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Abstract5

Computing relies on architecture specifications to decouple hardware and software development. Historically6

these have been prose documents, with all the problems that entails, but research over the last ten years has7

developed rigorous and executable-as-test-oracle specifications of mainstream architecture instruction sets and8

“user-mode” concurrency, clarifying architectures and bringing them into the scope of programming-language9

semantics and verification.10

However, the system semantics, of address translation and TLB maintenance, instruction-fetch and its required11

cache maintenance, remains mostly obscure, leaving us without a solid foundation for verification of security-12

critical systems software.13

We produce precise mathematical models, for those aspects of the Arm A-class architecture. We implement these14

models as executable models, in both microarchiectural-flavoured operational and declarative axiomatic style15

formats. We validate these models, against currently available hardware through the production and evaluation16

of hardware test harnesses and test suites, and against the architectural intent through discussions with Arm17

architects. We produce a variety of hand-written and machine-generated litmus tests, exercising parts of the18

architecture previously unexplored.19

We discuss the nature of producing such models, the challenges that writing specifications of existing systems20

entails, and briefly touch upon how these models have evolved over time, and how we imagine they will evolve in21

the future as the remaining questions are resolved.22
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Chapter 1208

Introduction209

The computers we use every day are complex machines, made of many components, all working together to210

execute the software we run on them. These machines act as interpreters for a custom binary programming211

language, with commands made up of the instructions of the underlying architecture. These architectures can212

be thought of as abstractions of the underlying hardware, as programming languages whose syntax is defined213

by the binary encoding of the instructions from the ISA (Instruction Set Architecture), and whose semantics is214

the composition of the sequential behaviours of the individual instructions and registers from the ISA, with the215

whole machine execution model.Architecture therefore can be thought of as the interface between hardware and216

software: defining the guarantees hardware must give and that software may rely upon.217

Over the years much work has gone into defining, mathematically and precisely, the architectures that the218

processors we use every day implement. This previous work covers Intel/AMD’s x86 [1, 2, 3, 4], Arm’s ARMv7-219

A [5] and Armv8-A [6, 7] architectures, IBM’s Power [8], RISC-V [9], and others. In theory, this interface is220

straightforward to define. One can give precise formal semantics to the individual instructions, as Arm does221

with its Architecture Specification Language (or ASL for short) [10, 11], and then tie instructions together in a222

fetch-decode-execute loop. In practice, however, modern industrial architectures accumulate great complexity and223

subtlety. The Armv8-A and Intel reference manuals have 11,500 [12], and 4922 [1] pages respectively, covering224

everything from the individual instructions to the interactions between those instructions and the way they225

interact with memory.226

The complexity of these interfaces becomes most apparent with the interaction with multiprocessor systems [13].227

When multiple processors are executing concurrently, and communicating through shared memory, then various228

hardware optimisations, which are usually invisible to the programmer outside of timing effects, can become229

architecturally visible, affecting the semantics of the machine code, that is the values capable of being read or230

written to registers or memory by those processors. Over the years, these effects have been studied as part of231

the field of ‘relaxed memory’ research, resulting in numerous formal models for a variety of microprocessor232

architectures giving precise mathematical semantics to the concurrent behaviours of ‘userland’ machine code233

programs [14, 15, 3, 4, 16, 7, 17]. Analogously for high-level languages, there is similar work in understanding234

their relaxed memory behaviours which arise from both their compilation to such low-level machine programs,235

and also from the compiler’s optimisations [18, 19, 20, 16].236

We now seek to expand this work on relaxed memory for the Arm architecture, to cover not just those parts of237

the architectures used by userland processes, but the features required by systems software to function. In this238

work we will focus on the Armv8-A architecture: the application-class processors that power a large proportion239

of modern mobile devices. There are a few reasons to focus on Arm: (1) they are ubiquitous and millions (perhaps240

even billions, with over a trillion devices running Arm hardware today) of people rely on software running on241

Arm hardware every day, (2) Arm has a diverse ecosystem of implementations, meaning software must program242

to this abstract interface much more tightly than one might for other architectures, and (3) Arm have put a large243

amount of effort into precisely and formally defining their ISA in their ASL language, enabling us to give a faithful244

specification to the architectural envelope.245

Specifically, we will focus on key architectural features required by operating systems and hypervisors, which are246

not accessible, or only partially accessible, to userland processes: instruction fetching and cache maintenance,247

virtual memory and TLB maintenance.248
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1.1 Arm-A architecture overview249

Arm’s A-class architecture is general-purpose, intended for mobile devices, tablets, laptops, and even servers.250

Arm has three A-class architectures which can currently be found in modern hardware: ARMv7-A, Armv8-A, and251

Armv9-A. ARMv7-A is 32-bit only. Armv8-A and Armv9-A have 32-bit and 64-bit execution modes. Armv8-A and252

Armv9-A’s 64-bit modes use the same base ISA and execution modes, except where Armv9 has some additional253

features, or required extensions, or bugfixes. We will focus here on the 64-bit architecture found in Armv8-A and254

Armv9-A, and will use the term Arm-A to refer to both Armv8-A and Armv9-A interchangeably.255

Execution of an Arm-A processor is split into two modes: AArch64 (for 64-bit execution) or AArch32 (for 32-bit256

execution). AArch64 mode uses the A64 instruction set. AArch32 mode can use either the T32 or A32 instruction257

sets. This is illustrated in Figure 1.1.258

Arm-A

AArch32 AArch64

T32 A32 A64

Architecture

Execution mode

ISA

Figure 1.1: Arm-A structure.

A64, currently, has 402 ‘base’ instructions and another 1,205 vector, matrix and floating-point instructions. It has259

31 general-purpose registers, accessible through either 32-bit views as w0-w30, or as 64-bit views as x0-x30, as260

shown in Figure 1.2. It has a dedicated zero register (wzr/xzr), and stack pointer register (sp). Instructions are261

fixed-width, with 32-bit opcodes, and in the typical RISC style: with most instructions reading operands from262

registers, and writing results back to registers, with only limited support for immediate values. Execution in263

AArch64 is split into 4 ‘exception levels’, these demark the levels of privilege that a process may have, ranging264

from EL0 (least privileged) to EL3 (most privileged). Typically userland processes execute at EL0, with very265

limited access to hardware features; with operating systems running at EL1, hypervisors running at EL2, and any266

firmware and secure monitor running at EL3. There are also secure modes, which we do not consider here.267

Each CPU, called PEs (processing elements) in Arm nomenclature, has: its own bank of registers; is executing in268

either AArch64 or AArch32 execution mode; is fetching, decoding and executing instructions from either the A64,269

A32 or T32 ISAs; is executing at at one of EL0, EL1, EL2 or EL3.270

08162432404856 715233139475563

GPR#n

Xn

Wn

Figure 1.2: Arm-A W and X register views for a general-purpose register.

1.1. ARM-A ARCHITECTURE OVERVIEW 9



Proc Proc Proc Proc

Kernel Kernel

Hypervisor

Firmware/Secure Monitor

EL0: Userland

EL1: Operating System

EL2: Hypervisor

EL3: Firmware

Most privileged

Least privileged

Figure 1.3: Arm-A exception levels.

1.2 Systems software271

The programs we interact with on a day-to-day basis on our computers, our word processors and internet browsers,272

are typically unprivileged programs, with restricted access to hardware. Such programs are often referred to as273

executing in userland. These userland programs make up the bulk of the applications we use every day, from274

spreadsheets, to web browsers, text editors, and so on. They typically execute with the least privilege (in Arm,275

this means at EL0, as in Figure 1.3), and with the operating systems and hypervisors below them restricting the276

access to memory they have through the use of virtual memory (see Chapter 7).277

Operating systems typically split userland execution into processes: discrete instances of programs, each with278

some associated dedicated (virtual) memory [21, p. 85]. It is then the operating system, executing with more279

privilege (at EL1), that configures and schedules these processes.280

Modern operating systems seek to enforce isolation between these processes primarily through the application of281

a virtual memory abstraction [21, pp. 185,194,604][22, p 227], with each process behaving as if it has direct access282

to memory, when in fact the operating system (and the hardware supporting it) are redirecting the accesses at283

runtime.284

This virtual memory abstraction can be layered, with an extra level of abstraction below the operating systems285

controlled by a hypervisor. Hypervisors behave similarly, but instead of controlling many processes at EL0 they286

instead can control multiple operating systems at EL1.287

Finally, at EL3 executes any firmware or secure monitor. Generally, the firmware performs hardware-specific288

actions, especially during boot (reading and writing implementation-defined configuration registers and perform-289

ing any functionality required by the System-on-Chip). The Secure Monitor is a part of the Arm architecture’s290

TrustZone security extensions, and we will not discuss these features here.291

Figure 1.3 demonstrates a typical setup, with firmware running at EL3, a hypervisor at EL2, which is controlling a292

couple of operating systems, each of which has multiple processes under its control.293

1.2. SYSTEMS SOFTWARE 10



1.3 Relaxed memory294

The implementations of many programming languages, the compilers and interpreters, either in software and295

hardware, are not just direct implementations of the simple in-order sequential semantics one might expect.296

Instead, as time progressed these implementations have acquired multiple layers of abstraction, made with297

increasing complexity. Compilers and hardware re-write programs to be faster, use less space, and be more298

compact. They propagate and duplicate reads, subsume or outright eliminate writes, reorder operations in the299

program, replace one computation with another, or even just remove entire sections of the program entirely.300

These optimisations may be semantics preserving with respect to the simple sequential semantics: that they, aside301

from the timing effects they are designed to cause, are invisible to the programmer. This is, however, not true in302

all cases, with many highly desirable optimisations not preserving the source program’s semantics [23].303

It is multithreaded programs, and multicore processors, which often breaks the assumptions made by these304

optimisations. As an example, take Intel’s x86 microprocessor architecture. It allows its implementations to305

perform an innocuous-sounding optimisation: to buffer writes together locally. This store buffering optimisation306

is ubiquitous in the hardware world, but, it permits multiple cores to have mutually inconsistent views of memory307

[23, 3, 4]; where, at the same point in time, different cores see different values for the same memory address. If308

the programmer was unaware of these behaviours and the required mitigation in software, then this could break309

key invariants of software, leading to critical bugs in synchronisation primitives [23], data structures, or software310

more generally [24].311

Intel, and their x86 architecture, is not the only example of hardware architectures performing such optimisations,312

and store buffering is not the only behaviour hardware exhibits. Arm [12], RISC-V [25], and IBM’s Power [26]313

architectures all exhibit their own behaviours, with consequential requirements on software. Each of these314

microprocessor architectures comes with its own reference manual, comprised of thousands, or tens of thousands,315

of pages with a mix of prose and pseudocode, attempting to describe these behaviours. These architectures are316

incomparable, the behaviours they allow are not subsets of one another. Instead, there are several optimisations that317

some architectures allow as observable behaviour, where others do not. These include things such as reordering318

of instructions, prefetching and caching of data and instructions, buffering of loads and stores, hierarchical cache319

layouts, and branch prediction with speculation down those branches. It is not that some implementations perform320

these optimisations while others do not, but that those architectures which allow such behaviours to be observed321

do not require that the hardware include relevant hazard checking or invalidations which would recover from322

‘bad’ states.323

It is not just hardware that has these concerns. A variety of software languages, including C and C++ [27, 28], Java324

[29, §17.4], Rust [30], and Haskell [31], are all known to have comparable behaviours, derived both from similar325

optimisations done by their compilers and interpreters, but also inherited from the hardware they run upon.326

Over the decades, the community has spent a large amount of effort in understanding the behaviours that the327

hardware use every day actually exhibit, in talking with architects and hardware designers about what they328

imagine hardware could do, now or in the future, and building precise mathematical models which capture the329

architectural ‘envelope’ of allowable behaviours. These models come in many flavours, and in Chapter 2 we will330

explore two such models for Arm, and the set of behaviours they are intended to capture.331

1.3. RELAXED MEMORY 11



1.4 Contributions332

In this thesis, we extend the previous relaxed memory work on Arm into the realm of systems software: instruction333

fetch and cache maintenance, pagetables and TLBmaintenance, and a start on exception handling. We will produce334

both axiomatic-style declarative semantics and microarchitectural-style operational semantics to cover a variety335

of those parts of the architecture.336

1.4.1 Artefacts337

This work will present:338

. A set of litmus tests for instruction fetching and cache maintenance (Ch. 3), covering many areas and339

features and clarifying the architectural intent in those areas.340

. A microarchitectural-style structural-operational-semantics for Arm-A (Ch. 4), covering ifetch and cache341

maintenance, as an extension to the existing Flat model.342

. An equivalent formulation as an axiomatic-style declarative semantics (Ch. 5), as an extension to the343

herd-style Armv8 axiomatic model.344

. An extension of the litmus7 tool, and a set of results from testing against a range of hardware (Ch. 6).345

. A set of litmus tests for virtual memory and TLB maintenance, using the whole Arm translation table walk346

with both stages (Ch. 8).347

. An axiomatic-style declarative semantics (Ch. 9) as an extension to the original Armv8 model.348

. A new hardware testing harness, and validation of the models by experimentation against hardware, and349

through abstraction proofs (Ch. 10).350

1.4.2 Publications and collaborations351

The work presented in Chapters 3 to 10 were done in collaboration with a variety of other people on different352

aspects, and resulted in the production of the following publications:353

. “ARMv8-A system semantics: instruction fetch in relaxed architectures”, in the Proceedings of the354

29th European Symposium on Programming (ESOP 2020), by Ben Simner, Shaked Flur, Christopher Pulte,355

Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell [32].356

. “Isla: Integrating full-scale ISA semantics, axiomatic concurrency models”, in the Proceedings of357

the 33rd International Conference on Computer Aided Verification (CAV 2021), by Alasdair Armstrong,358

Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell [33].359

. “Relaxed virtual memory in Armv8-A”, in the Proceedings of the 31st European Symposium on Pro-360

gramming (ESOP 2022), by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte,361

Richard Grisenthwaite, and Peter Sewell [34].362

. “Relaxed exceptions in Arm-A (pre-publication)”, in the unpublished work, by Ben Simner, Ohad363

Kammar, Jean Pichon-Pharabod, and Peter Sewell [35].364

. “Isla: Integrating full-scale ISA semantics, axiomatic concurrency models (extended version)”, in365

the Formal Methods in System Design (May, 2023), by Alasdair Armstrong, Brian Campbell, Ben Simner,366

Christopher Pulte, and Peter Sewell [36].367

Many of the aspects of the work presented in this thesis were done jointly with many of the people listed above.368

In particular: the Isla tooling was primarily written by Alasdair Armstrong; the work on the litmus and diy369

tools by Luc Maranget; production of litmus tests and discussions with architects and microarchitects was done370

jointly with Shaked Flur, Christopher Pulte, Ohad Kammar, Thibaut Pérami, Jean-Pichon Pharabod, and Peter371

Sewell; the writing of models was done with Christopher Pulte and Shaked Flur (for ifetch), Christopher Pulte and372

Thibaut Pérami (for VMSA), and Jean Pichon-Pharabod and Ohad Kammar (for exceptions); and, the validation373

of the models, through proof and hardware testing, was done jointly with Jean Pichon-Pharabod (on the VMSA374

abstraction proofs) and Luc Maranget (test generation and hardware testing for ifetch).375
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Much of the above work was done in collaboration with Arm and their staff, in particular their chief architect,376

Richard Grisenthwaite. He is our primary contact within Arm, and we have a close collaboration with him377

characterised by discussions on Arm hardware, the requirements of the software that runs on them, the conse-378

quences of the models we propose, and, where relevant, the history of the architecture. In cases where we present379

some behaviour and declare that it is ‘allowed by Arm’, it usually means we have confirmation from the chief380

architect directly. However, it is not just the chief architect we collaborate with, but many members of Arm’s staff:381

Will Deacon, and later Jade Alglave, as the primary maintainer of the Arm memory models; and Ian Caulfield,382

Nikos Nikoleris, Gustavo Petri, Anthony Fox, and others, who discussed Arm modelling efforts, Arm hardware383

implementations, and provided feedback individually on many of the aforementioned publications.384

1.5 Thesis overview385

This document is split into four main parts:386

. Introduction and background (Chapters 1 and 2)387

. Instruction fetch (Chapters 3-6)388

. Virtual memory (Chapters 7-10)389

. Limitations and Conclusion (Chapter 11)390

Background Chapter 2 covers the fundamental concepts behind relaxed memory: the idea of litmus testing391

as a means to clarify and understand architecture, including a selection of important and useful litmus tests392

from the literature; how Arm defines their intra-instruction semantics and how such semantics compose with a393

concurrency model; the two kinds of concurrency models we will explore in this thesis, microarchitectural-style394

operational semantics and axiomatic-style declarative semantics; and describe instantiations of these for Arm-A.395

Instruction fetching We start with a brief overview of the existing prose text for instruction fetch (ifetch)396

and the related instruction (and data) cache maintenance operations. Focusing primarily on self-modifying (and397

concurrent-modification) of code, such as what is required for JITs, dynamic loaders, and operating systems398

schedulers, we produce a set of litmus tests (Ch. 3) to capture the key relaxed behaviours that arise from the399

optimisations found in modern microprocessors, and clarify where such behaviours were unclear. We produce400

a microarchitectural-style operational semantics (Ch. 4) based on our discussions with architects and micro-401

architects. We then produce an axiomatic model (Ch. 5) intended equivalent to the operational model. We402

then validate that these models (Ch. 6), confirming they coincide for the litmus tests given in the chapter. We403

automatically generate a large test suite of novel tests and check the two models do not diverge on these tests.404

We additionally check that they do not forbid behaviours exhibited on hardware by running the test suite on a405

selection of modern Arm processors.406

Virtual memory Structured similarly to the instruction-fetching chapters, but independent of the work pre-407

sented in it, we begin with an overview of the Arm Virtual Memory Systems Architecture or VMSA (Ch. 7), which408

describes the structure and behaviour of the Arm address translation and memory management architecture409

without considering concurrency or caching effects, then we produce a set of litmus tests (Ch. 8) which clarifies410

the architectural intent. We produce an axiomatic-style model for relaxed virtual memory (Ch. 9), as an extension411

to the original (user mode) model, using the whole Arm translation table walk, including multiple stages, and412

TLB maintenance. Finally, there is a discussion on the validation of this model (Ch. 10) achieved by discussion413

with the Arm chief architect, along with some limited testing of current Arm hardware, and some proofs over the414

axiomatic model for some expected key abstraction results.415

Conclusion Finally, Chapter 11 presents a short recap of the presented work, its limitations, and relation to416

other work in the area. Additionally, there is a discussion on what we learned, both consequently of the resulting417

models, but also through the process itself, before finally touching on what remains as potential future work.418
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Chapter 2419

Modelling Arm: background420

Now we turn our attention to the current well-established methods of precisely and formally modelling relaxed421

memory behaviours, specifically for Arm-A. In this chapter, we will cover two methods: microarchitectural-style422

operational semantics, which mimic the mechanisms seen on hardware; and, axiomatic-style declarative models423

which filter out whole-program execution graphs based on some predicate.424

We shall see that the idea of litmus testing is central: litmus tests provide a way of succinctly, and efficiently,425

describing, and enumerating, the behaviours of the underlying architecture that the models should allow or forbid.426

We will start by looking at litmus testing in general, and some specific litmus tests of interest to the Armv8-A427

models, before looking at the models in detail.428

2.1 Relaxed behaviours and litmus testing429

The foundation of much of the relaxed memory work has been focused on litmus tests, small, self-contained,430

executable, snippets of code. They each capture a simple pattern or shape one may find in software.431

Take the classic MP (‘Message passing’) litmus test, as an example [23]. The code listing for the AArch64 (Arm-A)432

variant can be found in Figure 2.1. The ‘MP’ portion of the name captures the shape: the code pattern, or sequence433

of events, that acts as the skeleton for a family of related tests. The ‘MP’ shape implies a two-threaded test with434

two locations, with one thread (usually written first) writing to the locations, and another thread reading them in435

the converse order. The second half of the name (‘+pos’) designates the variation on the shape, in this case, that436

both threads have accesses just program-order after each other with no other barriers or dependencies. Typically437

these variations are defined as the sequence of orderings between events (separated by - in the name) for each438

thread (separated by +). Thus, we get a whole family of litmus tests based on the basic MP shape: MP+pos (the439

one shown here), MP+dmbs (with an Arm dmb memory barrier on each thread), MP+dmb.st+addr (with an Arm440

dmb.st memory barrier on the writer thread and an address dependency on the reader thread), and so on.441

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+pos AArch64

Allowed: 1:X0=1, 1:X2=0

Figure 2.1: MP test code listing.

The code listing given is totally standard [37]: the top line contains the name of the litmus test (MP+pos), and the442

architecture that this variant is for (AArch64); the second section contains the initial register and memory state;443
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the next section contains the assembly code listing for each thread; and finally at the bottom is the interesting444

outcome we wish to explore, given as a constraint on the final register and memory state.445

On Arm, the given outcome is allowed. On a sequentially-consistent (SC) machine, whose executions are an446

interleaving of the instructions of both threads [38], there are many such executions of the listed code, each giving447

rise to a (potentially distinct) final state. To see the highlighted outcome, where Thread 1 reads 1 for y but 0 for448

x, there is only one possible combination of reads: that the read of y reads from the write to y, and the read of449

x reads from the initial memory state. This combination is not consistent with any of the simple interleavings450

of the instructions a sequentially consistent machine would perform. We represent these executions not as an451

interleaving of the instructions, but as a graph of the events of those instructions (the reads and writes they452

perform) connected by their implicit orderings. There may be, and in this case, are, multiple different operational453

traces that lead to the same execution witness, which we shall explore later. The execution graph that corresponds454

with the allowed outcome can be found in Figure 2.2.455

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

po porffr

Figure 2.2: MP test execution diagram.

