an invalidation of the VA (or all3575

VAs), like in MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb (Figure 8.42, p.141), ensures that later3576

translations cannot see the stale value any more. Note that the invalidations must happen in the specified3577

order, as otherwise the TLB could be immediately refilled from the earlier cached second-stage entries.3578
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STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1 ipa2, x |-> ipa1, ipa1 |-> pa1,
y |-> ipa2, ipa2 |-> pa2, z |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0,
0:X1=pte3(ipa1, s2_page_table_base), 0:X2=1, 0:X3=z, 0:X4=page(ipa1),
0:PSTATE.EL=2, 1:X1=y, 1:X3=x

MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb AArch64

Forbidden if ETS1:X0=1 & 1:X2=0

W 0x203000 = 0x0a:

dsb syb:

TLBI IPAS2E1IS page=page(ipa1)c:

dsb syd:

W z/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

Ti1: R x/pa1 = 0x0i2:

Thread 1

trf
iio

rf

po

po

po

po

po

po

po

Despite the TLB invalidation of the stale IPA (c), a later stage 2 translation-read of that IPA (i1) can
still see the old stale value.

Figure 8.41: Test MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb
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STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
TLBI VMALLE1IS
DSB SY
STR X2,[X3]

Thread 0

LDR X0,[X1]
DSB SY
isb
LDR X2,[X3]

Thread 1

MOV X2,#1

MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Thread1 El2 Handler

Initial state: intermediate ipa1 ipa2, x |-> ipa1, ipa1 |-> pa1,
y |-> ipa2, ipa2 |-> pa2, z |-> pa2, *pa1 = 0, *pa2 = 0, 0:X0=0,
0:X1=pte3(ipa1, s2_page_table_base), 0:X2=1, 0:X3=z, 0:X4=page(ipa1),
0:PSTATE.EL=2, 1:X1=y, 1:X3=x

MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb AArch64

Forbidden: 1:X0=1 & 1:X2=0

W 0x203000 = 0x0a:

dsb syb:

TLBI IPAS2E1IS page=page(ipa1)c:

dsb syd:

TLBI VMALLE1IS vmid=0x0e:

dsb syf:

W z/pa2 = 0x1g:

Thread 0

R y/pa2 = 0x1h:

dsb syi:

isbj:

Tk1: R x/pa1 = 0x0k2:

Thread 1

trf
iiorf

po

po

po

po

po

po

po

po

po

By performing TLB invalidation of the stage 1 entries (e) after invalidating the stage 2 ones (c1), it is
guaranteed that the later translation-read (k1) cannot see the old stale value any more.

Figure 8.42: Test MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb
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8.6.5 Break-before-make3579

TLBs are not required to store only a single cached translation for a given address. There may, in3580

general, be multiple valid translations cached in the TLB. In some cases this is perfectly fine, e.g. for3581

translations which differ only in the permissions. However, if those conflicting translations differ in their3582

output address, then having those translations both in the TLB simultaneously would be dangerous3583

and causes unpredictable behaviour (see §8.6.5). To avoid this possibility, the architecture provides a3584

break-before-make sequence, which will ensure that there cannot be two cached translations existing in the3585

TLB at the same time.3586

The architecture requires break-before-make when writing to the translation tables to update an already3587

valid entry with a new valid entry, and the change involves any of the following1:3588

. A change in output address, if the new or old entry is writeable.3589

. A change in output address, if the new and old locations have different contents.3590

. A change in memory type.3591

. A change in cacheability or shareability.3592

. A change in block size (e.g. replacing a page of 4KiB leaf with a 2MiB block mapping).3593

For those cases where break-before-make is required, the programmer must:3594

(1) write an invalid entry to overwrite the currently valid translation table entry in memory;3595

(2) perform a dsb sy (or equivalent);3596

(3) perform any TLB maintenance required to sufficiently invalidate the old entry from any TLB(s)3597

required;3598

(4) perform a dsb sy (or equivalent);3599

(5) write the new valid translation table entry, overwriting the old invalid entry.3600

Litmus test For completeness, the BBM+dsb-tlbiis-dsb (Figure 8.43, p.143) gives a simple valid-to-valid3601

concurrent update test.3602

Violating break-before-make3603

Architecturally, reaching a state where there is a TLB conflict — two or more conflicting translations for3604

the same input address in the TLB — leads to a degraded state, defined by ConstrainedUnpredictable3605

behaviour. The only way to avoid this is to use the appropriate break-before-make sequence. The Arm3606

reference manual states that failure to perform break-before-make, when it is required, can lead to failure3607

of single-copy atomicity, coherence, or even the full breakdown of uniprocessor semantics. While the3608

reference manual does not give motivation for this, we can speculate that this is to allow hardware to3609

perform multiple translations during execution of the instruction, for example, during hazard checking.3610

In this work we do not try to give a characterisation of the ConstrainedUnpredictable behaviour3611

arising from TLB conflicts. Understanding unpredictable behaviours in full is left to future work, but a3612

quick summary might be ‘any behaviour that the program could have performed’. That is, an instantaneous3613

change in the state to a random new state that would have been reachable by executing arbitrary code at3614

that same exception level, security state, and translation regime.3615

1See the Arm ARM ‘TLB maintenance requirements and the TLB maintenance instructions’ [12, D5.10.1 (p4913)] for
the full list of conditions.
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STR X0,[X1]
DSB SY
TLBI VAE1IS,X6
DSB SY
STR X2,[X1]

Thread 0

LDR X0,[X1]

Thread 1

MOV X0,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread1 El1 Handler

Initial state: x |-> pa1, *pa2 = 2, 0:X0=0, 0:X1=pte3(x),
0:X2=mkdesc3(oa=pa2), 0:X4=1, 0:X6=page(x), 0:PSTATE.EL=1,
1:X1=x

BBM+dsb-tlbiis-dsb AArch64

Allowed: 1:X0=0

W s1:l3pte(x) = 0x0a:

dsb syb:

TLBI VAE1IS page=page(x)c:

dsb syd:

W s1:l3pte(x) = mkdesc(addr=page(pa2))e:

Thread 0

T s1:l3pte(x)f1: R x/pa1 = 0x0f2:

Thread 1
trf

iio

co

po

po

po

po

The update of the translation table entry for x in Thread 0 follows the break-before-make sequence, first
breaking x (a), then performing the necessary TLBI sequence (b-c-d), before making a new mapping for x

(e). This ensures the concurrent access in Thread 1 is guaranteed to see either the old value, the
intermediate broken page (and so a page fault), or the new value. This test is the variant whose final

state asserts that the old value was read.
Figure 8.43: Test BBM+dsb-tlbiis-dsb
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8.6.6 Access permissions3616

Accesses which result in permission faults can have been satisfied from the TLB, and writes which update3617

translation table entries AP field can be cached in the TLB.3618

Translations can give rise to permission faults. These are unlike translation faults, in that, they are based3619

not just upon the descriptor read, but also on the kind of access requested: read, write, or execute.3620

Accesses which result in permission faults result in exceptions, much like translation faults do, but may have3621

been read from the TLB. This can clearly be seen in the CoWinvTp.ro+dsb-isb test (Figure 8.44, p.145),3622

where ordered after a write to the translation tables a permission failure is experienced, whose descriptor3623

must have come from the TLB.3624

Multiple cached entries We can observe multiple cached entries within a TLB by modifying the access3625

permissions of an entry. As it is not architecturally required to perform break-before-make when the two3626

entries differ only in permissions, it is permitted for the TLB to cache them both.3627

When reading from the TLB where there existing multiple entries for the same input address, it is allowed3628

for the hardware to generate a TLB conflict abort.3629

If the hardware does not generate a conflict abort, then translation reads of that address are Constraine-3630

dUnpredictable as described earlier. However, when there is no requirement for break-before-make,3631

the constraints are tighter: translations are nondeterministically able to read one or the other, (or an3632

‘amalgamation’) of the values [12, K1.2.3 (p11243)].3633

We can avoid the question of ‘amalgamation’ by constructing a test that only changes a single bit of the3634

descriptor, in a way that is not a break-before-make violation, and therefore avoiding any questions about3635

what amalgamations of entries are allowed. This can be seen with the MP.RTpT.ro+dmb-dmb+dsb-isb-3636

dsb-isb test (Figure 8.45, p.146), where the existence of multiple cached entries in the TLB allows multiple3637

translation-reads to read from different stale writes.3638

Atomic TLB reads The presence of multiple cached translation table entries in the TLB introduces the3639

question of whether those TLB fills and subsequence TLB reads must read from entire single-copy atomic3640

writes of the original translation table entries (much like a read of memory would) or whether a translation3641

read can read from a mix of different writes. RMD+dmb (Figure 8.46, p.147) (‘Read-mixed-descriptor’)3642

shows that translation reads cannot partially read from a write: they must read from the entire write or3643

none of it.3644
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STR X0,[X1]
DSB SY
ISB
MOV X13,#0
STR X2,[X3]

Thread 0

// read ESR_EL1.ISS to see if Permission or Translation fault
MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111
MOV X15,#1 // Permission
MOV X16,#2 // Translation
CSEL X13,X15,X16,eq
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread0 El1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, *pa1 = 0, 0:X0=0,
0:X1=pte3(x), 0:X2=1, 0:X3=x

CoWinvTp.ro+dsb-isb AArch64

Allowed: 0:X13=1

W s1:l3pte(x) = 0x0a:

dsb syb:

isbc:

T s1:l3pte(x)d1: Fault (W)d2:

erete:

Thread 0

trf
iio

po

po

po

po

The translation-read (d1) of x, which happens after the program-order-earlier write to the translation
tables (a) because of the intervening dsb; isb sequence (b-c), can read from a stale value and result in a

permission fault, as the read-only entry from the initial state may be cached in the TLB.

Figure 8.44: Test CoWinvTp.ro+dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

Thread 0

LDR X0,[X1]
DSB SY
ISB
LDR X13,[X4]
MOV X2,X13
DSB SY
ISB
LDR X13,[X4]
MOV X3,X13

Thread 1

// read ESR_EL1.ISS to see if Permission or Translation fault
MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111
MOV X15,#1 // Permission
MOV X16,#2 // Translation
CSEL X13,X15,X16,eq

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread1 El1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, y |-> pa2, *pa1 = 0,
0:X0=mkdesc3(oa=pa1, AP=2), 0:X1=pte3(x), 0:X2=0, 0:X3=pte3(x), 0:X4=1, 0:X5=y,
1:X1=y, 1:X4=x

MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb AArch64

Allowed: 1:X0=1 & 1:X2=1 & 1:X3=0

W s1:l3pte(x) = mkdesc(AP=0x3, addr=page(pa1))a:

dmb syb:

W s1:l3pte(x) = 0x0c:

dmb syd:

W y/pa2 = 0x1e:

Thread 0

R y/pa2 = 0x1f:

dsb syg:

isbh:

T s1:l3pte(x)i1: Fault (R)i2:

eretj:

dsb syk:

isbl:

T s1:l3pte(x)m1: R x/pa1 = 0x0m2:

Thread 1

trf
iio

iio

co
trf

rf

po

po

po

po

po

po

po

po

po

po

po

The first translation-read of x (i1) reads from the write that removes read permissions (a) and this
write must have come from the TLB because of the intervening invalidation (c), message pass (e-f), and
dsb; isb sequence (g-h). The later translation-read of x (m1) can still see an even older value with read
permissions, from the initial state, as it may also have been cached in the TLB.

Figure 8.45: Test MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb
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STR X0,[X1]
DMB SY
STR X2,[X3]

Thread 0

MOV X0,#0
LDR X0,[X1]

Thread 1

MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Thread1 Handler

Initial state: x |-> pa1 with [AP = 3] and default, y |-> pa2,
*pa1 = 0, *pa2 = 1, 0:X0=mkdesc3(oa=pa2, AP=2), 0:X1=pte3(x),
0:X2=1, 0:X3=y, 1:X1=x

RMD+dmb AArch64

Forbidden: 1:X0=1

W s1:l3pte(x) = mkdesc(addr=page(pa2))a:

dmb syb:

W y/pa2 = 0x1c:

Thread 0

T s1:l3pte(x)d1: R x/pa2 = 0x1d2:

Thread 1
trf

iiotrf

rf

po

po

The translation-read of x (d1) cannot read from both the 64-bit single-copy atomic write ‘a’ and the initial
state. Note that this test does not, as far as we can see, violate the break-before-make requirements, as
currently prescribed by the Arm manual as the contents in memory of both locations pa1 and pa2 are the
same at the time of the write to the translation tables. isla-axiomatic cannot generate such candidates,
so the execution diagram shown is hand transcribed.

Figure 8.46: Test RMD+dmb

8.7 Context synchronisation3645

There are many operations which change the current system context. We focus on two of these: taking3646

and returning from exceptions, and writing to system registers.3647

These actions can change the context that the system is executing in: the current exception level,3648

the translation regime, the translation table base, the ASID or VMID, and a variety of other system3649

configuration state.3650

8.7.1 Relaxed system registers3651

So far, in this and previous work, register reads and writes have been completely coherent: instructions3652

program-order-after a write to a register always reads from that write (or an intervening write). System3653

registers break this guarantee.3654

Arm System registers may require the programmer to insert explicit synchronization, as stated in the3655

Arm reference manual [12, D13.1.2 (p5235)]:3656

Reads of the System registers can occur out of order with respect to earlier
instructions executed on the same PE, provided that both:

. Any data dependencies between the instructions, including read-after-read
dependencies, are respected.

. The reads to the register do not occur earlier than the most recent Context
synchronization event to its architectural position in the instruction stream.

3657

This means a read of a system register might not read from the most recent write to that system register.3658

To ensure that writes to system registers are seen by program-order-later reads, the programmer must3659

ensure a Context synchronization event occurs. These flush the pipeline, causing future instructions to3660
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restart. Some context synchronising operations have already been encountered: The ISB instruction, and3661

taking and returning from exceptions.3662

There are two important caveats: (1) this does not apply to non-System registers, such as the Special-3663

purpose or General-purpose registers, which never require synchronization; and (2) the synchronization3664

required for System registers depends on the kind of access.3665

There are two kinds of accesses to System registers: direct and indirect. Direct accesses are the typical3666

way programmers interact with registers: instructions which explicitly refer to the name in its mnemonic.3667

Indirect accesses happen when an instruction which does not explicitly mention the register by name3668

nevertheless performs an access to it, implicitly during its execution.3669

Out-of-order execution means these indirect register reads and writes may occur out-of-order with respect3670

to any program-order-earlier direct reads or writes of that register. This means that before any direct3671

read, and after any direct write, the programmer must perform a context-synchronizing event to ensure3672

that these direct accesses occur in-order with respect to other indirect accesses. The programmer does3673

not have to insert context-synchronization after any direct read, as it is guaranteed that register reads or3674

writes cannot be affected by program-order later accesses.3675

System register ASL A naive interpretation of the relaxed semantics is to allow these reads to read-3676

from the most recent indirect write and any program-order later direct writes since the last context3677

synchronization event.3678

However, this does not give the correct behaviour; the Arm ASL was not written in a way to accommodate3679

relaxed system register behaviours: sometimes it re-reads the same system register multiple times,3680

sometimes it gets all the fields of a register in one read, sometimes it re-uses the same previously read3681

system register value in multiple places. This leaves open questions about whether these registers can3682

be redundantly re-read during execution, whether the instruction reads the entire register at once or3683

piecemeal over the course of execution, and whether repeated accesses to the same register within an3684

instruction are able to read-from different writes. These questions, and others, are still under discussion3685

with Arm.3686

The model gives a simple, incomplete and possibly unsound, semantics of system registers with respect to3687

a pointed set of writes (see §9.1.1), which allows the model to observe some of the known behaviours in3688

this area, without yet fully exploring the architecture.3689

Caching of system registers in TLBs In addition to being out-of-order due to pipeline effects, some3690

system registers may be indirectly cached within the TLB.3691

We have already seen one such TLB-cacheable register: the MAIR register. Direct writes to the MAIR may3692

fail to be seen by program-order-later translations, even after context-synchronization, as the translations3693

may get their value from the TLB, and the TLB may have stored a result which depended on the previous3694

value of the MAIR. To ensure that an update to the MAIR, or any other TLB-cacheable register, is observed3695

by program-order-later translations, requires both TLB maintenance and context synchronization, in that3696

order.3697

The registers which can be cached in this way, and the behaviours that arise from this caching, are3698

currently under investigation with Arm.3699

8.8 Problems3700

This section describes some in-progress work with Thibaut Pérami.3701

Some questions, and problems, have arisen after publication of the model in the next section. These fall3702

into two main categories:3703

1. when a memory location should be considered a pagetable entry by the model (Reachability);3704

2. and, invalidations of block or table entries (Wide invalidations).3705
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STR X0,[X2]
STR X1,[X2]
MSR TTBR0_EL1,X3
ISB
MOV X1,#1
LDR X3,[X4]

Thread 0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: intermediate ipa1, *pa1 = 0,
s1table new_table 0x2C0000 {x |-> invalid},
0:X0=mkdesc3(oa=pa1), 0:X1=0, 0:X2=pte3(x, new_table),
0:X3=ttbr(asid=1, base=new_table), 0:X4=x, 0:PSTATE.EL=1,
0:PSTATE.SP=1

RUE+isb AArch64

Final state: 0:X1=1

W new_table:l3pte(x) = mkdesc(addr=page(pa1))a:

W new_table:l3pte(x) = 0x0b:

MSR TTBR0_EL1=0x2C0000c:

isbd:

T new_table:l3pte(x)e1: R x/pa1 = 0x0e2:

Thread 0

iio

trf
po

po

co

po

The write to the new_table translation table entry for x (a) is not visible at the point of the change of
TTBR (c), and so the later translation table walk (e1) cannot read from it. Note that isla-axiomatic

currently does not do any kind of reachability analysis, and so does not forbid this test.

Figure 8.47: Test RUE+isb

8.8.1 Reachability3706

One important property that the TLB must have is that it may only add new cached translations for3707

translation table entries which are reachable by a translation in the current context. That is, it can only3708

cache an entry which is the result of a valid translation table walk, either using values from memory or3709

other valid translation table entries from the TLB, using the current translation table base and other3710

System register state.3711

This means that writes which are coherence-before the most recent write, at the time a translation table3712

entry location becomes reachable, are not visible to the walker, and therefore cannot have been cached in3713

any TLB.3714

This is captured in the RUE+isb (Figure 8.47) (‘Read-unreachable-entry’) test, which is forbidden as the3715

write to the translation table from before the time the location becomes reachable by translation table3716

walkers cannot have been cached in any TLBs, or read from by any spontaneous walks.3717

This area is currently under discussion with Arm.3718

8.8.2 Wide invalidations3719

In §8.6, we discussed invalidations of entries in the TLB, and investigated how TLBI instructions remove3720

cached translations which translate a given page.3721
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MOV X2, #0
STR X2, [X1]
DSB SY
TLBI VAE1, X4
DSB SY
ISB
LDR X6, [X3, #0x1000]

Thread 0

MOV X6,#1

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: aligned 2097152 virtual x,
x |-> pa1 at level 2, 0:X1=pte2(x,page_table_base), 0:X3=x,
0:X4=page(x), 0:PSTATE.EL=1, 0:PSTATE.SP=1

InvalidateWideBlock AArch64

Allowed: 0:X6 = 0

x is mapped by a 2 MiB block entry
at level 2/ Breaking it and invali-
dating the TLB passing x affects
all translations in the same 2 MiB
block.

W s1:l2pte(x) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l2pte(x)f1: R x/pa1 = 0x0f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.48: Test InvalidateWideBlock

This raises an important question: does the invalidation apply only to that page, or to all translations3722

mapped by the same translation table entry? On one hand, TLBs can split such ‘wide’ translations into3723

multiple smaller paged-sized ones, e.g. for when the stage 2 mapping is at a smaller granularity. On the3724

other hand, this would require software to do a very expensive invalidation to clear cached block entries,3725

either iterating over every page in the region, or simply flushing the entire TLB. Arm have, tentatively,3726

decided that the architectural intent is that the TLB invalidations should invalidate all mappings which3727

use the same cached translation table entry, see InvalidateWideBlock (Figure 8.48, p.150).3728

However, this does not apply when the original mappings were of smaller granularity. For example, even3729

if writing an invalid entry at level 2 then doing invalidation, the old level 3 entries may still be cached in3730

the TLB, illustrated in InvalidateWide (Figure 8.49, p.151).3731

8.9 Contributions3732

We have now covered all the key relaxed virtual memory behaviours, and will in the next chapter move on3733

to discuss the model which captures those behaviours. But before that, it may at this point be unclear3734

what the contribution of this chapter is. They come in three forms: (1) the attempt at some systematic3735

coverage of the kinds of behaviours which systems software must account for; (2) the precise, formal3736

description (in prose, and as litmus tests) of those behaviours; and, (3) the clarification of the architecture3737

where such behaviours were otherwise unclear.3738

Coverage of behaviours While this chapter attempts to systematically cover the behaviours we imagine3739

software may try to rely on, starting from the basics of translation table walks and exploring the effects3740

of out-of-order pipelines, caching, and barriers, we cannot claim it is exhaustive. As this is a manually3741

compiled and curated list of behaviours, from reading the text and talking with architects, there are surely3742
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MOV X2, #0
STR X2, [X1]
DSB SY
TLBI VAE1, X4
DSB SY
ISB
LDR X6, [X5]

Thread 0

MOV X6,#0

MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Thread0 El1 Handler

Initial state: *pa1 = 1, *pa2 = 2, x |-> pa1, z |-> pa2,
0:X1=pte2(x,page_table_base), 0:X3=x, 0:X4=page(x),
0:X5=z, 0:PSTATE.EL=1, 0:PSTATE.SP=1

InvalidateWide AArch64

Allowed: 0:X6 = 2

x and z are two entries mapped at
level 3 but within the same 2 MiB
region, so are mapped by the same
level 2 entry. Breaking the level 2
entry and invalidating with one ad-
dress does not invalidate the other.