The nodes on the left, under the Thread 0 label, correspond to events from executing Thread 0 of the program,456

where the event labelled a:W x=1 corresponds to the propagation of the first store in Thread 0 (the write of 1 to x)457

to memory, and event b corresponds to the second store being propagated. They are related by program-order458

(po) which says that instruction the event a comes from is earlier than that of b’s in the instruction stream of459

the processor; that is, a’s instruction was earlier in the fetch-decode-execute cycle of the processor than b’s was.460

Similarly, under Thread 1 we see the event labelled c:R y=1 for the first load reading from y, and seeing 1. This461

value was read from the write event b, therefore b is related to c (the read of y) by the reads-from (rf) relation.462

Finally, the load of x reads from the initial value in memory, so we have another read event, labelled d, which463

reads 0. The read d of x read a value from a write to x from before the event a happened, since it read an older464

value than it, in this case that is the initial memory from the ‘Initial state’ of the test, and so d is related to a by465

the from-reads (fr) relation.466

On Arm, the writes and reads need not execute in the order they appear in the program. So, while this execution467

appears to have a cyclic dependency in the order events must have happened in, the cycle can be broken by468

re-ordering the execution of either the reads or writes. The execution is therefore allowed, and we readily observe469

this outcome on hardware. In some cases, the execution may be architecturally allowed, that is, the final state470

constraint is permitted to occur in practice, but has not been experimentally observed on any hardware so far. In471

other cases, there may be no architecturally allowed execution that permits a particular outcome, but it is still472

observed on hardware: these are (or at least imply there exists) hardware errata, more commonly referred to as473

‘bugs’.474

We use litmus tests to explore behaviours: particular patterns in code, or specific hardware mechanisms that are475

responsible for allowing or forbidding the test. Many litmus tests exercise many microarchitectural mechanisms476

whose composition or confluence leads to the final result, or where there may be multiple different mechanisms or477

choices that could each independently lead to the same result. For example, in the MP+pos test we just saw, there478

are three well-understood microarchitectural explanations: that the stores are committed out-of-order (re-ordered479

within the pipeline, store queue, or other thread-local storage), that the stores propagate out-of-order (are pushed480

out-of-order into the shared memory), or that the loads satisfy out-of-order (either requested out-of-order in the481

pipeline, or requests returned out-of-order from the memory subsystem). Any of the above explanations are alone482

sufficient to allow the relaxed outcome highlighted by the test. One needs to prevent out-of-order execution on483

both sides of the test (through the use of memory barriers, for example) to forbid that relaxed outcome.484

Previous work has systematically enumerated these various patterns to produce a large collection of litmus tests,485

for a range of architectures, each with an assortment of variations for different intra-thread orderings (for barriers,486

dependencies, and so on). We will not do an exhaustive review of all the behaviours that are allowed and forbidden487

in Arm, instead referring the reader to the existing literature [14, 37, 39, 16, 7, 6, 40]. However, we will briefly488

look at some of the behaviours that the reader should be familiar with in order to understand future chapters,489

namely coherence, barriers and dependencies, and multi-copy atomicity.490
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MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0,
*y=0

MP+dmbs AArch64

Forbidden: 1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb dmbrffr

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.3: Two variants of MP with thread-local ordering.
On the left: MP+dmbs with Arm DMB barrier between instructions.
On the right: MP+dmb.st+addr with an address dependency between the reads.

2.1.1 Thread-local ordering491

On Arm, instructions need not execute in the order they appear in the program. Reads and writes are free to492

be re-ordered with respect to each other, with few restrictions. This is in contrast to other architectures such as493

Intel/AMD’s x86, where only writes can be re-ordered with respect to program-order later reads (through store494

buffering) [1, 23, 3]. Note that here I do not mean that the hardware is not allowed to re-order the instructions,495

but that if it does so, it must preserve the illusion of in-order execution to the programmer.496

Not all re-orderings are permissible; Arm requires that single-threaded programs should behave as if executed497

sequentially, at least for loads and stores. This means that non-SC executions only come about through the498

interaction between multiple threads. We have already seen this with the MP test mentioned earlier. To forbid the499

outcome of that test we must add barriers or dependencies to enforce thread-local ordering, preventing the events500

from being reordered. Two (forbidden) variations of MP can be found in Figure 2.3.501

Arm have syntactic dependencies. These are the intrinsic relations which arise from the dataflow during execution502

of the program. Usually, they are categorised into three kinds: address dependencies (addr), from reads to503

memory events that use that read in the computation of the address the memory event accesses; data dependencies504

(data), from reads to writes, where the value read is used in the computation of the value written; and control505

dependencies (ctrl), from reads to events of instructions program-order after a (conditional) branch in the506

program where the value of the read was used in the computation of the value used in the condition. Note that507

these are not ‘static’ properties of the source program, instead, the ‘syntactic’ part reflects that Arm have no508

fake dependencies – where the dependent value does not actually depend on the value of the dependency – such509

as conditional jumps where both branches go the same location, or XORing values with themselves. These fake510

dependencies are just as real as any other on Arm, and examples of them can be seen in Figures 2.3 and 2.4.511

Not all dependencies are equal. On Arm, address and data dependencies enforce both read-to-read and read-to-512

write ordering, control dependencies enforce read-to-write but not read-to-read ordering. Speculation allows513

reads to happen ‘early’, but not writes; this gives an asymmetry where control dependencies provide strength to a514

write but not a read. This can be seen in the two tests in Figure 2.4.515

2.1.2 Coherence516

A guarantee provided by most modern microprocessor architectures is coherence: that there is for each location, a517

total order that writes to that location happens in, that all threads agree on [8].518

This property is one that sets processor consistency models apart from those you would find in databases and519

2.1. RELAXED BEHAVIOURS AND LITMUS TESTING 16



MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+ctrl AArch64

Allowed: 1:X0=1, 1:X2=0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]

Thread 0

|LDR X0,[X1]|
CBNZ X0,LC01
LC01:
MOV X2,#1
STR X2,[X3]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

LB+ctrls AArch64

Forbidden: 0:X0=1, 1:X0=1

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb st ctrlrffr

R x=1a:

W y=1b:

Thread 0
R y=1c:

W x=1d:

Thread 1

ctrl ctrlrf
rf

Figure 2.4: Two litmus tests with speculation.
On the left: MP+dmb.st+ctrl with Arm DMB barrier between the writes, but a control dependency between
the reads.
On the right: LB+ctrls, a variant of the classic ‘load buffering’ litmus test, with control dependencies to
both writes.

other distributed systems, which generally do not require it, such as the classic causal consistency model for520

distributed systems [41].521

Two of the key litmus tests for coherence can be found in Figure 2.5.522

2.1.3 Multi-copy atomicity523

Coherence alone does not guarantee that all threads agree on what the most recent write is at the same point524

in time. Eventually, they will all have seen the same writes to the same location in the same order, but at any525

particular moment, some threads may not have caught up to the latest write yet. Architectures that have this526

property are non-multi-copy atomic [42].527

Arm has a kind of partial multi-copy atomicity, which they call other-multi-copy atomicity in their manual. This528

other-multi-copy atomicity gives guarantees similar to normal multi-copy-atomic architectures, but allows writes529

to be read by the writing thread itself earlier than they can be seen by other threads, however, once a write530

has propagated to another thread then all threads must see that write as normal [7]. This happens by write531

forwarding; the processor can satisfy a read from a same-thread same-location program-order-earlier write, if532

that write has committed, even before the write has propagated out to memory. Figure 2.6 contains the classic533

PPOCA (preserved-program-order–control–address) litmus test, which shows that writes can be observed locally534

before being propagated to other threads, even down speculative branches. Figure 2.7 shows the classic IRIW535

(independent-reads independent-writes) litmus test, which demonstrates the latter point, that writes propagate to536

all threads simultaneously.537
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MOV X0,#1
STR X0,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X3]

Thread 1

Initial state:
0:X1=x, 1:X1=x, 1:X3=x,
*x=0,

CoRR1 AArch64

Forbidden: 1:X0=1, 1:X2=0

MOV X0,#1
STR X0,[X1]
LDR X2,[X3]

Thread 0

Initial state:
0:X1=x, 1:X1=x,
0:X3=x, *x=0

CoWR AArch64

Forbidden: 0:X2=0

W x=1a:
Thread 0

R x=1b:

R x=0c:

Thread 1

po

rf

fr

W x=1a:

R x=0b:

Thread 0

pofr

Figure 2.5: Two coherence litmus tests.
On the left: CoRR1, that two subsequent reads of the same location in the same thread should be consistent
with the coherence order. On the right: CoWR, that a read of a location cannot skip over a newer
program-order earlier write from the same thread.

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
EOR X8,X0,X0
MOV X2,#1
STR X2,[X3,X8]
LDR X4,[X5]
EOR X9,X4,X4
LDR X6,[X7,X9]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x,
1:X3=z, 1:X5=z,
*x=0, *y=0, *z=0

MP+dmb.st+addr-rfi-addr AArch64

Allowed:
1:X0=1, 1:X4=1, 1:X6=0

MOV X0,#1
STR X0,[X1]
MOV X2,#1
STR X2,[X3]

Thread 0

LDR X0,[X1]
CBNZ X0,LC00
LC00:
MOV X2,#1
STR X2,[X3]
LDR X4,[X5]
EOR X6,X4,X4
LDR X7,[X8]

Thread 1

Initial state:
0:X1=x, 0:X3=y,
1:X1=y, 1:X3=z, 1:X5=z
1:X8=x, *x=0, *y=0

PPOCA AArch64

Allowed: 1:X0=1, 1:X4=1
1:X7=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb st addr

po

addr

rf

rf
fr

W x=1a:

W y=1b:

Thread 0
R y=1c:

W z=1d:

R z=1e:

R x=0f:

Thread 1

dmb ctrl

rf

addr

rf

fr

Figure 2.6: Two litmus tests with write forwarding.
On the left: MP+dmb.st+addr-rfi-addr with write-forwarding down a non-speculative branch.
On the right: PPOCA, with write-forwarding down a speculative branch.
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MOV X0,#1
STR X0,[X1]

Thread 0
LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 1
MOV X0,#1
STR X0,[X1]

Thread 2
LDR X0,[X1]
MOV X2,#1
DMB SY
LDR X2,[X3]

Thread 3

Initial state: 0:X1=x, 1:X1=x, 1:X3=y,
2:X1=y, 3:X1=y, 3:X3=x, *x=0, *y=0

IRIW+dmbs AArch64

Forbidden: 1:X0=1, 1:X2=0, 3:X0=1, 3:X2=0

W x=1a:
Thread 0

R x=1b:

R y=0c:

Thread 1
W y=1d:

Thread 2
R y=1e:

R x=0f:

Thread 3

dmb dmb

rf
fr

rf

fr

Figure 2.7: IRIW+dmbs: a classic multi-copy atomicity litmus test.

2.2 Intra-instruction semantics538

Much of the work presented here will be dedicated to understanding the inter-instruction and concurrency539

aspects of the semantics. Previous work has, at least for Arm and RISC-V, established high-fidelity models for the540

semantics of individual instructions, that is, the sequential behaviour of a single instruction: the register reads541

and writes they perform, along with any memory effects they do.542

Arm produces suchmodels as part of their architecture specifications, in their customASL (architecture specification543

language) programming language [10], which can be found in the manual [12] or otherwise acquired from Arm544

[43].545

The ASL and Sail specification languages Although the work here is focused on Arm-A, and Arm use546

their ASL language, the tools we build upon are generally architecture agnostic and use the Sail specification547

language for instruction semantics [44]. For compatibility with those tools we use the asl_to_sail generated548

translations [44, 45] throughout the work presented here. Sometimes the listings given will be extracted from the549

Arm documentation (and therefore will be in ASL) or from the tooling (and so be in Sail); the captions of any550

figures or listings should make it clear which language the presented code is in. Sail and ASL are very similar551

languages, and are used for broadly the same purposes, with similar syntax and semantics; we will not go into552

depth here into the history or minutiae of them, instead, we will look at just one aspect of Sail (its effect system)553

as it is important to the function of the tools we will use later on.554

Outcomes Sail programs are effectful, they have effects such as read register, write register, read memory, and so555

on.556

These effects make Sail programs monadic computations over the sail effect datatype (called outcome). Figure 2.8557

lists the outcomes defined by the Sail effect system [15], it contains one pure value (Done), and the other values558

are each a paused computation containing a continuation.559

Read_mem(read_kind, address, size, read_continuation) Read request
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 2.8: Outcomes (the Sail effect datatype).
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1 function execute_aarch64_instrs_integer_arithmetic_add_sub_shiftedreg (d,
datasize , m, n, setflags , shift_amount , shift_type , sub_op) = {

2 result : bits('datasize) = undefined;
3 let operand1 : bits('datasize) = X_read(datasize , n);
4 operand2 : bits('datasize) = ShiftReg(datasize , m, shift_type , shift_amount)

;
5 nzcv : bits (4) = undefined;
6 carry_in : bits (1) = undefined;
7 if sub_op then {
8 operand2 = not_vec(operand2);
9 carry_in = 0b1

10 } else {
11 carry_in = 0b0
12 };
13 (result , nzcv) = AddWithCarry(operand1 , operand2 , carry_in);
14 if setflags then {
15 (PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv
16 };
17 X_set(datasize , d) = result
18 }

Figure 2.9: Sail pseuodcode for the ADD Xd,Xn,Xm instruction.

An example instruction As an example, take the Arm ADD Xd,Xn,Xm instruction, whose Sail code can be560

found in Figure 2.9, as extracted from the original source ASL code in the Arm manual. It takes two input registers561

(Xn,Xm), adds the values stored in them together, and stores the result in the output register (Xd), updating any562

flags as it does so.563

The calls to X_read and X_set, and (not shown) EndOfInstruction, each have an effect, and emit an outcome in the564

trace. Omitting the outcomes for the flag registers, and the exact arithmetic calculation, then this code results in565

the following trace of outcomes:566

Read_reg(n, fun v1 ->567

Read_reg(m, fun v2 ->568

Write_reg(d, (v1 + v2), Done)569

)570

)571

The set of traces for an instruction define the semantics of that instruction, and the concurrency models described572

later in this chapter are parameterised over such traces.573

2.3 Arm-A operational model574

The canonical multi-copy atomic operational semantics for Arm is the Flat model [7].575

Flat is a small-step operational semantics, with transitions designed to (abstractly) match the kinds of actions we576

see in hardware.577

Flat is implemented, as an executable-as-a-test-oracle model, in the RMEM tool [46]. RMEM is written in a578

combination of OCaml and the Lem [47, 48] language for operational semantics. It can either be run through a579

command-line interface for example, to run batches of tests, or can be used interactively, including through a580

version compiled to JavaScript which can be run in a web browser [49].581

Flat has an explicit flat memory (from which it derives its name), which stores the most recent write that582

propagated to memory for each location, and a set of hardware threads, with each thread containing a tree583

of concurrently executing instructions (abstractly modelling modern microprocessor pipelines) with explicit584

out-of-order execution.585

Figure 2.10 demonstrates a snapshot of an example instruction tree from a thread executing 10 instructions. Some586

instructions (i2, in grey) have finished executing, some (i3, i6, i7, i9, blank/white) have not begun executing,587

and some (i0, i1, i4, i8, i5, in pink) are currently in-progress. Flat has explicit speculation down branches, and588
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re-ordering of instructions. This can be seen in the diagram: there is a fork in the tree at i3 (a branch in the589

program) which has not yet been executed while some earlier instructions (i0, i1) have not finished (and so it is590

not yet known whether the program will execute down branch i4 or i8), but later instructions down both branches591

have already begun executing.592

i0 i1 i2 i3
i4 i5

i6

i7
i8 i9

Figure 2.10: A tree of 10 concurrently executing instructions.

Flat is composed of two subsystems, a storage subsystem which contains a flat array for memory, and the thread593

subsystem which contains a set of threads which can only communicate with the flat memory and not between594

each other, as sketched in Figure 2.11.595

P0 P1

. . .

Pn

. . .

Flat memory

Figure 2.11: Flat state (diagram).

Thread subsystem The thread subsystem has, for each thread, a tree of instructions. Each node in the tree is596

an instruction instance, a piece of state representing a single instruction in the process of being fetched, decoded597

and executed; its state includes the current pseudocode state (such states are listed in Figure 2.12), as well as any598

other ancillary data required by the operational model (pending addresses and values and so on).599

The thread system then has a set of guarded transitions, split into two groups: the local transitions, each of which600

calls the continuation contained within the outcome of an instance and updates the instruction instance state601

with the new outcome; and, the synchronised transitions which can also update the storage subsystem state,602

these generally update the micro_op_state (containing the current pseudocode state) without calling the outcome603

continuation. Figure 2.13 contains a fragment of the Lem code from RMEM which defines the thread subsystem604

state and the relevant transitions (but not their guards).605

Plain(next_state) Ready to make a pseudocode step
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store

Figure 2.12: Operational pseudocode states.
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1 type threadSubsystem =
2 nat → instruction_tree;
3 type instruction_tree =
4 list (instruction_instance *

instruction_tree);
5 type instruction_instance =
6 <| id: nat;
7 program_loc: address;
8 micro_op_state: micro_op_state;
9 mem_reads: set address;

10 ... |>
11 type micro_op_state =
12 | MOS_plain
13 of outcome
14 | MOS_pending_mem_read
15 of (value → outcome)
16 | MOS_potential_mem_write
17 of outcome
18 type thread_trans =
19 | T_register_read
20 of reg_name * value
21 | T_register_write

22 of reg_name * value
23 | T_satisfy_read
24 of value
25 | T_mem_write_footprint
26 of list write
27 | T_mem_potential_write
28 of list write
29 | T_commit_store
30 | T_complete_store
31 | T_commit_barrier
32 of barrier_kind
33 | ...
34 type sync_trans =
35 | T_propagate_write
36 of write
37 | T_satisfy_read
38 of read_request * value
39 | T_propagate_barrier
40 of barrier_kind
41 | ...

Figure 2.13: Lem fragment of thread subsystem state.

Storage subsystem The Flat storage subsystem is comparatively straightforward, a finite map from location to606

the most-recently propagated write to that location. Figure 2.14 contains a fragment of the Lem sources from607

RMEM for the (non-mixed-size) Flat storage subsystem.608

type flat_storage_subsystem_state = <| memory: nat → write; ... |>

Figure 2.14: Simplified Lem listing of the Flat storage subsystem state from RMEM.

Transitions Flat defines a set of common transitions for all instructions, as well as a set of key transitions609

specific to stores, loads and barriers. Below is a complete list of the local and synchronised transitions.610

Common transitions:
. Fetch instruction.
. Pseudocode internal step.
. Register read.
. Register write.
. Finish instruction.

Transitions on a Load instruction:
. Initiate read.
. Satisfy read from forwarding.
. Satisfy read from flat memory.
. Complete load.

Transitions on a Barrier instruction:
. Commit barrier.

Transitions on a Store instruction:
. Initiate write address.
. Initiate write data.
. Commit write.
. Propagate write to memory.
. Complete store.

611

Each transition has a guard (a predicate over the state that must be true in order for the transition to be valid) and612

an action (a function that updates the whole system state from one configuration to another). Figure 2.15 gives613

the informal description of one transition, the ‘Initiate read’ on a load, including its guard and action. I do not614

describe the entire Flat model here in detail.615

Transition: Initiate memory reads for instruction i.
Guard: Instruction i is in state MOS_plain(O_read_mem(addr,cont)).
Action:

. Add addr to i.mem_reads

. Update the state of i to MOS_pending_mem_read(fn v → cont v)

Figure 2.15: Example Flat transition in full.
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2.4 Arm-A axiomatic model616

In contrast to the operational model presented in the previous section, a model with equivalent behaviour can617

be given declaratively, as an axiomatic-style model. These axiomatic models describe the allowed behaviour of618

programs by a set of axioms constraining the event graphs of the candidate executions of that program.619

In an axiomatic model, the executions are the graphs of events of a single run of the program, with the events620

related by a set of intrinsic relations capturing the order of events and their dependencies.621

The model first considers an overapproximate set of candidate executions: executions consistent with the intra-622

instruction semantics, but where the values used in the program are unconstrained. The model then has axioms,623

generally acyclicity of some relation over the events of the execution, which reject some of these executions as624

inconsistent.625

The resulting model can then be used to check whether some given program can reach a final state satisfying a626

given constraint. If there is a candidate executions of the program, which is consistent with the axioms of the627

model, then the model is said to allow that execution, and if the final state satisfies the given constraint, that628

outcome is permitted by the model.629

Succinctly, an axiomatic model winnows down a large set of graphs of potential whole-program executions to a630

small set of allowed executions by checking that the events of those executions do not violate any of the axioms631

of the model.632

2.4.1 Arm-A candidate executions633

Arm-A candidate executions are composed of two parts. First, there is the set of events of the program, for Arm634

these are the memory access and barrier events, labelled with their access type (read or write, or barrier kind). In635

addition, there are the fundamental candidate relations over those events, derived from the intrinsic dependencies636

in the program; some of which we have already seen: program order, and address/data/control dependencies.637

It is often useful to split the candidate execution definition into two steps: first, to define the pre-execution which638

contains all the events, and the relations which are intrinsic to the program; then to complete these into a candidate639

execution with existentially-quantified relations (coherence-order and reads-from) which witness a particular640

choice of runtime execution order.641

More formally, we can define an Arm-A candidate execution as: a set of event IDs (here just assuming IDs are the
natural numbers); a labelling function (from N to Label); a collection of the candidate relations (CR) satisfying
some constraints (described in more detail later on), and a candidate witness (CW) describing the existentially
quantified coherence-order and reads-from relations.

Candidate Pre-Execution ≡ P(N)× (N → Label)× CR

Candidate Execution ≡ Pre-Execution× CW

The candidate relations, and the candidate witness, are sets of named relations over the events of the pre-execution,
subject to some well-formedness constraints (discussed later):

L−→ ⊆ N× N
CR ≡ 〈 po−−→, loc−−−→, addr−−−→, ctrl−−−→, data−−−→, rmw−−−→, ext−−−→〉
CW ≡ 〈 co−−→, rf−−→〉

Events The labelling function maps each event ID to an event label, describing the kind of access and, if642

applicable, what data or address it operates over.643

A simplified version of the labels, sufficient for the model described here, contains memory events with location
and values, namely reads (R) including acquire reads (A) and weak-acquire reads (Q), writes (W) including release
writes (L); and a set of Arm barriers (DMB, ISB) and their variants. More precisely, these labels can be described as
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follows:

Label ≡ Reads ∪Writes ∪ Barriers
Reads ≡ {R,A,Q} × Loc× Val
Writes ≡ {W,L} × Loc× Val

Barriers ≡ {DMB.LD,DMB.ST,DMB.SY, ISB}
Loc ≡ Bitvec48
Val ≡ Bitvec64

In §2.5.1 we will see a more realistic definition of the event types for a production architecture (Armv9-A), and644

their correspondence to the underlying effects of the Sail definition, as used by the isla-axiomatic tool.645

Candidate relations The candidate relations capture the relationships and orderings between the events of646

the execution. These are often separated into two kinds: the pre-execution relations (which are intrinsic to the647

program), and the existentially-quantified coherence-order and reads-from relations of the witness, combined648

these two sets make up the relations of the candidate execution. For Arm, the relations in a pre-execution are,649

with their intended meaning:650

. program order: E1 po E2 iff the instruction generating E1 occurs before the instruction generating E2 in651

the instruction stream.652

. same-location: M1 loc M2 iff the address of M1 is the same location as used by M2.653

. address dependent: R1 addr M2 iff the value read by R1 is used in the calculation of the addressM2.654

. data dependent: R1 data W2 iff the value read by R1 is used in the calculation of the value written by W2.655

. control dependent: R1 ctrl E2 iff the value read by R1 is used to determine whether or not the instruction656

E2 originates from would have executed at all.657

. read-modify-write: R1 rmw W2 for the separate read and write events of an atomic update.658

. external: E1 ext E2 iff the instructions which generated events E1 and E2 originated from different659

hardware threads.660

Plus the existentially quantified witness:661

. reads-from (rf), fromW1 to R2 when R2 reads the value that W1 wrote.662

. coherence-order (co), from W1 to W2 where W1 appears before W2 in the coherence order of that location,663

(informally, thatW1 propagated to memory before W2).664

(En represents events of any kind, Mn is a memory effect event, Rn is a read event, andWn is a write event)665

Well-formedness Each of the relations of the candidate relations and witness are subject to some well-666

formedness constraints.667

Note that a well-formed execution does not necessarily correspond to a consistent execution of the underlying668

ISA (see ‘Fundamental candidates and ISA-Consistency’).669

Well-formedness requires that the candidate relations are all properly constructed: they have the right type, and670

satisfy some basic relational properties (symmetry, reflexivity, transitivity and so on) depending on the relation.671

Figure 2.16 contains the types and some basic well-formedness properties of the pre-execution relations.672

Relation Type Properties
po E × E transitive, asymmetric, irreflexive
loc M × M transitive, symmetric, reflexive
ext E × E transitive, symmetric, irreflexive

addr,ctrl R × M asymmetric, irreflexive
data R × W asymmetric, irreflexive
rmw R × W asymmetric, irreflexive

Figure 2.16: Non-ISA-dependent well-formedness properties of pre-execution relations.

For the existentially-quantified coherence-order and reads-from relations, they are arbitrary, but subject to the673

constraints given in Figure 2.17.674
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∀W1, R2. rf(W1, R2) =⇒ loc(W1, R2) read and write must be same location
∀W1, R2. rf(W1, R2) =⇒ r-value(R2) = w-value(W1) value read matches value written
∀W1,W2, R3. rf(W1, R3) ∧ rf(W2, R3) =⇒ W1 = W2 each read reads-from at most one write
∀R2. ∃W1. rf(W1, R2) every read reads from somewhere

∀W1,W2. W1 6= W2 ∧ loc(W1,W2)
=⇒ co(W1,W2) ∨ co(W2,W1) co is per-location total
∀W1,W2,W3. co(W1,W2) ∧ co(W2,W3) =⇒ co(W1,W3) co is transitive
∀W1,W2. co(W1,W2) =⇒ ¬co(W2,W1) co is antisymmetric
@W1. co(W1,W1) co is irreflexive

Figure 2.17: Well-formedness conditions of co and rf.
r-value and w-value extract the Val from a read or write respectively.
(Hand transcribed from the versions used in isla-axiomatic, see §2.5)

We say a candidate execution is well-formed if all the constraints of all the relations are satisfied:675

Well-Formed(E : Execution) = see Figures 2.16 and 2.17

Fundamental candidates and ISA-Consistency Candidate executions are constructed from a limited set676

of events: reads, writes, and barriers. Eventually, we will see that later models extend this set, both with677

more instructions and further architectural features, but also with an expanded set of intrinsic events from the678

intra-instruction semantics.679

For a candidate execution to be consistent with a given architecture’s intra-instruction semantics, as defined by
its ISA, then there must be a corresponding execution in a model whose events have been expanded to include all
the events of the underlying ISA. We can imagine taking the candidate execution and ‘completing’ the events to
include all the relevant register reads and writes, and instruction fetches, and other intrinsic events the ISA would
have produced, and we get a ‘fundamental’ candidate execution.

Fundamental Execution ≡ P(N)× (N → LabelF )× CRf × CW

Complete(E : Execution) : Fundamental Execution

Fundamental executions are much like their candidate counterparts, except that the labels are simply the set
of possible outcomes as defined by the ISA, with continuations replaced by their arguments; and the various
candidate relations are replaced by intra-instruction causality orders.

LabelF ≡ Outcome (see Figure 2.8)
CRf ≡ 〈 po−−→, iico-addr−−−−−−−−→, iico-ctrl−−−−−−−−→, iico-data−−−−−−−−→〉

As an example, take the reader thread of an MP-shaped test, with a barrier between the loads. Figure 2.18 shows a680

sketch for a completion of that reader thread to a fundamental execution in Arm, with introduced events in blue681

(assuming translation disabled, and eliding voluminous ISA intricacy).682

R_reg(PC,p) R_mem(p,ldr x0,[x1]) R_reg(X1,y) R_mem(y,1) W_reg(X0,1) W_reg(PC,p+4)

R_reg(PC,p) R_mem(p,dmb sy) Barrier(DMBSY) W_reg(PC,p+4)

R_reg(PC,p) R_mem(p,ldr x2,[x3]) R_reg(X3,x) R_mem(x,0) W_reg(X2,0) W_reg(PC,p+4)

po

po

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

iico-addr iico-ctrl iico-ctrl

iico-addr iico-ctrl iico-addr iico-data iico-ctrl

Figure 2.18: Completion of reader thread of MP+dmb.sys into a fundamental candidate.
Nodes and edges in black are original, the ones in blue complete the execution.

The previously primitive inter-instruction dependencies (addr, ctrl, data) become derived relations, and part of the683

ISA-consistency check requires that the candidate dependencies matches the derived ones in the fundamental684

execution.685
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Given a fundamental candidate we can partition it into each thread (by grouping by int ) and then into instructions
(by grouping by iico ). For each instruction we can extract a trace of events, by following iico . Recall that the
intra-instruction semantics defines a set of traces, so we can ask whether the extracted trace from the graph
corresponds to one of these traces defined by the intra-instruction semantics, which is precisely asking whether
the extracted trace simulates the ISA:

Instr(I : P(N), F : Execution) : I ⊆ E.iico+[I]

SimulatesISA(F : Fundamental Execution) : ∀I. Instr(I, F ) ⇒ I ∈ ISA

Where r+ is the symmetric closure of r.686

We can now define what it means for an execution to be consistent with the ISA (with respect to some given
intra-instruction semantics). If there exists a completed fundamental candidate, such that, for each instruction, the
sequence of events in iico order is an execution of the intra-instruction semantics, then we can say the original
execution is ISA-Consistent :

ISA-Consistent(E) = ∃F. F = Complete(E) ∧ SimulatesISA(F )

In practice, tools generally to go the other way: producing complete traces from the intra-instruction semantics687

defined by the ISA, and discarding or hiding events down to a smaller set — thereby producing ISA-Consistent688

executions by construction. However, it is still useful to think in terms of completing the executions up to a larger689

fundamental candidate, as not all models explicitly appeal to the intra-instruction semantics in their definitions,690

especially historically.691

Consistency Given an arbitrary pre-execution, that is, a graph with any choice of events and relations, one can
define whether or not such a graph corresponds to a valid execution. This can be done by checking that: there
exists some witness (co and rf) such that that candidate is well-formed; that the candidate is consistent with the
ISA; and, that does not violate any of the axioms of the model.

Axiom-Consistent(E : Execution) = see §2.4.2
Consistent(E : Execution) = Well-Formed(E)

∧ ISA-Consistent(E)

∧ Axiom-Consistent(E)

Consistent(E : Pre-Execution) = ∃co, rf . Consistent((E, 〈co, rf〉))

Program semantics Consistent executions correspond to some execution of the underlying architecture, but692

not necessarily to one that follows from a given initial state.693

We do not need consistency checks to be aware of the initial state, instead, we can generate the set of executions694

with some ‘initial write’ events corresponding to the initial state prefixed onto the execution (coherence-before695

any other writes) and do the usual consistency check.696

Each execution then has a ‘final’ state, which is the concrete register values for each thread at the end of execution,697

and the coherence-final write for each location.698

We can then define whether a particular outcome is permitted by the model, by checking whether there exists any
consistent execution, prefixed with the initial writes from the program, whose final state matches the desired
outcome:

State ≡ Memory × (ThreadId → Registers)
Program ≡ State

Final(E : Execution) = `Final register and memory state of E′

Prefixed(P : Program, E : Execution) = `E has co-initial writes corresponding to P’s memory′

Permitted(P : Program, S : State) = ∃E : Pre-Execution, co, rf .
let C = (E, 〈co, rf〉) in
Prefixed(P,C)

∧ Consistent(C)

∧ S = Final(C)
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Giving semantics to an Arm-A program can be done by collecting the set of consistent executions:699

JP : ProgramK = {S : State | Permitted(P, S)}

(Note that this means J_K is not defined compositionally as a traditional denotational semantics would be, instead,700

here we have a whole-program consistency check)701

An example Consider the classic MP+dmb.sy+addr litmus test, whose code listing is contained in Figure 2.19.702

The test has two threads, the first with two store instructions and a barrier, the second with two loads with a703

syntactic address dependency between them, forming the classic message-passing shape seen earlier. Figure 2.20704

contains six potential candidate executions for this test:705

. Candidate 1 is not consistent with the intra-instruction semantics: it has read events in Thread 0, but the706

intra-instruction semantics requires store instructions generate write events not read events.707

. Candidate 2 has events consistent with the intra-instruction semantics, but the relations are not consistent708

with the well-formedness conditions (specifically, rf does not satisfy the ‘read and write must be same709

location’ constraint), and so this candidate is not well-formed.710

. Candidates 3, 4 and 5, are well-formed, and consistent with the ISA, and consistent with the axioms of the711

model (given in §2.4.2).712

. Candidate 6 is well-formed, and consistent with the ISA, but not consistent with the axioms.713

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.sy+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

Figure 2.19: MP+dmb.sy+addr test code listing.

The four well-formed candidate executions in Figure 2.20714

are the only well-formed and ISA-Consistent candidates for715

this test. Executions with other events would not be ISA-716

Consistent; or with co and rf other than those shown would717

not be well-formed; or, with read or write values, other718

than those shown, would also not be ISA-Consistent, as719

those values must have arisen from an execution of the intra-720

instruction semantics. Only Candidate 6 has a final state721

which satisfies the 1:X0=1,1:X2=0 constraint of the test.722

Since no candidate satisfying the final state constraint is723

consistent with the axioms, the test is forbidden.724

R x=1a:

dmb syb:

R y=1c:

Thread 0
R y=1d:

R x=0e:

Thread 1

po

po

data

rf

W x=1a:

dmb syb:

W y=1c:

Thread 0
R y=1d:

R x=0e:

Thread 1

po

po

addr

rf
rf

W x=1a:

dmb syb:

W y=1c:

Thread 0
R y=0d:

R x=1e:

Thread 1

po

po

addr
rf

rf

1. Not ISA-Consistent 2. Not Well-formed 3. Consistent

W x=1a:

dmb syb:

W y=1c:

Thread 0
R y=0d:

R x=1e:

Thread 1

po

po

addr
rf

rf

W x=1a:

dmb syb:

W y=1c:

Thread 0
R y=1d:

R x=1e:

Thread 1

po

po

addr

rf
rf

W x=1a:

dmb syb:

W y=1c:

Thread 0
R y=1d:

R x=0e:

Thread 1

po

po

addr

rf
rf

4. Consistent 5. Consistent 6. Not Axiom-consistent

Figure 2.20: Six potential candidate executions for MP+dmb.sy+addr.
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2.4.2 Arm-A axioms725

Axiomatic models define axioms over sets of events, primarily as acyclicity requirements over a given set of726

relations over those events. The axioms of the model define which executions are Axiom-consistent. Final states727

from consistent executions are those states that are permitted by the model to be observed on hardware.728

Formally one often defines an axiomatic model as a statement in a relation1 algebra over events, as done by729

Alglave et al [39]. These relations are constructed composing the candidate relations CR, and the restricted identity730

relation (idE , for identity over events with label E), with some standard relation operators: union (|), intersection731

(&), relation composition (usually written with the reversed ; operator), transitive closure (*), and relation inverse732

(−1). The model is then a set of relations defined in this algebra, describing the set of preserved orderings, with733

axioms requiring some of them to be acyclic.734

Wewrite thesemodels in the herdmodel definition language (often commonly referred to as simplyCat), introduced735

by Alglave et al [39]. Cat is a general language that allows one to express first-order quantifier-free relations, in a736

relatively concise syntax, using a set of built-in relations and relational operators. Values in Cat are either sets of737

events, or relations (sets of pairs of events). Cat extends the usual set of relational operators with some custom738

syntax, reproduced here for quick reference: R+ is equivalent to the Cat expression (R; R*); [E] corresponds to739

the mathematical relation idE , [E1 | E2] corresponds to the relation idE1 | idE2, and so on for any number740

of unions; domain(R) and range(R) give the sets of events that are the domain and codomain of a relation;741

(E1 * E2) is the cartesian product of the sets of events with labels E1 and E2, that is, the mathematical relation742

range(idE1 )×range(idE2 ); (E1 * _) and (_ * E2) are also the relations formed by the cartesian product of sets743

of events, but where _ is a wildcard that matches events with any label; id for the generalised identity relation744

over events, which corresponds to id_; and, R? for relation option, equivalent to R | id. The original herdtools745

Cat language and the isla-axiomatic Cat-like model language have diverged somewhat over time, but the746

features described in this section remains common to both.747

An Arm-A Cat model A modified version of the original non-mixed-size multi-copy-atomic Armv8-A model748

[7, 50], can be found in Figure 2.21. The other models presented in this thesis will be an extension to the one749

presented here. Note that this particular presentation of the model is slightly different from the original, with the750

transitive relations over barriers split into multiple edges explicitly relating events to barriers, and lifting coi and751

fri into obs. Although equivalent to the original, this presentation will be easier to extend, the reason for which752

will become apparent later on. Additionally, the current official Arm models have diverged from the original753

model this one is based on, either through the addition of new features (mixed-size, memory tagging extensions,754

and so on), or through iterative refactors of the model over time. An isla-axiomatic-executable version of755

the model can be found at https://github.com/rems-project/system-semantics-arm-axiomatic-models/756

blob/main/models/aarch64_interface.cat.757

1 (* observed by *)
2 let obs = rfe | fr | co
3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | ctrl; [W]
8 | addr; po; [W]
9 | (ctrl | (addr; po)); [ISB]

10 | (addr | data); rfi
11
12 (* atomic -ordered -before *)
13 let aob = rmw
14 | [range(rmw)]; rfi; [A | Q]
15
16 (* barrier -ordered -before *)
17 let bob = [R] ; po ; [dmbld]
18 | [W] ; po ; [dmbst]
19 | [dmbst]; po; [W]
20 | [dmbld]; po; [R|W]
21 | [ISB]; po; [R]
22 | [L]; po; [A]

23 | [A | Q]; po; [R | W]
24 | [R | W]; po; [L]
25
26 (* Ordered -before *)
27 let ob1 = obs | dob | aob | bob
28 let ob = ob1+

29
30 (* Internal visibility

requirement *)
31 acyclic po-loc | fr | co | rf as

internal
32
33 (* External visibility

requirement *)
34 irreflexive ob as external
35
36 (* Atomic: Basic LDXR/STXR

constraint to forbid
intervening writes. *)

37 empty rmw & (fre; coe) as atomic
38

Figure 2.21: Armv8-A multi-copy atomic ‘user’ axiomatic model.

1To distinguish from relational algebra, as one would find in discussions of relational databases.
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The Cat model relies on a set of built-in event sets and relations, these are:758

Events Relations

R Reads po,rmw program-order and read-modify-write
W Writes po-loc program-order same-location (po & loc)
M All explicit memory events (R | W) addr,ctrl,data dependencies
A Read-acquire co,rf existentially-quantified (candidate) relations
L Write-release rfe,rfi rf-external (rf & ext), rf-internal (rf & ~ext)
Q Weak read-acquire coe,coi co-external, co-internal
F Fences (barriers) id identity

ISB Instruction sychronization barrier
dmbXY Barrier, with type XY={st,ld,sy}

759

The axioms The Arm-A model is made up of three axioms: external (line 34), which asserts acyclicity of760

the primary ordered-before relation, capturing most of the ordering constraints of the Arm memory model; the761

internal axiom (line 31), sometimes called ‘SC-per-location’, which ensures that when restricted to a single762

location the accesses are consistent with an SC semantics; and, the atomic axiom (line 37)which asserts that there763

are no same-location writes interposing between events of what is supposed to be an atomic action.764

Ordered-before The main ordered-before relation, defined on line 28, is called ob in the Arm Cat model, and is765

defined as the transitive closure of the union of a set of auxiliary ordering relations. These auxiliary relations766

are: observed-by (obs, line 2) which orders events after the events they observe the effect of, namely, writes767

must happen before other-thread reads which read from them; dependency-ordered-before (dob, line 5), which768

orders events which must not be re-ordered due to syntactic dependencies in the original source program; atomic-769

ordered-before (aob, line 13) which asserts that the read of an atomic read-modify-write happens before the770

write, and that acquire reads of an atomic write are ordered; and, barrier-ordered-before (bob, line 17) between771

events where there is an intervening barrier instruction ordering them. A candidate execution with a cycle in772

ordered-before is forbidden. For example, in the following MP+dmb.st+addr test, whose code listing and event773

diagram for the forbidden execution can be found in Figure 2.22.774

MOV X0,#1
STR X0,[X1]
DMB ST
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state: 0:X1=x, 0:X3=y,
1:X1=y, 1:X3=x, *x=0, *y=0

MP+dmb.st+addr AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb st addrrffr

Figure 2.22: MP+dmb.st+addr test code listing and execution diagram.

The interesting candidate execution of MP+dmb.st+addr shown in Figure 2.22, results in the final state 1:X0=1 ∧775

1:X2=0, and contains the following cycle:776

. a dmb st b777

. b rfe c778

. c addr d779

. d fr a780

This cycle is forbidden in the Arm model, as each of the relations are contained in ob, and a cycle in ob is forbidden781

by the external axiom:782

. ([W]; dmb st; [W]) is in bob, which is in ob.783

. rfe is in obs, which is in ob.784

. addr is in dob, which is in ob.785

. fr is in obs, which is in ob.786
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Internal and atomic The other axioms of the model forbid behaviours that the ordered-before acyclicity check787

does not recognise, such as non-SC behaviours for single locations or supposedly atomic actions (such as exclusives788

or read-modify-writes) which were interrupted by an intervening write. Figure 2.23 contains two example tests, a789

coherence test forbidden by the internal axiom and an LB-shaped atomic increment failure forbidden by the790

atomic axiom.791

MOV X0,#1
STR X0,[X1]
MOV X2,#2
STR X2,[X1]

Thread 0

LDR X0,[X1]
LDR X2,[X1]

Thread 1

Initial state:
0:X1=x, 1:X1=x, *x=0,

CoRR0 AArch64

Forbidden: 1:X0=2, 1:X2=1

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 0

LDXR X0,[X1]
ADD X0,X0,#1
STXR W3,X0,[X3]

Thread 1
Initial state: 0:X1=x 1:X1=x *x=0

LB+po-locxxs AArch64

Forbidden: 0:X3=0, 1:X3=0, *x=1

W x=1a:

W x=2b:

Thread 0
R x=2c:

R x=1d:

Thread 1

po porf
rf

R x=0a:

W x=1b:

Thread 0
R x=0c:

W x=1d:

Thread 1

rmw rmwfr
fr

Figure 2.23: Two tests forbidden by the other axioms.
On the left, a variation on coherence which relies on po-loc and so is forbidden by the internal axiom.
On the right, an atomic increment that failed to atomically update the location, forbidden by the atomic
axiom.

Note that this is not the only possible presentation of the model. A separate internal/SC-per-location axiom is792

classic, but the current official herdtools version of the Arm model has separate axioms for each of the forbidden793

coherence shapes [51]. The external axiom usually considers a partially-ordered happens-before (ordered-before)794

relation, which is built from smaller primitive relations, as was presented here, but other formulations sometimes795

pick some linearisation of some total order, equivalent to but more operational in presentation than the one796

presented here. Finally, there may be an equivalent formulation of the Arm model with only a single axiom, but797

no known formulation exists.798

2.5 The isla-axiomatic tool799

Throughout this work wewill use the isla-axiomatic [33] tool to implement executable versions of our axiomatic800

models.801

The isla-axiomatic tool uses the full Arm ISA’s ASL specification, converted to Sail. The generation of candidates802

then uses whole machine states, including all instruction fetch and translation table walks as real memory accesses;803

unlike in herd where the instruction semantics are ad-hoc.804

Using isla-axiomatic allows us to use the Arm ASL definitions which already exist (for instruction fetching,805

decoding, and translation table walks in particular), giving us those fundamental executions ‘for free’ for those806

features, and enabling us to focus on modelling the concurrent aspects of them.807

isla-axiomatic candidates Underpinning the isla-axiomatic tool is isla, a generic symbolic evaluator808

for Sail programs [33].809

isla-axiomatic uses isla to generate candidate executions, by producing traces of Sail outcomes for each810

thread, with concrete control flow but potentially symbolic values for reads and writes. isla-axiomatic then811

produces the relevant dependency relations (which it does in an ad-hoc way), then applies a restriction to the812

events of the traces (discarding all events except reads, writes and barriers for the base model), and takes the813

cartesian product of these restricted traces of events for each thread; the result is precisely the set of well-formed814

pre-executions, in a compact representation (by being symbolic).815
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Internally, isla-axiomatic uses a non-architected fetch-decode-execute loop for each thread, which sequentially816

fetches the next instruction and runs the Sail (converted from ASL) decode and execute functions, until a pre-817

determined point is reached (usually a particular ‘end-of-test’ opcode) which signifies the end of that trace.818

The top-level fetch-decode-execute function we use roughly matches the following pseuocode definition, but is819

implemented for real as a hand-written part of our Arm Sail model1:820

1 function Step() {
2 if pending interrupts then {
3 TakePendingInterrupt ();
4 };
5
6 let pc = Read_reg(PC);
7
8 let opcode = \
9 Read_mem(

10 ReadKind_IFETCH ,
11 pc , 4);

12 // magic opcode not part of ISA
13 if opcode == 0xfee1dead {
14 EndOfTrace ();
15 };
16
17 let instr = ArmASL_Decode(opcode);
18
19 ArmASL_Execute(instr);
20
21 Write_reg(PC, pc+4)
22 }

821

At each branch in the Sail code, the symbolic execution forks. This gives a set of traces of outcomes for each822

thread, with concrete opcodes and register names, but with constrained symbolic values.823

We can then use this as an executable oracle for litmus tests. By taking the well-formed pre-executions generated824

from those symbolic traces, isla-axiomatic can produce a single SMT problem for each candidate whose825

satisfiability encodes whether the candidate is consistent. It does this by creating SMT definitions of: the events826

from the pre-execution with constraints on symbolic values; the candidate relations (in particular, coherence-order827

and reads-from); the axioms of the model and any auxiliary relations from the Cat model; with the final assertion828

from the litmus test. Giving this SMT problem to an off-the-shelf SMT solver (such as Z3) allows automatic829

consistency checking: if the SMT solver can find a satisfying assignment of the symbolic values, then the execution830

is allowed; if the SMT solver says it is unsatisfiable then the execution is either forbidden by the axioms, or does831

not satisfy the constraint on the final state. If no SMT-compiled execution is found satisfiable by the SMT solver,832

isla-axiomatic reports the test as forbidden.833

2.5.1 ISA/concurrency interface834

This section is based on in-progress work with Thibaut Pérami, Alasdair Armstrong, Thomas Bauereiss, and Peter835