W s1:l2pte(z) = 0x0a:

dsb syb:

TLBI VAE1 page=page(x)c:

dsb syd:

isbe:

T s1:l2pte(z)f1: R z/pa2 = 0x2f2:

Thread 0

trf
iio

po

po

po

po

po

Figure 8.49: Test InvalidateWide
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corner cases missed and software patterns overlooked. However, we believe we have covered those patterns3743

which are known for the features we cover, and is enough for software verification efforts of microkernels3744

and hypervisors.3745

Clarification of architecture Attempts to clarify the architecture come primarily from confidential3746

discussions with architects. The behaviours discussed usually fell into one of three categories: whether3747

they were clear already; needed further exploration; or are still under investigation by Arm.3748

The first major category are those behaviours which were already clear and covered in the architecture3749

text. As alluded to right at the start of this chapter, these are not whole sections or sub-sections or even3750

necessarily whole tests. The most obvious cases are §8.3.3 (‘Invalid entries’), §8.2.1 (‘Virtual coherence’),3751

and §8.6.5 (‘Break-before-make’). These are fundamental behaviours to the correctness of all modern3752

systems software, and for which the architecture reference manual has clear words (at least, enough to3753

cover the basic sequences software rely upon).3754

Most of the subsections fall into a more general category, of things that either had some associated reference3755

materials, or was otherwise clear from discussion with architects, but for which further investigation was3756

needed. This includes: forwarding (§8.4.4) and speculation (§8.4.5) for translation table walks; multi-copy3757

atomic translation table walks (§8.4.7); intra-instruction ordering (§8.4.8, §8.4.9); micro-TLBs (§8.5.3)3758

and partial walk caching (§8.5.4); a variety of TLBI questions (§8.6); and, system register accesses (§8.7.1).3759

Despite the work conducted here, from reading the architecture reference text, discussions with architects,3760

and the testing of existing hardware, there are still many questions which are currently under investigation3761

with Arm. These include further questions about the scope of TLBIs, interaction with exceptions and3762

interrupts, changes in cacheability, translations for instruction fetching, and relaxed system register3763

accesses. Those areas will require more work before giving a concrete semantics.3764

8.10 Related work3765

The authoritative Arm-internal ASL model [10, 11, 68], and the Sail model derived from it [43] cover3766

address translation, and other features sufficient to boot an OS (Linux), as do the handwritten Sail models3767

for RISC-V (Linux and FreeBSD) and MIPS/CHERI-MIPS (FreeBSD, CheriBSD), but without any cache3768

effects. Goel et al. [82, 94] describe an ACL2 model for much of x86 that covers address translation; and3769

the Forvis [95] and RISCV-PLV [96] Haskell RISC-V ISA models are also complete enough to boot Linux.3770

Syeda and Klein [97, 98] provide a somewhat idealised model for ARMv7 address translation and TLB3771

maintenance.3772

Komodo [55] uses a handwritten model for a small part of ARMv7, as do Guanciale et al. [56, 57].3773

Romanescu et al. [99, 100] discuss address translation in the concurrent setting, but with respect to3774

idealised models.3775

Lustig et al. [84] describe a concurrent model for address translation based on the Intel Sandy Bridge3776

microarchitecture, combined with a synopsis of some of the relevant Linux code, but not an architectural3777

semantics for machine-code programs.3778
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Chapter 93779

An axiomatic VMSA model3780

We now define a semantic model for Arm-A relaxed virtual memory (RVM ) that, to the best of our3781

knowledge, captures the Arm architectural intent for the questions discussed in Chapter 8, including3782

two-stage translation-table walks and the required TLB maintenance, as an extension to the base usermode3783

Arm-A axiomatic memory model, as presented in Chapter 2.3784

In §8, we described the design issues in microarchitectural terms, discussing the behaviour of translation3785

table walks and TLB caching, along with the needs of system software. We now abstract from microarchi-3786

tecture, constructing a model based on ordering between translation-read events and others, avoiding3787

modelling TLBs and out-of-order pipelines directly.3788

9.1 Extended candidate executions3789

The base Arm axiomatic model is defined as a predicate over candidate executions, each of which is a graph3790

with various events (reads, writes, barriers) and relations over them. We now extend these candidates3791

with new events and new relations over those events, and modify some original relations.3792

9.1.1 Candidate events3793

We extend the events of the candidate executions, and the corresponding labelling function (shown in3794

Figure 9.1), to contain the following new events:3795

. T for the implicit reads of memory originating from architected translation-table walks.3796

These roughly correspond to the actual satisfaction from memory, which with TLBs may happen3797

very early.3798

. TLBI events for each TLBI instruction, with a single such event per TLBI instruction, corresponding3799

to the TLBI being completed on all relevant cores.3800

. TE and ERET events for taking and returning from an exception, annotated with the reason for the3801

exception (not shown here).3802

. MSR events for writes to relevant system registers, such as the TTBRs; and MRS for reads.3803

. DSB events for DSB instructions.3804

Implicit accesses and faults Execution of the translation in the Arm architectural pseudocode performs3805

reads of memory, which would otherwise generate R events in the candidate executions. Instead, when3806

those reads happen during calls to that function, we label them as T events. This means that each3807

translation table walk may generate up to 24 T events, before the instruction generates the R|W event. We3808

explored alternative representations, including collecting all reads into a single large translation event, or3809

placing all translations into the standard R set. These options have advantages, but we made the choice3810

to keep a 1-to-1 correspondence between the events of the execution and the ISA, and to retain as much3811

of the original 2018 model events and relations unchanged as possible.3812

We also choose not to include TLB hits and misses in the model directly, but instead model the TLB3813

as a relaxation of the values the walk can read from, much like normal data memory read events and3814

modelling load buffering, write gathering, and caches.3815

153



Label ≡ Reads ∪ Writes ∪ Barriers ∪ Translations ∪ TLBIs ∪ Exceptions ∪ SysRegs
Reads ≡ {R,A,Q} × Loc × Val

Writes ≡ {W,L} × Loc × Val
Barriers ≡ {DMB.LD,DMB.ST,DMB.SY,DSB.SY, ISB}

Translations ≡ {T} × PA × TranslationInfo
TLBIs ≡ {TLBI} × TLBIOp × Shareability × Regime × VMID?× ASID?× Addr?

Exceptions ≡ {TE} × ExceptionInfo ∪ {ERET}
SysRegs ≡ {MSR,MRS} × SysRegName × Val

VA, IPA ≡ Addr ≡ Bitvec48
Loc ≡ PA ≡ Bitvec64

Val ≡ Bitvec64
TranslationInfo ≡ VA × IPA?× Level × Stage

TLBIOp ≡ {VA, IPA,ALL,ASID,VMALL, . . .}
ASID,VMID ≡ Bitvec8

Regime ≡ {EL1&0,EL2}
Shareability ≡ {NSH, ISH}

SysRegName ≡ {TTBR0_EL1,TTBR0_EL2,VTTBR_EL2, . . .}
ExceptionInfo ≡ . . .

where T? signifies an optional field of type T.

Figure 9.1: Definition of candidate event labels for Arm-A RVM candidates. Parts which differ from the
original definition are highlighted in blue.

We add a helper set, T_f, for translation reads which read-from a write whose value is even, that is, an3816

entry whose invalid bit is 0. If a translation read results in a fault (either because it was an invalid entry3817

and we get a translation fault, or because the access permissions of the resulting translation do not permit3818

the kind of requested access and so result in a permission fault), the candidate will contain a Fault event3819

(partitioned into Fault_t and Fault_p for translation and permission faults) in po order where the explicit3820

memory event would have been. See the discussion on obETS (§9.4.6) for more explanation of these ‘ghost’3821

fault events.3822

We partition the T set into two subsets: Stage1 and Stage2 for translation read events from a stage 1 or3823

stage 2 walk respectively (stage 2 reads during a stage 1 walk are marked as Stage 2, not Stage 1).3824

Finally, we leave the M set unchanged, which contains only the explicit reads and writes performed by3825

instructions.3826

TLBIs As described in §7.7, Arm have a variety of TLBI instructions, with varying arguments. All of3827

these TLBIs generate a single TLBI event, although with different labels. To aid in modelling, there are a3828

set of subsets of TLBI for various kinds of TLBI:3829

. TLBI-S1 for invalidations of Stage 1 entries.3830

. TLBI-S2 for invalidations of Stage 2 entries.3831

. TLBI-IPA for invalidations by intermediate physical address.3832

. TLBI-VA for invalidations by virtual address.3833

. TLBI-ASID for invalidations by ASID.3834

. TLBI-VMID for invalidations by VMID.3835

. TLBI-ALL for the TLBI ALL instructions.3836

. TLBI-IS for broadcast TLBIs.3837

. TLBI-EL1 for invalidations of the EL1&0 regime.3838

. TLBI-EL2 for invalidations of the EL2 regime.3839

These events do not cut the TLBI set into partitions. Rather any TLBI event may belong to multiple. For3840

example, a TLBI VAE1IS event would belong to TLBI-VA, TLBI-VMID, TLBI-EL1, and TLBI-IS.3841
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1 let dsbsy = DSBISH | DSBSY | DSBNSH
2 let dsbst = dsbsy | DSBST | DSBISHST | DSBNSHST
3 let dsbld = dsbsy | DSBLD | DSBISHLD | DSBNSHLD
4 let dsbnsh = DSBNSH
5 let dmbsy = dsbsy | DMBSY
6 let dmbst = dmbsy | dsbst | DMBST
7 | DSBST | DSBISHST | DSBNSHST
8 let dmbld = dmbsy | DMBLD
9 | dsbld | DSBISHLD | DSBNSHLD

10 let dmb = dmbsy | dmbst | dmbld
11 let dsb = dsbsy | dsbst | dsbld

Figure 9.2: Barrier helper sets.

We also include all TLBIs in a general C (‘Cache maintenance’) set.3842

Exceptions Despite not modelling exceptions in general in this work, we do need to include some3843

exception machinery in the model to capture the minimal ordering requirements arising from both their3844

context synchronisation effects and behaviours from crossing exception level boundaries.3845

To support this, we add two new events: TE (‘Take exception’); and ERET (‘Exception return’).3846

Barriers The Arm DSB (‘Data synchronization barrier’) instruction is required for TLB maintenance, as3847

was seen in the previous chapter. We include DSB events, one for each kind of DSB instruction:3848

. DSBSY and DSBISH (which we treat as equivalent, as we do not model shareability domains).3849

. DSBNSH, for non-shareable (thread-local) DSBs.3850

. DSBST, DSBLD, for DSBs with ST or LD kinds.3851

. DSBISHST, DSBISHLD, and so on, for all combinations of DSB instruction domain and access types.3852

Arm define a hierarchy of barriers where, for example:3853

DMB.LD < DMB.SY < DSB.SY

That is, any ordering imposed by a DMB.LD is also imposed by a DMB.SY, and therefore also a DSB.SY.3854

To avoid an explosion in the number of relations as we add the new barrier events, we simplify and update3855

the barrier-ordered-before relation in the Arm model to use a collection of helper sets, which encode this3856

hierarchy. Those helper sets can be found in Figure 9.2.3857

Context changing and synchronisation Finally, we add events for context-changing and context-3858

synchronising operations. Context changes are updates to system registers which change the current3859

translation regime, which are generated as MSR events We add a general context-synchronisation event set3860

CSE which includes ISB, TE, and ERET.3861

Changes to system registers may have relaxed behaviours, as described in §8.7.1, but full relaxation of3862

the system register reads done by the Arm pseudocode is unlikely to be valid, consistent, or meaningful.3863

Instead, we introduce a pointed-set semantics: when generating a candidate, we keep a per-system-register3864

set of writes to that register, remembering which one is the most recent. On a write to that system3865

register, we add it to the pointed set as the new pointed element. On a read of that system register, we3866

generate one candidate for each value in the set, and then ‘lock’ the remainder of the execution of that3867

instruction to that value, so repeated reads will see the same value. When a context-synchronization3868

event is generated (that is, an event that will be in the CSE set) all the sets are reduced to singleton sets3869

containing only the most recent write.3870

This gives us some relaxed behaviours, enough to see relaxed behaviours around changes to the TTBR, but3871

we note that this is unlikely to be the full story for relaxed system registers.3872
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9.1.2 Candidate relations3873

We also extend the set of candidate relations and the witness to include the new events, see Figure 9.3.3874

The Arm-A RVM pre-execution relations are:
. intra-instruction-order: E1 iio E2 for events E1, E2 in the same instruction where E1 is generated

before E2 in the intra-instruction trace.
. program order: E1 po E2 for explicit events E1, E2 such that the instruction generating E1 occurs

before the instruction generating E2 in the instruction stream.
. same-location: E1 loc ME2 iff the address of M1 is the same physical location as used by M2.
. same-address: same-va, same-ipa, same-pa E1 same-* E2 iff the (virtual/intermediate physical/-

physical)-address of E1 is the same as E2.
. same-page: same-va-page, same-ipa-page, same-pa-page for E1 same-*-page E2 for events whose

memory event are in the same page (e.g. 4KiB chunk) of the virtual, intermediate physical or
physical address space.

. same-address-space: same-asid, same-vmid for E1 same-*id E2 for events for whose associated
translation are using the same ASID or VMID.

. address dependent: R1 tdata T2 iff the value read by R1 is used in the calculation of the address
which T2 is a translation of.

. data dependent: R1 data W2 iff the value read by R1 is used in the calculation of the value written
by W2.

. control dependent: R1 ctrl E2 iff the value read by R1 is used to determine whether or not the
instruction E2 originates from would have executed at all.

. read-modify-write: R1 rmw W2 for the separate read and write events of an atomic update.

. external: E1 ext E2 iff the instructions which generated events E1 and E2 originated from different
hardware threads.

Plus the existentially quantified witness:
. reads-from (rf), from W1 to R2 when R2 reads the value that W1 wrote.
. translation-reads-from (trf), from W1 to T2 when T2 reads the value that W1 wrote.
. coherence-order (co), from W1 to W2 where W1 appears before W2 in the coherence order of that

location, (informally, that W1 propagated to memory before W2).
where En represents events of any kind, Mn is an explicit memory effect event, Tn is a translation-read
event, Rn is a read event, and Wn is a write event.

Figure 9.3: Definition of the candidate relations and witness for Arm-A RVM candidates. Parts which
differ from the original definition are highlighted in blue.

Addresses, ASIDs, and VMIDs Each translation table walk will read from General-purpose and System3875

registers to get a value for the input address, the current ASID, current VMID, and the roots of the3876

translation tables. We then relate each T with any other T where the translation associated with it is for3877

the same virtual address (with same-va), the same intermediate-physical address (with same-ipa), or the3878

same resulting physical address (same-pa). This means that all T events within a translation have the3879

same same-* relations. We also include same-*-page relations, which relate two events when their virtual,3880

intermediate physical, or physical addresses, are in the same page.3881

If two translations are for the same ASID, their translation reads are related by same-asid. If two3882

translations are for the same VMID, their translation reads are related by same-vmid.3883

To use these relations, we also include TLBI events. A TLBI-X is related to T by same-X if the parameter3884

to the TLBI instruction (the page, vmid, or asid) either passed by register, an immediate, or through the3885

current context, if the T event’s associated translation matches X. For example, a TLBI-IPA event would3886

be same-ipa-page related to a T whose translation was for an intermediate physical address in the page3887

provided as the parameter to the TLBI IPA instruction.3888

Generalised coherence order We add an extended coherence order wco, which is an arbitrary linearisation3889

of writes, DSB barriers, and cache and TLB maintenance operations, consistent with the usual coherence3890

order. This generalised coherence order captures a global ‘commit’ order of these operations, consistent3891

with what a hypothetical microarchitectural-style operational semantics would generate.3892
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One might be concerned at the validity of doing this, for two reasons. First, this generalised coherence3893

order will relate all writes, not just same-location ones. However, extending coherence to a total order3894

over all locations is sound [6, §10.5 p174], so this does not cause an issue. Secondly, it enforces a kind of3895

atomicity of a TLBI. For broadcast TLBIs, microarchitecture will implement these with message passing3896

to and from each core separately, and so there is no single moment the TLBI ‘happens’. However, as3897

described in §8.6.6, we are able to consider TLBI instructions as executing ‘atomically’, so long as there3898

are no break-before-make violations. This is a similar justification as to including DC and IC events in a3899

similar generalised coherence order for instruction fetching [32, §5 p29].3900

The full definition of wco, as defined in isla-axiomatic, can be found in Figure 9.8, p.167.3901

Dependencies3902

Note: this treatment of dependencies is rather outdated at the time of writing.
Recent work by Arm gives a more uniform treatment of dependencies by considering
general dataflow through registers and memory.

3903

A candidate execution consists not only of events, and reads-from relations but also a set of dependencies:3904

addr, data, ctrl, po, and loc. We add iio, and a special tdata (described below) to these.3905

The intra-instruction ordering iio relation relates two events in the same instruction in the order the3906

intra-instruction semantics generated the events. This relation therefore captures a total order over all3907

events within an instruction, regardless of the intra-instruction dependencies (control, data) or unordered3908

accesses (for example, for misaligned accesses). We are currently investigating a relaxation of this ordering,3909

and associated changes in the underlying Arm pseudocode definitions, to enable a more relaxed definition3910

of the ordering within an instruction to handle these cases.3911

We make loc relate events with the same physical address (for T events, this is the physical location of3912

the translation table entry).3913

Program order (po) is restricted to explicit events: R, W, F, C, CSE and MSR. Implicit translation reads (T)3914

and any indirect reads or writes of registers are not included in po.3915

Address dependencies were once fundamental, but we can now define address dependencies in the presence3916

of address translation as dependencies into the translation table walk. To do this, we include a new3917

relation, tdata, that relates reads with the translation read events of a translation which reads from the3918

register written by that read to compute the address. The traditional addr can then be recovered as3919

tdata ; iio* ; [M].3920

9.2 Cat model3921

We can now define an axiomatic model for relaxed virtual memory. We do so in the now typical way: as a3922

set of derived relations, and some acyclicity and emptiness constraints over them.3923

The base Arm axiomatic model, presented in Chapter 2, had three axioms: internal; external; and3924

atomic. These were composed from a set of derived relations, which further composed into a global3925

ordered-before (ob) relation.3926

We will slightly modify three of those derived relations (obs, bob and dob), and add 5 new ones (tob,3927

obtlbi, ctxob, obfault, obETS) to handle the ordering between translations and TLBIs, and include them in3928

the external acyclicity check. We further add an additional internal-like axiom, translation-internal,3929

constraining same-location translation-reads.3930

Figure 9.4 contains the axioms and relations for our Arm-A relaxed virtual memory axiomatic model.3931

Unchanged parts from the original are greyed out. We elide some helper relations, described in more3932

detail later.3933
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1 let speculative =
2 ctrl
3 | addr; po
4 | [T]; instruction -order5
6 (* translation -ordered -before *)
7 let tob =
8 [T_f]; tfre
9 | [T]; iio; [R|W]; po; [W]

10 | speculative; trfi11
12 (* observed by *)
13 let obs =
14 rfe | fr | wco
15 | trfe16
17 (* ordered -before TLBI and translate *)
18 let obtlbi_translate =
19 [T&Stage1 ]; tlb_barriered; [TLBI -S1]
20 | ([T&Stage2 ]; tlb_barriered; [TLBI -S2])
21 &
22 (same -translation; [T&Stage1]
23 ; trf−1; wco−1)
24 | ([T&Stage2 ]; tlb_barriered; [TLBI -S2]
25 ; wco?; [TLBI -S1])
26 &
27 (same -translation; [T&Stage1]
28 ; maybe_TLB_cached)29
30 (* ordered -before TLBI *)
31 let obtlbi =
32 obtlbi_translate
33 | [R|W|Fault_T ]; iio−1; [T]
34 ; (obtlbi_translate & ext); [TLBI]35
36 (* context -change ordered -before *)
37 let ctxob =
38 speculative; [MSR]
39 | [CSE]; instruction -order
40 | [ContextChange ]; po; [CSE]
41 | speculative; [CSE]
42 | po; [ERET]; instruction -order; [T]43
44 (* ordered -before a fault *)
45 let obfault =
46 data; [FaultFromW]
47 | speculative; [FaultFromW]
48 | [dmbst]; po; [FaultFromW]
49 | [dmbld]; po; [FaultFromW|FaultFromR]
50 | [A|Q]; po; [FaultFromW|FaultFromR]
51 | [R|W]; po; [FaultFromReleaseW]

52
53 (* ETS -ordered -before *)
54 let obETS =
55 (obfault; [Fault_T ]); iio−1; [T_f]
56 | ([TLBI]; po; [dsb]
57 ; instruction -order; [T])
58 & tlb -affects59
60 (* dependency -ordered -before *)
61 let dob =
62 addr | data
63 | speculative; [W]
64 | addr; po; [W]
65 | (addr | data); rfi
66 | (addr | data); trfi67
68 (* atomic -ordered -before *)
69 let aob =
70 rmw
71 | [range(rmw)]; rfi; [A|Q]72
73 (* barrier -ordered -before *)
74 let bob =
75 [R]; po; [dmbld]
76 | [W]; po; [dmbst]
77 | [dmbst]; po; [W]
78 | [dmbld]; po; [R|W]
79 | [L]; po; [A]
80 | [A|Q]; po; [R|W]
81 | [R|W]; po; [L]
82 | [F|C]; po; [dsbsy]
83 | [dsb]; po84
85 (* Ordered -before *)
86 let ob =
87 (obs | dob | aob | bob
88 | iio | tob | ctxob
89 | obtlbi | obfault | obETS)+90
91 (* Internal visibility requirement *)
92 acyclic po-loc | fr | co | rf as internal
93 (* External visibility requirement *)
94 irreflexive ob as external
95 (* Atomic requirement *)
96 empty rmw & (fre; coe) as atomic
97 (* Writes cannot forward to po-future

translates *)
98 acyclic (po-pa | trfi)
99 as translation -internal

Figure 9.4: RVM axioms and relations
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9.3 Axioms3934