Sewell.836

As isla-axiomatic uses the full ISA outcomes, the model should be able to utilise any information exposed in837

the Sail outcome type. To achieve this the isla-cat language is extended with the structs and enums from the838

Sail definition, and an accessor construct allowing the model writer to define event sets predicated on the values839

of fields of the underlying Sail structs.840

As previously mentioned, each event in an isla-axiomatic candidate execution corresponds to an outcome841

in the trace of the intra-instruction semantics. The outcomes then form the interface between the sequential842

ISA semantics and the concurrency model. The current Sail ISA/concurrency interface is defined in https:843

//github.com/rems-project/sail/tree/sail2/lib/concurrency_interface.844

For example, the Arm Sail model contains the sail_barrier outcome2 :845

outcome sail_barrier : 'barrier -> unit846

1https://github.com/rems-project/sail-arm/blob/master/arm-v9.3-a/src/step.sail#L217
2https://github.com/rems-project/sail/blob/sail2/lib/concurrency_interface/barrier.sail#L75
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Each architecture’s Sail specification can then instantiate the 'barrier type variable with architecture-specific847

data. For instance, in Armv9-A the 'barrier kind is instantiated with a custom Barrier type1 , derived from the848

Arm barrier kind in the official ASL specification:849

1 enum MBReqDomain = {850

2 MBReqDomain_Nonshareable ,851

3 MBReqDomain_InnerShareable ,852

4 MBReqDomain_OuterShareable ,853

5 MBReqDomain_FullSystem854

6 }855

7856

8 enum MBReqTypes = {MBReqTypes_Reads , MBReqTypes_Writes , MBReqTypes_All}857

9858

10 struct DxB = {859

11 domain : MBReqDomain ,860

12 types : MBReqTypes ,861

13 nXS : bool862

14 }863

15864

16 union Barrier = {865

17 Barrier_DSB : DxB ,866

18 Barrier_DMB : DxB , // The nXS field is ignored from DMBs867

19 Barrier_ISB : unit ,868

20 Barrier_SSBB : unit ,869

21 Barrier_PSSBB : unit ,870

22 Barrier_SB : unit ,871

23 }872

24873

25 instantiation sail_barrier with874

26 'barrier = Barrier875

Then the Sail Arm specification can use the sail_barrier outcome to generate events in the trace, for example in876

the DataSynchronizationBarrier function call which the ASL left uninterpreted is implemented in the Sail model877

by a sail_barrier effect2 which generates a barrier event in the trace when executed:878

1 function DataSynchronizationBarrier (domain , types , nXS) = {879

2 sail_barrier(Barrier_DSB(struct { domain = domain , types = types , nXS = nXS880

}))881

3 }882

2.5.2 Extended Cat with Sail interface883

The extended isla-cat language is very similar to the original Cat language but with some differences. Since884

isla-axiomatic does not support mutually recursive bindings, procedures, or inline function definitions, we885

will not use them in our models.886

Unlike Cat, isla-axiomatic does not define a large set of built-in relations and sets. Instead, it adds accessors:887

point-free functions over events which can access the fields of the underlying Sail structures to allow the model888

author to define their own relations and sets based on the underlying ISA definitions.889

For example, the Armv9-A accessor for barrier access types matches on the Barrier union we saw earlier, and if890

it is one of Barrier_DMB or Barrier_DSB it extracts the .types field from its DxB struct, and otherwise returns the891

default value for that type. The isla-cat definition of such an accessor is given below:892

1 accessor barrier_types: MBReqTypes = .match {893

2 Barrier_DMB => .types ,894

3 Barrier_DSB => .types ,895

4 _ => default896

5 }897

These accessors can be used in simple function declarations, using the isla-cat define command. For example,898

the Armv9-A model defines the F (fence) event type and the various Arm barrier event kinds (dmbld,dmbsy,…)899

1https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/interface.sail#L286
2https://github.com/rems-project/sail-arm/blob/interface-v9/arm-v9.3-a/src/stubs.sail#L105
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with accessors. An extract of the isla-cat definition for Armv9-A1, for the parts defining the dmbld event (which900

is the event set that includes all barrier events that are at least as strong as a DMB.LD instruction), is given below:901

1 accessor F: bool = is sail_barrier902

2903

3 define has_barrier_type(ev: Event , t: MBReqTypes): bool =904

4 (barrier_types(ev) == t)905

5906

6 accessor is_DxB: bool =907

7 .match {908

8 Barrier_DMB => true ,909

9 Barrier_DSB => true ,910

10 _ => false911

11 }912

12913

13 accessor is_DMB: bool =914

14 .match {915

15 Barrier_DMB => true ,916

16 _ => false917

17 }918

18919

19 define ArmBarrierRM(ev: Event): bool =920

20 is_DxB(ev) & has_barrier_type(ev, MBReqTypes_Reads)921

21922

22 define DMB(ev: Event): bool =923

23 F(ev) & is_DMB(ev)924

24925

25 define DMBLD(ev: Event): bool = DMB(ev) & ArmBarrierRM(ev)926

26927

27 define dmbld(ev: Event): bool =928

28 (* see full code for definitions of dmbsy and dsbld *)929

29 DMBLD(ev) | dmbsy(ev) | dsbld(ev)930

1Full definition can be found at https://github.com/rems-project/system-semantics-arm-axiomatic-models/blob/main/
models/armv9-interface/barriers.cat
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Chapter 3931

Relaxed instruction fetching932

These chapters are based, in part, on: ARMv8-A system semantics: instruction fetch in relaxed architectures [32] by933

Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter934

Sewell. Published in the proceedings of the 29th European Symposium on Programming (ESOP, 2020).935

We now describe the main instruction fetch phenomena and architecture design questions for Arm-A. As usual,936

this will be done through the creation of handwritten litmus tests, which we will use to guide model design later937

on.938
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3.1 Introduction973

Self-modifying code is a software pattern relied on by nearly all software, but only explicitly managed by few: some974

are systems software, such as dynamic loaders, operating system kernels, and hypervisors; and some usermode,975

like just-in-time (JIT) compilers. This software is exactly the security-critical computing base, currently trusted976

but not trustworthy, that is especially in need of verification, and which will require a precise and well-validated977

definition of the architectural abstraction. While more esoteric software may make use of such patterns, potentially978

in ways otherwise envisaged by the architects, we will focus on the primary patterns used by those aforementioned979

kinds of software.980

The semantics required for self-modifying code, of instruction fetch and cache maintenance, are areas where981

microarchitectural optimisations can have surprising programmer-visible effects, especially in the concurrent982

context. Previous work has scarcely touched on this: none of seL4 [52], CertiKOS [53, 54], Komodo [55], or the983

works of Guanciale et al. [56], or Baudmann et al. [57], address realistic architecture concurrency, and they use (at984

best) idealised models of the sequential systems architecture. The CakeML [58, 59] and CompCert [60] verified985

compilers target only sequential user-mode ISA fragments, without self-modifying code. Previous attempts at986

verification of self-modifying code have typically focused on MIPS or x86, such as in the works of Cai et al. and987

Myreen [61, 62]. However, those architectures have a very different programmer model than Arm presents, not988

requiring explicit instruction cache maintenance.989

In the following four chapters we focus on instruction fetch and its required cache maintenance, for Arm-A.990

The ability to execute code that has previously been written to data memory is fundamental to computing:991

fine-grained self-modifying code is now rare, and (rightly) deprecated, but program loading, dynamic linking, JIT992

compilation, debugging, and OS configuration, all rely on executing code from data writes. However, because993

these are relatively infrequent operations, hardware designers have been able to optimise by partially separating994

the instruction and data paths, with distinct instruction caching, which by default may not be coherent with995

data accesses. This can introduce programmer-visible behaviour analogous to that of user-mode relaxed-memory996

concurrency, and require specific additional synchronisation to correctly pick up code modifications. Exactly997

what these are is not entirely clear in the current Arm-A architecture text.998

Wewill clarify this situation, developing precise abstractions that bring the instruction-fetch part of Arm-A system999

behaviour into the domain of rigorous semantics. Arm have stated [private communication] that they intend to1000

officially incorporate a version of this into their architecture.1001

We aim thereby to enable future work on system software verification using the techniques of programming1002

languages research: program analysis, model-checking, program logics, and so on.1003

We begin (§3.2) by recalling the informal architectural guarantees that Arm provide, and the ways in which1004

real-world software systems such as Linux, JavaScript, and WebAssembly change instruction memory. We then1005

survey the fundamental phenomena and architecture design questions with a series of examples, and explore the1006

interactions between instruction fetching, cache maintenance and the ‘usual’ relaxed memory stores and loads,1007

showing that instruction fetches are more relaxed, and how even fundamental coherence guarantees for data1008

memory do not apply to instruction fetches.1009

We give an operational semantics for Arm instruction fetch and icache maintenance (Ch. 4) in an abstract-1010

microarchitectural style (following §2.3) capturing the architectural intent.1011

We give amore concise presentation of the model in an axiomatic style (Ch. 5), extending the “user-mode” axiomatic1012

model from previous work (§2.4), and intended to be functionally equivalent to the presented operational semantics.1013

We validate all this (Ch. 6), in two ways: by the extensive discussion with Arm staff mentioned above, and by1014

experimental testing of hardware behaviour, on a selection of Armv8-A cores designed by multiple vendors. We1015

run tests on hardware with a mild extension of the Litmus tool [63, 64]. We make the operational model executable1016

as a test oracle by integrating it into the RMEM tool and its web interface [49], introducing optimisations that1017

make it possible to exhaustively execute the examples. We make the axiomatic model executable as a test oracle1018

by extending our isla-axiomatic tool. We then compare hardware and the two models for the handwritten1019

tests (modulo two tests not supported by the axiomatic checker), compare hardware and the operational model on1020

a suite of 1456 tests, automatically generated with an extension of the diy tool [65], and check the operational and1021

axiomatic models against sets of previous non-ifetch tests. In all this data our models are equivalent to each other1022

and consistent with hardware observations, except for one case where our testing uncovered a hardware bug on a1023

Qualcomm device.1024
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We focus on motivating examples, the main intuition and style of the operational model (in a prose rendering of1025

its executable mathematics), and the definition of the axiomatic model.1026

Caveats and Limitations Our operational semantics are integrated with a substantial fragment of the Sail1027

Armv8-A ISA (similar to that used for CakeML), but not yet with the full ISA model [44, 10, 11, 66]; this is a matter1028

of additional engineering and is future work. We only handle the 64-bit AArch64 part of Arm-A, not AArch32.1029

We do not handle the interaction between instruction fetch and mixed-size accesses, or other variants of the cache1030

maintenance instructions, e.g. those used for interaction with DMA engines, and variants by set or way instead1031

of by virtual address. Finally, while the equivalence between our operational and axiomatic models is validated1032

experimentally, we do not have a formal proof of equivalence. A proof of this equivalence will be essential in the1033

long term, but represents a major step and substantial work itself: the complexity makes mechanisation essential,1034

but the operational model (in all its scale and complexity) has not yet been subject to mechanised proof. Without1035

instruction fetch, a non-mechanised proof was the main result of an entire PhD thesis [6], and we expect the1036

addition of instruction fetch to require global changes to the argument.1037

3.2 Industry practice and the existing Arm prose1038

Computer architecture relies on a host of sophisticated techniques, including buffering, caching, prediction, and1039

pipelining, for performance. For the normal memory reads andwrites of ‘user-mode’ concurrency, the programmer-1040

visible relaxed-memory effects largely arise from store buffering and from out-of-order and speculative pipeline1041

behaviour, not from the cache hierarchy (though some IBM POWER phenomena do arise from the interconnect,1042

and from late processing of cache invalidates).1043

At first sight, one might expect instruction fetches to act like other memory reads but, because writes to instruction1044

memory are relatively rare, hardware designers have adopted different caching mechanisms. The Arm architecture1045

carefully does not mandate exactly what thesemust be, to allow awide range of possible hardware implementations,1046

but, for example, a typical high-performance Arm processor might have per-core separate L1 instruction and data1047

caches, above a unified per-core L2 cache and an L3 cache shared between cores. There may also be additional1048

structures, e.g. per-core fetch queues, loop buffers, and caching of decoded micro-ops. This instruction caching1049

is not necessarily coherent with data memory accesses: ‘the architecture does not require the hardware to ensure1050

coherency between instruction caches and memory’ [67, B2.4.4 (B2-114)]; instead, programmers must use explicit1051

cache maintenance instructions1 . The documentation gives a particular sequence of these: ‘If software requires1052

coherency between instruction execution and memory, it must manage this coherency using Context synchronization1053

events and cache maintenance instructions. The following code sequence can be used to allow a processing element1054

(PE) to execute code that the same PE has written.’1055

1 ; Coherency example for data and instruction accesses [...]1056

2 ; Enter this code with <Wt> containing a new 32-bit instruction ,1057

3 ; to be held in Cacheable space at a location pointed to by Xn.1058

4 STR Wt, [Xn]; Store new instruction1059

5 DC CVAU , Xn ; Clean data cache by virtual address (VA) to PoU1060

6 DSB ISH ; Ensure visibility of the data cleaned from cache1061

7 IC IVAU , Xn ; Invalidate instruction cache by VA to PoU1062

8 DSB ISH ; Ensure completion of the invalidations1063

9 ISB ; Synchronize the fetched instruction stream1064

At first sight, this may be entirely mysterious. This and the following chapters establish precise semantics for1065

each of the above instructions, explaining why each is required. However, for now, a rough intuition for each is:1066

1. The DC CVAU,Xn cleans this core’s data cache for address Xn, pushing the new write far enough down the1067

hierarchy for an instruction fetch that misses in the instruction cache to be guaranteed to see the new value.1068

This point is the Point of Unification (PoU) and is usually the point where the instruction and data caches1069

become unified (L2 for most modern devices).1070

2. The DSB ISH waits for the clean to have happened before letting the later instructions execute (without1071

this, the sequence itself can execute out-of-order, and the clean might not have pushed the write down far1072

enough before the instruction cache is updated). The ISH makes this specific to the Inner Shareable Domain:1073

the processor itself, not the system-on-chip. We do not model shareability domains in this work, so this is1074

equivalent to a DSB SY.1075

1Version J.a of the Arm architecture reference manual has a minor typographical error here.
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3. The IC IVAU,Xn invalidates any entry for that address in the instruction caches for all cores, forcing any1076

future fetch to miss in the instruction cache, and instead read the new value from the data memory hierarchy.1077

4. The second DSB ISH ensures the invalidation completes.1078

5. The final ISB flushes this core’s pipeline, forcing a re-fetch of all program-order-later instructions.1079

Some hardware implementations provide extra guarantees, rendering the DC or IC instructions unnecessary. Arm1080

allow software to discover this in an architectural way, by reading the CTR_EL0 register’s DIC and IDC fields,1081

described more in §3.14.1082

Arm make clear that instructions can be prefetched (perhaps speculatively): ‘How far ahead of the current point1083

of execution instructions are fetched from is Implementation Defined. Such prefetching can be either a fixed or a1084

dynamically varying number of instructions, and can follow any or all possible future execution paths. For all types of1085

memory, the PE might have fetched the instructions from memory at any time since the last Context synchronization1086

event on that PE.’ [68, p. 201]1087

Concurrent modification and instruction fetch require the same sequence, with an ISB on each thread that executes1088

the new instructions, and the rest of the sequence on the modifying thread [67, B2.2.5 (B2-94)]. Concurrent1089

modification without synchronisation is restricted to particular instructions (B (branch), BL (branch-and-link), BRK1090

(break), SMC, HVC, SVC (secure monitor, hypervisor, and supervisor calls), ISB, and NOP), otherwise there could be1091

constrained unpredictable behaviour : ‘any behavior that can be achieved by executing any sequence of instructions1092

that can be executed from the same Exception level’.1093

All this gives some guidance for programmers, but it leaves the exact semantics of instruction fetch and those1094

cache maintenance instructions unclear, and in practice software typically does not use the above sequence1095

verbatim. For example, it may synchronise a range of addresses at once, looping the DC and IC parts, or the final1096

ISB may be subsumed by instruction synchronisation from exception entry or return. Linux has many places1097

where it modifies code at runtime: in boot-time patching of alternatives, modifying kernel code to specialise it to1098

the particular hardware being run on; when the kernel loads code (e.g. when the user calls dlopen); and in the1099

ptrace system call, used e.g. by the GDB debugger to patch arbitrary instructions with breakpoints at runtime. In1100

Google’s Chrome web browser, its WebAssembly and JavaScript just-in-time (JIT) compilers are required to both1101

write new code during execution and modify existing code at runtime. In JavaScript, this modification happens1102

inside a single thread and so is quite straightforward. The WebAssembly case is more complex, as one thread is1103

modifying the code of another. A software thread can also be moved (by the OS or hypervisor) from one hardware1104

thread to another, perhaps while it is in the middle of some instruction cache maintenance. Moreover, for security1105

reasoning, we have to be able to bound the possible behaviour of arbitrary code.1106

All this means that we cannot treat the above sequence as a whole, as an opaque black box. Instead, we need a1107

precise semantics for each individual instruction, but the existing prose documentation does not provide that.1108

The problem we face is to give such a semantics, that correctly defines behaviour in arbitrary concurrent contexts,1109

that captures the Arm architectural intent, that is strong enough for software, and that abstracts from the variety1110

of hardware implementations (e.g. with differing cache structures) that the architecture intends to allow – but1111

which programmers should not have to think about.1112

3.3 Modifiable instructions1113

As was mentioned in §3.2, concurrent modification and execution is only permitted if the original and modified1114

instructions are in a particular set: various branches, supervisor/hypervisor/secure-monitor calls, the ISB (instruc-1115

tion synchronisation) barrier, and NOP. Otherwise, the architecture permits constrained unpredictable behaviour,1116

meaning that the resulting machine state could be anything that would be reachable by arbitrary instructions at1117

the same exception level. The following W+F test (Figure 3.1) illustrates this.1118

STR W0,[X1] // modify Thread 1 at l
Thread 0

l: ADD X0,X0,#1 // initial code
Thread 1

Initial state: 0:W0="SUB X0,X0,#1", 0:X1=l
W+F AArch64

Allowed: constrained-unpredictable final state

Figure 3.1: Code listing for test W+F.
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In this test, Thread 0 writes to the code that Thread 1 is executing; overwriting the ADD X0,X0,#1 instruction with1119

the 32-bit encoding of the SUB X0,X0,#1 instruction. If the fetch were atomic, the outcome of this test would be1120

the result of executing either the ADD or the SUB instruction, but, since at least one of those is not in the set of1121

the 8 atomically-fetchable instructions given previously, Thread 1 has constrained-unpredictable behaviour and1122

the final state is very loosely constrained. Note, however, that this is nonetheless much stronger than the C/C++1123

whole-program undefined behaviour in the presence of a data race: unlike C/C++, a hardware architecture has to1124

define a useful envelope of behaviour for arbitrary code, to provide guarantees for the rest of the system when1125

one user thread has a race.1126

Conditional branches In version D.a (and earlier) of the Arm architecture reference manual, it made clear1127

that, for branches with conditions (B.cond), the Arm architecture provided a specific non-single-copy-atomic1128

fetch guarantee: that the execution will be consistent with either the old or new target, with either the old or1129

new condition [69, B2-94]. In version E.a, this condition was removed entirely, meaning B.cond instructions1130

were not permitted to be concurrently updated at all [70, B2-112]. In version G.b, B.cond was added to the list of1131

concurrently-modifiable instructions, once more permitting replacement of (and with) a B.cond instruction [71,1132

B2-130], with the stronger semantics that you will see either the old instruction or the new instruction entirely.1133

STR W0,[X1]
Thread 0

l: B.EQ g
Thread 1

Initial state: 0:W0="B.NE h", 0:X1=l
W+F+branches AArch64

Final state: execute "B.NE g"

Figure 3.2: Code listing for test W+F+branches.

For example, the W+F+branches test (Figure 3.2) overwrites a B.EQ g with a B.NE h. Under the D.a and earlier1134

text, the result could be consistent with executing B.NE g or B.EQ h instead, and thus the test is allowed; under1135

the E.a-G.a text, the test has ConstrainedUnpredictable behaviour; under the G.b and later text, the test has1136

well-defined behaviour but is forbidden.1137

To avoid this unfortunate confusion, and any possible constrained unpredictable behaviours due to it, our examples1138

will be restricted to modifying only NOPs and unconditional branches.1139

Synchronising branches Arm does not include any instruction synchronisation effects on the branch instruc-1140

tion, instead, the architecture relies on explicit synchronisation instructions (see §3.6). This is in contrast to1141

other architectures such as x86 which does not require any explicit cache maintenance or pipeline flushing when1142

jumping to newly-modified code.1143

3.4 Coherence1144

Data writes and reads are coherent, in Arm and in other major architectures: in any execution, for each address,1145

the reads of each hardware thread must see a subsequence of the total coherence order of all writes to that address1146

(see §2.1.2). The plain-data CoRR1 test (Figure 2.5, p18) illustrates one case of this: it is forbidden for a thread to1147

read a new write of x and then the initial state for x. However, instruction fetches are not necessarily coherent:1148

one instruction fetch may be inconsistent with a program-order-previous fetch, and the data and instruction1149

streams can become out of sync with each other. We explore three new kinds of coherence:1150

. Instruction-to-Instruction Coherence: whether fetches of the same location must observe writes to the1151

same location coherently.1152

. Data-to-Instruction Coherence: whether fetches and then reads of the same location must observe writes to1153

the same location coherently.1154

. Instruction-to-Data Coherence: whether reads and then fetches of the same location must observe writes to1155

the same location coherently.1156

These new kinds of coherence describe the relationship between the instruction ‘stream’ with the instruction and1157

data caches.1158
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3.4.1 Instruction-to-Instruction coherence1159

Arm explicitly do not guarantee any consistency between fetches of the same location: fetching an instruction does1160

not mean that a later fetch of that same location will not see an older instruction [67, B2.4.4]. This is illustrated by1161

the CoFF test (Figure 3.3), which is a variant of CoRR1 test (Figure 2.5, p18), but where the reads in the relaxed1162

cycle of events are implicit reads caused by an instruction fetch.1163

STR W0,[X1] //a
Thread 0

BL f
MOV X0,X10
BL f
MOV X1,X10

Thread 1
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f
CoFF AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: NYYNN

write f=B l1a:
Thread 0

fetch f=B l1b:

fetch f=B l0c:

Thread 1

irf
fpo

irf

Figure 3.3: Code listing and execution diagram for CoFF.