The RVM model axioms are, mostly, a syntactic extension to the original Arm-A axiomatic model presented3935

in Chapter 2. This is by design. Although there may be other nicer or more succinct ways of phrasing3936

the model, the variation presented here is designed to be as syntactically close as possible to the original.3937

This helps with readability for those familiar with the original; it allows us to present the differences to3938

the original in an easier form; it makes recovery of the original model easier; and, it makes it easier to3939

prove equivalence of the axiomatic models in the presence of constant address translation, increasing the3940

confidence we have in the model.3941

The model has three kinds of axioms: internal ones for per-location guarantees, an external axiom for the3942

global happens-before ordering, and the atomic axiom for RMWs (untouched in this work).3943

Internal axioms The new model has two per-location axioms: internal and translation-internal.3944

1 (* Internal visibility requirement *)
2 acyclic po-loc | fr | co | rf as internal3
4 (* Writes cannot forward to po-future translates *)
5 acyclic (po-pa | trfi) as translation -internal

3945

Unchanged from the original, the internal axiom captures the SC-per-location guarantee. Translations,3946

however, do not have the same per-location guarantees. To account for this, we introduce a second3947

axiom, translation-internal, which captures the weaker per-location guarantee for translation table3948

walks. Since translation reads, in the presence of TLB caching and out-of-order pipelines, do not even3949

guarantee coherence, the only behaviour that this axiom ends up preventing is translation reads reading3950

from program-order later stores.3951

External axiom The external axiom asserts acyclicity of the global happens-before ordering for Arm.3952

The happens-before (called ob, ‘ordered-before’, in Arm) relation is the union of all the ordering relations,3953

given in §9.4.3954

1 (* Ordered -before *)
2 let ob = (obs | dob | aob | bob | iio | tob | obtlbi | ctxob

| obfault | obETS)+3
4 (* External visibility requirement *)
5 irreflexive ob as external

3955

We choose to include all the pipeline and TLB effects as ordering requirements, rather than introducing3956

new ordering axioms just for translation and TLB invalidation. This produces a model that is more3957

consistent with the previous Arm memory models, and ensures ordering information gained through3958

observing translation table walks are respected by non-translation-table accesses.3959

Atomic axiom The atomic axiom remains unchanged. In this work, we do not consider the interaction3960

of translation with atomic accesses.3961

1 (* Atomic requirement *)
2 empty rmw & (fre; coe) as atomic

3962
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9.4 Relations3963

The RVM model modifies some of the original ordering relations, and introduces some new ones. This3964

section goes through each in detail, describing the mechanisms, and justifying the existence or non-existence3965

of particular clauses.3966

9.4.1 Observed-by3967

1 (* observed by *)
2 let obs = rfe | fr | wco | trfe

3968

The ‘observed-by’ relation includes the original rf and fr (over physical locations), the ‘generalised3969

coherence order ’ (wco, §9.1.2), and the translation-reads-from-external (trfe) relation.3970

Generalised coherence Including wco, which is existentially quantified over the candidates, fixes some3971

global order the writes and TLBIs happen in. Consider, informally, some microarchitectural execution. It3972

would propagate writes to the coherent storage subsystem, and would complete TLBI instructions, and3973

these events would be interleaved in some whole-machine trace. The generalised wco relation captures the3974

relative ordering of these events in the axiomatic model, as they would have happened in the traces of3975

machine executions. The model is then quantified over all such orderings, accounting for any interleaving3976

of these events.3977

External translation reads Inclusion of trfe enforces that translation-table-walk translation reads, which3978

could not come from forwarding, must have originally come from the coherent storage subsystem and so3979

the write must have been globally propagated before the translation read happened (§8.4.2, §8.4.7).3980

However, the translation read might have happened much later, either due to extreme out-of-order (§8.4.1)3981

or TLB caching (§8.5.1), and so we do not include tfre (translation-from-reads-external) in ob.3982

Additionally, writes may be propagated to that thread’s translation table walker before they are propagated3983

to the coherent storage subsystem (§8.4.4). In other words, they can be forwarded. Therefore we do not3984

include trfi (translation-reads-from-internal) in obs.3985

9.4.2 Dependency-ordered-before3986

1 let dob =
2 addr | data
3 | speculative; [W]
4 | addr; po; [W]
5 | (addr | data); rfi
6 | (addr | data); trfi

3987

The dependency-ordered-before relation is mostly unchanged, we add a single (addr | data); trfi clause3988

to forbid thin-air creation of values (§8.4.1, §8.4.2) similarly to the original model for data memory reads.3989
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9.4.3 Barrier-ordered-before3990

1 let bob =
2 [R]; po; [dmbld]
3 | [W]; po; [dmbst]
4 | [dmbst]; po; [W]
5 | [dmbld]; po; [R|W]
6 | [L]; po; [A]
7 | [A | Q]; po; [R | W]
8 | [R | W]; po; [L]
9 | [F | C]; po; [dsbsy]

10 | [dsb]; po

3991

We rewrite the original barrier-ordered-before relation to use the barrier helpers defined in Figure 9.2.3992

This does not change the underlying model for DMB instructions, but allows those same clauses to capture3993

the barrier hierarchy, imposing the same ordering when using stronger barriers (namely, DSBs).3994

However, the Arm DSB instruction does have extra ordering. First, a DSB SY orders TLBI instructions3995

(§8.6.2), and so we include [F|C];po;[dsbsy]. Second, all program-order later events must wait for an3996

earlier DSB to finish before performing its explicit memory events, so we also include [dsb];po in ob.3997

9.4.4 Translation-ordered-before3998

1 let tob =
2 [T_f]; tfre
3 | [T]; iio; [R|W]; po; [W]
4 | speculative; trfi

3999

Translation table walks themselves impose ordering on the surrounding events, in up to three ways:4000

. Coherence of translation-reads of invalid entries;4001

. might-be-same-address for program-order-later accesses;4002

. and, non-forwarding of the speculative writes.4003

Invalid writes Reads of invalid entries must not have come from the TLB (§8.3.3). Therefore, for a4004

translation fault, its respective translation read must have come from the coherence-latest write from4005

memory at the time the translation happened. We add the [T_f]; tfre edge to capture this: that any4006

translation-reads which read an invalid entry must happen before any writes coherence after the one it4007

read from.4008

There is a major caveat here: write forwarding to the translation table walker. We cannot simply include4009

all of tfr after a translation-read of invalid, as a thread-local write may be forwarded to the translation4010

table walker before it has propagated to memory (§8.4.4).4011

Speculation As we saw earlier, speculation interacts with translation in two ways: first, it is forbidden4012

to read-from a still speculative write (§8.4.5), and, second, events program-order-after an instruction4013

which does a translation table walk are speculative until the translation table walk completes (§8.4.1).4014

To capture these we first define when one event is considered speculative until another event happens,4015

with a new relation, speculative, defined as following:4016

1 let speculative = ctrl | addr; po | [T]; instruction -order

4017

This captures all the control-flow dependencies that we model here, the classic ctrl and addr; po, as well4018

as a new general [T]; instruction-order which says that all events ordered (iio|po)+ after a translation4019

read are speculative until the translation read satisfies.4020
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We then include speculative; trfi to forbid forwarding of still-speculative writes to translation table4021

walks. For now, we are unable to give a precise bound on the ordering for thread-local forwarding, and4022

this area is still currently under investigation with Arm, including potentially being strengthened to forbid4023

entirely in future.4024

Might-be-same-address Finally, we include [T]; iio; [M]; po; [W], which captures that writes cannot4025

propagate until program-order-earlier instructions have determined their physical addresses (and so will4026

not fault). Although this edge is subsumed by the speculative; [W] edge in dob, it is kept here for4027

clarity.4028

9.4.5 Contextually-ordered-before4029

Note: The model for exceptions and context-synchronising events is currently
under revision, and what is presented here is likely to change.

4030

1 let ctxob =
2 speculative; [MSR]
3 | [CSE]; instruction -order
4 | [ContextChange ]; po; [CSE]
5 | speculative; [CSE]
6 | po; [ERET]; instruction -order; [T]

4031

The contextually-ordered-before relation, ctxob, captures the orderings required from context-changing4032

and context-synchronising operations, without trying to capture the full extent of the relaxed behaviours.4033

As such, these orderings are likely to be incomparable to the real semantics: neither stronger nor weaker.4034

Speculation The first guarantee we see is that context changes and synchronisation should not happen4035

speculatively. Speculative context changes may create translation table roots and associated translation4036

table walks from unreachable writes, creating thin-air problems (§8.8.1). To prevent this, we ensure that4037

context-changing operations only happen once they are non-speculative, by enforcing speculative; [MSR]4038

in ob. Forbidding the speculative execution of context-synchronising operations is achieved by the inclusion4039

of speculative; [CSE] in ob.4040

Context synchronising Context-synchronising events (such as from ISB and ERET instructions) guar-4041

antee that program-order-earlier context-changing events are seen by program-order-later instructions.4042

Microarchitecturally, context synchronisation can be achieved by simply flushing the pipeline, restarting4043

all program-order-later instructions. For now, this effect seems fixed in the architecture (§8.7), and so4044

we get [CSE]; instruction-order in ob, subsuming the earlier ISB orderings. To ensure that context4045

changes are seen after the synchronisation, we include [ContextChange]; po; [CSE] in ob. The union of4046

these two relations ensures the context change is ordered before any program-order-later events.4047

Exceptions Taking and returning from exceptions are context synchronising (§8.7). However, translation4048

reads of a lower exception level should not satisfy during execution at a higher exception level. We over-4049

approximate this by including po; [ERET]; instruction-order; [T] in ob, ensuring all translation-reads4050

after an ERET wait.4051
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9.4.6 Fault-ordered-before and ETS4052

Note: ETS is subject to change, see relevant warning in §8.4.3, p.118.
4053

1 (* ordered -before a fault *)
2 let obfault =
3 data; [FaultFromW]
4 | speculative; [FaultFromW]
5 | [dmbst]; po; [FaultFromW]
6 | [dmbld]; po; [FaultFromW|FaultFromR]
7 | [A|Q]; po; [FaultFromW|FaultFromR]
8 | [R|W]; po; [FaultFromReleaseW]9

10 (* ETS -ordered -before *)
11 let obETS =
12 (obfault; [Fault_T ]); iio−1 ; [T_f]
13 | ([TLBI]; po; [dsb]; instruction -order; [T]) & tlb -affects

4054

To capture the specific guarantees described by FEAT_ETS (§8.4.3, §8.6.2), we include ‘ghost’ Fault events4055

in the candidate executions. These events sit in the execution (in po order) where the explicit memory4056

event would have been if there was no fault, and tags the fault with the kind of fault it was (translation4057

or permission).4058

Ordering to a fault To fully capture the strength of FEAT_ETS, we keep track of syntactic dependencies4059

into the instruction which faulted, and apply those dependencies to the Fault event itself. obfault is4060

then, syntactically, the subset of bob and dob where the right-hand side of each clause is substituted with4061

a Fault_T (a translation fault).4062

Using obfault, we can then keep track of the (syntactic) subset of ob that would have ordered the explicit4063

event after, and associate those relations with the Fault_T event instead. We do this with the obETS4064

relation, whose first clause adds to ob exactly this ordering, but attached to the translation read of the4065

invalid entry itself, as architected by FEAT_ETS.4066

Note that dependencies and orderings from a faulting instruction are not required to be respected, and so4067

we do not induce orderings from a Fault_T.4068

FEAT_ETS and TLBI The second clause of obETS captures a second architected behaviour of FEAT_ETS:4069

faults after thread-local TLBIs do not need context synchronisation to be ordered after the TLBI. Note4070

that one still needs a DSB to complete the TLBI in that case.4071

9.4.7 TLBI-ordered-before4072

1 (* ordered -before TLBI *)
2 let obtlbi =
3 obtlbi_translate
4 | [R|W|Fault_T ]; iio−1 ; (obtlbi_translate & ext); [TLBI]

4073

Finally, there is the obtlbi relation, which captures the ordering between translations (and their explicit4074

memory events) and the TLB invalidations which affect them. The relation is split in two: the first clause4075

enforces order between stale translations and the TLBIs they are invalidated by; the second clause imposes4076

additional ordering on the intra-instruction-later explicit events, capturing the pipeline effects of broadcast4077

TLBIs.4078
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Identifying stale TLB entries4079

1 let tlb_barriered =
2 ([T]; tfr; wco; [TLBI]) & tlb -affects−1

4080

When a translation read happens, it is allowed for it to read from a stale write (§8.5.1). That is,4081

the translation need not be ordered before writes which come after the write it actually reads from.4082

Consequently the tfre relation is not included in ob.4083

We strengthen this, by including some edges from translations to TLBIs, when there is an interposing4084

newer write. The general shape of this ordering, named tlb_barriered in the model, is illustrated in4085

Figure 9.5.4086

a: W pte(x)=old

b: W pte(x)=new

c: TLBI

d: T x

trf
wco

wco

tfr

tlb-affects

tlb_barriered

Figure 9.5: General tlb_barriered shape.

The tlb_barriered auxiliary relation relates any translation-read (d) to a TLBI (c) which targets that4087

translations context (ASID, VMID, address, etc) which is wco-after an interposing write (b) since the4088

write the translation-read read from. Intuitively, ‘after’ the TLBI the stale writes will no longer be in the4089

TLB, and so translation-reads should not read from them any more.4090

Stale translation reads We cannot simply include tlb_barriered in ob. Instead, we must consider the4091

orderings for stage 1 and stage 2 translation reads separately.4092

1 (* translate ordered -before TLBI *)
2 let obtlbi_translate =
3 [T & Stage1 ]; tlb_barriered; [TLBI -S1]4
5 | (([T & Stage2 ]; tlb_barriered; [TLBI -S2])
6 ; wco?; [TLBI -S1]
7 )
8 & (same -translation; [T & Stage1 ]; maybe_TLB_cached)9

10 | ([T & Stage2 ]; tlb_barriered; [TLBI -S2])
11 & (same -translation; [T & Stage1 ]; trf−1 ; wco−1 )

4093

For stage 1 translation reads, either in single-stage regimes or as part of a two-stage regime, we can include4094

a variant of tlb_barriered specialised to stage 1 translation-reads and TLBIs which affect stage 1 entries.4095

Stage 2 walks are more subtle. The requirement to perform stage 1 invalidation (§8.6.4) means that, in4096

those instances, we do not get tlb_barriered directly.4097

Instead, we have to case split on the execution: either (1) the translation table walk does a stage 14098

translation read which reads-from an older write, in which case there may have been a whole cached4099

translation that must be invalidated; or (2) one of the stage 1 translation reads of the translation table4100

walk reads from a write that is newer than the stage 2 TLBI, and so there cannot have been any cached4101

whole translation entries in the TLB ,and so we only need the stage 2 invalidation. These cases are4102

illustrated in Figure 9.6, and correspond to the two clauses of obtlbi_translate which match on stage 24103

translation reads.4104
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a: W s1pte(x)=new

b: W s2pte(x)=new

c: TLBI-S2

d: TLBI-S1

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

wco?

same-trans

ob

Case (1)

a: W s2pte(x)=new

b: TLBI-S2

c: W s1pte(x)=new

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

same-trans

ob

Case (2)

Figure 9.6: obtlbi stage 2 scenarios.

The staggered two-step invalidation in case (1), where a translation-read may have been cached in the4105

TLB, is captured with the following maybe_TLB_cached relation:4106

1 let maybe_TLB_cached =
2 ([T]; trf−1 ; wco; [TLBI]) & tlb -affects−1

4107

We then use this relation to add ordering from a stage 2 translation-read to the stage 1 TLBI, wco-after a4108

stage 2 TLBI that removed any stale IPA mappings, which would remove any cached whole-translation4109

any stage 1 translation-read might have read from, and after which any fresh translation table walk would4110

be required to not see the stale stage 2 entry the translation-read read from.4111

We capture the general shape of (2) by ordering the second-stage translation-read with the second-stage4112

TLBI using tlb_barriered just as we did for Stage 1, but only when one of the same-translation stage 14113

walk translation-reads already read from something newer — and therefore there cannot have been a4114

whole-translation cached in the TLB.4115

Broadcast TLBIs Recall that broadcast TLBIs impose restrictions on other threads (§8.6.3). When a4116

broadcast TLBI’s invalidation affects a translation on another core, then it must also affect the explicit4117

memory effect associated with it. This shape is illustrated in Figure 9.7, and corresponds to the final4118

clause of obtlbi.4119

a: W pte(x)=new

b: TLBI

e1: T x

e2: R|W x

tfr

obtlbi_translate iio

ob

Figure 9.7: obtlbi broadcast TLBI shape.
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Connecting TLB invalidations to translation reads The final part of the puzzle is how to relate TLBI4120

events with translations which may be affected by the invalidation. Recall that the TLBIs are grouped4121

into subsets of TLBI-S1, TLBI-VA, and so on. We define a tlb_might_affect that is the cross-product of4122

these with the same-* relations:4123

1 let tlb_might_affect =
2 [ TLBI -S1 & ~TLBI -S2 & TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -va-page & same -asid & same -vmid) ; [T & Stage1]
3 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -asid & same -vmid) ; [T & Stage1]
4 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage1]
5 | [~TLBI -S1 & TLBI -S2 & TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; (same -ipa -page & same -vmid) ; [T & Stage2]
6 | [~TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage2]
7 | [ TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T]
8 | ( TLBI -S1 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage1)
9 | ( TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage2)

4124

Finally, we get tlb-affects by attaching tlb_might_affect to events in the same thread, and if a TLBI-IS,4125

to ones in other threads too:4126

1 let tlb -affects =
2 ([~TLBI -IS]; tlb_might_affect) & int
3 | [TLBI -IS]; tlb_might_affect

4127
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1 declare wco(Event , Event): bool2
3 (* wco has domain and range of W,CacheOp *)
4 assert forall ev1: Event , ev2: Event =>
5 wco(ev1 , ev2) -->
6 (W(ev1) | C(ev1) | (ev1 == IW)) & (W(ev2) | C(ev2))7
8 (* wco is transitive *)
9 assert forall ev1: Event , ev2: Event , ev3: Event =>

10 wco(ev1 , ev2) & wco(ev2 , ev3) --> wco(ev1 , ev3)11
12 (* wco is total *)
13 assert forall ev1: Event , ev2: Event , ev3: Event =>
14 wco(ev1 , ev3) & wco(ev2 , ev3) & ~(ev1 == ev2) -->
15 wco(ev1 , ev2) | wco(ev2 , ev1)16
17 (* wco is irreflexive *)
18 assert forall ev1: Event , ev2: Event , ev3: Event =>
19 wco(ev1 , ev2) --> ~(ev1 == ev2)20
21 (* wco is antisymmetric *)
22 assert forall ev1: Event , ev2: Event =>
23 wco(ev1 , ev2) --> ~wco(ev2 , ev1)24
25 (* all write/cache -op pairs are wco related *)
26 assert forall ev1: Event , ev2: Event =>
27 W(ev1) & C(ev2) -->
28 wco(ev1 , ev2) | wco(ev2 , ev1)29
30 (* wco is consistent with co *)
31 assert forall ev1: Event , ev2: Event =>
32 co(ev1 , ev2) --> wco(ev1 , ev2)33
34 (* all C are wco after IW
35 * n.b. all W are wco after IW, because all W are co after IW

and co => wco
36 *)
37 assert forall ev: Event =>
38 C(ev) --> wco(IW, ev)

Figure 9.8: wco.cat: isla-cat definition of wco.
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Chapter 104128

Validating the RVM model4129

10.1 Validation against the architecture4130

To ensure that the proposed virtual memory model presented in Chapter 9 correctly captures the4131

architectural intent (where known), we engaged in detailed discussions with Arm.4132

Our model is produced through an iterative process: where the production of interesting litmus tests are4133

guided by hardware testing and surveying of software requirements; the resulting tests are presented to,4134

and discussed with, Arm architects; new and updated models are created using any architectural intent4135

learned from those discussions; and, finally, those new models are validated against hardware and software4136

requirements, informing the production of further litmus tests.4137

Ideally, we would run this process until a fixed point is reached. However, this is not always practical.4138

Here, we know the model presented in Chapter 9 is incomplete and the litmus tests presented in Chapter 84139

are non-exhaustive. More work is needed to further update the models.4140

10.1.1 Clarity of architecture4141

We claim that the litmus tests presented in Chapter 8 have known architectural intent, and (as will be4142

discussed in the following sections) the presented model correctly captures that intent for those tests.4143

For some of these behaviours, it seems improbable that the architectural intent would change. Specifically,4144

the guarantees given by the break, break-before-make, and general TLB-maintenance shapes, are funda-4145

mental to the security and correctness of modern software, and so are highly unlikely to be weakened over4146

time.4147

Some of the behaviours arise as consequences of other parts of the design, specifically around TLB fills4148

(§8.5.2), where the strength of the fill itself arises from a historical design of the processors, and not4149

a fundamental software requirement. As modern hardware has advanced, Arm have added features to4150

specifically weaken those areas (such as with FEAT_nTLBPA).4151

Conversely, many of the relaxed behaviours may see changes as the architecture evolves. We already saw4152

how the introduction of FEAT_ETS strengthened some aspects of the architecture, and features such as4153

ETS are still in-flux, and there seems no reason to believe that Arm have settled on the final design.4154

Hopefully, the questions raised in this work have helped guide Arm in that design, and resulted in a more4155

stable architecture.4156

10.1.2 Remaining questions and updates4157

There are a number of places where the model as presented lacks the underlying architectural clarity to4158

yet give more precise bounds on the architectural envelope.4159

There are a few places this is apparent in the model presented here:4160

. ConstrainedUnpredictable behaviours due to TLB conflicts (break-before-make violations).4161

. Architectural features such as FEAT_nTLBPA, FEAT_ETS2, FEAT_TTL, and FEAT_BBM.4162
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. Caching of access permissions, memory types, shareability, and so on.4163

. Sharing TLBs between PEs.4164

. Caching of non-last-level block entries in the TLB.4165

The first, the constraints on unpredictability, were already discussed earlier (§8.6.5), and more discussions4166

with architects is required to be able to present a model with any confidence.4167