Here, Thread 1 makes two calls to address f (recall BL is the branch-and-link ‘call’ instruction), while Thread 01164

overwrites the instruction at that address with the opcode for the instruction B l1 (a branch to the location1165

labelled l1). The interesting potential execution is that in which the first call to f fetches and executes the1166

newly-written B l1, but the second call fetches and executes the original B l0. The execution shown in Figure 3.31167

is the well-formed candidate execution consistent with the final state of the test. Candidate executions for1168

self-modifying tests are similar to those of previous axiomatic models, but augmented with new fetch events, one1169

per instruction, and new edges relating those events. We will discuss these new candidates in more detail in Ch5.1170

As usual, we use po and rf edges for the program-order and reads-from relations, together with:1171

. fe (fetch-to-execute), which relates the fetch event of an instruction to all the execution events (memory1172

writes, reads, and/or barriers) of the instruction;1173

. irf (instruction-read-from), relating a write to all fetches that read from it (analogous to reads-from, rf);1174

and1175

. fpo (fetch-program-order), relating fetches of instructions that are in program order (analogous to program1176

order, po).1177

As usual, edges from the initial state are shown as originating from a small circle.1178

Since we do not modify the code of most locations, or perform any cache maintenance operations over those1179

locations, we usually omit the fetch events for the instructions at those locations; instead, showing only a subgraph1180

of the interesting events, as in the CoFF execution diagram in Figure 3.3.1181

Here, and in future tests, we assume some common library code consisting of a function at address f, which1182

always has the same shape: a branch that might be overwritten, which selects a block that writes a value to1183

register X10 before returning. This is sometimes duplicated at different addresses (f1, f2, …) or extended to g,1184

with three cases. We sometimes elide the common code.1185

For Arm, this execution is both architecturally allowed, and experimentally observed. This is shown in the test1186

listing in Figure 3.3 in the line underneath the final state beginning with hw-refs. This line is a minature table,1187

where each column represents one hardware device, and the value whether it was observed on that device (Y),1188

not observed on that device (N), or whether there are no results for that device (indicated by -). Here is that1189

final hw-refs line from CoFF (Figure 3.3), annotated with the names of the devices (see §6.2.3 for a more detailed1190

discussion of the hardware testing):1191

nexus9 s905 h955-a53 h955-a57 openq820
N Y Y N N1192
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3.4.2 Data-to-Instruction coherence1193

Fetching from a particular write does imply that program-order-later reads from the same address will see that1194

write (or a coherence successor thereof). This is a data-to-instruction coherence property, illustrated by CoFR1195

(Figure 3.4, p40). Here, if Thread 1 happens to fetch the newly-written B l1 at f (in the ‘Common’ function code),1196

then a data read of f cannot see the original B l0 instruction (it can only read the new B l1).1197

STR W0,[X1]
Thread 0

BL f
MOV X0,X10
LDR X1,[X2]

Thread 1
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f
CoFR AArch64

Forbidden: 1:X0=2, 1:X1="B l0"

hw-refs: NNNNN

write f=B l1a:
Thread 0

fetch f=B l1b:

fetch LDR X1,[X2]c:

read f=B l0d:

Thread 1
irf

fpo

ferf

Figure 3.4: Code listing and execution diagram for CoFR.

This was not clear in the Arm prose specification at the time of writing [69, 72, 71, 68], but the architectural intent1198

that emerged during discussion with Arm is that the given execution should be forbidden. This architectural1199

decision was motivated by microarchitectural design: (1) instructions decode in order (so the fetch b must occur1200

before the read d), and (2) fetches that miss in the instruction cache must read from the coherent data storage1201

system, so the instruction cache cannot be ahead of the available data. This ensures that observing a write with an1202

instruction fetch implies that all threads are now guaranteed to read from that write (or another coherence-after1203

it).1204

3.4.3 Instruction-to-Data coherence1205

In the other direction, reading from a particular write to some location does not imply that later fetches of that1206

location will see that write (or a coherence successor), as in the following CoRF+ctrl-isb (Figure 3.5).1207

STR W0,[X1]
Thread 0

LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f
CoRF+ctrl-isb AArch64

Allowed: 1:X0="B l1", 1:X1=1

hw-refs: NYYYY

write f=B l1a:
Thread 0

read f=B l1b:

fetch f=B l0c:

Thread 1
rf

ctrl+isb
irf

Figure 3.5: Code listing and execution diagram for CoRF+ctrl-isb.

Here Thread 1 has a control dependency (the CBNZ conditional branch, dependent on the value read by its load)1208

and an instruction synchronisation barrier (ISB), abbreviated to ctrl+isb, between its load and the fetch from1209

f. If the latter were a data load, this would ensure the two loads are satisfied in order. This is not explicit in1210

the prose at the time of writing [69, 72, 71, 68], but it is what one would expect, and it is observed in practice.1211

Microarchitecturally, it is easily explained by an out-of-date entry for f in the instruction cache of Thread 1: if1212

Thread 1 had previously fetched f (perhaps speculatively), and that instruction cache entry has not been evicted1213

or explicitly invalidated since, then this fetch of f will simply read the old value from the instruction cache1214

without going out to data memory. The ISB ensures that f is freshly fetched, but does not ensure that Thread 1’s1215

instruction cache is up-to-date with respect to data memory.1216
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3.5 Cross-thread synchronisation1217

We now consider modifying code that can be fetched by other threads, by considering variants of the standard1218

message-passing shape (MP+pos (Figure 2.1, p14) and friends). Here we replace one or both of those reads by1219

fetches, and ask what synchronisation is required to ensure that the relaxed outcome is forbidden. Consider first1220

an MP variant where the first write is of a new instruction, and the second is just a simple data memory flag, with1221

some thread-local ordering on each thread ordering the writes on the left-hand thread, and ordering the read to1222

the fetch on the right-hand side. We call this test MP.RF+dmb+ctrl-isb (Figure 3.6).1223

STR W0,[X1]
DMB ISH
STR X2,[X3]

Thread 0
LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+dmb+ctrl-isb AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

dmb rf ctrl

isb
irf

Figure 3.6: Code listing and execution diagram for MP.RF+dmb+ctrl-isb.

This test includes sufficient synchronisation on each thread to enforce thread-local ordering of data accesses: the1224

DMB in Thread 0 ensures the writes a and b propagate to memory in program order, and the control dependency1225

into an ISB on Thread 1 ensures the read c and the fetch e happen in program order. However, as we saw in §3.2,1226

this is not enough to synchronise concurrent modification and execution of code in Arm-A. Thread 0 needs the1227

entire cache synchronization sequence (described in §3.2) not just a DMB, to forbid this outcome. Adding that full1228

cache synchronisation sequence gives test MP.RF+cachesync+ctrl-isb (Figure 3.10, p43), described in more detail1229

in §3.6.2.1230

Synchronisation with memory by fetching Another variant of this MP-shape test, where the message passing1231

itself is done using modification of code, gives a much stronger guarantee. This can be seen in MP.FR+dmb+fpo-fe1232

(Figure 3.7), in this test Thread 0 writes a message (to x) and then writes to the code concurrently being executed1233

by Thread 1. If Thread 1 fetches the new instructions written by Thread 0, then Thread 1 must also see the new1234

value of x.1235

STR X0,[X1]
DMB ISH
STR W2,[X3]

Thread 0
BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

Initial state: 0:X0=1, 0:X1=x,
1:X2=x, [x]=0,
0:W2="B l1", 0:X3=f

MP.FR+dmb+fpo-fe AArch64

Forbidden: 1:X0=2, 1:X1=0

hw-refs: N-NNN

write x=1a:

write f=B l1b:

Thread 0
fetch f=B l1c:

fetch LDR X1,[X2]d:

read x=0e:

Thread 1

dmb irf fpo

fe

Figure 3.7: Code listing and execution diagram for MP.FR+dmb+fpo-fe.

This was not clear from the architectural prose at the time of writing, but this outcome is forbidden. This is1236

for similar reasons as the previous CoFR test (Figure 3.4, p40): since Thread 1 fetched the updated value for f,1237

the value must have reached at least the data caches (since that is where the instruction cache reads from) and1238

therefore multi-copy atomicity guarantees that a normal load instruction will observe it.1239
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3.6 Cache maintenance1240

As we have seen, instruction fetches satisfy few guarantees, so explicit synchronisation must be performed when1241

modifying the instruction stream.1242

Test SM (Figure 3.8) shows the simplest self-modifying code case: without additional synchronisation, a write to1243

program memory can be ignored by a program-order-later fetch.1244

STR W0,[X1] // a
BL f
MOV X0,X10

Thread 0
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X1=f
SM AArch64

Allowed: 1:X0=1
hw-refs: YYYYY

write f=B l1a:

fetch f=B l0b:

Thread 0

ifr
irf

Figure 3.8: Code listing and execution diagram for SM.

In this execution, the fetch b, fetching the instruction at f, fetches a value from a write coherence-before a, even1245

though b is the fetch of an instruction program-order after a. We illustrate this with an instruction from-reads (ifr)1246

edge. This is a derived relation, analogous to the usual from-reads (fr) relation, that relates each fetch to all writes1247

that are coherence-after the write it read from; it is defined as ifr = irf−1;co. If the fetch were a data read, this1248

would be a forbidden coherence shape (CoWR). As it is, it is architecturally allowed, as described explicitly by1249

Arm [67, B2.4.4], and it is experimentally observed on all devices we have tested. Microarchitecturally, this is1250

simply due to fetches from old instruction cache entries.1251

3.6.1 Synchronisation on a single thread1252

As we saw in §3.2, the Arm architecture provides cache maintenance instructions to synchronise the instruction1253

and data streams: the DC data-cache clean and IC instruction-cache invalidate instructions. To forbid the relaxed1254

outcome of SM, by forcing a fetch of the modified code, the specified sequence of cache maintenance instructions1255

must be inserted, with an ISB.1256

STR W0,[X1] //overwrite f with branch
DC CVAU,X1 //clean data cache
DSB ISH
IC IVAU,X1 //invalidate instruction cache
DSB ISH
ISB //flush pipeline
BL f
MOV X0,X10

Thread 0

Initial state: 0:W0="B l1", 0:X1=f
SM+cachesync-isb AArch64

Forbidden: 1:X0=1
hw-refs: NNNNN

write f=B l1a:

ISBb:

fetch f=B l0c:

Thread 0

cachesync

isb
irf

Figure 3.9: Code listing and execution diagram for SM+cachesync-isb.

Now the outcome is forbidden. The cache synchronisation sequence DC CVAU; DSB ISH; IC IVAU; DSB ISH1257

(which we abbreviate to a single cachesync edge) ensures that by the time the ISB executes, the instruction and1258

data memory have been made coherent with each other for f. The ISB then ensures the final fetch of f is ordered1259

after this sequence. The microarchitectural intuition for this sequence was in §3.2. Our §4.1 microarchitecturally-1260

flavoured operational model will describe the semantics of this sequence using that microarchitectural intuition in1261
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a way that gives precise and well-defined semantics to each instruction individually, such that their composition1262

results in the correct system-wide synchronisation. This will be discussed in much more detail in Ch4.1263

3.6.2 Broadcast cache maintenance1264

The hardware thread writing new instructions and performing the necessary cache maintenance, need not be the1265

same hardware thread as the one that will try fetch those instructions. So long as the sequence in its entirety has1266

been performed by the time the fetch happens, then the instruction stream will have been made consistent with1267

the data stream for that address.1268

The simplest example of this is in MP.RF+cachesync+ctrl-isb (Figure 3.10), where the ‘producer’ thread (Thread 0)1269

writes the new instructions, and performs all the cache maintenance, before writing a flag informing the ‘consumer’1270

thread (Thread 1) that the instructions are ready to be fetched. Although the cache maintenance happened on1271

a different thread to the one that will try fetch the new instructions, their effect is enforced system wide; the1272

consumer needs only to flush the pipeline (with an ISB) to be guaranteed to see the new instructions.1273

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0
LDR X0,[X2]
CBNZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl-isb AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: NNNNY

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

cachesync rf ctrl

isb
irf

Figure 3.10: Code listing and execution diagram for MP.RF+cachesync+ctrl-isb.

In-order fetches Test MP.FF+dmb+fpo (Figure 3.11) has both of Thread 0’s writes be of new instructions. This1274

idiom is quite common in practice; this was how Chrome’s WebAssembly JIT synchronised its updates to modified1275

code, up until the code was redesigned to use Arm’s FEAT_BTI (branch-target-identification) feature [73, 74].1276

STR W0,[X1]
DMB ISH
STR W2,[X3]

Thread 0
BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+dmb+fpo AArch64

Allowed: 1:X0=2, 1:X1=1

hw-refs: NYYYY

write f1=B l1a:

write f2=B l1b:

Thread 0
fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

dmb fpoirf
irf

Figure 3.11: Code listing and execution diagram for MP.FF+dmb+fpo.

Without the full cache synchronisation sequence on Thread 0, this is allowed. Inserting that sequence gives1277

MP.FF+cachesync+fpo (Figure 3.12, p44), a forbidden variant of the previous test.1278
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STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR W2,[X3]

Thread 0
BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f1,
0:W2="B l1", 0:X3=f2

MP.FF+cachesync+fpo AArch64

Forbidden: 1:X0=2, 1:X1=1

hw-refs: NNNNN

write f1=B l1a:

write f2=B l1b:

Thread 0
fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

cachesync fpoirf
irf

Figure 3.12: Code listing and execution diagram for MP.FF+cachesync+fpo.

At first, this may be surprising as there is no synchronisation on the right-hand side (Thread 1), but the architectural1279

intent is for fetches to appear to be satisfied in-order.1280

Microarchitecturally, that could be ensured in two ways: either by actually fetching in-order, or by making the1281

IC instruction not only invalidate all the instruction caches (for this address) but also clean any core’s pre-fetch1282

buffer stale entries (for this address). Architecturally, this is not clear in the prose at the time of the work, but,1283

concurrent with this work, Arm were independently strengthening their definition to make it so.1284

Software thread migration The cache maintenance sequence need not be contiguous, it may be split up over1285

many threads. This can be seen in the ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb test (Figure 3.13), where Thread 01286

performs a write to f and then only a DC before synchronizing with Thread 1, which performs the IC, while1287

Thread 2 observes the modified code. This can happen in practice when a software thread is migrated between1288

hardware threads at runtime, by a hypervisor or OS. Thread 0 and Thread 1 may just represent the runtime1289

scheduling of a single process, beginning execution on hardware Thread 0 but migrated to hardware Thread 11290

between the DC and IC instructions. In the graph, the dcsync and icsync represent the DC and IC combinations1291

with their surrounding barriers. The DC does not need a barrier preceding it, because it is ordered w.r.t. the1292

preceding store to the same cache line.1293

STR W0,[X1]
DC CVAU, X1
DMB SY
STR X2,[X3]

Thread 0
LDR X0,[X1]
DSB ISH
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1
LDR X0,[X2]
CBZ X0,l

l:ISB
BL f
MOV X1,X10

Thread 2

Initial state: 0:W0="B l1", 0:X1=f, 0:X2=1,
0:X3=x, [x]=0, 1:X4=f, 1:X1=x, 1:X2=1,
1:X3=y, [y]=0, 2:X2=y

ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb AArch64

Forbidden: 1:X0=1, 1:X1=1

hw-refs: --N-N

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

write y=1d:

Thread 1
read y=1e:

ISBf:

fetch f=B l0g:

Thread 2

dcsync icsync ctrl

isb

rf rf

ifr

Figure 3.13: Code listing and execution diagram for ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb.

This works because the IC IVAU is broadcast to all threads [67, B2.2.5p3]. Therefore the IC happening on a different1294

thread to the DC does not break the sequence, so long as there is ordering between the IC and DC. Additionally,1295

the DC need not happen on the same thread as the initial store, so long as the DC is ordered after the store.1296

The migration and context-switching code needs only contain a DSB and context-synchronisation (such as an1297

ISB, although usually this is performed implicitly by the exception return mechanism itself) to ensure sufficient1298

synchronisation exists for the sequence to be migrated at any point.1299
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3.6.3 Completion of cache maintenance1300

Recall we have an asymmetry between the required synchronisation for DC instructions and IC instructions: IC1301

instructions must have a preceding DSB to order with earlier accesses, whereas DC instructions do not necessarily1302

need one; DC instructions are ordered by DMB with surrounding memory accesses, whereas IC is not.1303

This is because the DC is ordered much like a read (see §3.11.1). However, both the DC and IC are not guaranteed1304

to have completed their effect until after the subsequent execution of a DSB instruction on the same thread [68,1305

pp. 5790-5791], and an IC instruction always requires an DSB before it [68, p. 5791].1306

3.7 Dependencies1307

Reads, including implicit reads due to an instruction fetch, must have their address become known before the1308

value can be used. This is a general principle Arm have, that values from reads generally cannot be speculated.1309

For instruction fetches, this address is the program counter.1310

This means that computations which are used in the calculation of that address give rise to dependencies in the1311

program. Sometimes these dependencies are hard and must be preserved, and other times, not.1312

3.7.1 Address dependencies1313

If the destination of a branch is passed as a register, with the BR (branch-register) or BLR (branch-and-link-register)1314

instructions, then the instruction fetch of the target cannot go ahead until after the address is resolved.1315

This can be seen in the MP.RF+cachesync+addr test (Figure 3.14), where the target of the branch is dependent on1316

the value of register X2 which comes from the earlier load of x.1317

STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0
LDR X0,[X2]
EOR X2,X0,X0
ADD X2,X2,f
BLR X2
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+addr AArch64

Forbid?: 1:X0=1, 1:X1=1

hw-refs: -----

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf addr
irf

Figure 3.14: Code listing and execution diagram for MP.RF+cachesync+addr.

3.7.2 Control dependencies1318

For branches where the destination is known, but where it is not yet known if the branch will be taken, then it is1319

permitted for the instruction to be fetched and executed speculatively.1320
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STR W0,[X1]
DC CVAU,X1
DSB ISH
IC IVAU,X1
DSB ISH
STR X2,[X3]

Thread 0
LDR X0,[X2]
CBNZ X0,l

l:
BL f
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f,
0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+cachesync+ctrl AArch64

Allowed: 1:X0=1, 1:X1=1

hw-refs: YYYYY

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

fetch f=B l0d:

Thread 1

cachesync rf ctrl
irf

Figure 3.15: Code listing and execution diagram for MP.RF+cachesync+ctrl.

3.8 Multi-Copy Atomicity1321

For data accesses, the question of whether they are multi-copy atomic is a crucial one for relaxed architectures.1322

IBM POWER, ARMv7, and pre-2018 ARMv8-A are/were non-multi-copy atomic: two writes to different addresses1323

could become visible to distinct other threads in different orders. Post-2018 ARMv8-A, Armv9-A, and RISC-V are1324

multi-copy atomic (or “other multi-copy-atomic” in Arm terminology) [7, 6, 67]: the programmer can assume1325

there is a single shared memory, with all data-access relaxed-memory effects due to thread-local out-of-order1326

execution.1327

One again has to ask whether writes are multi-copy atomic when observed by instruction fetches. However, the1328

lack of any fetch atomicity guarantee for most instructions (§3.3), and the lack of coherent fetches for the others1329

(§3.4), means the question of multi-copy atomicity for instruction fetching is not particularly interesting. Tests1330

are either trivially forbidden (by data-to-instruction coherence, as in test WRC.F.RR+po+dmb (Figure 3.16)) or1331

are allowed, but only the full cache synchronisation sequence provides enough guarantees to forbid it, and this1332

sequence ensures all cores will share the same consistent view of memory.1333

STR W0,[X1]
Thread 0

BL f
MOV X0,X10
STR X1, [X2]

Thread 1
LDR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 2

Initial state: 0:W0="NOP", 0:X1=f, 1:X1=1, 1:X2=x, [x]=0,
2:X1=x, 2:X3=f

WRC.F.RR+po+dmb AArch64

Forbidden: 1:X0=1, 2:X0=2, 2:X2="B l0"

hw-refs: -NN-N

write f=NOPa:
Thread 0

fetch f=NOPb:

write x=1c:

Thread 1
read x=1d:

read f=B l0e:

Thread 2
irf

po rf dmb

fr

Figure 3.16: Code listing and execution diagram for WRC.F.RR+po+dmb.

3.9 More on instruction caches1334

Test CoFF (Figure 3.3, p39) showed that fetches can see “old” writes. In principle, there is no limit to the number1335

of distinct values within the instruction cache: there could be many values for a single location cached in the1336

instruction memory for each core, even if the data cache has been cleaned. The MP.RFF+dc-dsb+ctrl-isb-isb test1337

(Figure 3.17, p47) illustrates this, with Thread 0 writing two distinct new opcodes for g, and Thread 1 able to see1338

all three (both of the new, and the initial) values for g.1339

3.8. MULTI-COPY ATOMICITY 46



STR W0,[X2]
STR W1,[X2]
DSB ISH
DC CVAU,X2
DSB ISH
STR X3,[X4]

Thread 0
LDR X0, [X4]
CBNZ X0, l

l:ISB
BL g
MOV X1,X10
ISB
BL g
MOV X2,X10
ISB
BL g
MOV X3,X10

Thread 1
g: B l0
l2:MOV X10,#3

RET
l1:MOV X10,#2

RET
l0:MOV X10,#1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g,
0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0, 1:X4=x

MP.RFF+dc-dsb+ctrl-isb-isb AArch64

Allowed: 1:X0=1, 1:X1=3, 1:X2=2, 1:X3=1

hw-refs: NNNNN

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l2e:

fetch g=B l1f:

fetch g=B l0g:

Thread 1

po

dcsync

ctrl+isb

isb

isb

rf

irf

irf

irf

Figure 3.17: Code listing and execution diagram for MP.RFF+dc-dsb+ctrl-isb-isb.

It is thought unlikely that hardware will exhibit this in practice, but the desire for the simpler and weaker option1340

means the architectural intent is to allow it, and we follow that in our models.1341

3.10 Points of unification and coherence1342

Cleaning the data cache, using the DC instruction, forces a write to become visible to instruction fetch, but does1343

restrict the set of values that could be in the instruction cache. It does this by pushing the write past the Point of1344

Unification (the point where the instruction and data caches become unified). However, there may be multiple1345

Points of Unification: one for each individual core, where its own instruction and data memory become unified,1346

and one for the entire system (or shareability domain) where all the caches eventually unify. Fetching from a1347

write implies that it has reached the closest PoU, but does not imply it has reached any others, even if the write1348

originated from a distant core. Consider test SM.F+ic (Figure 3.18).1349

STR W0,[X4]
LDR X2,[X3]
CBZ X2,l

l: ISB
BL f
MOV X1,X10

Thread 0
BL f
MOV X0,X10
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

Initial state: 0:W0="B l1", 0:X4=f,
0:X3=x, [x]=0, 1:X4=f, 1:X2=1,
1:X3=x

SM.F+ic AArch64

Allowed: 1:X0=2, 0:X2=1, 0:X1=1

hw-refs: N-NNN

write f=B l1a:

read x=1b:

ISBc:

fetch f=B l0d:

Thread 0
fetch f=B l1e:

write x=1f:

Thread 1

po

ctrl

isb

irf

icsync

rf

irf

Figure 3.18: Code listing and execution diagram for SM.F+ic.