The last one (caching of non-last-level block entries) is more interesting, and represents a gap in the4168

model presented in the previous chapter. When an block entry is cached in the TLB, the hardware has a4169

choice between caching entries per-page or only one for the whole block. The model currently is too weak,4170

allowing separately cached entries per-page, and the architectural intent is now clearly to ensure that4171

TLB invalidations would remove any cached entries for the whole block.4172

10.2 Validating against hardware4173

Hardware testing is an important aspect in gaining confidence in any relaxed memory model: without4174

thorough evaluation of a range of microarchitecture it would not be possible to make strong claims of4175

soundness of such a model.4176

However, testing systems-level features on hardware is much more challenging than testing the features4177

covered in previous user-level models (including instruction fetch, as the required cache maintenance4178

instructions were all unprivileged). Testing virtual memory requires a setup running at least at EL1, both4179

to be able to run the TLB maintenance instructions, and to enable catching of any generated exceptions.4180

One approach would be to use klitmus7, an experimental version of litmus which produces a kernel4181

module that runs at EL1 [101]. However, klitmus was primarily designed for the testing of the Linux4182

kernel memory model, with the kernel modules it produces run as part of the Linux kernel. Attempting to4183

modify the currently in-use translation tables or exception vectors would interfere with Linux’s operations.4184

Using klitmus would therefore require a custom kernel as well as test infrastructure.4185

Instead, we build a brand new test harness designed for running tests which use systems features such as4186

TLB maintenance and exception handlers: system-litmus-harness1.4187

Limitations system-litmus-harness has some limitations, for now: (1) the harness runs at EL1 and4188

cannot run tests at EL2; (2) we do not check for known CPU errata for the device being ran on, instead4189

relying on defensive programming; (3) while the harness can run with QEMU/KVM on any device, running4190

it bare metal (without a VM) is supported on only a limited number of devices; and (4) the harness4191

currently uses an ad-hoc litmus test format which is not unified with either isla-axiomatic or litmus74192

itself.4193

We do not believe any of these limitations are fundamental; they should all be solvable with additional4194

engineering resources.4195

10.2.1 Harness overview4196

At its core, system-litmus-harness is a relatively simple micro-kernel running at EL1. It builds-in a set4197

of litmus tests, with fixed code for each thread, and an initial state described in an ad-hoc language. The4198

user gives the harness arguments, at boot, containing the name(s) of litmus tests to run and other run4199

configuration options. The harness then runs the litmus tests, collects the results, and echos those results4200

back to the user through the serial output.4201

The structure of the test runner inside the harness is in a typical litmus style. It runs the tests in batches,4202

executing each thread in a loop, where each iteration of the loop operates on a different set of locations,4203

making each iteration independent from one another. This is extended in the obvious way for translation,4204

making each iteration use its own translation tables and ASID.4205

1https://github.com/rems-project/system-litmus-harness

10.2. VALIDATING AGAINST HARDWARE 169

https://github.com/rems-project/system-litmus-harness


Litmus test format Figure 10.1 gives an example litmus test, CoTR.inv+dsb-isb, a variation on the4206

straight-forward CoRR coherence shape but for translation walks, in the system-litmus-harness format.4207

Litmus tests are dedicated C files which define a litmus_test_t struct containing the litmus test data.4208

The test displayed here can be found at https://github.com/rems-project/system-litmus-harness/4209

blob/master/litmus/litmus_tests/pgtable/CoTR.inv%2Bdsb-isb.c.4210

The header VARS and REGS define the global variables to allocate (in this case, we want two, named x and4211

y), and the names of output variables (which we usually style after the names of the machine registers4212

which store them) for the final register values to save from the test.4213

The test then defines two threads with two static functions, P0 and P1, containing the code of the threads4214

to execute. These functions take some data, stored in a litmus_test_run struct, which contains the4215

virtual addresses of each of the global and output variables, and any other initial state required for the4216

test.4217

Taking the code for Thread 1, in P1, as an example, it is given as an asm block which contains the test4218

code sandwiched between some setup and teardown code that moves values from the C code into the4219

machine registers the test uses, and back out at the end.4220

This test has an exception handler for this thread. It is given by the sync_handler function and set as4221

the vector for this thread in the initial state. The handler simply resets x0 to 0, and then performs an4222

ERET to the next instruction address (that is, to ELR+4).4223

The final block of the test is the litmus_test_t struct, which gives the C definition for the test. It4224

provides the name, the number of threads, the global and output variables, which exception handlers to4225

install for each thread, the particular relaxed result to mark, and the initial machine state to run the test4226

from. In this case, the initial state says that x starts unmapped (invalid at level 3), and y is mapped to a4227

location that contains the value 1. Implicitly, global variables have virtual addresses in distinct pages.4228

Litmus test format reference4229

Our test format supports writing a variety of kinds of pagetable tests, through both the initial state4230

setup and the data passed from the harness allocator via the litmus_test_run data struct. Appendix B4231

describes the test format in full.4232

As an example, take the INIT_STATE from the ROT1+dsb-dsb-tlbi-dsb test1, which defines three variables:4233

x, y, and z. Its initial state is reproduced in Figure 10.2. It says that all three variables start out mapped4234

with initial values 0, 1, and 2, respectively (L13-15). Next, it tells the allocator that x should be allocated4235

in its own 2MiB region (L16), but to nevertheless place y in that region too (L17) with the same page4236

offset, i.e. it should have the same least significant 12 bits as x (L18). Finally, it tells the allocator to4237

place z in its own 2MiB region, with the same PMD offset (bits 20-12) as x (L20). This ensures that bits4238

12-0 overlap for x and y, and bits 20-12 overlap for x and z, and therefore the table containing the entry4239

for y can be assigned to the level 2 entry for x, as required by the ROT test shape (see §8.4.8).4240

10.2.2 Results from hardware4241

We ran a collection of hand-written litmus tests on three hardware devices using system-litmus-harness4242

running inside KVM: a Raspberry Pi 4; a Raspberry Pi 3B+; and an AWS m6g-metal instance (claiming4243

to be an A76). Note that the hardware tests are an overlapping set of tests with those presented in Ch. 8:4244

some contain BBM violations; some tests are not reproduced on hardware; and some may appear with4245

slightly different names (for example, CoWTf.inv+dmb test (Figure 8.18, p.117) appears in the table as4246

CoWT.inv+dmb). Tables 10.1 and 10.2 list the total results for all the tests from all three devices.4247

Our testing revealed some incompatibilities between the architectural intent and the current implemen-4248

tations. For some break-before-make sequences, such as test MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb4249

(architecturally forbidden, experimentally observed), we did observe some rare violations of the architec-4250

tural intent. The related MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb test (with a detour after4251

the write) was never observed however, suggesting it is related to the DSB not fully propagating the store,4252

1which can be found at https://github.com/rems-project/system-litmus-harness/blob/master/litmus/litmus_tests/
pgtable/pmds/ROT1%2Bdsb-dsb-tlbi-dsb.c
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1 #include "lib.h"
2
3 #define VARS x, y
4 #define REGS p1x0 , p1x2
5
6 static void P0(litmus_test_run* data)
7 {
8 asm volatile (
9 /* setup */

10 "mov x0 , %[ ydesc ]\n\t"
11 "mov x1 , %[xpte]\n\t"
12 /* code */
13 "str x0 , [x1]\n\t"
14 :
15 : ASM_VARS(data , VARS),
16 ASM_REGS(data , REGS)
17 : "cc", "memory", "x0", "x1"
18 );
19 }
20
21 static void sync_handler(void)
22 {
23 asm volatile (
24 "mov x0 , #0\n\t"
25
26 ERET_TO_NEXT(x10)
27 );
28 }
29
30 static void P1(litmus_test_run* data)
31 {
32 asm volatile (
33 /* setup */
34 "mov x1 , %[x]\n\t"
35 "mov x3 , %[xpte]\n\t"
36 /* code */
37 "ldr x0 , [x1]\n\t"
38 "dsb sy\n\t"
39 "isb\n\t"
40 "ldr x2 , [x3]\n\t"

41 /* teardown */
42 "str x0 , [%[ outp1r0 ]]\n\t"
43 "cbz x2 , .after\n\t"
44 "mov x2 ,#1\n\t"
45 ".after :\n\t"
46 "str x2 , [%[ outp1r2 ]]\n\t"
47 :
48 : ASM_VARS(data , VARS),
49 ASM_REGS(data , REGS)
50 : "cc", "memory", "x0", "x1",
51 "x2", "x3", "x10"
52 );
53 }
54
55 litmus_test_t CoTRinv_dsbisb = {
56 "CoTR.inv+dsb -isb",
57 MAKE_THREADS (2),
58 MAKE_VARS(VARS),
59 MAKE_REGS(REGS),
60 INIT_STATE(
61 2,
62 INIT_UNMAPPED(x),
63 INIT_VAR(y, 1)
64 ),
65 .interesting_result = (u64 []){
66 /* p0:x0 =*/1,
67 /* p0:x2 =*/0,
68 },
69 .thread_sync_handlers =
70 (u32 **[]){
71 (u32 *[]){NULL , NULL},
72 (u32 *[]){(u32*) sync_handler ,

NULL},
73 },
74 .requires_pgtable = 1,
75 .no_sc_results = 3,
76 };

Figure 10.1: CoTR.inv+dsb-isb litmus test, system-litmus-harness source.
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1 #define VARS x, y, z
2 #define REGS p0x4
3
4 /* see source for full test */
5
6 litmus_test_t ROT1_dsbtlbidsb = {
7 "ROT1+dsb -dsb -tlbi -dsb",
8 MAKE_THREADS (1),
9 MAKE_VARS(VARS),

10 MAKE_REGS(REGS),
11 INIT_STATE(
12 8,
13 INIT_VAR(x, 0),
14 INIT_VAR(y, 1),
15 INIT_VAR(z, 2),
16 INIT_REGION_OWN(x, REGION_OWN_PMD),
17 INIT_REGION_PIN(y, x, REGION_SAME_PMD),
18 INIT_REGION_OFFSET(y, x, REGION_SAME_PAGE_OFFSET),
19 INIT_REGION_OWN(z, REGION_OWN_PMD),
20 INIT_REGION_OFFSET(z, x, REGION_SAME_PMD_OFFSET),
21 ),
22 .interesting_result = (u64 []){
23 /* p0:x2 =*/1,
24 },
25 .start_els = (int[]){1},
26 .requires_pgtable = 1,
27 .no_sc_results = 2,
28 };

Figure 10.2: system-litmus-harness initial state for an ROT-shaped test.

which implies it may be related to other known CPU errata. These anomalous results have been reported,4253

and are under investigation by Arm.4254

10.3 Validation by abstraction4255

We cannot ‘prove’ that the model is correct. Correctness of a relaxed memory model like this depends on4256

the architects’ intent, and that may change as new revisions of the architecture are released. However, we4257

can identify properties we believe any sound model would have, and check that the model presented here4258

has those properties.4259

The key property is that the presented model has a ‘virtual memory abstraction’; there is no definition of4260

what such an abstraction is, but we give one intuitive and informal definition: a program with a fixed4261

injective translation table mapping behaves as if executing above physical memory directly. We can state4262

this virtual memory abstraction as a property over candidate executions.4263

To do this, we define a translation erasure operation: given a candidate C, the translation-erased candidate4264

C∼T is C, but where all TLBI, T, and T_f events are erased; any edge containing such events as source or4265

target removed; and extended with the derived relations addr and po from C.4266

If given a full (with all the translation table walk events) well-formed (consistent with the intra-instruction4267

semantics) candidate C, with no TLBI events, no T_f events, and no W events to any pagetable location,4268

then, the candidate is consistent in the VMSA model if and only if the translation-erased candidate C∼T
4269

is consistent in the base model.4270

Informally, the proof is a straightforward inclusion proof by relation algebra. The internal and atomic4271

axioms are trivially subset inclusions of one another under translation erasure. Additionally, the translation-4272

internal relation is trivially a subset of the usual internal one with translation events erased. For external,4273

we show that ob in the base model implies ob in the VMSA model, and that ob in the VMSA model4274

implies the same ob in the base model. Therefore they must forbid the same cycles. See Appendix C for4275

the full proof.4276
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Table 10.1: system-litmus-harness hardware results from three devices: Part I.

Name rpi4b rpi3bp graviton2
CoRT 964.72K/8M 520.06K/3M 2.29M/108M
CoRT+dsb-isb 802.86K/8M 327.02K/3M 3.41M/108M
CoTR 2.51M/8M 0/3M 21.70M/107.50M
CoTR+addr 0/8M 1/3M 0/107.50M
CoTR+dmb 1/8M 0/3M 4/107.50M
CoTR+dsb 2/8M 0/2.50M 5/107M
CoTR+dsb-isb 1/8M 0/2.50M 1/107M
CoTR.inv 3.63M/6.50M 0/2.50M 32.28M/43M
CoTR.inv+dsb-isb 0/6.50M 0/2.50M 0/43M
CoTR1+dsb-dc-dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 4/43M
CoTR1+dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 3/43M
CoTR1.tlbi+dsb-isb 6/6.50M 1/2.50M 29/43M
CoTT 0/6.50M 0/2M 0/43M
CoTW 0/1.50M 0/1.50M 0/10.50M
CoWT 3.77M/6.50M 1.85M/2M 22.64M/43M
CoWT+dsb 3.76M/6.50M 995.06K/2M 21.50M/43M
CoWT+dsb-isb 3.78M/6.50M 995.77K/2M 21.50M/43M
CoWT+dsb-svc-tlbi-dsb 0/6.50M 0/2M 0/42.50M
CoWT.inv 10/6.50M 1.73M/2M 169/42.50M
CoWT.inv+dmb 8/6.50M 69.38K/2M 42/42.50M
CoWT.inv+dsb 1/6.50M 0/2M 57/42M
CoWT.inv+dsb-isb 0/6.50M 0/2M 0/42M
CoWT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42.50M
CoWT1+dsb-tlbi-dsb-isb 0/6.50M 0/2M 0/42.50M
CoWinvT 4.17M/6.50M 1.79M/2M 26.81M/42M
CoWinvT+dsb-isb 4.19M/6.50M 1.83M/2M 26.80M/42M
CoWinvT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42M
CoWinvWT1+dsb-tlbi-dsb-dsb-isb 0/6.50M 0/2M 0/42M
ISA2.TRR+dmb+po+dmb 0/6.50M 0/2M 0/42M
MP.BBM1+[dmb.ld]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/437.50M
MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/198.50M 0/1.06G 0/129.50M
MP.BBM1+[po]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/145.50M
MP.BBM1+dsb-isb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/6.50M 0/2M 52/135.50M
MP.BBM1+dsb-tlbiis-dsb-dsb+dsb 1/6.50M 0/2M 7/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb 0/6.50M 0/2M 2/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb 1/6M 0/2M 0/42.50M
MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb 2/6M 0/2M 3/42.50M
MP.BBM1+po-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/1M 0/1.50M 9/191.50M
MP.BBM1.id+dsb-tlbiis-dsb-dsb+dsb-isb 10/6M 2/2M 87/42.50M
MP.RT+svc-dsb-tlbi-dsb+dsb-isb 1/6M 0/2M 3/42M
MP.RT+svc-dsb-tlbiis-dsb+dsb-isb 1/6M 0/2M 3/42M
MP.RT.inv+dmb+addr 0/6M 0/2M 0/42M
MP.RT.inv+dmb+po 0/6M 6/1.50M 0/42M
MP.RT1+[dmb.ld]-dmb+dsb-isb 7.15K/6M 986/1.50M 1.26K/42M
MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dmb 0/1M 0/1M 0/23M
MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dsb-isb 0/1M 0/1M 0/23M
MP.RT1+[dmb.ld]-dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 0/42M
MP.RT1+dc-dsb-tlbiall-dsb+dsb-isb 4/6M 1/1.50M 5/41.50M
MP.RT1+dc-dsb-tlbiall-dsb-isb+dsb-isb 3/6M 0/1.50M 2/41.50M
MP.RT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 4/41M
MP.RT1+dsb-tlbi-dsb+dsb-isb 0/6M 0/1.50M 2/41M
MP.RT1+dsb-tlbiall-dsb+dsb-isb 5/6M 0/1.50M 6/41M
MP.RT1+dsb-tlbiallis-dsb+dsb-isb 3/6M 0/1.50M 2/41M
MP.RT1+dsb-tlbiis-dsb+dsb-isb 1/6M 0/1.50M 1/41M
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Table 10.2: system-litmus-harness hardware results from three devices: Part II.

Name rpi4b rpi3bp graviton2
MP.RT1+dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 1/41M
MP.RT1+dsb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 1/41M
MP.RT1+dsb-tlbiis-dsb-tlbiis-dsb+dsb-isb 0/6M 0/1.50M 3/41M
MP.TT+Winv-dmb-Winv+tpo 254.83K/6M 114.48K/1.50M 170.96K/41M
MP.TT+dmb+dsb-isb 688.65K/5.50M 174.78K/1.50M 492.98K/41M
MP.TT+dmb+tpo 843.79K/5.50M 157.80K/1.50M 480.31K/41M
MP.TT.inv+dmb+dsb-isb 0/5.50M 0/1.50M 0/41M
MP.TT.inv+dmb+tpo 0/5.50M 0/1.50M 0/41M
MP.invRT+dsb+dsb-isb 871.53K/5M 101.75K/1.50M 1.78M/40.50M
MP.invRT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/5.50M 0/1.50M 1/41M
MP.invRT1+dsb-tlbiis-dsb+dsb 0/5M 0/1.50M 2/41M
MP.invRT1+dsb-tlbiis-dsb+dsb-isb 1/4.50M 0/1.50M 1/41M
WRC.AT+ctrl+dsb 128.64K/4.50M 77.36K/1.50M 214.45K/40M
WRC.TRR+addr+dmb 0/4.50M 0/1.50M 0/40M
WRC.TRR.inv+addrs 0/4.50M 0/1.50M 0/40M
WRC.TRT+addr+dmb 35.28K/4.50M 32.50K/1.50M 103.16K/40M
WRC.TRT+dmbs 53.60K/4.50M 36.76K/1.50M 171.51K/40M
WRC.TRT+dsb-isbs 18.80K/4.50M 30.44K/1.50M 104.62K/39.50M
WRC.TRT.inv+addrs 0/4M 0/1.50M 0/38.50M
WRC.TRT.inv+dsb-isbs 0/4M 0/1M 0/38M
WRC.TRT.inv+po+addr 0/4M 0/1M 0/37.50M
WRC.TRT.inv+po+dmb 0/4M 0/1M 0/37M
WRC.TRT1+dsb-tlbiis-dsb+dmb 0/4.50M 0/1M 0/38M
WRC.TRT1+dsb-tlbiis-dsb+dsb-isb 0/4.50M 0/1M 0/38M
CoWR.alias 0/6M 0/1.50M 0/36M
MP+dmb-data+dmb 0/5M 0/1.50M 0/36M
MP.alias+dmbs 0/5M 0/1.50M 0/36M
MP.alias2+dmb-data+dmb 0/5M 0/1.50M 0/36M
MP.alias2+dmbs 0/3M 0/1.50M 0/19.50M
MP.alias2+po-data+dmb 2.23K/5M 3.17K/1.50M 407.36K/36M
MP.alias3+rfi-data+dmb 51/3M 16/1.50M 36.35K/19.50M
SB.alias+dmbs 0/5M 0/1M 0/35.50M
WRC.alias2+addrs 0/4M 0/43M 0/19M
WRC.alias2+dmbs 0/4M 0/43M 0/18.50M
MP.NC+dsb-dc-dsb-dmb+dmb 138.80K/8M 364.97K/26M 54.95K/25.50M
MP.NC+po-dmb+dmb 345.33K/7.50M 642.90K/25.50M 333.55K/25.50M
MP.NC1+dsb-tlbiis-dsb-dc-dsb-dmb+dmb 0/7.50M 0/25.50M 0/25.50M
MP.NC1+dsb-tlbiis-dsb-dmb+dmb 556/7.50M 482/25.50M 6/25.50M
WR.NC+dsb 0/0 0/0 0/0
WR.NC+po 0/0 0/0 0/0
WR.WARA-NC+dsb 0/0 0/0 0/0
WR.WARA-NC+po 0/0 0/0 0/0
WWR.NC+po-po 0/0 0/0 0/0
CoWT.L23+dsb-isb 11.45M/13M 6.73M/13.50M 48.94M/84.50M
CoWT.L23+po 12.88M/13M 13.39M/13.50M 80.61M/84.50M
CoWT1.L23+dsb-tlbi-dsb-isb 0/13M 0/13.50M 0/84.50M
ROT+dsb-dsb 0/13M 0/13.50M 0/84.50M
ROT+po-po 0/13M 0/13.50M 0/84M
ROT1+dsb-dsb-tlbi-dsb 0/13M 0/13.50M 0/84M
ROT1+dsb-dsb-tlbivaa-dsb 0/13M 0/13.50M 0/84M
CoTT+dsb-popage 0/35.50M 0/31M 0/1.12G
CoTT+po-popage 1/47M 0/43.50M 0/1.20G
WR.MAIR1+dsb-isb-dc-dsb 0/0 0/0 0/0
WR.MAIR1+dsb-isb-po 0/0 0/0 0/0
WR.MAIR1+dsb-tlbi-dsb-isb-dc-dsb 0/0 0/0 0/0
WR.MAIR1+dsb-tlbi-dsb-isb-po 0/0 0/0 0/0
WR.MAIR1+po-po 0/0 0/0 0/0
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Chapter 114279

Relaxed precise exceptions4280

This part is based, in part, on in-progress and under-submission work done in collaboration with Alasdair4281

Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell.4282

We now turn to the final part, and discuss hardware support for exceptions and interrupts.4283

We do so in the way the other parts have made now typical: we describe the main phenomena and4284

architectural design space, through the exploration of litmus tests; we use those litmus tests as a4285

catalyst for discussions about the architectural intent with the architects and for discovery of the current4286

implementations by the surveying of hardware; we produce a formal mathematical model that captures4287

that intent; and, finally, we validate that model by making it executable as a test oracle and execute a4288

suite of litmus tests, comparing the results to hardware and previously collected intent from architects.4289
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11.1 Introduction4313

Hardware exceptions (and their many variants: interrupts, traps, faults, aborts, etc.) provide support4314

for many exceptional situations that systems software has to manage. This includes explicit privilege4315

transitions via system calls, implicit privilege transitions from trappable instructions, inter-processor4316

software-generated interrupts, external interrupts from timers or devices, recoverable faults like address4317

translation faults, and non-recoverable faults like memory error correction faults.4318

To manage exceptions, software relies on a key architectural guarantee, precision: that exceptions appear4319

to execute between instructions. To confidently write concurrent systems code that handles exceptions,4320

e.g. mapping on demand at page faults, programmers need a well-defined and well-understood semantics.4321

These modern definitions of precision (e.g. in the current Arm-A documentation) are mostly unchanged4322

over the last 60 years, dating back to at least the IBM System/360. These definitions fundamentally4323

assume a sequential programmers model. For example, Hennessy and Patterson state [102]:4324

An exception is imprecise if the processor state when an exception is raised does
not look exactly as if the instructions were executed sequentially in strict program
order

4325

However, modern architectures with programmer-observable relaxed behaviour, such as Arm-A, make4326

such a naive definition inadequate, and leaves it unclear exactly what guarantees there are on exception4327

entry and exit. On pipelined out-of-order processors with observable speculative execution, exceptions4328

have subtle interactions with relaxed memory behaviour which had not previously been investigated.4329

Overview In this part, we begin by clarifying the key concepts needed to discuss exceptions in the4330

relaxed-memory setting (§11.1-11.2), through the exploration the basic relaxed behaviour across exception4331

boundaries (§11.3). We extend this by introducing the potential of external aborts and examining how4332

they effect the programmer-visible behaviour (§11.4).4333

We develop an axiomatic model for precise exceptions on Arm-A, including tooling for executing it as a4334

test oracle, along with a library of tests (Chapter 12).4335

Finally, we validate this model (Chapter 13) by extending to the harness presented in Part II and collecting4336

data from a range of implementations.4337

11.1.1 Exception taxonomy4338

Arm-A defines multiple kinds of exception [72, D1.3.1]:4339

. Synchronous exceptions. These originate from an instruction, e.g. supervisor/hypervisor calls, traps,4340

data/instruction, page faults, etc.4341

. Asynchronous exceptions. These are interrupt requests from other processors/peripherals/timers, or4342

system errors.4343

In Arm nomenclature, any non-synchronous exception is called an interrupt.4344

Synchronous exceptions are further broken down into classes, for example:4345

. PC Alignment, for a misaligned program counter.4346

. Instruction abort, for MMU faults on instruction accesses.4347

. Undefined instruction encoding.4348

. Data abort, for MMU faults on data accesses.4349

. Execution of an SVC (supervisor call).4350

. Trapped register access, from attempting accessing a register that is not permitted or is configured4351

to trap.4352

For a complete list of exception classes, and their prioritisation, refer to the Arm architecture reference4353

manual [72, D1.3.5, p5369].4354

11.1. INTRODUCTION 177



11.1.2 Exception lifecycle4355

When an exception is taken, execution jumps to the appropriate exception vector. Vectors are pre-4356

determined locations which contain code to be executed on the event of an exception. Different kinds4357

of exception jump to different vectors, and so the currently in-use vectors form a vector table. Software4358

configures the vectors by setting the base address of the vector table, by writing to the appropriate vector4359

base address register (VBAR).4360

On taking the exception:4361

. The current processor state is saved into the saved program status register (SPSR). This includes4362

the current exception level, status flags and condition bits, and interrupt masking (described in4363

more detail later).4364

. The privilege level typically escalates (e.g. from EL0 to EL1).4365

. The program-counter to return to (the ‘preferred return address’) is saved into the appropriate4366

exception link register (ELR).4367

. The cause of the exception is saved into either the exception syndrome register (ESR) for synchronous4368

exceptions, telling the programmer the class of the exception and other associated data; or into the4369

interrupt status register (ISR), telling the programmer which interrupt(s) are pending.4370

. If a translation-related fault, the faulting address is also saved into the fault address register (FAR).4371

. The PC is set to the current VBAR plus appropriate offset.4372

The code then executed is termed the exception handler. Execution continues in the new state until the4373

processor executes an ERET (‘exception return’) instruction.4374

On executing an ERET:4375

. The saved processor state (SPSR) is restored.4376

. The value saved in the ELR is written to the PC.4377

Thus, execution jumps back to where the program was executing before the exception was taken, in much4378

the same processor state as it was in at the time.4379

Preferred return address4380

The ‘preferred return address’ of synchronous exceptions has an architecturally defined relationship with4381

the instruction that caused the exception. For most instructions, the preferred return address is the4382

program counter value at the point when the exception is taken, therefore returning back to the same4383

instruction once the exception is handled.4384

There is a small exception to this, which is the class of exception generating instructions, whose sole4385

purpose is to generate a particular kind of exception. The most common of these is the SVC (‘supervisor4386

call’) instruction, which is used to implement system calls. These instructions preferred return address is4387

always the next instruction, that is, PC + 4.4388

11.1.3 Vectors and vector tables4389

The appropriate vector is determined from: the type of the exception, either synchronous, interrupt4390

request (IRQ), ‘fast’ interrupt request, or external abort (which is described in more detail later); the4391

current stack pointer in use; whether the exception originates from a lower exception level; and whether4392

the exception originates from the 32-bit mode or not. As such the vector table contains 16 vectors. Each4393

vector is 128 bytes. The vectors are then located at a given offset from the base address, see Figure 11.1.4394

Exception from Exception type
Synchronous IRQ Fast IRQ External abort

Current EL, using stack pointer SP_EL0 0x000 0x080 0x100 0x180
Current EL, using this EL’s stack pointer 0x200 0x280 0x300 0x380
Lower EL, in 64-bit mode 0x400 0x480 0x500 0x580
Lower EL, in 32-bit mode 0x600 0x680 0x700 0x780

Figure 11.1: Arm vector table offsets [72, D1.3.1].
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There is not a single vector table, but one per exception level, with all the exception-related registers4395

(SPSR, ELR, ESR, FAR, etc) appropriately banked (with one per exception level).4396

Note that in Armv8, fast interrupt requests function identically to normal interrupt requests. However,4397

they have independent routing machinery. Interrupt controllers may freely choose to route different4398

interrupts as different types, but which type the interrupt is has no effect on the execution of the machine.4399

11.1.4 Precision4400

Historically, the introduction of pipelined machines caused concerns: since instructions may have already4401

been partially executed, the resulting interrupts would appear as a discontinuity in the flow of instructions4402

[103]. Since then, hardware has had a partition in the ways exceptions can be taken: imprecise exceptions4403

retain that discontinuity, whereas precise ones take the performance penalty of recovering (e.g. by4404

discarding later instructions and restarting earlier instructions) to guarantee more predictable behaviours4405

that programmers could rely on. Intuitively, for a precise exception one can pinpoint a particular point in4406

the sequence of instructions where the exception happens.4407

Today, Arm retains imprecise exceptions, but only in some cases: all synchronous exceptions and interrupt4408

requests are precise. Only system errors — errors from the external system reported back the CPU4409

asynchronously — may be imprecise. We discuss external aborts in more detail in §11.4.4410

11.2 Instruction instances4411

One often thinks of processors as executing instructions in some instruction sequence, and common4412

terminology is based on those two concepts. For example, the Arm manual has around 60 instances of4413

instruction stream or execution stream.4414

11.2.1 From instructions to fetch-decode-execute instances4415

Exceptions can arise at multiple points within the fetch-decode-execute cycle, including during the fetch4416

and decode, when there is no ‘instruction’. For Armv9.4-A, much of this is captured in an Arm top-level4417

function written in the Arm Architecture Specification Language (ASL).4418

We have then integrated this into Sail-based tooling to obtain an executable-as-test-oracle semantics4419

of the sequential ISA aspects of Armv9.4-A with exceptions (§13.2). A highly simplified outline of a4420

single-instruction slice of the (400k line) instruction semantics is given in Figure 11.2.4421

function __TopLevel() =
// in TakePendingInterrupts:
if IRQ then AArch64_TakePhysicalIRQException ()
if SE then AArch64_TakePhysicalSErrorException (...)
// in AArch64_CheckPCAlignment:
if pc [1..0] != 0b00 then AArch64_PCAlignmentFault ()
// in __FetchInstr:
opcode = AArch64_MemSingle_read(pc , 4) // read memory
// in __DecodeA64:
match opcode

[1,_,1,1,1,0,0,1,0,1,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_] =
// the semantics for one family of instructions ,
// including loads LDR Xt ,[Xn]
// execute_aarch64_instrs_memory_single_general_
// immediate_signed_post_idx(n,t,...)
let address = X_read(n, 64) // read register n
let data : bits('datasize) = // read memory

Mem_read(address , DIV(datasize ,8))
// write register t
X_set(t, regsize) = ZeroExtend(data , regsize)

Figure 11.2: Outline of a single-instruction slice of the Arm intra-instruction semantics.

11.2. INSTRUCTION INSTANCES 179

https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L343
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/interrupts.sail#L220
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/v8_base.sail#L34286
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L194
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/decode_end.sail#L85
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819


Figure 11.3: Top. The tree of (partially) executed FDX instances at one time, in hardware or operational
model execution. Bottom. The sequence of architecturally executed FDX instances in a completed
execution.

Executing this semantics may lead to one or more kinds of exception, calling the ASL/Sail function4422

AArch64_TakeException(). This function writes the appropriate values to registers, e.g. computing the4423

next PC, exception level, etc. and terminates this4424

__TopLevel() execution. So instead of ‘instruction instances’, we refer to fetch-decode-execute instances4425

(FDX instances), a single execution of __TopLevel().4426

11.2.2 Fetch-decode-execute trees and streams4427

One must relate the out-of-order speculative execution of hardware implementations and the architectural4428

definition of the allowed behaviours.4429

At any instant, each core may be processing, out-of-order and speculatively, many instructions (really,4430

FDX instances). Partially executed instances are restarted or discarded if they would violate the intended4431

semantics (e.g. on a mispredicted branch).4432

One can visualise the state of a single core abstractly as a tree of partially and completely executed4433

instances, as in Figure 11.3 (top). Abstract-microarchitectural operational semantics have long made use4434

of this abstraction to implement the thread subsystems [8, 20, 15, 45, 16, 7], see Chapter 2. We now lift4435

this model-specific concept into the domain of architecture.4436

In the figure, we depict the retired (committed) FDX instances as solid dark green, and partially/tentatively4437

executed in-flight instances as light green. The arrows depict program order. Committed instances can4438

be program-order-after in-flight instances, and non-committed instances may need to be restarted.4439

Eventually all FDX instances for this hardware thread will be either committed or discarded, e.g. as4440

in Figure 11.3 (bottom). These are the architecturally executed FDX instances. The architecture4441

definition, and any formal semantics thereof, have to define which such sequences are allowed for each4442

thread. This definition includes the register content; memory read values; and their relationships4443

with other threads, as determined by the relaxed concurrency model. Axiomatic concurrency models,4444

e.g. [13, 104, 105, 106, 107, 108, 4, 2, 109, 110, 66, 40, 39, 44], have candidate executions which contain4445

events just from these architecturally executed instances.4446

The Arm prose specification, given in Figure 11.4 (top), previously attempted to capture the relationship4447

between implementation execution (out-of-order and speculative) and the architectural definition of4448

allowed behaviour in terms of a notion of a ‘simple sequential execution’ of the machine. As the prose says,4449

simple sequential execution does not hold for the intended relaxed-memory architecture. We propose a4450

more correct rephrasing that allows for exceptions and other systems phenomena in Figure 11.4 (bottom).4451

Figure 11.5 depicts a tree of instances involving exception entry (SVC) and return (ERET). Arm-A allows4452

implementations to execute the exception handler’s instruction instances out-of-order with respect to4453

instances program-order-before the exception entry and program-order-after the exception return. The4454

constraints on this freedom is what we now explore.4455
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Architecturally executed An instruction is architecturally executed only if it
would be executed in a simple sequential execution of the program. [...]
Simple sequential execution The behavior of an implementation that fetches,
decodes and completely executes each instruction before proceeding to the next
instruction. Such an implementation performs no speculative accesses to memory,
including to instruction memory. The implementation does not pipeline any
phase of execution. In practice, this is the theoretical execution model that the
architecture is based on, and Arm does not expect this model to correspond to a
realistic implementation of the architecture.

Architecturally executed A candidate execution can be architecturally executed
if it is composed of a sequence of FDX instances for each thread that together
satisfy the Arm concurrency model [extended to cover exceptions, as described
here, and other systems phenomena], starting from the machine initial state.

Figure 11.4: Arm prose specification [72, Glossary, p12916] (top) and our suggested rephrasing (bottom).

svc eret

Figure 11.5: The tree of partially and completely executed FDX instances with exceptions, in hardware or
operational model execution. Instructions may execute out-of-order across exception boundaries, requiring
a modern definition for precision.

11.3 Relaxed behaviour of precise exceptions4456

Exceptions change the control flow and processor context, that is, the collection of system and special4457

registers which control the execution of the machine. These include the current exception level (PSTATE.EL),4458

masking of interrupts (PSTATE.{D,A,I,F}), processor flags, and so on. Changes to the context need not4459

take effect immediately; to ensure that program-order-later instructions see such changes, exceptions4460

come with context synchronisation. As a side-effect of that context synchronisation, exception boundaries4461

impose some ordering.4462

We will see that the context synchronisation performed by the machinery is the primary mechanism that4463

enforces order at the boundary of an exception. In addition to this, different classes of exceptions may4464

come with their own additional ordering constraints: translation faults are bound by the constraints4465

discussed in Chapter 8, interrupts cannot happen before they are generated, and so on. However, we4466

can set a baseline set of behaviours for exceptions by investigating the simplest kind of exception: the4467

unencumbered exception-generating-instructions such as the SVC supervisor call. As such, throughout this4468

section we will use exceptions from SVC instructions as an exploratory tool, but all behaviours described4469

therein also apply to all other exception types.4470

In this section, we explain relaxed behaviour of precise exceptions through litmus testing. We start with4471

the baseline out-of-order execution across exception boundaries (§11.3.1), before talking about context4472

synchronisation in detail (§11.3.2). We continue with a collection of potentially interesting edge cases:4473

changing privilege levels (§11.3.3), dependencies through exception machinery (§11.3.4), asynchronous4474

exceptions (§11.3.5), then the stronger behaviour of specific types of exceptions (§11.3.6), before touching4475

on how the instruction semantics needs to be adapted (§11.3.7), and finally we discuss a corner case when4476

disabling context synchronisation (§11.3.8).4477

11.3.1 Out-of-order execution across exception boundaries4478

Before discussing the ordering exception boundaries do impose, we will first see that, in general, exception4479

boundaries do not act as memory barriers. Loads and stores may be executed out-of-order over an4480

exception entry or an exception exit or the composition of both. Figure 11.6 contains a sample of shapes4481

which show that the reads and writes are able to execute out-of-order with respect to the various exception4482

boundaries.4483

11.3. RELAXED BEHAVIOUR OF PRECISE EXCEPTIONS 181



MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+svc AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svcrf
fr

SVC #0
MOV X2,#1
STR X2,[X3]

Thread 0

MOV X0,#1
STR X0,[X1]
ERET

T0 Handler

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+eret+dmb.sy AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

eret dmbrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

MOV X0,#1
STR X0,[X1]
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

SB+dmb.sy+eret AArch64

Allowed: 0:X2=0, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

R x=0d:

Thread 1

dmb eretfr
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0
LDR X2,[X3]

Thread 1

ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+svceret AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svceretrf
fr

MOV X0,#2
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

MOV X2,#1
STR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

S+dmb.sy+svc AArch64

Allowed: 1:X0=1, *x=2

W x=2a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

dmb svcrf
co

LDR X0,[X1]
SVC #0
MOV X2,#1
STR X2,[X3]

Thread 0

ERET

T0 Handler

LDR X0,[X1]
SVC #0
MOV X2,#1
STR X2,[X3]

Thread 2

ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

LB+svc-erets AArch64

Allowed: 0:X0=1, 1:X0=1

R x=1a:

W y=1b:

Thread 0

R y=1c:

W x=1d:

Thread 1

dmb svceretrf
rf

Figure 11.6: Reads and writes may be executed out-of-order across exception entry, exit, or even both.
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrlsvcrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

LDR X0,[X1]
CBNZ X0,LC00
LC00:
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrleret AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrleretrf
fr

Figure 11.7: Context synchronising exception entry (and returns) are not executed speculatively.

11.3.2 Context synchronisation and speculation4484

Updates to the context, such as writes to system registers, need synchronisation to be guaranteed to have4485

an effect. We do not model the behaviour of such context-changing operations when such synchronisation4486

is not performed. Instead, we merely identify when and how exceptions are context-synchronising, and4487

note that this has a knock-on effect on memory accesses.4488

Architecturally, a context synchronisation event guarantees that no instruction program-order-after the4489

event is observably fetched, decoded, or executed until the context-synchronising event has happened. A4490

simple microarchitectural implementation for context synchronisation is to flush the pipeline: restarting all4491

program-order-later instances once the context-synchronising effect occurs. More complex implementations4492

may be more clever, as long as they preserve the semantics.4493

Software can explicitly generate context-synchronising events by issuing an Instruction Synchronisation4494

Barrier (ISB). Context synchronisation can also happen implicitly, for example on exception entry and4495

exit. This is the case in Arm, except in a rare use case we return to in §11.3.8.4496

The effect of context synchronisation events in exception boundaries is that any instance after the boundary4497

has an ISB-equivalent dependency on the instances before the boundary. This mechanism implies the4498

following fundamental invariant: context synchronising exception boundaries are never taken speculatively;4499

this limits speculation of such boundaries to the same well-understood extent as speculation of ISBs. This4500

invariant has interesting interactions with external aborts, which we discuss in §11.4.4501

The fact that context-synchronising exception boundaries cannot be taken speculatively implies that the4502

code inside an exception handler cannot execute before the exception entry’s control-flow is determined (see4503

MP+dmb+ctrlsvc (Figure 11.7)); and similarly, cannot return before the ERET’s control-flow is determined4504

(see MP+dmb+ctrleret (Figure 11.7)).4505
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11.3.3 Privilege level4506

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
PSTATE.EL=0b1;

MP.EL1+dmb.sy+svc AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb svcrf
fr

Figure 11.8: Same-exception-level exceptions are no stronger or weaker.

The privilege level (exception level) has little to no additional effect on the behaviours we present: their4507

allowed/forbidden status remains the same whether the privilege goes up/down in entry/exit or remains4508

the same. For example in the MP.EL1+dmb+svc test (Figure 11.8) the exception is taken from EL1 and4509

to EL1, but this does not affect any of the machinery (except which vector is used). As before, this is a4510

general statement about the exception machinery, and specific types of exceptions may have additional4511

constraints: e.g. translation faults cannot be caused by out-of-context translations, where the context4512

depends on the exception level (§8.8.1).4513

Store forwarding It is permitted for writes to be forwarded from a store to a read across exception entry4514

and return. For example in the SB+dmb+rfisvc-addr test (Figure 11.9) the store in Thread 1 is observed4515

by the load in the exception handler (at a higher privilege level) ‘early’, before it is propagated globally.4516

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0

MOV X0,#1
STR X0,[X1]
SVC #0

Thread 1

LDR X2,[X3]
EOR X6,X2,X2
LDR X4,[X5,X6]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=y, 1:X5=x

SB+dmb.sy+rfisvc-addr AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

R y=0b:

Thread 0

W y=1c:

SVCd:

R y=1e:

R x=0f:

Thread 1

dmb po

po

addr

fr

rf

fr

Figure 11.9: Forwarding into a non-speculative handler.
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11.3.4 Dependency through system registers4517

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
MRS X4,ESR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ESR_EL1,X5
SVC #0

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:PSTATE.EL=0b1,
1:X1=y, 1:X3=x

MP.EL1+dmb.sy+dataesrsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb dataesrsvcrf
fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

SVC #0
LDR X2,[X3]

Thread 1

LDR X0,[X1]
MRS X4,ELR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ELR_EL1,X4
ERET

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlelr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

R x=0d:

Thread 1

dmb ctrlelrrf
fr

Figure 11.10: System registers and context synchronisation

Where exceptions are taken to and returned to are part of the context, and their respective registers4518

must be read by the exception machinery on taking and returning from the exception. These registers4519

are not read-only; software can write to them. Therefore, they can be involved in register dependency4520

chains. While we do not attempt, in this work, to build a general model of dependencies, we touch on this4521

particular aspect briefly.4522

Dependencies on system register accesses compose with ordering from context synchronisation events to4523

program-order-later instructions. The MP.EL1+dmb+dataesrsvc test (Figure 11.10) demonstrates that a4524

write to the system register ESR that depends on a read forbids reordering this read across the boundary,4525

even though resolving the dependency does not affect the exception.4526

The ELR register is a special-purpose register, and is therefore ‘self-synchronising’, unlike system registers [72,4527

D19.1.2, p6331]. Therefore, writes into the ELR do not need context synchronisation to guarantee that4528

they are seen by program-order-later instructions, and this means that dependencies into the ELR are4529

preserved automatically, for example, in the MP+dmb+ctrlelr test (Figure 11.10).4530

This has two related subtleties, and is currently under investigation by Arm. The Software Thread ID4531

Register (TPIDR) is a system register in which the operating system can store thread identifying information,4532

but has no relevant indirect effects. Further testing and discussions may clarify whether it forbids reordering.4533

While dependencies through special-purpose registers are preserved, context synchronisation does not4534

necessarily need to wait for those writes, and so these dependencies do not necessarily pass to instructions4535

after context synchronisation (in contrast to system register writes).4536

11.3.5 Ordering from asynchronous exceptions4537

Asynchronous exceptions cannot be taken speculatively. Therefore, all instructions program-order-after4538

an asynchronous exception happen after that exception.4539

11.3.6 Exception-specific mechanisms4540

Some exceptions on some implementations involve additional mechanisms. For example, when an4541

implementation supports Enhanced Translation Synchronisation the translation-table-walks which generate4542

MMU faults gain additional ordering from program-order-previous instances, see §8.4.3. Figure 11.114543

compares a message-passing shape involving a translation fault verus an asynchronous interrupt.4544
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X5,X0,X0
// will segfault
LDR X4,[X5]

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+addr-fault AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

Pagefaultd:

R x=0e:

Thread 1

dmb addr

po

rf

fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
L:

NOP

Thread 1

LDR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
interrupt at=L

MP+dmb.sy+int AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0

R y=1c:

TakeInterruptd:

R x=0e:

Thread 1

dmb po

po

rf

fr

Figure 11.11: Different exception kinds can have different behaviour.