In SM.F+ic, Thread 0 modifies f, and Thread 1 fetches the new value and performs just an IC and DSB, before1350

signalling Thread 0 which also fetches f. The IC (without its sibling DC) is not strong enough to ensure that the1351

write is pulled into the instruction cache of Thread 0.1352

This is not clear in the existing prose at the time of writing, but the architectural intent is that it be allowed (i.e.,1353

that IC is weak in this respect). We have not so far observed it in practice. The write may have passed the Point of1354

Unification for Thread 1, but not the shared Point of Unification for both threads. In other words, the write might1355

reach Thread 1’s instruction cache without being pushed down from Thread 0’s data cache. Microarchitecturally1356

this can be explained by direct data intervention (DDI), an optimisation allowing cache lines to be migrated directly1357
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from one thread’s (data) cache to another [75]. The line could be migrated fromThread 0 to Thread 1, then pushed1358

past Thread 1’s Point of Unification, making it visible to Thread 1’s instruction memory without ever making it1359

visible to Thread 0’s own instruction memory. The lack of coherence between instruction and data caches would1360

make this observable in theory, even in multi-copy atomic machines, although we have never observed it in1361

practice (suggesting that modern machines either do not do DDI, at least before the Point of Unification, or that1362

instruction fetches are not as weak as permitted).1363

With insufficient synchronisation of the data caches, there is theoretically no limit to how far back we can fetch1364

from. Recall the MP.RF+dmb+ctrl-isb test (Figure 3.6, p41), it required the full cachesync sequence to forbid the1365

‘bad’ behaviour. Test FOW (Figure 3.19) is similar to that MP-shaped test, but writes two new values to the data1366

consecutively rather than one, and has two threads reading the flag before fetching that address. Here, both1367

threads can see the updated flag, but can execute different instructions on the instruction fetch of g, even after1368

invalidating the instruction cache.1369

STR W0,[X2]
STR W1,[X2]
DSB ISH
IC IVAU, X2
DSB ISH
STR X3,[X4]

Thread 0
LDR X0, [X4]
CBNZ X0, la

la: ISB
BL g
MOV X1,X10

Thread 1
LDR X0, [X4]
CBNZ X0, lb

lb: ISB
BL g
MOV X1,X10

Thread 2
g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g, 0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0,
1:X4=x, 2:X4=x

FOW AArch64

Allowed: 1:X0=1, 1:X1=2, 2:X0=1, 2:X1=1

hw-refs: -NN-N

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l1e:

Thread 1
read x=1f:

fetch g=B l0g:

Thread 2

po

icsync

ctrl+isb ctrl+isbirf

rf

rf

irf

Figure 3.19: Code listing and execution diagram for FOW.

This is not clear in the existing architecture text at the time of writing. It is a case where the architecture design1370

is not very constrained. On the one hand, it has not been observed, and it is thought unlikely that hardware1371

will ever exhibit this behaviour: it would require keeping multiple writes in the coherent part of the data caches,1372

before the point of coherence, rather than a single dirty line, which would require more complex cache coherence1373

protocols. On the other hand, there does not seem to be any benefit to software from forbidding it. Arm therefore1374

prefer the choice that gives a simpler and weaker model (here the two happen to coincide), to make it easier to1375

understand and to provide more flexibility for future microarchitectural optimisations. We therefore design our1376

models to allow the above behaviour.1377

In theory, once a write passes the Point of Coherency (the point where all data and unified caches eventually1378

unify) then any writes coherence before that write cannot be seen at all by instruction fetches any more. While we1379

do not set out to attempt to model this, as a general notion of a point of coherency is not required in the models1380

as we do not model device memory or DMA, our operational model does capture it.1381

3.11 Cleans and invalidates are like reads and writes1382

Cache maintenance operations can generally be split into one of two kinds:1383

. Invalidations mark cache lines as invalid, meaning they can no longer be read from.1384

. Cleans force a write-back of a cache line further down the cache hierarchy.1385
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For instruction cache maintenance only invalidation is provided, but for data cache maintenance the programmer1386

can choose whether to do a clean, an invalidate, or both; and whether the maintenance takes effect to the Point of1387

Unification or the Point of Coherency.1388

If one data cache operation is sufficient for the sequence, then a stronger one is also sufficient. All valid promotions1389

from DC CVAU to stronger DC are given below:1390

Instruction Clean/Invalidate Target Can promote from CVAU?
DC CVAU Clean PoU -
DC IVAC Invalidate PoC No
DC CVAC Clean PoC Yes
DC CIVAC Clean & Invalidate PoC Yes

1391

3.11.1 Cleans are similar to reads1392

Microarchitecturally, cleans are non-destructive; they push the data further down the cache hierarchy, without1393

causing the data to be lost. In hardware, these clean operations may be propagated around the system in much1394

the same way reads are. This gives clean operations the same feel (memory ordering constraints) as data reads1395

(and in some implementations, may be implemented in that way).1396

This means that DC CVAUs wait for program-order previous reads and writes (and other DCs) of the same location1397

(or really, within the same cache line of minimum size, see §3.12), and do not require any other explicit barriers or1398

dependencies between them. Cleans may be speculated, but otherwise respect dependencies and fences, even1399

with respect to surrounding non-same-cache-line accesses.1400

3.11.2 IC invalidates are not quite like writes1401

Invalidations are destructive: data that was once visible is lost, potentially forever.1402

Invalidations behave somewhat like writes; they cannot be performed speculatively, and end up existing at some1403

place within the global coherence order of that location: reads reading from writes from before the invalidation1404

can see the value, but after invalidation, they cannot.1405

IC invalidations behave like this, with some extra details about in-order fetching (see test MP.FF+dmb+fpo1406

(Figure 3.11, p43)), with one major exception: they do not respect dependencies or barriers other than DSB. This1407

means that in practice every IC requires a DSB between it and any program-order earlier or later memory accesses,1408

in order to synchronise with them.1409

3.11.3 DC and IC address speculation1410

Normal data load and store instructions (in Arm-A and in other relaxed architectures) respect address dependencies:1411

reads cannot be satisfied, and writes cannot be forwarded from or committed, until their addresses are resolved1412

from previous register writes (though those can still be out-of-order or speculative). In other words, the architecture1413

forbids programmer-visible value speculation of such addresses.1414

The same question arises here for DC CVAU and IC IVAU, which are loosely analogous to loads and stores from1415

the specified addresses. Test MP.R.RF+addr-cachesync+dmb+ctrl-isb (Figure 3.20, p50) illustrates this for DC.1416

Thread 0 writes to g and performs the full cache synchronization sequence. However, the DC’s address depends on1417

a detour through Thread 1 which writes an even newer instruction to g. Since the address of the DC cannot be1418

speculated, this address dependency must be preserved and so the final fetch of g after the cache synchronization1419

must observe the branch Thread 1 wrote.1420
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LDR X0,[X1]
STR W2,[X3]
EOR X4,X0,X0
ADD X4,X4,X3
DC CVAU,X4
DSB ISH
IC IVAU,X4
DSB ISH
STR X5,[X6]

Thread 0
LDR W0,[X2]
STR W1,[X2]
DMB SY
STR X3,[X4]

Thread 1
LDR X0,[X2]
CBNZ X0,l

l: ISB
BL g
MOV X1,X10

Thread 2
g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:X1=z, 0:W2="B l1", 0:X3=g, 0:X5=1, 0:X6=y,
1:W1="B l2", 1:X2=g, 1:X3=1, 1:X4=z, 2:X2=y, [x]=0, [y]=0

MP.R.RF+addr-cachesync+dmb+ctrl-isb AArch64

Forbidden: 0:X0=1, 1:W0="B l1", 2:X0=1, 2:X1=1

hw-refs: -NN-N

read z=1a:

write g=B l1b:

DC gc:

write y=1d:

Thread 0
read g=B l1e:

write g=B l2f:

write z=1g:

Thread 1
read y=1h:

fetch g=B l1i:

Thread 2

po

po

icsync

addr

po

dmb

ctrl+isbrf
rf

rf

irf

Figure 3.20: Code listing and execution diagram for MP.R.RF+addr-cachesync+dmb+ctrl-isb.

This is unclear in the current prose, but the architectural intent is that it should be forbidden: addresses of cache1421

maintenance instructions should not be visibly value-speculated, and so these instructions must respect their1422

address dependencies.1423

3.11.4 DC might be to same address1424

Data loads and stores can be ordered by the fact that they might access the same address [76, §12.5]. Arm made it1425

clear in the architectural text that DC is ordered with respect to loads and stores with addresses in the same cache1426

line, while IC is not [67, D4.4.8]. We therefore have to ask whether DC is subject to a might-access-same-address1427

restriction in the same way as data loads and stores. The MP.RRF+dmb+addr-cachesync-isb test (Figure 3.21, p51)1428

below illustrates this, with a case in which program-order previous load/store addresses may not be determined1429

when the DC executes. The architectural intent (which was not clear from the architectural text at the time of1430

writing) is that DC should be like loads in this respect too, with the aforementioned test architecturally allowed.1431

Microarchitecturally, the DC is not required to wait for those addresses to be determined before executing, but if1432

they end up being to the same address, the DC must be re-issued. Because the read d was not to the same location,1433

the DC need not be re-issued and so may have happened before the write a to f.1434
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STR W0,[X1]
DMB SY
STR X2,[X3]

Thread 0
LDR X0,[X1]
EOR X2,X0,X0
LDR X3,[X4,X2]
DC CVAU,X5
DSB ISH
IC IVAU,X5
DSB ISH
ISB
BL f
MOV X6,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f, 0:X2=1,
0:X3=x, [x]=0, 1:X1=x, 1:X4=z, [z]=0,
1:X5=f

MP.RRF+dmb+addr-cachesync-isb AArch64

Allowed: 1:X0=1, 1:X6=1

hw-refs: --NN-

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

read z=0d:

ISBe:

fetch f=B l0f:

Thread 1

dmb rf addr

cachesync

isb

ifr

Figure 3.21: Code listing and execution diagram for MP.RRF+dmb+addr-cachesync-isb.

3.11.5 DC ordering with respect to other memory accesses1435

We saw that the DC instruction is ordered with program-order-previous stores to the same address. Normal ‘data’1436

loads are additionally ordered with respect to other same-location accesses in the same thread. Here we ask how1437

far we can extend this to data cache maintenance operations.1438

po-previous loads We assume that the DC has the same thread-local same-address ordering constraints as1439

‘data’ loads. For example, DCs are ordered with respect to program-order-earlier same-location loads as in1440

CoRF+cachesync-isb (Figure 3.22), and may be re-ordered with respect to program-order-later same-location1441

loads, as in MP+dmb+addr-dc (Figure 3.23, p52).1442

Note that these have not yet been clarified with architects; the stated results coming from our models.1443

STR W0,[X1]
Thread 0

LDR W0,[X1]
DC CVAU, [X1]
DSB ISH
IC IVAU, [X1]
DSB ISH
ISB
BL f

Thread 1

Initial state:
0:W0="B l1", 0:X1=f
1:X1=f

CoRF+cachesync-isb AArch64

Forbid?: 1:X2=1
hw-refs: -----

write f=B l1a:
Thread 0

read f=B l1b:

DC fc:

IC fd:

ISBe:

fetch f=B l0f:

Thread 1

po

dsb

dsb

isb

rf

ifr

Figure 3.22: Code listing and execution diagram for CoRF+cachesync-isb.

3.11. CLEANS AND INVALIDATES ARE LIKE READS AND WRITES 51



STR X0,[X1] // a
DSB SY
STR X2,[X3] // b

Thread 0
LDR X0,[X1] // c
EOR X5,X5,X0
ADD X5,X5,X3
DC CVAU,X5 // d
LDR X2,[X3] // e

Thread 1

Initial state: 0:X0=1, 0:X1=x
0:X2=1, 0:X3=y
1:X1=y, 1:X3=x

MP+dmb+addr-dc AArch64

Allow?: 1:X0=1, 1:X2=0

hw-refs: -----

write x=1a:

write y=1b:

Thread 0
read y=1c:

DC xd:

read x=0e:

Thread 1

dmb addr

po

rf

fr

Figure 3.23: Code listing and execution diagram for MP+dmb+addr-dc.

3.12 Same-cache-line ordering1444

Arm-A has an architected cache line of minimum size. There are two cache lines of minimum size, one for the1445

data caches and one for the instruction caches. They are accessible as the DMinLine and IMinLine bitfields of the1446

CTR_EL0 register which encode log2 the number of (32-bit) words in the smallest cache-line size1, for the data and1447

instruction caches, respectively.1448

Accesses being within the same cache line do not impose additional ordering constraints unless one of the accesses1449

is a cache maintenance operation. For example, in the SB+scls test (Figure 3.24), a variation of the classic store1450

buffering example but where the two locations are to the same cache line, the test is still allowed as the reads and1451

writes of different locations (even within the same cache line) are not ordered. Note that in this test, X is an array1452

of size 22+DMinLine bytes, and X is aligned on a cache boundary, therefore X and X+4 are 32-bit aligned addresses in1453

the same (data) cache line of minimum size.1454

STR W0,[X1]
LDR W2,[X3,#4]

Thread 0
STR W0,[X1,#4]
LDR W2,[X3]

Thread 1

Initial state:
uint32_t x[DMinLine];
0:X0=1, 0:X1=x, 0:X3=x
1:X0=1, 1:X1=x, 1:X3=x
DMinLine1≥1

SB+scls AArch64

Allow?: 0:W2=0, 1:W2=0

hw-refs: -----

write x=1a:

read x+4=0b:

Thread 0
write x+4=1c:

read x=0d:

Thread 1

scl sclfr
fr

Figure 3.24: Code listing and execution diagram for SB+scls.

DC to same cache line Given two locations f and g in the same cache line of minimum size, performing the1455

cache clearing sequence for one will also clear the other.1456

1Note that, while the encoding allows DMinLine and IMinLine to be zero, this assignment does not make much sense for
hardware, and it is likely no implementation exists with either less than the size of the largest implemented single-copy
atomic access size.
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STR W0,[X1]
DC CVAU, [X2]
DSB ISH
IC IVAU, [X2]
DSB ISH
ISB
BL f

Thread 0
f: B l0
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state:
0:W0="B l1", 0:X1=f, 0:X2=g

SM+sclcachesync-isb AArch64

Forbidden: 0:X0=1
hw-refs: -----

write f=B l1a:

DC gb:

IC gc:

ISBd:

fetch f=B l0e:

Thread 0

scl

dsb

dsb

isb

ifr

scl

scl

Figure 3.25: Code listing and execution diagram for SM+sclcachesync-isb.

3.13 Mixed-size instruction fetching1457

In the tests so far we have always replaced a single instruction with another whole instruction, with a single write.1458

However, it is easy to imagine code that replaces an instruction byte-by-byte, or perhaps even only replacing a1459

single field in the instruction encoding.1460

It is clear that performing individual per-byte writes and then performing the full cache synchronization sequence,1461

without concurrently attempting to fetch the location, should give the desired result without unpredictable1462

behaviour.1463

For example, in the following SM8+sclcachesync-isb test (Figure 3.26, p54), a new 32-bit instruction is written1464

byte-by-byte before performing a full cache synchronisation sequence on a single core. Here, it is not a concurrent1465

modification of the location, as it is all on a single core and the sequence is complete before the fetch happens, and1466

so the result is a well-defined forbidden outcome. This pattern does occur in practice, as code often gets loaded1467

from some other memory by means of some memcpy call, before being executed.1468

Note that the 32-bit opcode for B l1 differs from that of B l0 only in the last byte (at f[0] since instructions1469

are always stored little-endian in Arm-A), so deleting the final three STRB instructions (events b-d) from the test1470

would not affect the result (it is still forbidden).1471
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STRB W0,[X4,#0] // a
STRB W1,[X4,#1] // b
STRB W2,[X4,#2] // c
STRB W3,[X4,#3] // d
DC CVAU, [4] // e
DSB ISH
IC IVAU, [X4] // f
DSB ISH
ISB // g
BL f

Thread 0
f: B l0 // h
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state: 0:<W0,W1,W2,W3>="B l1"
0:X1=f, 0:X2=g

SM8+sclcachesync-isb AArch64

Forbidden: 0:X0=1
hw-refs: -----

write f[0]=B l1[0]a:

write f[1]=B l1[1]b:

write f[2]=B l1[2]c:

write f[3]=B l1[3]d:

DCe:

DCf:

ISBg:

fetch f=B l0h:

Thread 0

po

po

po

scl

dsb

dsb

isb

ifr
ifr

ifr
ifr

scl

scl
scl

Figure 3.26: Code listing and execution diagram for SM8+sclcachesync-isb.

It is less clear in the architectural prose at the time of writing what happens if one were to concurrently modify1472

part of an instruction, either in a single thread without sufficient synchronisation as in SM+mixed (Figure 3.27),1473

or across multiple threads as in W+F+mixed (Figure 3.28, p55). We do not discuss this in detail, and the authors1474

are not aware of any software patterns that rely on it. We leave this question open for the architects to resolve at1475

a later time.1476

STRB W0,[X1,#3] // a, b
BL f

Thread 0
f: B l0 // c
l1: MOV X0,#2

RET
l0: MOV X0,#1

RET

f

Initial state: 0:W0="B l1"[3], 0:X1=f
SM+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

fetcha: write f[3]=B l1[3]b:

fetch fc:

Thread 0
fe

fpo

Figure 3.27: Code listing and execution diagram for SM+mixed.
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STRB W0,[X1,#3] // a
Thread 0

BL f // b
Thread 1

Initial state:
0:W0="B l1"[3], 0:X1=f

W+F+mixed AArch64

Final state: Unpredictable?

hw-refs: -----

write f[3]=B l1[3]a:
Thread 0

fetch fb:
Thread 1

Figure 3.28: Code listing and execution diagram for W+F+mixed.

3.14 Cache type strengthening: IDC and DIC1477

Where implementations are stronger than the architecture guarantees by default, the architecture provides an1478

additional identification mechanism: the CTR_EL0 register has two fields (named IDC and DIC) to identify where1479

the implementation may have stronger semantics and thus fewer requirements for the use of cache maintenance1480

instructions by software.1481

Ignoring these fields, and programming ‘to the architecture’ as set out in the previous sections, will always be1482

safe. If implementations advertise (through the IDC and DIC fields) that particular cache maintenance operations1483

are not required, then those cache maintenance instructions simply become hints or NOPs, and over-protective1484

cleans and invalidations will not be harmful to the program.1485

As the names suggest, these fields are related to the kinds of coherence introduced in §3.4. IDC is related to1486

instruction-to-data coherence, and requirements on data cache maintenance. DIC is related to data-to-instruction1487

coherence, and the requirement for instruction cache maintenance.1488

3.14.1 IDC1489

When CTR_EL0.IDC is 1, the DC instruction is not required as part of the sequence [68, p. 201].1490

Point of Unification When the DC instruction is not required, it means that writes must reach the Point-1491

of-Unification before being propagated to other threads. This means, under IDC=1, the earlier SM.F+ic test1492

(Figure 3.18, p47) is forbidden.1493

3.14.2 DIC1494

When CTR_EL0.DIC is 1, the IC instruction is not required as part of the sequence [68, p. 201].1495

In-order fetching Recall from §3.5 that instruction fetches must either happen in-order, or the IC instruction1496

must touch the internal fetch queues of the individual threads. When DIC=1, the IC instruction is not required,1497

and this forces fetches to be satisfied from the instruction cache in the order they are fetched into the fetch queue.1498

This is exactly how our operational model is implemented (which we shall see in Ch4).1499
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3.15 Related Work1500

Explicit cache maintenance makes these tests, and the models presented in the next two chapters, quite different1501

to the ‘user mode’ relaxed memory models discussed in Chapter 2.1502

Previous work on verification, of operating systems, hypervisors, and JITs, has had to work with idealised models1503

of the underlying hardware.1504

Myreen’s JIT compiler verification [62] models x86 icache behaviour with an abstract cache that can be arbitrarily1505

updated, cleared on a jmp.1506

Cai, Shao, and Vaynberg produce a Hoare-style logic for certifying programs which contain self-modifying1507

patterns [77], extending a version of Concurrent Abstract Predicates (CAP) [78] for generalised von-Neumann1508

machines.1509

Goel et al’s work on verification of x86 machine code programs [79, 80] includes a system step relation, based on1510

their x86 instruction implementation models in ACL2. This model fetches instructions from memory, but avoids1511

the complexity of caches and pipelines [81].1512

Lustig et al describe a framework for concurrent models, with relaxed behaviours, for machine-code x86 programs1513

based on stages of hardware micro-operations [82]. They produce some models in this framework which include1514

instruction fetching and the (data and TLB, not instruction) caches of a specific hardware implementation. These1515

models explain behaviours seen based on knowledge of the underlying microarchitecture, but are not intended to1516

be architectural models.1517

The verification of seL4 [52] included self-modifying patterns, but assumed the correctness of the required cache1518

maintenance, without producing tight architectural models of the individual instructions.1519

CertiKOS [53, 54] verifies an assortment of safety and security properties (no code injection, no buffer overflows,1520

no data races, and so on) for a custom-written kernel, with respect to an underlying concurrent (but not relaxed)1521

x86 hardware machine model (‘x86mc’), without self-modifying code.1522

SeKVM [83] similarly verified a custom-written (in this case, for Arm) micro-kernel, with respect to an underlying1523

concurrent, and somewhat relaxed, hardware model. This model is far less idealised than those used in earlier1524

verification efforts (but still not an architectural definition by any means), such as those in the seL4 and CertiKOS1525

projects. The KCore kernel itself does not require self-modifying code, and the contextual refinement did not1526

consider programs with concurrent or self-modifying code, and the underlying hardware model did not support1527

data or instruction cache maintenance operations.1528

For architectural models which include cache maintenance, the closest is Raad et al.’s work on non-volatile1529

memory. They model the required cache maintenance for persistent storage in ARMv8-A [84], as an extension to1530

the ARMv8-A axiomatic model, and for Intel x86 [85] as an operational model.1531

There is also some work on address translation and TLB maintenance, which has a very similar flavour to cache1532

maintenance. We explain the related work on TLBs in more detail in §8.10.1533

At the time of doing this work, Arm informally confirmed they would adopt the model [Private communication].1534

We are aware of independent work by Arm happening at the time of writing, extending the herdtools suite of1535

tools, models, and tests, for instruction fetching and cache maintenance. This work has not yet been published,1536

nor any documents describing the models or tests released. It is therefore difficult for now to say whether, and if1537

so, in which ways, this new Arm model has evolved from what is presented here.1538
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Chapter 41539

Operational instruction fetching1540

4.1 An Operational Semantics for Instruction Fetch1541

Previous work on operational models for IBM Power and Arm ‘user-mode’ concurrency (see Chapter 2) has shown,1542

perhaps surprisingly, that for the programmer-visible behaviours one can abstract from almost all hardware1543

implementation details of the memory system (store queues, the cache hierarchy, the cache protocol, and so on).1544

For Arm-A, following their 2018 shift to a multicopy-atomic architecture, one can do so completely: the Flat model1545

has a shared flat memory, with a per-thread out-of-order thread subsystem. This out-of-order thread subsystem1546

abstractly models pipeline effects which are alone sufficient to explain all the observable relaxed behaviours.1547

For instruction fetch, and the required cache maintenance, it is no longer possible to abstract completely from1548

the data and instruction cache hierarchy. But, we can still abstract from some of its complexity. Flat has a fixed1549

instruction memory, with a single transition which would fetch from that fixed instruction memory an instruction1550

and decode it. This transition could be taken at any time, for any in-flight (non-finished) instruction, for any1551

address of a potential (even speculative) program-order successor of that in-flight instruction. We now extend Flat1552

by removing that fixed instruction memory, enabling instructions to be fetched from the flat memory, with values1553

written by normal ‘data’ writes, along with adding the additional instruction-fetch related structures shown in1554

Figure 4.1. We call this extended model iFlat. The remainder of this chapter will describe these new structures in1555

detail, and enumerate the transitions of iFlat.1556
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Figure 4.1: Structure of the iFlat state: per-thread fetch queues and instruction caches, with a global
abstracted data cache.