11.3.7 Exceptions and the intra-instruction semantics4545

Wherever possible, we want to interpret the intra-instruction ASL ordering as preserved, both for conceptual4546

simplicity, memory-model tool execution, and reasoning. This has previously been possible except in a few4547

specific cases that are inherently concurrent: instructions that do multiple accesses, and CSEL, CAS, SWAP,4548

etc. Exceptions introduce a new interesting case for instructions that do a register writeback concurrently4549

with a memory access. For example, STR (immediate) has ‘Post-index’ and ‘Pre-index’ versions [72,4550

C6.2.322, p1996]. The post-index STR Xt, [Xn], #8, for example, stores the value in Xt to the address4551

initially in register Xn and increments Xn by 8. The Arm ARM ASL for STR puts that register write at the4552

end, after the memory access has completed.4553

The architectural intent is that program-order-later instances that depend on Xn can go ahead early,4554

e.g. before the data in register Xt is available to be written to memory. The related litmus tests have4555

previously been observed on hardware [111].4556

Previous work captured this allowed by having the register writeback before the memory access in the4557

instruction semantics. However, exceptions require more care: when the memory access generates an4558

exception, the writeback register should appear unchanged to instances after the exception boundary.4559

11.3.8 Disabling context synchronisation4560

So far we have assumed exception boundaries are context synchronising. However, Arm has an optional4561

feature, FEAT_ExS, which provides two new fields, EIS and EOS, in the SCTLR_ELx system control register.4562

These allow software to disable context synchronisation on exception entry and return, respectively. While4563

the semantics seems clear for these systems, the programming model is unpredictable and hard to program4564

correctly, and so this configuration is rarely encountered in practice.4565

The result of switching off context synchronisation on exception boundaries is to weaken the previously4566

described speculation tests: permitting speculation of the entry or exit of non-context-synchronising4567

exception boundaries, and all the behaviours associated thereof.4568

11.4 Synchronous external aborts4569

The memory system may detect errors such as data corruption independently of the MMU or Debug4570

hardware, e.g. using parity bits or error correcting code. In those cases, it will signal the error by a4571

class of exceptions called external aborts. The architecture does not define at what, if any, granularity4572
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implementations may report such aborts synchronously. As such, it is implementation defined whether an4573

external abort is reported as a synchronous external abort (under the ‘Data abort’ class) or asynchronously4574

as a system error.4575

Instances program-order-after a potential cause for synchronous external aborts are considered speculative4576

until any such synchronous external abort can be ruled out. This results in stronger behaviour (§11.4.1).4577

In an implementation that always reports external aborts asynchronously, the later instances become4578

non-speculative earlier, allowing them to exhibit weaker behaviours.4579

In general, systems want to report errors as synchronously as possible. When errors are reported4580

asynchronously, in general, the only recovery is to wind down the aborting process. The Arm Reliability,4581

Availability, and Serviceability (RAS) extension adds some ability for more fine-grained recovery procedures,4582

but this extension is a substantial component of the architecture, far beyond the scope of this work.4583

11.4.1 Behaviour resulting from synchronous external aborts4584

There is an asymmetry between reads and writes with respect to speculation: writes cannot be propagated4585

speculatively, whereas reads can be satisfied speculatively. We must therefore consider the store and load4586

cases separately.4587

If a store may generate a synchronous external abort, then program-order-later instances are speculative4588

until the store has (at least) propagated to memory. In that case, out-of-order execution of two writes4589

(e.g. MP+po+addr) is forbidden. Reads program-order-after writes are permitted to execute speculatively4590

anyway, and so the presence of such synchronous aborts do not restrict their ability to execute early.4591

More interestingly, if a load may generate a synchronous external abort, then program-order-later instances4592

are speculative until the load has completed all its reads, and is non-restartable. This means that writes4593

program-order-after that read are forbidden from executing out-of-order. This forbids interesting tests4594

which would otherwise be allowed, namely load-buffering (LB+pos) and MP with a plain ISB after one4595

load (MP+dmb.sy+isb) [112].4596

Load buffering and the out-of-thin-air problem This has an important and hitherto not well-understood4597

impact on programming-language concurrency models. Ruling out LB enables substantially simpler design4598

of programming language concurrency models: they can execute instructions in-order and merely keep a4599

history of the writes seen so far, e.g. [113], and thereby avoid the notorious out-of-thin-air problem [114].4600

These simpler semantics support a line of model checkers for C/C++ and LLVM [115, 116, 117]. In4601

contrast, the presence of LB seems to require significant sophistication [118, 114, 119, 120, 121, 40, 28, 122].4602
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Chapter 124603

An axiomatic model for precise exceptions4604

We now give a formal semantics that describes the concurrent behaviour of precise exceptions on Arm-A.4605

We give it as an extension of the previous model of [7], see Chapter 2, in the standard cat format [39, 44].4606

The full model can be found in Figure 12.1.4607

The model is parameterised along two axes:4608

. FEAT_ExS corresponds to the feature of the same name being implemented; we do not support4609

runtime changes of the related SCTLR_ELx.{EIS,EOS} fields, and so fix them as variants.4610

. SEA_R and SEA_W correspond to the implementation-defined choice of whether loads or stores may4611

generate synchronous external aborts.4612

Most current hardware does not support FEAT_ExS, and moreover, we expect that most software would4613

not use it. However, its semantics is relatively straight-forward as we understand it, and so we include it4614

in our model.4615

The SEA variants in this model are not architecturally-defined identifiers. In fact, in the absence of actually4616

observing a fault directly there appears no architectural way to identify the choice beyond running the4617

litmus tests presented in Chapter 11. These two variants capture whether any store or load respectively,4618

could generate a synchronous external abort, even though the model does not consider executions in which4619

such aborts actually occur.4620

12.1 Extended candidates4621

To support precise exceptions, we add new events to the candidate execution:4622

. TE (take exception), and TakeInterrupt, and ERET (exception return). These correspond to the4623

synchronisation points (whether or not they are synchronising) of taking or returning from an4624

exception.4625

. MRS and MSR events for the reading and writing (respectively) of system registers, corresponding to4626

the identically-named Arm instructions.4627

Exceptions and program-order Program-order includes all the events of the thread, even with interposing4628

exceptions. That is, program-order is not discontinuous, at least for precise exceptions. We therefore4629

include all the new events in program-order. This includes the events from instructions directly before4630

and after taking or returning from an exception.4631

Interrupts While we do not model inter-processor interrupts or the generic interrupt controller, we do4632

support precise asynchronous exceptions generally (e.g. timers).4633

Candidates can, at any point in thread, have an instance which does not follow from the natural intra-4634

instruction semantics, but corresponds to pending an interrupt, i.e. setting the appropriate bit in the ISR.4635

The intra-instruction semantics then will take the interrupt at the appropriate time.4636

For performance reasons in the executable-as-a-test-oracle implementation within isla-axiomatic we do4637

not allow arbitrary interrupts, see §13.2.4638

188



1 "Arm -A exceptions"2
3 include "cos.cat"
4 include "arm -common.cat"5
6 (* might -be speculatively

executed *)
7 let speculative =
8 ctrl
9 | addr; po

10 | if "SEA_R"
11 then [R]; po
12 else 0
13 | if "SEA_W"
14 then [W]; po
15 else 016
17 (* context -sync -events *)
18 let CSE =
19 ISB
20 | if "FEAT_ExS" & ~"EIS"
21 then 0
22 else TE
23 | if "FEAT_ExS" & ~"EOS"
24 then 0
25 else ERET26
27 let ASYNC =
28 TakeInterrupt29
30 (* observed by *)
31 let obs = rfe | fr | co32
33 (* dependency -ordered -before *)
34 let dob =
35 addr | data
36 | speculative ; [W]
37 | speculative ; [ISB]
38 | (addr | data); rfi394041
42 (* atomic -ordered -before *)
43 let aob =

44 rmw
45 | [range(rmw)]; rfi; [A|Q]46
47 (* barrier -ordered -before *)
48 let bob =
49 [R] ; po ; [dmbld]
50 | [W] ; po ; [dmbst]
51 | [dmbst]; po; [W]
52 | [dmbld]; po; [R|W]
53 | [L]; po; [A]
54 | [A | Q]; po; [R | W]
55 | [R | W]; po; [L]
56 | [dsb]; po57
58 (* contextually -ordered -before *)
59 let ctxob =
60 speculative; [MSR|CSE]
61 | [MSR]; po; [CSE]
62 | [CSE]; po63
64 (* async -ordered -before *)
65 let asyncob =
66 speculative; [ASYNC]
67 | [ASYNC]; po68
69 (* Ordered -before *)
70 let ob = (obs | dob | aob |
71 bob | ctxob | asyncob)+72
73 (* Internal visibility

requirement *)
74 acyclic po-loc | fr | co | rf as

internal75
76 (* External visibility

requirement *)
77 irreflexive ob as external78
79 (* Atomic: Basic LDXR/STXR

constraint to forbid
intervening writes. *)

80 empty rmw & (fre; coe) as atomic

Figure 12.1: Arm-A exceptional model (grayed out parts are unchanged from the original model).
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12.2 Extended relations4639

We expand ordered-before:4640

. Wherever ctrl|(addr;po) was used before, we also include instructions program-order-after reads4641

or writes when in the relevant SEA variant. With those variants, the instructions program-order-after4642

those events are speculative up until the memory access has completed.4643

. The previous model’s use of ISB was purely for its context synchronisation effect. Accordingly,4644

wherever [ISB] was used before, we include exception entry (TE) and exit (ERET), unless we are in4645

the variant where context synchronisation on those events is disabled.4646

. We extend barrier-ordered-before with the DSB barriers. The barrier event classes are upwards-closed,4647

so that DSB.SY is included in all the dmb events.4648

. We add a context-ordered-before (ctxob) sub-clause to the ordered-before relation, which captures the4649

ordering of context-changing operations and context-synchronisation: namely, that context-changes4650

and context-synchronisation cannot happen speculatively; that all context-changes are ordered before4651

any context-synchronisation; and that no instruction program-order-after context-synchronisation4652

can be executed until the synchronisation is complete.4653

. We add an async-ordered-before (asyncob) clause to ordered-before, capturing that asynchronous4654

events (such as interrupts) cannot be done speculatively, and instructions program-order-after them4655

may not happen before the asynchronous event which precipitated them.4656

12.3 Challenges in defining precision4657

The phenomena we described in §11.3 highlight how the historical definition of precision does not account4658

for relaxed memory. The open problem is then how to adequately define precision in a relaxed-memory4659

setting. This challenge is hinted at in the way the Arm reference manual [72, D1.3.1, p5355] defines4660

precision as:4661

An exception is precise if on taking the exception, the hardware thread (aka
processing element, PE) state and the memory system state is consistent with the
PE having executed all of the instructions up to but not including the point in
the instruction stream where the exception was taken from, and none afterwards.
[except that in certain specific cases some registers and memory values may be
UNKNOWN]

4662

This definition explicitly allows various side effects of an instruction executing when an exception is taken4663

to be visible. The details are intricate, but in outline: registers that would be written by the instruction4664

but which are not used by it (to compute memory access addresses) can become UNKNOWN, and for4665

instructions that involve multiple single-copy-atomic memory writes (e.g. misaligned writes and store-pair4666

instructions), where each write might generate an exception (e.g. a translation fault), the memory locations4667

of the writes that do not generate exceptions become UNKNOWN. These side effects could be observed4668

by the exception handler, and the memory write side effects could be observed by other threads doing4669

racy reads. Hardware updates to page-table access flags and dirty bits, and to performance counters,4670

could also be observable. This means that the abstraction of a stream of instructions executed up to a4671

given point does not account for the relaxed-memory behaviour.4672

Arm classify particular kinds of exceptions as precise or not, but all the above makes it hard to define in4673

general what it means for an exception to be precise in a relaxed setting.4674

The ultimate architectural intent of precision is that it is sufficient to meaningfully resume execution after4675

the exception. For example, for software that does mapping on demand, when an instruction causes a4676

fault by accessing an address which is not currently mapped, the exception handler will map that address4677

and return. This means that re-executing the original instruction will overwrite these UNKNOWNs, and4678

will have ordering properties much like the original instruction would have had if the mapping had already4679

been in place.4680
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Our models are complete enough to reason about such cases in concrete examples. However, a general4681

definition of precision, and the accompanying reasoning principle, would have to capture assumptions4682

about the exception handler and its concurrent context to ensure that they do not observe the above4683

side effects. More straightforwardly, the above definition of what becomes UNKNOWN would have to be4684

codified, as that is not currently in the ASL architectural pseudocode.4685

Exceptions may also be imprecise, in which case the behaviour is very loosely constrained, and the current4686

architecture does not give well-defined guarantees in the presence of imprecise exceptions.4687

12.4 Scope and limitations4688

We do not give semantics to imprecise exceptions. It is unclear how to do so at an architectural level.4689

We do not define the behaviour of ‘constrained unpredictable’, and merely flag when it is triggered.4690

Clarifying it will require substantial extensive discussions with Arm architects, likely affecting the wording4691

in the architectural specifications, beyond the scope of this work. We do not model switching between4692

Arm FEAT_ExS modes (§??): they are supported architecturally, but are not commonly implemented.4693

Finally, while we believe our models correctly capture the Arm architectural intent, and that it gives a4694

solid basis for programmers, this is not an authoritative definition of the architecture, and is subject to4695

change.4696
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Chapter 134697

Validating the exceptions model4698

13.1 Validating against hardware4699

We extend the harness described in Chapter 10, and run a set of 55 hand-written tests on a small collection4700

of devices: Raspberry Pi 3B+, 4B, and 5; an ODROID N2+ with an Amlogic S99X SoC; and an Apple4701

Mac Mini with Apple M2 silicon SoC. The results from that testing can be found in Table 13.1.4702

13.2 Executable-as-a-test-oracle implementation4703

We implement the model as an executable-as-a-test-oracle implementation in Isla [44],4704

To support tests with asynchronous exceptions, we added a construct to specify a label where the exception4705

will occur, so that Isla then pends an interrupt at that program point.4706

The instruction semantics we use is a translation into the Sail language of the Armv9.4-A ASL specification,4707

including the top-level function provided by Arm [123]. The translation process [43] is mostly automatic,4708

requiring select manual interventions mostly due to differences in the type systems of ASL and Sail. We4709

also added patches to support the integration with Isla, in particular adding hooks to expose information4710

about exceptions being taken in a form that can be readily consumed by Isla. In doing so, we encountered4711

and fixed some bugs in the ASL model related to uses of uninitialised fields in data structures, as well as4712

missing checks for implemented processor features that led to spurious system register accesses.4713

The results from the model over each of the variants can be found in Table 13.2.4714
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Table 13.1: Exceptions hardware refs. Columns are, respectively, an ODROID N2+ (Amlogic S99X, ‘big’
cores only, Arm Cortex-A73 r0p2), an Apple M2, and Raspberry Pis 3B+ (Arm Cortex-A53 r0p4), 4B
(Arm Cortex-A72 r0p3), and 5 (Arm Cortex-A76 r1p4).

Name s922x m2 rpi3b+ rpi4b rpi5
LB+svc-dmb-erets 0/18M 0/360M 0/1M 0/19M 0/11M
LB+svc-erets 0/18M 0/360M 0/1M 0/19M 0/11M
LB+svcs 388/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrl-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrl-rfisvceret-addr 0/18M 0/360M 0/22M 0/108M 0/39M
MP+dmb+ctrl-svc 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+ctrlelr 0/18M 0/360M 0/22M 0/108M 0/39M
MP+dmb+data-svc 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+dmb-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret-dmb 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+eret=addr 0/18M 0/0 0/1M 0/19M 0/11M
MP+dmb+svc 84/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-addreret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-dmb 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-dmb-eret 0/18M 0/360M 0/1M 0/19M 0/11M
MP+dmb+svc-eret 0/18M 0/360M 0/33M 0/19M 0/11M
MP+dmb+svcnoeis 23/18M 0/360M 0/1M 0/19M 0/11M
MP+eret+addr 22K/18M 0/360M 63/1M 0/19M 2/11M
MP+eret+dmb 18K/18M 0/360M 1K/33M 262/19M 20/11M
MP+eret+svc 9K/18M 0/360M 244/21M 256K/107M 20/39M
MP+erets 29K/18M 0/360M 30/1M 59/19M 16/11M
MP+svc+addr 17K/18M 0/360M 59/1M 0/19M 8/11M
MP+svc+dmb 18K/17M 0/360M 80/1M 3/19M 876/11M
MP+svc+eret 22K/17M 0/360M 1K/21M 33/107M 77/39M
MP+svc-W-eret-W+addr 14K/13M 0/0 0/0 0/16M 1/6M
MP+svc-dmb+addr 0/17M 0/360M 0/1M 0/19M 0/11M
MP+svc-dmb-eret+addr 0/17M 0/360M 0/1M 0/19M 0/11M
MP+svc-eret+addr 13K/17M 0/360M 52/1M 0/19M 2/11M
MP+svc-erets 3K/17M 0/360M 42/1M 2/19M 8/11M
MP+svcs 8K/17M 0/360M 31/1M 0/19M 20/11M
MP.EL1+dmb+ctrlvbarsvc 0/17M 0/360M 0/21M 0/108M 0/39M
MP.EL1+dmb+svc 29/17M 0/360M 0/33M 0/12M 0/11M
S+dmb+eret 0/17M 0/360M 0/33M 0/12M 0/11M
S+dmb+svc 0/17M 0/360M 0/33M 0/12M 0/11M
S+erets 0/17M 0/360M 0/1M 0/19M 0/11M
S+svc-dmb-erets 0/17M 0/359M 0/1M 0/19M 0/11M
S+svc-erets 0/17M 0/359M 0/1M 0/19M 0/11M
S+svcs 0/17M 0/359M 0/1M 0/19M 0/11M
SB+dmb+eret 38/17M 12K/359M 162K/33M 85K/12M 2K/11M
SB+dmb+rfi-ctrl-eret 17K/17M 10K/359M 10K/1M 42K/19M 46/11M
SB+dmb+rfi-ctrl-svc 13K/17M 8/359M 15K/1M 2K/18M 58K/11M
SB+dmb+rfieret-addr 16K/16M 6K/359M 591K/21M 8K/107M 54/39M
SB+dmb+rfisvc-addr 18K/16M 12/359M 839K/21M 2K/106M 135K/39M
SB+dmb+svc 195/16M 14/359M 351K/33M 458/11M 63K/11M
SB+svc-dmb-erets 0/16M 0/359M 0/1M 0/18M 0/11M
SB+svc-erets 9K/16M 0/359M 22K/1M 7K/18M 38/11M
SB+svcs 2K/16M 0/359M 534K/21M 0/106M 646K/39M
SEA_R_detect 0/16M 359M/359M 0/1M 0/18M 0/10M
SEA_W_detect 0/16M 0/359M 0/1M 0/18M 0/10M
MP+dmb+eret-svc 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+eret 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+eret-svc 0/4M 0/360M 0/1M 0/3M 0/5M
MP.EL1+dmb+svc-eret 0/4M 0/360M 0/1M 0/3M 0/5M
SB.EL1+erets 15K/3M 0/359M 25K/1M 148/2M 43/5M
SB.EL1+svc-erets 3K/3M 0/359M 19K/1M 1K/2M 17/5M
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Table 13.2: Exceptions model refs

Name No features FEAT_ExS SEA_R SEA_W SEA_R&W
LB+svc-dmb-erets forbid forbid forbid forbid forbid
LB+svc-erets allow allow forbid allow forbid
LB+svcs allow allow forbid allow forbid
MP+daifset+dmb allow allow allow forbid forbid
MP+dmb+ctrl-eret forbid allow forbid forbid forbid
MP+dmb+ctrl-rfisvceret-addr forbid allow forbid forbid forbid
MP+dmb+ctrl-svc forbid allow forbid forbid forbid
MP+dmb+ctrlelr forbid allow forbid forbid forbid
MP+dmb+daifset allow allow allow allow allow
MP+dmb+dmb-eret forbid forbid forbid forbid forbid
MP+dmb+eret-dmb forbid forbid forbid forbid forbid
MP+dmb+eret-svc allow allow forbid allow forbid
MP+dmb+eret allow allow forbid allow forbid
MP+dmb+eret=addr forbid forbid forbid forbid forbid
MP+dmb+svc-addreret allow allow forbid allow forbid
MP+dmb+svc-dmb-eret forbid forbid forbid forbid forbid
MP+dmb+svc-dmb forbid forbid forbid forbid forbid
MP+dmb+svc-eret allow allow forbid allow forbid
MP+dmb+svc allow allow forbid allow forbid
MP+dmb+svcnoeis allow allow forbid allow forbid
MP+eret+addr allow allow allow forbid forbid
MP+eret+dmb allow allow allow forbid forbid
MP+eret+svc allow allow allow allow forbid
MP+erets allow allow allow allow forbid
MP+svc+addr allow allow allow forbid forbid
MP+svc+dmb allow allow allow forbid forbid
MP+svc+eret allow allow allow allow forbid
MP+svc-dmb+addr forbid forbid forbid forbid forbid
MP+svc-dmb-eret+addr forbid forbid forbid forbid forbid
MP+svc-eret+addr allow allow allow forbid forbid
MP+svc-erets allow allow allow allow forbid
MP+svcs allow allow allow allow forbid
MP.EL1+dmb+ctrlvbarsvc forbid allow forbid forbid forbid
MP.EL1+dmb+eret-svc allow allow forbid allow forbid
MP.EL1+dmb+eret allow allow forbid allow forbid
MP.EL1+dmb+svc-eret allow allow forbid allow forbid
MP.EL1+dmb+svc forbid forbid forbid forbid forbid
S+dmb+eret allow allow forbid allow forbid
S+dmb+svc allow allow forbid allow forbid
S+erets allow allow allow allow forbid
S+svc-dmb-erets forbid forbid forbid forbid forbid
S+svc-erets allow allow allow allow forbid
S+svcs allow allow allow allow forbid
SB+daifsets allow allow allow allow allow
SB+dmb+eret allow allow allow forbid forbid
SB+dmb+rfi-ctrl-eret allow allow allow forbid forbid
SB+dmb+rfi-ctrl-svc allow allow allow forbid forbid
SB+dmb+rfieret-addr allow allow allow forbid forbid
SB+dmb+rfisvc-addr allow allow allow forbid forbid
SB+dmb+svc allow allow allow forbid forbid
SB+svc+dmb-erets forbid forbid forbid forbid forbid
SB+svcs allow allow allow forbid forbid
SB.EL1+erets allow allow allow forbid forbid
SB.EL1+svc-erets allow allow allow forbid forbid
MP+dmb+ctrl-int forbid forbid forbid forbid forbid
MP+dmb+int allow allow allow allow allow
MP+int+dmb allow allow allow allow allow
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Chapter 144715