4.2 The iFlat operational state1557

We extend the original Flat state with per-thread instruction caches and fetch queues with a global abstracted1558

data cache, all of unbounded size, leaving the global flat memory unchanged.1559
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4.2.1 Fetch queues (per-thread)1560

The per-thread fetch queues are ordered buffers of fetch request entries, waiting to be decoded and begin execution.1561

Entries are either a fetched 32-bit opcode, or a yet unsatisfied (‘unfetched’) request.1562

Fetch queues allow the model to speculate and pre-fetch instructions ahead of where the thread is currently1563

executing. Fetch requests are placed into the fetch queue in-order, entries are removed from the fetch queue to be1564

decoded in-order, but the values may be satisfied out-of-order.1565

In this way the fetch queues abstract from multiple real-hardware structures: instruction queues, line-fill buffers,1566

loop buffers, slots objects, and others. We believe the out-of-order satisfaction of instruction fetches are not1567

observable on real hardware (in part due to the general lack of coherence in instruction caches subsuming this1568

behaviour, see §3.5), and the model is equivalent to one that fetches in order, but this presentation of the model is1569

more consistent with the description in the Arm reference manuals, and we believe has a closer correspondence1570

with the underlying microarchitecture.1571

4.2.2 Abstract instruction caches (per-thread)1572

Each thread has an abstract instruction cache, which are just sets of writes.1573

When a new fetch request happens, and that request is added to the fetch queue, it will be satisfied from that1574

thread’s abstract instruction cache, either immediately if the instruction cache contains an entry for it (called a1575

hit) or at some later point in time otherwise (a miss).1576

The instruction cache can contain many possible writes for each location (§3.9), and can be spontaneously updated1577

with new writes in the system at any time ([67, B2.4.4]), or have entries spontaneously be dropped from the cache.1578

Unlike the flat memory, the instruction caches are not updated on a write. There is no guarantee values are ever1579

dropped from the instruction cache, unless an explicit instruction cache maintenance operation is performed.1580

Therefore, the instruction cache may contain values which are arbitrarily stale.1581

Instruction cache invalidation operations do not propagate atomically. Instead, an IC requests all threads invalidate1582

their caches, and waits for them to have done so. To handle this, each thread keeps a list of addresses yet to be1583

invalidated by any in-flight ICs.1584

4.2.3 Abstract data cache (global)1585

Before the single shared flat memory for the entire system, we insert a shared buffer (a list of writes) abstracting1586

from the many possible coherent data cache hierarchies. Explicit reads (e.g. those from load instructions) must be1587

coherent, reading from the most recent write to the same address in the buffer or memory. Instruction fetches1588

may read from any write of the same location from the buffer or memory (§3.4).1589

On propagation, writes are initially placed into the abstract data cache buffer, before eventually flowing into the1590

shared flat memory (in coherence order). In this model, the shared flat memory acts as the system-wide Point of1591

Unification; writes before that point may or may not be seen by the threads, but once they reach the shared flat1592

memory an instruction cache fill must see that write, or something coherence newer.1593

4.2.4 Outcome types1594

To link the model transitions to the execution of the instructions in the program the interface’s outcome types1595

(described in §2.2) must be extended to cope with the new instructions. Namely, we must add outcomes for the1596

two cache maintenance operations, where instruction cache invalidation must be be further split in two due to its1597

non-atomic nature (as discussed earlier). The full list of outcomes for the iFlat model can be found in Figure 4.2.1598

4.2.5 Pseudocode states1599

We add new pseudocode states, for the fetch queue states, and for pending IC instructions (again, as they do not1600

happen atomically). Figure 4.3 lists all the pseudocode states in iFlat, with the new ones highlighted.1601
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Read_mem(read_kind, address, size, read_continuation) Read request
Perform_IC(address, res_continuation) Propagate an ic ivau
Wait_IC(address, res_continuation) Wait for an ic ivau to complete
Perform_DC(address, res_continuation) Propagate a dc cvau
Write_ea(write_kind, address, size, next_state) Write effective address
Write_memv(memory_value, write_continuation) Write value
Barrier(barrier_kind, next_state) Barrier
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Write register
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Figure 4.2: iFlat outcomes (new outcomes highlighted in blue).

Plain(next_state) Ready to make a pseudocode step
Unfetched(pc) Placed into fetch queue but pending satisfaction of the fetch itself
Fetched(opcode) Fetch satisfied but not yet begun pseudocode execution
Pending_mem_reads(read_cont) Performing the read(s) from memory of a load
Pending_mem_writes(write_cont) Performing the write(s) to memory of a store
Pending_IC(ic_cont) Performing an IC IVAU to some address and waiting for the result

Figure 4.3: iFlat pseudocode states (new states highlighted in blue).

4.3 iFlat’s transitions1602

This section is an extract from the full iFlat prose description document, which can be found in the appendix of1603

our published ESOP’20 paper [32].1604

To accommodate instruction fetch and cache maintenance, we introduce the following new transitions:1605

. Fetch request1606

. Fetch instruction1607

. Fetch instruction (unpredictable)1608

. Fetch instruction (B.cond)1609

. Decode instruction1610

. Begin IC1611

. Propagate IC to thread1612

. Complete IC1613

. Perform DC1614

. Add to instruction cache for thread1615

In addition to these transitions, we modify some existing ones:1616

. Commit barrier1617

. Satisfy memory read by forwarding from writes1618

. Satisfy memory read from memory1619

. Commit store instruction1620

. Propagate memory write1621

. Complete store instruction (when its writes are all propagated)1622

Together, these transitions define the lifecycle of each instruction a request gets issued for the fetch, then at some1623

later point the fetch gets satisfied from the instruction cache, the instruction is then decoded (in program-order),1624

and then handed to the existing semantics to be executed.1625

4.3.1 New transitions1626

Transitions for all instructions:1627

◦ Fetch request: This transition (perhaps speculatively) requests the next address as a po-successor of a1628

previous instruction.1629
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. Fetch instruction: Satisfy the fetch request from the instruction cache.1630

◦ Decode instruction: Decode the instruction.1631

Cache maintenance instructions:1632

. Begin IC: Initiate instruction cache maintenance.1633

◦ Propagate IC to thread: Do instruction cache maintenance for a specific thread.1634

. Perform DC: Clean the abstract data cache for a specific cache line.1635

Instruction cache updates:1636

. Add to instruction cache for thread: Update instruction cache for thread with write.1637

Fetch request For some instruction i, any possible next fetch address loc can be requested, adding it to the1638

fetch queue, if:1639

1640 1. it has not already been requested, i.e., none of the immediate successors of i in the thread’s instruction_tree1641

are from loc; and1642

2. either i is not decoded, or, if it has been, loc is a possible next fetch address for i:1643

(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4);1644

(b) for a conditional branch, either the successor address or the branch target address1; or1645

(c) for a jump to an address which is not yet determined, any address (this is approximated in our tool1646

implementation, necessarily).1647

Note that this allows speculation past conditional branches and calculated jumps. Action: add an unfetched entry1648

for loc to the fetch queue for i’s thread.1649

Fetch instruction For any fetch-queue entry in the Unfetched state, its fetch can be satisfied from the1650

instruction cache, from write-slices ws, if:1651

1652 1. the write-slices (parts of writes) ws have the 4-byte footprint of the entry and can be constructed from a1653

write in the instruction cache.1654

Action: change the fetch-queue entry’s state to Fetched(ws).1655

Fetch instruction (unpredictable) For any fetch-queue entry in the Unfetched state, its fetch can be satisfied1656

from the instructiion cache in a constrained-unpredictable way, if:1657

1658 1. there exists a set of sets of write-slices, each of which can be constructed in the same way as above;1659

2. that set contains multiple values, and at least one of those values corresponds to an instruction that is not1660

B.cond or one of {B, BL, BRK, HVC, SMC, SVC, ISB, NOP}, and they are not all B.cond instructions.1661

Action: record the fetch-queue entry as Constrained_unpredictable. When this has reached decode and1662

the corresponding point in the instruction tree becomes non-speculative, the entire thread state will become1663

Constrained_unpredictable.1664

Fetch instruction (B.cond) For any fetch-queue entry in the Unfetched state, its fetch can be satisfied from1665

the instruction cache, from write-slices ws and ws', with value ws'', if:1666

1667 1. there exists write-slices ws and ws', each of which can be constructed in the same way as above;1668

2. ws and ws' correspond to the encoding of two conditional branch instructions b and b';1669

3. the write-slices ws'' can be constructed as the combination of ws and ws' such that ws'' is the encoding of1670

the branch instruction with b’s condition and b'’s target.1671

Action: record the fetch-queue entry as Fetched(ws'').1672

Decode instruction If the last entry in the fetch queue is in Fetched(ws) state, it can be removed from the1673

queue, decoded, and begin execution, if all po-previous ISB instructions in the instruction tree have finished.1674

Action:1675

1. Construct a new instruction instance i with the correct instruction kind and state, for i’s program location,1676

and add it to the instruction tree.1677

1In AArch64, all the conditional branch instructions have statically determined addresses.
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2. Discard all speculative entries in the instruction tree that are successors of i that are now known to be1678

incorrect speculations.1679

Begin IC An instruction i (with unique instruction instance ID iiid) in state Perform_IC(address, state_cont1680

) can begin performing the IC behaviour if all po-previous DSB ISH instructions have finished. Action:1681

1682 1. For each thread tid' (including this one), add (iiid, address) to that thread’s ic_writes;1683

2. Set the state of i to Propagate_IC(address, state_cont).1684

Propagate IC to thread An instruction i (with ID iiid) in state Wait_IC(address, state_cont) can do the1685

relevant invalidate for any thread tid', modifying that thread’s instruction cache and fetch queue, if there exists a1686

pending entry (iiid, address) in that thread’s ic_writes. Action:1687

1688 1. for any entry in the fetch queue for thread tid, whose program_loc is in the same minimum-size instruction1689

cache line as address, and is in Fetched(_) state, set it to the Unfetched state;1690

2. for the instruction cache of thread tid, remove any write-slices which are in the same instruction cache1691

line of minimum size as address.1692

Complete IC An instruction i (with ID iiid) in the state Wait_IC(address, state_cont) can complete if there1693

exists no entry for iiid in any thread’s ic_writes. Action: set the state of i to Plain(state_cont).1694

Perform DC An instruction i in the state Perform_DC(address, state_cont) can complete if all po-previous1695

DMB ISH and DSB ISH instructions have finished. Action:1696

1697 1. For the most recent write slices wss which are in the same data cache line of minimum size in the abstract1698

data cache as address, update the memory with wss;1699

2. Remove all those writes from the abstract data cache.1700

3. Set the state of i to Plain(state_cont).1701

Add to instruction cache for thread A thread tid’s instruction cache can become spontaneously updated1702

with a write w from the storage subsystem, if this write (as a complete slice) does not already exist in the instruction1703

cache. Action: Add this write (as a complete slice) to thread tid’s instruction cache.1704

4.3.2 Updated transitions1705

For those transitions which we update the guard or action, sometimes the change is minor but the full text of the1706

transition is reproduced here, with the delta highlighted.1707

Commit barrier A barrier instruction i in state Plain(next_state) where next_state is1708

Barrier(barrier_kind, next_state′) can be committed if:1709

1710 1. all po-previous conditional branch instructions are finished;1711

2. all po-previous dmb sy barriers are finished;1712

3. [ ifetch ] all po-previous dsb sy barriers are finished;1713

4. if i is an isb instruction, all po-previous memory access instructions have fully determined memory1714

footprints; and1715

5. if i is a dmb sy instruction, all po-previous memory access instructions and barriers are finished;1716

6. [ ifetch ] if i is a dsb sy instruction, all po-previous memory access instructions, barriers and cache mainte-1717

nance instructions have finished.1718

Note that this differs from the previous Flowing and POP models: there, barriers committed in program-order1719

and potentially re-ordered in the storage subsystem. Here the thread subsystem is weakened to subsume the1720

re-ordering of Flowing’s (and POP’s) storage subsystem.1721

Action:1722

1723 1. update the state of i to Plain(next_state′);1724

2. [ ifetch ] if i is an isb instruction, for all threads instruction tree’s, for any instruction instance i in the1725

Fetched state, set it to the Unfetched state.1726
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Satisfy memory read by forwarding from writes For a load instruction instance i in state Pending_mem_reads(1727

read_cont), and a read request, r in i.mem_reads that has unsatisfied slices, the read request can be partially or1728

entirely satisfied by forwarding from unpropagated writes by store instruction instances that are po-before i, if1729

the read-request-condition predicate holds. This is if:1730

1731 1. [ ifetch ] all po-previous dsb sy instructions are finished;1732

2. all po-previous dmb sy and isb instructions are finished.1733

Let wss be the maximal set of unpropagated write slices from store instruction instances po-before i, that overlap1734

with the unsatisfied slices of r, and which are not superseded by intervening stores that are either propagated or1735

read from by this thread. That last condition requires, for each write slice ws in wss from instruction i′:1736

. that there is no store instruction po-between i and i′ with a write overlapping ws, and1737

. that there is no load instruction po-between i and i′ that was satisfied from an overlapping write slice from1738

a different thread.1739

Action:1740

1741 1. update r to indicate that it was satisfied by wss; and1742

2. restart any speculative instructions which have violated coherence as a result of this, i.e., for every non-1743

finished instruction i′ that is a po-successor of i, and every read request r′ of i′ that was satisfied from wss′,1744

if there exists a write slice ws′ in wss′, and an overlapping write slice from a different write in wss, and ws′ is1745

not from an instruction that is a po-successor of i, or if i′ was a data-cache maintenance by virtual address1746

to a cache line that overlaps with any of the write slices in wss′, restart i′ and its data-flow dependents.1747

Satisfy memory read from memory For a load instruction instance i in state Pending_mem_reads(read_cont1748

), and a read request r in i.mem_reads, that has unsatisfied slices, the read request can be satisfied from memory.1749

If: the read-request-condition holds (see previous transition).1750

Action: let wss be the write slices from memory or the data cache network, whichever is newer, covering the1751

unsatisfied slices of r, and apply the action of Satisfy memory read by forwarding from writes.1752

Note that Satisfy memory read by forwarding from writes might leave some slices of the read request unsatisfied.1753

Satisfy memory read from memory, on the other hand, will always satisfy all the unsatisfied slices of the read1754

request.1755

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes(write_cont1756

), i can commit if:1757

1758 1. i has fully determined data (i.e., the register reads cannot change);1759

2. all po-previous conditional branch instructions are finished;1760

3. all po-previous dmb sy and isb instructions are finished;1761

4. [ ifetch ] all po-previous dsb sy instructions are finished;1762

5. all po-previous store instructionshave initiated and so have non-empty mem_writes;1763

6. all po-previous memory access instructions have a fully determined memory footprint; and1764

7. all po-previous load instructions have initiated and so have non-empty mem_reads.1765

Action: record i as committed.1766

Propagate memory write For an instruction i in state Pending_mem_writes(write_cont), and an unpropa-1767

gated write, w in i.mem_writes, the write can be propagated if:1768

1769 1. all memory writes of po-previous store instructions that overlap w have already propagated1770

2. all read requests of po-previous load instructions that overlap with w have already been satisfied, and the1771

load instruction is non-restartable ; and1772

3. all read requests satisfied by forwarding w are entirely satisfied.1773

Action:1774

1775 1. restart any speculative instructions which have violated coherence as a result of this, i.e., for every non-1776

finished instruction i′ po-after i and every read request r′ of i′ that was satisfied from wss′, if there exists a1777

write slice ws′ in wss′ that overlaps with w and is not from w, and ws′ is not from a po-successor of i, or if i′1778

is a data-cache maintenance instruction to a cache line whose footprint overlaps with w, restart i′ and its1779

data-flow dependents;1780
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2. record w as propagated; and1781

3. add w as a complete slice to the data cache network.1782

Complete store instruction (when its writes are all propagated) A store instruction i in state Pend-1783

ing_mem_writes(write_cont), for which all the memory writes in i.mem_writes have been propagated, can be1784

completed. Action: update the state of i to Plain(write_cont(true)).1785

4.3.3 Auxiliary definition – cache line of minimum size1786

Cache maintenance operations work over entire cache lines, not individual addresses (§3.12). Each address is1787

associated with at least one cache line for the data (and unified) caches, and one for the instruction caches. The1788

cache line of minimum size is the smallest possible cache line, with one for each of data and instruction caches.1789

The CTR_EL0.{DMinLine, IMinLine} register fields describe the cache lines of minimum size for the data and1790

instruction caches as log2 of the number of words in the cache line.1791

Caches lines are always aligned on their minimum size, and we define a write slice overlapping with a cache line1792

if the footprint of the write slice overlaps with the 22+DMinLine (or 22+IMinLine for instruction cache lines) byte slice1793

starting from the beginning of the aligned cache line region.1794

4.3.4 Handling cache type strengthenings1795

When CTR_EL0.DIC is 1, and therefore the IC instruction is not required, the following transitions are modified:1796

. Fetch instruction:1797

– Instead of satisfying from the instruction cache, the request must be satisfied from composing combi-1798

nations of writes from the abstract data cache buffer and flat memory.1799

– Fetch requests may be only be satisfied if all po-previous in-flight fetch requests are also satisfied (no1800

out-of-order satisfaction).1801

. Fetch instruction (unpredictable) (same modification as previous).1802

. Fetch instruction (B.cond) (same modification as previous).1803

. Begin IC:1804

– Replace action with that of Complete IC.1805

. Add to instruction cache for thread (removed).1806

Together these effectively remove the instruction cache from the model, forcing in-order fetching, and satisfaction1807

of fetch requests from memory (or the abstract data cache).1808

When CTR_EL0.IDC is 1, and therefore the DC instruction is not required, the following transitions are modified:1809

. Propagate memory write:1810

– Update Action (3) to add w to the flat memory, instead of the abstract data cache buffer.1811

This effectively removes the abstract data cache buffer from the model, causing all writes to immediately reach1812

the system-wide Point of Unification on propagation.1813
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Chapter 51814

An axiomatic instruction fetch model1815

Based on the operational model, we develop an axiomatic semantics, as an extension of the Arm-A axiomatic1816

model [50, 7] (described earlier in §2.4).1817

The existing axiomatic model is given as a predicate on candidate executions, hypothetical complete executions of1818

the given program which satisfy some basic well-formedness conditions, defining the set of valid executions to be1819

those satisfying its axioms.1820

We now extend this model, both extending the base events and candidate relations, as well as modifying the1821

axioms over those events.1822

We will do this in a way that tries to retain the original model events, relations, and axioms, as unchanged as is1823

reasonable to do so.1824

5.1 Candidates for self-modifying programs1825

We add new events:1826

. instruction-fetch (IF) events for each executed instruction, representing the read of the 32-bit opcode from1827

memory.1828

. DC events, for the propagation of a DC CVAU instruction.1829

. IC events, for the propagation of a IC IVAU or IC IALLU instruction.1830

. DSB events for the data synchronization barrier instruction.1831

5.1.1 Program order1832

We keep program order (po) as just between the explicit memory events and barriers, only adding the cache1833

operations (DC,IC) and the new barrier (DSB) to this set.1834

By adding an instruction fetch event, we now potentially have multiple events per instruction, as well as events1835

for instructions with no associated explicit memory or barrier events at all. To keep track of the order of events1836

within a single instruction, and between multiple instructions of the same thread, we add two new relations:1837

. fetch-to-execute (fe) which relates the instruction fetch (IF) event with the intra-instruction-ordered-later1838

explicit memory or barrier (or cache op) event.1839

. fetch-program-order (fpo) relates each instruction-fetch (IF) event with all IF events of program-order later1840

instructions.1841

We make fpo the fundamental candidate relation, and make po derived:1842

po = fe−1; fpo+; fe

Figure 5.1 shows an example execution graph from a program with three instructions, a load, a mov, and a store,1843

with the fpo and fe relations highlighted.1844
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a: IF ldr x0,[x1] b: R x=1fe

c: IF mov x2,x0

fpo

d: IF str x2,[x3] e: W y=1

fpo

fe

po

Figure 5.1: fpo,fe example, showing derived po relation from fundamental fpo and fe relations.