Conclusion4716

We presented models for three key parts of the Arm architecture required for systems software: instruction4717

fetch and required cache maintenance instructions; virtual memory and its required TLB maintenance4718

instructions; and the baseline behaviour for precise exceptions. We have produced a corpus of hand-written4719

litmus tests for these architectural aspects, covering a range of interesting hardware optimisations and4720

software requirements. We have clarified the architecture by extracting the architectural intent for those4721

tests, in particular for places where that intent was not clear beforehand, and produced models that4722

capture that intent.4723

We produced axiomatic-style declarative semantics, in the standard cat language, for all three aspects4724

of the architecture. Additionally we produced a microarchitectural-style operational semantics for the4725

instruction fetch fragment intended equivalent to the axiomatic one.4726

We validated these models against a variety of hardware implementations, even finding some places where4727

modern microprocessors deviate from the desired architectural intent. For instruction fetch, we extended4728

the herdtools suite to be able to generate new litmus tests, and run those tests on hardware. We built a4729

brand new test harness, system-litmus-harness, able to run tests on a variety of hardware at EL1, either4730

bare metal or in KVM. We used this harness to produce experimental data for both the virtual memory4731

and exceptions parts.4732

We made these models executable as a test oracle, allowing the user to experimentally check behaviours4733

manually, or even do rudimentary model checking of a larger software pattern, by implementing them4734

in our isla-axiomatic or RMEM tools. This allowed us to validate the models against each other where4735

applicable, and against the architectural intent, and comparing the results from hardware test runs against4736

the model’s predictions.4737

Finally, for virtual memory, we proved a simple virtual memory abstraction which gives confidence that4738

the model correctly captures a key property that the model is intended to have.4739

14.1 Limitations4740

While we endeavour to be as faithful to the architectural intent as we can, and to produce models that4741

are sound abstractions of that intent, we have had to make tradeoffs in places.4742

We presented three models for three separate parts of the architecture, but did not merge them together4743

into a single architectural model. The models can be unioned together to produce a combined model with4744

all the events and relations from the models, but more work is needed to understand the interactions4745

between the architectural features: instruction fetches are memory reads which themselves are translated,4746

but where that translation behaves subtly different from the normal translations with different caching4747

rules; translation and instruction fetch can both cause exceptions to happen; exceptions cause the control-4748

flow to change and new instructions to be fetched; and so on. We do not imagine this is a particularly4749

arduous or complex task, but one that we have not yet done.4750

We produced two new separate languages for defining litmus tests. Ideally, we would have one unified4751

language that all tools (litmus, isla-axiomatic, and system-litmus-harness) all accept. As stated earlier,4752
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we do not believe there is a fundamental restriction to unifying these languages, as currently they have4753

not diverged so far as to be incompatible.4754

There are some places where it has become known that models presented in this work do not absolutely4755

faithfully capture the architectural intent as it is known today. In particular around the reachability of4756

pagetable entries, and invalidation of non-last-level pagetable entries, as was discussed earlier.4757

14.2 Future work4758

There are many areas where the work presented here is only the start, and where further effort could bear4759

fruit.4760

For more confidence in the architectural intent, more hardware testing (especially for the virtual memory4761

tests) is essential. In particular, running at EL2 (for stage 2 tests), and over a more varied collection of4762

devices.4763

Capturing more of the architecture is always desirable. We made a start here, but this is no means the end.4764

Modern systems software relies on much more of the architecture than just covered here, such as: the Arm4765

generic interrupt controller, and virtualisation of interrupts; the variety of Arm features and extensions4766

for virtual memory e.g. FEAT_ETS2, FEAT_BBM, FEAT_nTLBPA, access permissions, and cacheability, and4767

shareability domains; device memory and DMA; and much more.4768

With the models themselves, they can always be improved to be executable more efficiently, and the tools4769

easier to use. isla-axiomatic can run the virtual memory tests, but needs optimisations to be able to4770

run in any reasonable timeframe, and even then still takes hours on a modern high-end machine. This4771

seriously restricts the current usefulness of such tools to the average programmer.4772

There are now many concurrently existing models for Arm, covering overlapping sets of features. We4773

present three new ones here, but there also exist many from the wider community, for persistent memory,4774

memory tagging, access bits and dirty flags, capabilities, and probably many others. Simply gluing4775

these together into a single model is not sound, as their interactions would need to be explored, and the4776

architectural intent clarified first. However, it seems necessary for such work to be carried out to enable4777

future verification efforts of complex systems.4778

Work on relaxed systems, either on virtual memory, instruction fetching, or exceptions has not ceased at4779

the finalization of this work. We are continuing to improve all the models given here, to engage in fruitful4780

discussions with Arm, to produce new models for more of the architecture, and to build more confidence4781

in the models we have already created.4782

Hopefully, this work enables future researchers, academics, engineers, architects, and hardware designers,4783

to better understand the environment as it is today, and to produce clearer and more robust architectures,4784

and to take the first steps in verifying the complex systems software that underpins so much of the modern4785

base of computing with respect to the reality of the hardware we run them on.4786
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Appendix A5151

Pocket guide to the Arm ISA.5152

The litmus tests, as found in this thesis, use a relatively small subset of the whole ISA.5153

Refer to the Arm Architecture Reference Manual, Section C6 (“A64 Base Instruction Descriptions”) for a5154

more complete explanation of all the instructions.5155

A.1 Architectural concepts5156

Some terminology:5157

. AArch64 is the 64-bit execution mode.5158

. A64 is the name of the 64-bit ISA which AArch64 executes.5159

. PE (‘Processing Element’) is generic Arm terminology for a hardware thread/core.5160

. GPR (‘General-purpose register’) is one of the 31 ‘general-purpose’ registers.5161

. Immediate values are literal numeric values used in the instructions, as opposed to being read from5162

registers.5163

Exception levels Arm execution is split into privilege levels (called exception levels in Arm), labelled5164

from EL0 (least privileged execution) to EL3 (most privileged), see Fig A.1.5165

Proc Proc Proc Proc

Kernel Kernel

Hypervisor

Firmware/Secure Monitor

EL0: Userland

EL1: Operating System

EL2: Hypervisor

EL3: Firmware

Most privileged

Least privileged

Figure A.1: Arm-A exception levels.

Registers A64 has:5166

. 31 general-purpose registers, named R0–R30.5167
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– Rn is an internal name, the register should be accessed via one of its aliases: Xn or Wn (see5168

Fig A.2).5169

– X0–X30 are aliases for the whole 64-bit bitvector stored in R0-R30.5170

– W0–W30 are aliases for the least-significant 32-bit vector stored in R0-R30.5171

. a stack pointer, SP.5172

– WSP is an alias for the least-significant 32-bit vector of SP.5173

. a program counter register, named PC, not directly accessible by software.5174

. a collection of ‘special-purpose registers’ which generally store some processor state, e.g.5175

– NZCV, the flag register.5176

– DAIF, interrupt mask register.5177

– CurrentEL, the current exception level register.5178

– . . .5179

. a collection of ‘system registers’ which are generally configuration and identification registers, which5180

control how the machine executes, e.g.5181

– SCTLR_EL1 the system configuration register, for EL1 and below.5182

– CTR_EL0 the cache-type identification register, accessible from EL0.5183

– . . .5184

63 03132

Wn

Xn

Figure A.2: Views of general-purpose register Rn.
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A.2 Guide to Instructions5185
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5221

5222

A.2.1 Branches5223

Branches are those instructions which write to the PC register.5224

B5225

B <LABEL>5226

Jumps to a given label.5227

Example The following code writes 2 to R0:5228

1 b L25229

2 L1:5230

3 MOV X0 ,#15231

4 RET5232

5 L2:5233

6 MOV X0 ,#25234

7 RET5235
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Example Labels can be numeric, and branches to them can be suffixed with f (‘forward’) or b (‘back’).5236

e.g. this code has the control-flow-graph shown on the right:5237

1 0:
2 B 0f
3 1:
4 B 1f
5 0:
6 B 1b
7 0:
8 RET
9 1:

10 B 0b

5238

B.cond5239

B.<COND> <LABEL>5240

Jumps to the given label, if the condition given is true.5241

Conditions The conditions are based on the current value of the condition register, NZCV, which are set5242

by condition instructions (e.g. CMP), and then the <COND> is one of:5243

. eq: Z==15244

. ne: Z==05245

. gt: N==V && Z==05246

. lt: N!=V5247

Example This program returns 0, as the values are unequal.5248

1 MOV X0 ,#135249

2 MOV X1 ,#115250

3 CMP X0,X15251

4 // now NCZV =={0,0,1,1}5252

5 B.eq Lequal5253

6 Ldifferent:5254

7 MOV X0 ,#05255

8 RET5256

9 Lequal:5257

10 MOV X0 ,#15258

11 RET5259

BL and RET5260

BL <LABEL>5261

RET5262

Branch-and-link (aka ‘call’) and return. BL Jumps to given label, saving the current location (current5263

value of PC), to register X30. RET then branches to register X30.5264

Example The following example returns 1,2,3 to registers R0, R1 and R2, respectively. Note that the5265

general-purpose register X30 is overwritten by BL, so the following example explicitly saves and restores5266

the value to some arbitrarily-picked general-purpose registers.5267

1 MOV X20 ,X305268

2 BL f5269

3 MOV X30 ,X205270
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4 RET5271

5 f:5272

6 MOV X0 ,#15273

7 MOV X21 ,X305274

8 BL g5275

9 MOV X30 ,X215276

10 RET5277

11 g:5278

12 MOV X1 ,#25279

13 MOV X22 ,X305280

14 BL h5281

15 MOV X30 ,X225282

16 RET5283

17 h:5284

18 MOV X2 ,#35285

19 RET5286

BR and BLR5287

BR <GPR>5288

Branches to an address in the given general-purpose register. The address is absolute (not PC-relative).5289

BLR <GPR>5290

Branch-and-link register, behaves as BL as before, but jumps to the address stored in the register rather5291

than to a label.5292

Example The following code places the address of label L into the register R0 using the ADR instruction,5293

then branches to the label using the stored address:5294

1 ADR X0,L5295

2 BR L5296

3 L:5297

4 MOV X0 ,#15298

5 RET5299

CBZ and CBNZ5300

CBZ <GPR>, <LABEL>5301

CBNZ <GPR>, <LABEL>5302

Jumps to given label, if the value in the given general-purpose register is zero (or not zero if CBNZ).5303

Example The following code returns with 3 in R3, since X0 is zero (so the first CBNZ) is not taken, X1 is5304

not zero (so the first CBZ) is not taken, but X2 is zero so the final CBZ is taken, and label L2 is branched to,5305

and the fallthrough case is missed:5306

1 MOV X0 ,#05307

2 MOV X1 ,#15308

3 MOV X2 ,#05309
45310

5 CBNZ X0,L05311

6 CBZ X1,L15312

7 CBZ X2,L25313
85314

9 // (fallthrough case)5315

10 MOV X3 ,#05316

11 RET5317
125318
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13 L0:5319

14 MOV X3 ,#15320

15 RET5321

16 L1:5322

17 MOV X3 ,#25323

18 RET5324

19 L2:5325

20 MOV X3 ,#35326

21 RET5327

A.2.2 Comparisons5328

For use with the B.cond instruction. These instructions write to the NZCV flag register.5329

CMP5330

CMP <GPR0>, <GPR1>5331

CMP <GPR0>, #<IMM>5332

Subtracts the value stored in the second argument (either from a general purpose register or an immediate5333

value) from the value stored in the first general purpose register, setting the flag register.5334

Example At the end of this program the flag registers are set such that NCZV=={0,0,1,0} i.e. the result5335

is not-negative, no carry, it is zero, and no overflow.5336

1 MOV X0 ,#1005337

2 CMP X0,X05338

Example At the end of this program the flag registers are set such that NCZV=={1,0,0,0} i.e. the result5339

is negative, no carry, not zero, and no overflow.5340

1 MOV X0 ,#15341

2 MOV X1 ,#25342

3 CMP X0,X15343

Example At the end of this program the flag registers are set such that NCZV=={1,0,0,1} i.e. the result5344

is negative, no carry, not zero, and it overflowed.5345

1 MOV X0 ,#05346

2 NEG X0,X05347

3 CMP X0 ,#15348

A.2.3 Register moving and arithmetic5349

MOV5350

MOV <GPR0>, <GPR1>5351

MOV <GPR0>, #<IMM>5352

MOV <GPR0>, #<IMM>, LSL #<IMM>5353

Copies a value stored in the second argument (either in a general-purpose register or a 16-bit immediate5354

value) into the first argument.5355

Optionally, the immediate value can be shifted left a multiple of 16.5356
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Example At the end of this program X0 contains the value 2, and X1 contains the value 1.5357

1 MOV X0 ,#15358

2 MOV X1 ,#25359

3 MOV X2 ,#35360

4 MOV X2,X05361

5 MOV X0,X15362

6 MOV X1,X25363

MRS and MSR5364

MSR <SYSREG>, <GPR>5365

MRS <GPR>, <SYSREG>5366

Writes (MSR) or reads (MRS) a system (or special-purpose) register.5367

Example This program sets bits 31-28 to one in the flags register then reads the CTR_EL0 identification5368

register into general-purpose register R1 (note the flags are not relevant here, this is just an example5369

register):5370

1 MOV X0 ,#0 xf000 LSL 165371

2 MSR NCZV ,X05372

3 MRS X1,CTR_EL05373

ADD5374

ADD <GPR0>, <GPR1>, <GPR2>5375

ADD <GPR0>, <GPR1>, #<IMM>5376

Adds the values stored in the second and third arguments together, and stores the result in the register5377

given as the first argument.5378

Examples It is common to pass the same register as input and output to do an increment:5379

1 MOV X0 ,#15380

2 ADD X0,X0 ,#15381

3 // {R0==2}5382

Simple addition:5383

1 MOV X0 ,#15384

2 MOV X1 ,#25385

3 ADD X2,X0,X15386

4 // {R2==3}5387

EOR5388

EOR <GPR0>, <GPR1>, <GPR2>5389

EOR <GPR0>, <GPR1>, #<IMM>5390

Exclusive-or. Does a bitwise exclusive or on the values stored in the second and third arguments, and5391

writes the result to the register passed as the first argument.5392
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Examples EOR behaves as a bitwise XOR over integers:5393

1 MOV X0 ,#35394

2 MOV X1 ,#55395

3 EOR X2,X0,X15396

4 // {X2==6}5397

Exclusive-or’ing a register with itself zeroes it:5398

1 MOV X0 ,#135399

2 EOR X0,X0,X05400

3 // {X0==0}5401

LSL and LSR5402

LSL <GPR0>, <GPR1>, <GPR2>5403

LSL <GPR0>, <GPR1>, #<IMM>5404

LSR <GPR0>, <GPR1>, <GPR2>5405

LSR <GPR0>, <GPR1>, #<IMM>5406

Logical shift left/right. Shifts the value in the second argument by the amount in the third argument,5407

and stores the result in the general-purpose register named as the first argument.5408

Examples Left-shifts are multiplication by 2:5409

1 MOV X0 ,#15410

2 LSL X1,X0 ,125411

3 // {X1 ==4096}5412

Right shifts are floor division by 2:5413

1 MOV X0 ,#55414

2 LSR X1,X0 ,15415

3 // {X1==2}5416

A.2.4 Memory accesses5417

LDR5418

LDR <GPR0>, [<GPR1>]5419

LDR <GPR0>, [<GPR1>, #<IMM>]5420

LDRB <Wn>, [<GPR1>]5421

LDRB <Wn>, [<GPR1>, #<IMM>]5422

Reads the value at the memory address stored in the register <GPR1>, and stores the value in register5423

<GPR0>.5424

Optionally, an offset to the address can be provided as an immediate value.5425

There are also address register writeback versions of these instructions, see the full manual.5426

NOTE: if the first argument is a 32-bit alias Wn then a 32-bit value is read from memory, if the first5427

argument is a 64-bit alias Xn then a 64-bit value is read from memory. If the mnemonic is LDRB then it5428

loads a single byte, and the register must be a 32-bit alias.5429
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STR5430

STR <GPR0>, [<GPR1>]5431

STR <GPR0>, [<GPR1>, #<IMM>]5432

STRB <Wn>, [<GPR1>]5433

STRB <Wn>, [<GPR1>, #<IMM>]5434

Writes the value stored in register named by the <GPR0> argument, into the memory address stored in the5435

register <GPR1>.5436

Optionally, an offset to that address can be provided as an immediate value.5437

NOTE: if the first argument is a 32-bit alias Wn then a 32-bit value is written to memory, if the first5438

argument is a 64-bit alias Xn then a 64-bit value is written to memory.5439

Example The following code writes the 1 as a 64-bit vector to address 1000, the value 2 as a 32-bit5440

vector to address 1004, and the values 3,4,5 and 6 to addresses 1008,1009,1010, and 1011.5441

1 MOV X0 ,#10005442

2 MOV X1 ,#15443

3 MOV W2 ,#25444

4 MOV W3 ,#35445

5 MOV W4 ,#45446

6 MOV W5 ,#55447

7 MOV W6 ,#65448

8 STR X1 ,[X0]5449

9 STR W2 ,[X0 ,#8]5450

10 STRB W3 ,[X0 ,#12]5451

11 STRB W4 ,[X0 ,#13]5452

12 STRB W5 ,[X0 ,#14]5453

13 STRB W6 ,[X0 ,#15]5454

Resulting in memory like (noting Arm is little-endian by default):5455

1000 1008 1012

1 2 3 4 5 65456

LDP and STP5457

LDP <GPR0>, <GPR1>, [<GPR2>]5458

STP <GPR0>, <GPR1>, [<GPR2>]5459

Load and store pair variants of the load and store instructions. These read or write from two adjacent 32-5460

or 64-bit locations, starting at the address stored in <GPR2>, using two separate general-purpose registers5461

for the data.5462

A.2.5 Barriers5463

DMB5464

DMB.<KIND>5465

Data memory barrier.5466

Arm categorise the kinds into two partitions:5467

. The types: whether this orders reads or writes or both.5468

. The domain: whether the effect is visible to just this core, or all.5469
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A sample of the kinds used in litmus tests are given below:5470

Kind Types Domain
SY RW.RW Full system
ISH RW.RW Full system
ST W.W Full system
LD R.RW Full system

5471

See the full Arm architecture reference manual for the rest.5472

DSB5473

DSB.<KIND>5474

Data synchronisation barrier. Like a DMB, but affects (some) implicit memory effects, too.5475

Arm categorise the kinds two ways:5476

. The types: whether this orders reads or writes or both.5477

. The domain: whether the effect is visible to just this core, or all.5478

A sample of the kinds used in litmus tests are given below:5479

Kind Types Domain
SY RW.RW Full system
ISH RW.RW Full system
ST W.W Full system
LD R.RW Full system
NSH RW.RW This CPU only

5480

See the full Arm architecture reference manual for the rest.5481

ISB5482

ISB5483

Instruction synchronisation barrier.5484

A.2.6 Cache maintenance5485

DC5486

DC <OP>, <GPR>5487

Data Cache maintenance by address. Performs the cache maintenance operation OP to the address stored5488

in the given general-purpose register.5489

A sample of the kinds used in litmus tests are given below:5490

Kind Clean/Invalidate To
CVAU Clean Point of Unification
CVAC Clean Point of Coherency
CIVAC Clean&Invalidate Point of Coherency

5491

See the full Arm architecture reference manual for the rest.5492

IC5493

IC <OP>, <GPR>5494

Instruction Cache maintenance by address. Performs the cache maintenance operation OP to the address5495

stored in the given general-purpose register.5496

A sample of the kinds used in litmus tests are given below:5497
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Kind Clean/Invalidate To
IVAU Invalidate Point of Unification
IVAC Invalidate Point of Coherency

5498

See the full Arm architecture reference manual for the rest.5499

IC <ALLOP>5500

Instruction Cache maintenance, not by address.5501

ALLOP can be one of:5502

Op Clean/Invalidate To Domain
IALLU Invalidate Point of Unification This CPU only

IALLUIS Invalidate Point of Unification All CPUs
5503

A.2.7 TLB maintenance5504

TLBI-by-address5505

TLBI <OP>, <GPR>5506

TLB maintenance, by page number stored in the general-purpose register given as argument:5507

31 0

Addr[55:12]
43 32

Res0
47 44

TTL
63 48

ASID
5508

Encoding of TLBI-by-Address argument register.5509

A sample of TLBI-by-Address operations:5510

. VAE1: by virtual address and ASID, for the EL1&0 regime, for this PE.5511

. VAE1IS: by virtual address and ASID, for the EL1&0 regime, for all PEs.5512

. VAAE1: by virtual address, for all ASIDs, for the EL1&0 regime, for this PE.5513

. VAAE1IS: by virtual address, for all ASIDs, for the EL1&0 regime, for all PEs.5514

. VAE2: by virtual address and ASID, for the EL2 regime, for this PE.5515

. IPAS2E1: by intermediate physical address, for the current VMID, for the EL1&0 regime, for this5516

PE, second stage only.5517

. IPAS2E1IS: by intermediate physical address, for the current VMID, for the EL1&0 regime, for all5518

PEs, second stage only.5519

TLBI-by-ASID5520

TLBI ASIDE1, <GPR>5521

TLBI ASIDE2, <GPR>5522

TLB maintenance, for an ASID stored in the general-purpose register given as argument:5523

63 48

ASID
47 0

Res0
5524

Encoding of TLBI-by-ASID argument register.5525

TLBI-ALL5526

TLBI <OP>5527

TLB maintenance, for an ASID stored in the general-purpose register given as argument:5528

A sample of TLBI-ALL operations:5529

. ALLE1: for any ASID, any VMID, stage 1 and stage2, for the EL1&0 regime, this PE only.5530

. ALLE1IS: for any ASID, any VMID, stage 1 and stage2, for the EL1&0 regime, for all PEs.5531
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. ALLE2: for any ASID, for the EL2 regime, for this PE.5532

. VMALLE1IS: for any ASID, for the current VMID, for stage1, for the EL1&0 regime, for all PEs.5533

. VMALLS12E1IS: for any ASID, for the current VMID, for stage1 and stage2, for the EL1&0 regime,5534

for all PEs.5535

A.2.8 Exceptions5536

SVC and ERET5537

SVC #<IMM>5538

Take an exception right here. Saves the current processor state (current exception level, flags, etc. but not5539

register values) to the saved processor status register (SPSR_ELn) and then jumps to the address stored in5540

the vector base address register (VBAR_ELn). Jumps to the address stored in the exception link register5541

(ELR_ELn), and restores the processor status which was saved on taking the exception (in the SPSR_ELn).5542

The immediate value is stored in the exception syndrome register, which software can read.5543

ERET5544

Return from exception. Jumps to the address stored in the exception link register (ELR_ELn), and restores5545

the processor status which was saved on taking the exception (in the SPSR_ELn).5546

Example Execution jumps between process and the exception handler, as shown by the control-flow-graph5547

on the right, with columns showing the current exception level.5548

1 MOV X0 ,#1
2 SVC #0
3 MOV X2 ,#3
4 RET
5
6 at_VBAR:
7 MOV X1 ,#2
8 ERET

at EL0 at EL1

5549
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Appendix B5550

Test format: system-litmus-harness5551

The test format supports writing a variety of kinds of pagetable tests, through both the initial state setup5552

and the data passed from the harness allocator via the litmus_test_run data struct.5553

The data struct contains, for each global variable (e.g. x): the virtual address (%[x]); the initial last-level5554

descriptor (%[xdesc]); the address of the last-level entry (%[xpte]); the address of the entry at level N5555

(%[xpteN]); the page index, e.g. for arguments to TLB maintenance (%[xpage]). With some aliases for5556

the different levels to match Linux terminology: %[xpmd] for the level 2 entry (xpte2); %[xpud] for the5557

level 1 entry (xpte1).5558

The initial state enables specifying a rich variety of related machine states, each INIT_STATE can include5559

directives for the initial value of the variable:5560

. INIT_UNMAPPED(var): that the pagetable entry for var starts out invalid.5561

. INIT_VAR(var, value): that var starts out mapped and the location at its physical address starts5562

out containing value.5563

. INIT_ALIAS(var1, var2): that var1 and var2 should be aliased to the same location.5564

The programmer can also choose the initial permissions and memory attributes the variables are mapped5565

with:5566

. INIT_PERMISSIONS(var, prot, value): that var should be mapped with field prot set to value:5567

– for prot=PROT_AP, value can be any int, but there are some helpful aliases:5568

∗ PROT_AP_RWX_X (0x0): read-write-execute at EL1, execute only at EL0.5569

∗ PROT_AP_RW_RWX (0x1): read-write at EL1, read-write-execute at EL0.5570

∗ PROT_AP_RX_X (0x2): read-execute at EL1, execute only at EL0.5571

∗ PROT_AP_RX_RX (0x3): read-execute at EL1 and EL0.5572

– for prot=PROT_ATTRIDX, value defines the memory attributes as the index to the default MAIR5573

value, and can be any of:5574

∗ PROT_ATTR_DEVICE_nGnRnE (0): use strongly-ordered device memory.5575

∗ PROT_ATTR_DEVICE_GRE (1): standard device memory (with re-ordering, gathering and early5576

write acknowledgement).5577

∗ PROT_ATTR_NORMAL_NC (2): normal non-cacheable memory.5578

∗ PROT_ATTR_NORMAL_RA_WA (3): normal cacheable memory.5579

∗ indexes 4-7 are unused.5580

. INIT_MAIR(value): defines the otherwise unused MemAttr7 field of the MAIR for custom tests.5581

– MAIR_DEVICE_nGnRnE (0x00): strongly ordered device memory.5582
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– MAIR_DEVICE_GRE (0x0c): standard device memory (with re-ordering, gathering and early write5583

acknowledgement).5584

– MAIR_NORMAL_NC (0x44): normal non-cacheable memory.5585

– MAIR_NORMAL_RA_WA (0xff): normal cacheable memory.5586

Finally, the harness allocator can be guided to place variables in locations with particular relationships5587

between them (in the same page or cache line, or at the same offset into their respective regions):5588

. INIT_REGION_OWN(var, region): that var owns a region of memory larger than the default of a5589

page, region can take values:5590

– REGION_OWN_CACHE_LINE: this variable only takes up a single cache line.5591

– REGION_OWN_PAGE: don’t allocate other variables in the same page (the default).5592

– REGION_OWN_PMD: don’t allocate other variables in the same 2MiB region.5593

– REGION_OWN_PUD: don’t allocate other variables in the same 1GiB region.5594

. INIT_REGION_PIN(var1, var2, region): place var1 and var2 in the same region, where region is5595

one of:5596

– REGION_SAME_CACHE_LINE: place both in the same cache line.5597

– REGION_SAME_PAGE: place both in same page.5598

– REGION_SAME_PMD: place both same 2MiB region.5599

– REGION_SAME_PUD: place both same 1GiB region.5600

. INIT_REGION_OFFSET(var1, var2, region): ensure that var1 and var2 have the same offset into5601

the region (that is, the least significant bits overlap), where region can be one of:5602

– REGION_SAME_CACHE_LINE_OFFSET: ensure both have same lower CACHE_LINE_SHIFT bits.5603

– REGION_SAME_PAGE_OFFSET: ensure both have same offset into the page (bits 12-0).5604

– REGION_SAME_PMD_OFFSET: ensure both have same offset into the 2MiB region (bits 20-12).5605

– REGION_SAME_PUD_OFFSET: ensure both have same offset into the 1GiB region (bits 29-20).5606
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Appendix C5607

Proof of virtual memory abstraction5608

This Appendix is based on: Relaxed virtual memory in Armv8-A [34] by Ben Simner, Alasdair Armstrong,5609

Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell, published in the5610

proceedings of the 31st European Symposium on Programming (ESOP, 2022). In particular, much of the5611

proof is the work of Jean Pichon-Pharabod.5612

We consider a simple case when the virtual address abstraction ought to hold: under some conditions, the5613

model with translation and the original model without translations coincide. Here, we only consider the5614

consistency of the pre-executions, but not how these pre-executions arise.5615

C.1 Abstraction5616

Definition 1 (VA abstraction subcondition). G satisfies the VA abstraction subcondition when it has no5617

page-table-affecting instructions: no TLBI, no context-changing operations (for example via writing to5618

registers, for example via MSR TTBR), etc.5619

Definition 2 (VA abstraction condition). Gtr satisfies the VA abstraction condition when it satisfies the5620

VA abstraction subcondition, and has a static injective page table.5621

Theorem 1 (VA abstraction). For all (Gtr : concrete execution)5622

if Gtr is consistent wrt. the model with translation5623

and respects the VA abstraction condition, then5624

let Gabs = erase Gtr in5625

Gabs is consistent wrt. the model without translation.5626

Proof. First, the builtin addr of the abstract model is assumed to coincide with the derived addr of the5627

concrete model by the erasure. Showing that the two definitions of pre-executions do relate in this way5628

is outside of our scope. Given that the definitions addr coincide, the definitions of all the other derived5629

relations of the abstract model, including ob in the translation model, are syntactically supersets of their5630

definition in the concrete model, so a cycle in ob in the abstract model is also a cycle in ob in the concrete5631

model.5632

C.2 Anti-abstraction5633

For this direction, we need to be able to put the translation table somewhere.5634

Step 1: Building the candidate execution in the translation model5635

Definition 3 (translation extension condition). The translation extension condition is the data of5636

(Gabs : execution)5637

such that Gabs is consistent wrt. the model without translation5638

and has no TLBI, and no MSR TTBR5639

and5640
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(va_space : va_address -> bool)5641

such that all the memory accesses of Gabs are in va_space5642

and5643

(pt_pa_space : pa_address -> bool)5644

(pt_initial_state : pa_address -> option (list byte)),5645

such that the domains of pt_pa_space and pt_initial_state coincide5646

and5647

(tr_ctxt : translation_context),5648

such that id_map_lifted va_space and pt_pa_space are disjoint address spaces5649

and5650

(translate : translation_function),5651

such that translating abstract_va_space translate-reads from within pt_pa_space and gives the injective5652

map.5653

Definition 4 (translation extension). Given the translation extension condition, the translation extension5654

Gtr of Gabs is constructed by:5655

. adding all the initial writes for the page tables,5656

. adding all the translate reads obtained by running the translate function with the tr_ctxt,5657

. adding the translate reads in iio between the fetch and the explicit event,5658

. adding tdata to match addr,5659

. adding trf from the corresponding initial writes to the translates.5660

Definition 5 (VA anti abstraction condition). Gtr satisfies the VA anti-abstraction condition when it is5661

derived from a consistent execution which satisfies the VA abstraction subcondition by the translation5662

extension.5663

Lemma 1 (VA abstraction condition for translation extension). If Gtr satisfies the VA anti-abstraction5664

condition, then Gtr satisfies the VA abstraction condition.5665

Proof. The translation extension does not add any extra instructions, and sets up static injective page5666

tables.5667

Lemma 2 (obtlbi-empty). If Gtr satisfies the VA anti-abstraction condition, then obtlbi is empty.5668

Proof. obtlbi has5669

. obtlbi_translate which has5670

– tcache15671

which is [T & Stage1] ; tfr ; tseq15672

the latter is5673

[W] ; (maybe_TLB_barriered_by_va & ob) ; [TLBI VA]5674

which requires a TLBI, so it is empty5675

– tcache2 & ...5676

which requires a TLBI, so it is empty5677

– (tcache2 ; ...) & ...5678

which requires a TLBI, so it is empty5679

. [M] ; iio^-1 ; obtlbi_translate5680

to which the same reasoning applies5681

5682

Step 2: Consistency5683

Lemma 3. If Gtr satisfies the VA anti-abstraction condition, then translation-internal is acylic.5684

Proof. po-pa; [W]; trf is empty5685

because by the VA anti-abstraction condition there are no non-initial writes to page tables.5686
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So we only need to show external is acyclic.5687

Lemma 4 (ob-to-T). If G satisfies the VA anti-abstraction condition, then, for all n ≥ 1,5688

imm(ob)^n ; [T] ==5689

iio5690

| imm(ob)^(n-1) ; trfe5691

| imm(ob)^(n-1) ; [T] ; iio ; [T]5692

| imm(ob)^(n-1) ; [CSE] ; instruction-order5693

| imm(ob)^(n-1) ; po ; [ERET] ; instruction-order ; [T]5694

Proof. . The addr clause5695

| tdata ; [T_f]5696

is empty because there are no translation failures.5697

. tob does not contribute: there are no faults, and no non-initial writes to page table entries.5698

. The first clause of ctxob is empty because there are no MSR TTBR. The third and fourth are also5699

empty, because they do not end in a [T].5700

. Given a static injective mapping, the new | (addr | data | ctrl) ; trfi clause of dob is empty.5701

5702

Lemma 5 (no-cycle-ob-to-init). If Gtr is well-formed and consistent (in either model), then there is cycle5703

in ob via the initial writes.5704

Proof. By well-formedness, wco ; [INIT] = [INIT] ; wco ; [INIT], and wco is acyclic.5705

By examination of the other edges.5706

Lemma 6 (ob-from-T). If Gtr satisfies the VA anti-abstraction condition, then5707

[T] ; imm(ob) ==5708

iio5709

| [T] ; iio ; [M] ; po ; [W]5710

Proof. By examination of the edges.5711

Lemma 7 (instruction-order-compress).5712

instruction-order ; [T] ; iio ; [M] ; po ⊆ instruction-order5713

Proof. If we unfold the definitions of instruction-order and po, we have5714

iio^-1 ; fpo ; iio ; [T] ; iio ; [M] ; [M|F|C] ; iio^-1 ; fpo ; iio ; [M|F|C]5715

which we can simplify into5716

iio^-1 ; fpo ; fpo ; iio ; [M|F|C]5717

which means we have5718

instruction-order.5719

Lemma 8 (instruction-order-compress-iio). instruction-order ; iio ; po ⊆ instruction-order5720

Proof. iio is transitive, and is the RHS of instruction-order.5721

Lemma 9 (ob-acyclic-preserved). If G satisfies the VA anti-abstraction condition, if there is a cycle in5722

translate-ob, then there is a cycle in plain-ob.5723

Proof. Consider a minimal cycle in translate-imm(ob) (that is, the transitive closure of the ob of the model5724

with translation). Let n be its length.5725

We show that there is a cycle in plain-ob.5726

Assume, for contradiction, that the cycle contains an edge that is not in plain-ob (that is, the ob of the5727

model without translation):5728
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. iio5729

by case split:5730

– [T] ; iio; [M]: by Lemma ob-to-T, the ob edge to the left has to be either5731

∗ iio in which case, by transitivity of iio, there is a shorter cycle, so we have a contradiction.5732

Let us call this Case IIOtrans.5733

∗ trfe, which is from an initial write by the VA abstraction condition,5734

but by Lemma no-cycle-ob-to-init, the cycle cannot exist.5735

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]5736

then we have imm(ob)^(n-2); [T]; iio; [M], which involves one fewer translate,5737

so we have a contradiction.5738

∗ imm(ob)^(n-2) ; [CSE] ; instruction-order5739

This is similar to IIOtrans.5740

∗ imm(ob)^(n-2) ; po ; [ERET] ; instruction-order ; [T]5741

This is similar to IIOtrans.5742

– [T] ; iio ; [T]:5743

So the whole cycle looks like imm(ob)^(n-1) ; [T] ; iio ; [T]5744

By Lemma ob-to-T, we have either5745

∗ imm(ob)^(n-2) ; iio ; [T] ; iio ; [T]5746

See Case IIOtrans.5747

∗ imm(ob)^(n-2) ; trfe5748

the trfe is from an initial write by the VA abstraction condition,5749

and by Lemma no-cycle-ob-to-init, the cycle cannot exist.5750

∗ imm(ob)^(n-2); [T]; iio; [T]5751

but we already have iio to the second T,5752

so we have a cycle involving one fewer translate,5753

so we have a contradiction.5754

∗ imm(ob)^(n-2) ; [CSE] ; instruction-order5755

This is similar to IIOtrans.5756

∗ imm(ob)^(n-2) ; po ; [ERET] ; instruction-order ; [T]5757

This is similar to IIOtrans.5758

. tob has5759

– [T_f] ; tfr5760

which has a fault, so we have a contradiction.5761

– ([T_f] ; tfri) & (po ; [dsb.sy] ; instruction-order)^-15762

which has a fault, so we have a contradiction.5763

– speculative ; trfi which is empty, because of the static page table.5764

. obtlbi, which is empty by Lemma obtlbi-empty.5765

. ctxob has5766

– speculative ; [MSR TTBR]5767

by the VA abstraction condition, there is no MSR TTBR5768

– [CSE] ; instruction-order5769

So the whole cycle looks like5770

[CSE] ; instruction-order ; imm(ob)^(n-1)5771

Because instruction-order is acyclic, n ≥ 1, so we have5772

[CSE] ; instruction-order ; imm(ob) ; imm(ob)^(n-2)5773

By Lemma ob-from-T, we have either:5774
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∗ [CSE] ; instruction-order ; iio ; imm(ob)^(n-2)5775

which means that by Lemma instruction-order-compress, we have5776

[CSE] ; instruction-order ; imm(ob)^(n-2)5777

so we have a cycle involving one edge fewer, so we have a contradiction.5778

∗ [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [W] ; imm(ob)^(n-2)5779

which means that by Lemma instruction-order-compress, we have5780

[CSE] ; instruction-order ; imm(ob)^(n-2)5781

so we have a cycle involving one edge fewer, so we have a contradiction.5782

– [ContextChange] ; po ; [CSE]5783

by the VA abstraction condition, there is no ContextChange.5784

– speculative ; [CSE]5785

The CSE has to be an ISB, because there are no exceptions, and the speculative is either in5786

dob in the plain model, so we have a contradiction, or in [T]; instruction-order.5787

So the whole cycle looks like imm(ob)^(n-1) ; [T] ; iio ; [M] ; po ; [ISB]5788

Because po | iio is acyclic, n− 1 has to be ≥ 1, so by Lemma ob-to-T, we have either5789

∗ imm(ob)^(n-2); iio; [T]; iio; [M]; po; [ISB]5790

See Case IIOtrans.5791

∗ trfe, which is from an initial write by the VA abstraction condition,5792

but by Lemma no-cycle-ob-to-init, the cycle cannot exist5793

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]; po; [ISB]5794

but we already have iio to the second T,5795

so we have a cycle involving one fewer translate,5796

so we have a contradiction.5797

∗ imm(ob)^(n-2); [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [ISB]5798

which means that by Lemma instruction-order-compress, we have5799

imm(ob)^(n-2); [CSE] ; instruction-order5800

so we have a cycle involving one edge fewer,5801

so we have a contradiction.5802

∗ imm(ob)^(n-2) ; po ; [ERET] ; instruction-order ; [T] ; iio ; [M] ; po ; [ISB]5803

is similar5804

– po ; [ERET] ; instruction-order ; [T]5805

So the whole cycle looks like5806

po ; [ERET] ; instruction-order ; [T] ; imm(ob)^(n-1)5807

Because instruction-order is acyclic, n ≥ 1, so we have5808

po ; [ERET] ; instruction-order ; [T] ; imm(ob) ; imm(ob)^(n-2)5809

By Lemma ob-from-T, we have either:5810

∗ po ; [ERET] ; instruction-order ; [T] ; iio ; imm(ob)^(n-2)5811

which means that by Lemma instruction-order-compress-iio, we have5812

po ; [ERET] ; instruction-order ; imm(ob)^(n-2)5813

so we have a cycle involving one edge fewer, so we have a contradiction.5814

∗ po ; [ERET] ; instruction-order ; [T] ; ([T] ; iio ; [M]; po ; [W]) ; imm(ob)^(n-5815

2)5816

which means that by Lemma instruction-order-compress, we have5817

po ; [ERET] ; instruction-order ; imm(ob)^(n-2)5818

so we have a cycle involving one edge fewer, so we have a contradiction.5819

. extended dob:5820

– involving trfi from non-initial writes, which contradicts our assumption about static translation.5821

– or [T] ; instruction-order ; [W],5822

so [T] ; iio ; [M] ; po ; [W]5823

So the whole cycle looks like imm(ob)^(n-1) ; [T] ; iio ; [M] ; po ; [W]5824
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Because po | iio is acyclic, n− 1 has to be ≥ 1, so by Lemma ob-to-T, we have either5825

∗ imm(ob)^(n-2); iio; [T]; iio; [M]; po; [W]5826

See Case IIOtrans.5827

∗ trfe, which is from an initial write by the VA abstraction condition,5828

but by Lemma no-cycle-ob-to-init, the cycle cannot exist5829

∗ imm(ob)^(n-2); [T]; iio; [T]; iio; [M]; po; [W]5830

but we already have iio to the second T,5831

so we have a cycle involving one fewer translate,5832

so we have a contradiction.5833

∗ imm(ob)^(n-2); [CSE] ; instruction-order ; [T] ; iio ; [M] ; po ; [W]5834

which means that by Lemma instruction-order-compress, we have5835

imm(ob)^(n-2); [CSE] ; instruction-order5836

so we have a cycle involving one edge fewer,5837

so we have a contradiction.5838

∗ imm(ob)^(n-2) ; po ; [ERET] ; instruction-order ; [T] ; iio ; [M] ; po ; [W]5839

is similar5840

. extended bob, but only involving TLBI, which contradicts our assumption of no TLBI.5841

. extended obs, but only involving trfe, by the VA abstraction condition, the only writes to page5842

tables are from initial writes, and by Lemma no-cycle-ob-to-init, there are no ob cycles via initial5843

writes, so there is no cycle.5844

. obfault, which involves a fault, which contradicts our assumptions.5845

. obets, which involves a fault or a TLBI, which contradicts our assumptions.5846

All the other edges are in plain-ob by definition.5847

Theorem 2 (VA anti-abstraction). If the translation extension condition holds, then there exists a Gtr that5848

satisfies the VA anti-abstraction condition such that Gtr is a stitching of Gabs with the pt_initial_state5849

according to translate in tr_ctxt and Gtr is consistent wrt. the model with translation.5850

Proof. Gtr exists by the translation extension construction,5851

and it is consistent by Lemma ob-acyclic-preserved.5852

5853
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