5.1.2 Same-location1845

We extend loc to relate same-address reads, writes, instruction fetches and IC/DC events.1846

Cache maintenance operations which affect all addresses, for example the IC IALLU instruction, are related to all1847

memory and ifetch events.1848

Same-cache-line Many of the operations now operate not over a single location but for an entire cache line.1849

To handle these operations, we add to the candidate relations a same-cache-line relation, relating reads, writes,1850

fetches, DC, and IC events to addresses in the same cache line of minimum size.1851

The DC and IC instructions operate over different cache line sizes. To handle this we split same-cache-line into two1852

relations, same-dcache-line and same-icache-line, to relate events in the same data or instruction cache line1853

of minimum size. Note that the same-icache-line and same-dcache-line relations also relate non-cache-op events.1854

We combine these relations to get a scl (same cache line), between memory (including ifetch) events and cache1855

ops, where that memory event is to the same cache line, for that particular cache op:1856

1 scl0 = [DC]; same -dcache -line | [IC]; same -icache -line | [W]; loc1857

2 scl = scl0 | scl0−1
1858

5.1.3 Generalised Coherence1859

We add an acyclic, transitively closed, relation wco. This wco relation is a kind of generalised-coherence-order. It1860

is an extension of co, with orderings for cache maintenance (DC and IC) events: it includes an ordering (e, e′)1861

or (e′, e) for any cache maintenance event e and same-dcache-line event e′ if e′ is a write or another cache1862

maintenance event.1863

Since wco relates events in the same cache line, and is transitively closed, it may end up relating writes that are1864

not the same location. So [a:W];wco;[b:W] does not imply [a:W];co;[b:W] (although co does imply wco).1865

5.1.4 Dependencies1866

We extend the control dependency relation ctrl to include cache operations, but not instruction fetches. This1867

ensures that ctrl remains a subset of po, and [a]; ctrl; [b]; po; [c] implies [a]; ctrl; [c].1868

We extend addr to include cache operations: for (e, e′) where e is a read and e′ is a cache operation (DC or IC)1869

whose address (cache line) is determined by the value read by e.1870

Since cache operations do not have any data associated with them, the data relation is left unchanged.1871

5.1.5 Reads-from1872

We add instruction-read-from (irf), which relates a write to any IF event that fetches from it, and instruction-1873

from-reads (ifr), the analogue of fr for instruction fetches, relating a fetch to all writes coherence-after the one it1874

fetched from:1875

ifr = irf −1; co
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1 include "cos.cat"
2 include "arm -common.cat" (*5.2.1*)
3
4 (* might -be speculatively executed *)
5 let speculative =
6 ctrl
7 | addr; po
8
9 (* Fetch -ordered -before *)

10 let fob =
11 [IF]; fpo; [IF] (*5.2.4*)
12 | [IF]; fe (*5.2.4*)
13 | [ISB]; fe−1; fpo (*5.2.5*)
14
15 (* Cache -op -ordered -before *)
16 let cob = (*5.2.8*)
17 [R|W]; (po & scl); [DC]
18 | [DC]; (po & scl); [DC]
19
20 (* DC synchronised required after a write *)
21 let dcsync =
22 if IDC
23 then id
24 else [W]; (wco & same -dcache -line); [DC]
25
26 (* IC sync required after a write or DC *)
27 let icsync =
28 if DIC
29 then id
30 else (
31 [W]; (wco & same -icache -line); [IC]
32 | [DC]; wco; [IC]
33 )
34
35 let cachesync =
36 dcsync; icsync
37
38 (* instruction synchronised ordered before

*)
39 let isyncob = (*5.2.2*)
40 (ifr; cachesync) & scl−1

1 (* observed by *)
2 let obs = rfe | fr | wco | irf
3
4 (* dependency -ordered -before *)
5 let dob =
6 addr | data
7 | speculative; [W]
8 | speculative; [ISB]
9 | (addr | data); rfi

10
11 (* atomic -ordered -before *)
12 let aob =
13 rmw
14 | [range(rmw)]; rfi; [A|Q]
15
16 (* barrier -ordered -before *)
17 let bob =
18 [R]; po; [dmbld]
19 | [W]; po; [dmbst]
20 | [dmbst]; po; [W]
21 | [dmbld]; po; [R|W]
22 | [L]; po; [A]
23 | [A|Q]; po; [R|W]
24 | [R|W]; po; [L]
25 | [F|C]; po; [dsbsy] (*5.2.6*)
26 | [dsb]; po (*5.2.6*)
27 | [dmbsy]; po; [DC] (*5.2.7*)
28
29 (* Ordered -before *)
30 let ob1 =
31 obs | dob | aob | bob
32 | fob | cob | isyncob
33 let ob = ob1+

34
35 (* Internal visibility

requirement *)
36 acyclic po-loc | fr | co | rf as

internal
37
38 (* External visibility

requirement *)
39 irreflexive ob as external
40
41 (* Atomic *)
42 empty rmw & (fre; coe) as atomic

Figure 5.2: Ifetch Axiomatic model

5.2 Axioms and auxiliary relations1876

We now make the following changes and additions to the model. The full model is shown in Figure 5.2, with1877

comments referring to the items in the following explanation.1878

5.2.1 Arm interface1879

The arm-common.cat file contains definitions for all the base event and relation sets, as well as some Arm-specific1880

ones. Figure 5.3 lists the events and relations defined by arm-common.cat, we elide the full isla-cat definition of1881

these relations here.1882
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Events Relations

R Reads po,fpo program-order and fetch-program-order
IF Instruction-fetch id,loc identity and same-location
W Writes fe fetch-to-execute
M All explicit memory events (R | W) po-loc program-order same-location (po & loc)
A Read-acquire addr,ctrl,data dependencies
L Write-release wco,irf,rf existentially-quantified (candidate) relations
Q Weak read-acquire rfe,rfi rf-external (rf & ext), rf-internal (rf & ~ext)
F All fences (barriers) coe,coi co-external, co-internal
C All cache-ops (DC | IC) co coherence-order ([W];wco&loc;[W])
DC Data cache clean ifr instruction-from-reads (irf−1;co)
IC Instruction cache invalidate rmw read-modify-write

ISB Instruction sychronisation barrier
dmbXY Barrier, with strength at least XY={st,ld,sy}
dsbXY DSB Barrier, with strength at least XY={st,ld,sy}

scl same-cache-line
same-dcache-line,same-icache-line same data/instruction cache line

Variants
DIC,IDC Boolean flags for CTR_EL0.{DIC,IDC} identity

Figure 5.3: Arm interface for ifetch. New events and relations highlighted in blue.

5.2.2 Cache maintenance1883

We define the relation isyncob, relating some instruction fetch f , in the most general case, to an IC which1884

completes a cache synchronisation sequence (not necessarily on a single thread) which affects the location written1885

to. Precisely: f reads-from a write w0 which was coherence before some other write w, and w is wco-followed1886

by a DC event d to some same-dcache-line address Adc, which is in turn wco-followed by an IC event i to some1887

address Aic which was same-icache-line as the original f . This general isyncob shape is shown in Figure 5.4.1888

In operational model terms, this captures traces that propagated w to memory, then subsequently performed1889

a same-cache-line DC, and then a began an IC (and eagerly propagated the IC to all threads). In any state after1890

this sequence it is guaranteed that w, or a coherence-newer same-address write, is in the instruction cache of all1891

threads: performing the DC has cleared the abstract data cache of writes to x, and the subsequent IC has removed1892

old instructions for location x from the instruction caches, so that any subsequent updates to the instruction1893

caches have been with w, or co-newer writes. Therefore, the fetch f must have happened before the IC had1894

completed, otherwise it would have been required to have read from w or something coherence after it.1895

w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

i: IC Aic

f: IF f

co

wco & scl

wco

irf

scl
isyncob

Figure 5.4: General isyncob shape.

This corresponds to the operational model in the following way: because w0 was coherence-before w, w0 was1896

propagated before w was propagated in the trace, and because w was wco-earlier than the cache synchronisation1897
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sequence, w was propagated before any of the cache maintenance transitions in the trace. If the fetch transition1898

corresponding to f were to satisfy its fetch in a subsequent state, it would be guaranteed that w (or a coherence-1899

newer write) would be in the instruction cache, and i would not be able to fetch from w. Hence, f must have1900

happened before the IC completing the cache synchronisation sequence.1901

Cache type strengthening If the IDC or DIC variants are set, then either the DC or IC instruction is not required.1902

This affects the isyncob in the following way:1903

. If DIC, then the IC instruction is not required, and therefore f must be ordered before the propagation of1904

the DC, see Figure 5.5 (top left).1905

. If IDC, then the DC instruction is not required, and therefore f must be ordered before the propagation of1906

the IC, without the need of an intervening DC, see Figure 5.5 (top right).1907

. If both, then f must be ordered before any coherence-later same-location write than w0, as in Figure 5.51908

(below).1909

w0: W f = old_instruction

w: W f = new_instruction

d: DC Adc

f: IF f

co

wco & scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

i: IC Aic

f: IF f

co

wco scl

irf

isyncob

w0: W f = old_instruction

w: W f = new_instruction

f: IF f

co

irf

isyncob

Figure 5.5: Modified isyncob shape, for variants DIC (above left), IDC (above right), and both (below).

To achieve this, the isyncob relation is split into two:1910

. dcsync, which broadly captures the ‘data cache’ requirements. Either from a write to a same cache line DC1911

if not IDC, otherwise, from a write to itself, capturing that with IDC that a write is past the PoU the moment1912

it has propagated.1913

. icsync, which captures the ‘instruction cache’ requirements. Either from a DC (or same-icache-line1914

write), to a wco-later IC, or, if DIC, back to the DC or write itself.1915

The sequential composition of these two relations (called cachesync) captures the synchronisation required from1916

a write to the point sufficient cache maintenance has been performed to ensure a same-cache-line instruction1917

fetch would see it.1918

5.2.3 Coherence1919

The original model includes co in obs; we instead include the relation wco. Including wco in ordered-before1920

corresponds to the intuition that wco records the ordering of the Propagate memory write, Begin IC (and eagerly1921

taking all Propagate IC to thread transitions), and Perform DC transitions in the matching trace.1922

We also include irf in obs: informally, for an instruction to be fetched from a write, the write has to have been1923

done before. Correspondingly, in the operational model, a write has to have been propagated before it can satisfy1924

fetches in the storage subsystem.1925

5.2.4 Program order1926

We add a relation fetch-ordered-before (fob), which is included in ordered-before.1927
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The relation fob includes fpo, informally requiring fetches to be ordered according to their order in the control-flow1928

unfolding of the execution. Correspondingly in the operational model: fetch requests for instructions within the1929

same thread appear to be satisfied in program order.1930

We also include the fe fetch-to-execute relation in fob, capturing the idea that an instruction must be fetched1931

before it can execute. In the operational model, a read can only satisfy/a write can only propagate/a barrier can1932

only commit/etc. after its instruction’s fetch is satisfied.1933

5.2.5 Instruction synchronisation (ISB)1934

We include the edge [ISB ]; fe−1;fpo in fob, ordering the fetch of any instruction program-order-succeeding an1935

ISB instruction after the ISB event.1936

Operationally, a decoded ISB instruction prevents any program-order-later instructions from being removed from1937

the fetch queue and decoded, and when an ISB is executed, it returns all entries in this thread’s fetch queue (so1938

any program-order-later instructions) to the Unfetched state, forcing the satisfaction of the instruction fetch for1939

those instructions to happen after the ISB completes.1940

The rule [ISB ]; po;[R] in dob is no longer required, as the combination of rules in fob (in particular [ISB];fe−1;1941

fpo and [IF];fe) subsume it.1942

5.2.6 Data synchronisation (DSB)1943

For DSB ISH instructions we include po to and from DSB in bob.1944

We do this in three ways: (1) by extending the barrier hierarchy relations dmbst and dmbld to cover the memory1945

barrier effects of a DSB; (2) by adding [F|C];po;[dsbsy] to capture DSBs waiting for the completion of fences and1946

cache-ops, when using DSBs affecting both reads and writes; and (3) by adding [dsb];po to capture the remaining1947

completion fence properties that program-order later events cannot go ahead until the DSB is complete.1948

Importantly, DSB events do not order IF (ifetch) events in either direction.1949

5.2.7 Data cache maintenance (DC) is ordered like a read1950

Barrier-ordered-before (bob) also includes the relation [dmbsy];po;[DC], ordering DC events after program-order-1951

preceding DMB SYs. Correspondingly, in the operational model, a DC can only be performed when all preceding1952

DMB SY are finished.1953

5.2.8 Cache maintenance operations and cache lines1954

We include the relation cache-op-ordered-before (cob) in ob. This relation contains the edge [R|W];(po&scl);[DC],1955

ordering DC events after program-order-preceding same-dcache-line read and write events.1956

Operationally, a DC will be restarted by a program-order-preceding same-cache-line load if it was performed1957

before the load was satisfied, and by a program-order-preceding same-cache-line store if it was performed before1958

the store propagated its write.1959

Moreover, cob contains the edge [DC];(po&scl);[DC], ordering two same-cache-line, same-thread DC events1960

in program-order. In the operational model, a DC can only be performed when program-order-preceding same-1961

cache-line DC instructions have been performed.1962
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5.2.9 Constrained Unpredictable1963

We do not give precise semantics to programs that exhibit constrained unpredictable behaviour. Instead, we add a1964

mechanism to flag such programs.1965

1 (* include base ifetch model *)
2 include "aarch64_ifetch.cat"
3
4 (* could -fetch -from *)
5 let cff =
6 ([W]; loc; [IF])
7 \ ob−1

8 \ (isyncob−1 ; ob)
9

10 (* cmodx(opcode) is True
11 * if it is in the list of

concurrently modifiable
instructions

12 *)
13 define cmodx(v: bits (32)): bool =
14 ...

1 define cff_bad(
2 ev1: Event ,
3 ev2: Event ,
4 ev3: Event
5 ): bool =
6 W(ev1) & IF(ev2) & W(ev3)
7 & ~(ev1 == ev3)
8 & cff(ev1 , ev2) & cff(ev3 , ev2

)
9 & (~cmodx(ev1.value)

10 |~cmodx(ev3.value))
11
12 (* assert CU *)
13 assert exists
14 ev1: Event ,
15 ev2: Event ,
16 ev3: Event
17 =>
18 cff_bad(ev1 , ev2 , ev3) :named

CU

Figure 5.6: Constrained unpredictable check model (ifetch).

We do this through the definition of an auxiliary could-fetch-from (cff) relation, capturing, for each fetch i,1966

the writes it could have fetched from (including the one it did fetch from), as the set of same-address writes1967

that are not ordered-after i, and which are not overwritten by coherence-newer writes that were followed by a1968

cachesync sequence ordered-before i. Operationally, this captures writes that could have been in the instruction1969

cache of i’s thread: writes that did not happen after i in the trace, and excluding writes cleared by earlier cache1970

synchronisation sequences.1971

We then add an axiom, asserting the existence of a bad pair of writes (w1, w2) which i could have fetched from,1972

where at least one of w1 and w2 are not in the list of concurrently-modifiable instructions (as described in §3.2).1973

We identify these (i, w1, w2) triples with a ternary relation (cff_bad(w1,i,w2)), whose non-emptiness implies1974

the existence of such a triple. This gives us an extended ‘checker’ model, where executions which are allowed1975

in the checker model, are also allowed in the original ifetch model, but also exhibit constrained unpredictable1976

behaviour, and so the test should be flagged and any results discarded.1977
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Chapter 61978

Validating the ifetch models1979

We gain confidence in the models presented in the previous chapters by validating those models against the Arm1980

architectural intent, against each other, and against a selection of real hardware.1981

6.1 The models correctly captures the architectural intent1982

This property is an important one, but not one that can be objectively demonstrated.1983

We ensure that the models do reflect the architecture, to the best of our understanding, by engaging in detailed1984

and robust discussions with Arm architects (including their chief architect), as well as the microarchitects involved1985

in the design of individual processors.1986

This process is an iterative one, where we produce litmus tests, discuss whether they are allowed or forbidden (and1987

by which mechanisms), build models that capture those described mechanisms, and produce more litmus tests1988

that show edge cases or interactions. This process is not obviously terminating, but usually results in reaching a1989

natural fixed point for a core set of architectural features.1990

The structure of the operational model presented in Ch4 is derived from our discussions with Arm, it carefully1991

includes structures which capture the behaviour they described, and has limitations where the architects decided1992

no reasonable hardware could explore.1993

The axiomatic model, presented in Ch5, is also a product of the discussions with Arm, who have tentatively1994

accepted it.1995

6.2 Correspondence between the models1996

We experimentally test the equivalence of the operational and axiomatic models by making executable-as-a-test-1997

oracle versions of both and running each on a suite of hand-written, and automatically generated, litmus tests,1998

checking that both give the same answer in all cases.1999

To automatically generate families of interesting instruction-fetch tests, we extended the diy test generation2000

tool [65] to support instruction-fetch reads-from (irf) and instruction-fetch from-reads (ifr) edges, in both2001

internal (same-thread) and external (inter-thread) forms, and the cachesync edge. We used this to generate 14562002

tests involving those edges together with po, rf, fr, addr, (but no data), ctrl, ctrlisb, and dmb.sy. diy does2003

not currently support bare DC or IC instructions, locations which are both fetched and read from, or repeated2004

fetches from the same location.2005

6.2.1 Making the operational model executable as a test oracle2006

To make the operational model presented in Ch4 executable, capable of computing the set of all allowed executions2007

of a litmus test, we must be able to exhaustively enumerate all possible traces. For the model as presented, doing2008

this naively is infeasible: for each instruction it is theoretically possible to speculate any of the 264 addresses2009

as potential next address, and the interleaving of the new fetch transitions with others leads to an additional2010

combinatorial explosion.2011
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We address these with two new optimisations. First, we extend the fixed-point optimisation in RMEM (incremen-2012

tally computing the set of possible branch targets) [7] to keep track not only of indirect branches but also the2013

successors of every program location, and only allow speculating from this set of successors. Additionally, we2014

track during a test which locations were both fetched and modified during the test, and eagerly take fetch and2015

decode transitions for all other locations. As before, the search then runs until the set of branch targets and the2016

set of modified program-locations reaches a fixed point.2017

We also take some of the transitions eagerly to reduce the search space, in cases where this cannot remove2018

behaviour: Propagate IC to thread, Complete IC, Fetch request, and Add to instruction cache for thread.2019

Eagerly taking Add to instruction cache for thread is ok, as this always increases the visible behaviours: adding a2020

write to an instruction cache does not hide writes that were visible before. Complete IC and Fetch request are also2021

safe to take eagerly, as these advance thread-local state making further transitions available without preventing2022

any others.2023

Taking Propagate IC to thread eagerly is more subtle, this transition updates the state of another thread and2024

potentially removes transitions it had available to it. If we take an arbitrary trace, containing a propagation of2025

an IC to some thread, then it is safe (by the aforementioned logic) to immediately fill that icache back in. If we2026

have a trace with two IC propagations, to separate threads, from the same instruction, with propagations of2027

writes and DCs in between, then we know that the second Propagate IC to thread must have been an available2028

transition when taking those write and DC propagation transitions, and therefore there must have been another2029

trace where those write and DC propagations happened after the second IC propagation, and where the icache is2030

filled immediately after each of those writes.2031

…2032

Propagate IC to X on Thread 12033

Write to X2034

Propagate DC to X2035

Write to X2036

Propagate IC to X on Thread 22037

…2038

⇒2039

…2040

Propagate IC to X on Thread 12041

Propagate IC to X on Thread 22042

Write to X2043

Eagerly fill icache2044

Propagate DC to X2045

Write to X2046

Eagerly fill icache2047

…2048

This new trace groups the propagation of the instruction cache invalidations together as early as possible,2049

maximising the visible behaviour. Therefore, it is safe to always perform all the icache invalidates at once,2050

atomically.2051

6.2.2 Making the axiomatic model executable as a test oracle2052

The axiomatic model is given in the isla-cat memory modelling language (see §2.4.2).2053

As isla-axiomatic already executes a fetch-decode-execute loop there is little work required, but to simply2054

create fetch events for each read outcome during the fetch part of the cycle.2055

This is sufficient for making the test executable, but to make the exhaustive enumeration tractable we must make2056

one further optimisation. Allowing the fetch part of the loop to be totally symbolic (in location and opcode) would2057

lead to far too many candidate executions, even if the vast majority of them would be dismissed quickly (with2058

trivially unsatisfiable irf constraints) they would still take up computing time to generate, and then discard,2059

them. To avoid this, we instead require the user to provide the program-counter addresses and the sets of opcodes2060

those locations’ values can be. This ensures that while generating candidates we only need to generate those that2061

actually contain the control-flow and instruction opcodes that are interesting for the test.2062
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Figure 6.1 contains the isla-axiomatic-compatible sources for the earlier SM.F+ic test (Figure 3.18, p47) as an2063

example. Lines 7-131 define the self-modifiable locations used in the test (for this test that is only label ‘f:’), and2064

the fully-concrete opcodes those locations may be; recall that all isla traces are a single control-flow path with2065

fully concrete opcodes for each instruction.2066

6.2.3 Validation results2067

First, to check for regressions, we ran the operational model on all the 8950 non-mixed-size tests used for2068

developing the original Flat model (without instruction fetch or cache maintenance). The results are identical,2069

except for 23 tests which did not terminate within two hours. We used a 160 hardware-thread POWER9 server to2070

run the tests.2071

We have also run the axiomatic model on the 90 basic two-thread tests that do not use Arm release/acquire2072

instructions (not supported by the ISA semantics used for this); the results are all as they should be. This takes2073

around 30 minutes on 8 cores of a Xeon Gold 6140.2074

We experimentally test the equivalence of the operational and axiomatic models on the hand-written and the 14562075

diy-generated tests, checking that the models give the same sets of allowed final states.2076

6.3 Validating against hardware2077

To run instruction-fetch tests on hardware, we extended the litmus tool [64]. The most significant extension2078

consists in handling code that can be modified, and thus has to be restored between experiments. To that end, code2079

copies are executed, those copies reside in mmap’d memory with execute permission granted. Copies are made2080

from ‘master’ copies, which are, in effect, C functions whose contents consist of gcc extended inline assembly.2081

Of course, such code has to be position independent, and explicit code addresses in test initialisation sections2082

(such as in 0:X1=l in the test of §3.3) are specific to each copy. All the cache handling instructions used in our2083

experiments are all allowed to execute at exception level 0 (user-mode), and therefore no additional privilege is2084

needed to run the tests.2085

We then ran the diy-generated test suite on a range of hardware implementations, to collect a substantial sample2086

of actual hardware behaviour, checking that the extant hardware does not allow behaviours forbidden by either2087

model.2088

6.3.1 Results from hardware2089

Then, for the key hand-written tests described in Ch. 3, together with some others (that have also been discussed2090

with Arm, but not included here), we ran them on various hardware implementations.2091

Our testing revealed a hardware bug in a Snapdragon 820 (4Qualcomm Kryo cores). MP.RF+cachesync+ctrl-isb2092

test (Figure 3.10, p43) exhibited an illegal outcome in 84/1.1G runs (not shown in the table), which we have2093

reported. We have also seen an anomaly for MP.FF+cachesync+fpo (Figure 3.12, p44), on an Arm-designed core,2094

although this core had (in previous work) TODO: … No reference to cite? been discovered to suffer a read/read2095

coherence violation. Apart from these, the hardware observations are all allowed by the models. As usual, specific2096

hardware implementations are sometimes stronger, and there are a number of tests which we did not observe on2097

any hardware despite the architecture allowing them.2098

Finally, we ran the 1456 new instruction-fetch diy tests on a variety of hardware, for around 10M iterations each.2099

The models are sound with respect to the observed hardware behaviour, except for that same Snapdragon 8202100

device with known coherence violations.2101

1Note the use of the array-of-tables feature of TOML here, which allows the user to specify multiple [[self_modify]]
blocks if they wish [https://toml.io/en/v1.0.0#array-of-tables].
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1 arch = "AArch64"
2 name = "SM.F+ic"
3 hash = "de102a920be43ce10482e59700a7c976"
4 stable = "X10"
5 symbolic = ["x"]
6
7 [[ self_modify ]]
8 address = "f:"
9 bytes = 4

10 values = [
11 "0x14000001",
12 "0x14000003"
13 ]
14
15 [thread .0]
16 init = { X3 = "x", X4 = "f:", X0 = "0x14000001" }
17 code = """
18         STR W0 ,[X4]
19         LDR W2 ,[X3]
20         CBZ W2 , l
21 l:
22         ISB
23         BL f
24         MOV W1 ,W10
25         B Lout
26 f:
27         B l0
28 l1:
29         MOV W10 ,#2
30         RET
31 l0:
32         MOV W10 ,#1
33         RET
34 Lout:
35 """
36
37 [thread .1]
38 init = { X3 = "x", X2 = "1", X1 = "f:" }
39 code = """
40         BLR X1
41         MOV W0 ,W10
42         IC IVAU , X1
43         DSB SY
44         STR W2 ,[X3]
45 """
46
47 [final]
48 expect = "sat"
49 assertion = "1:X0 = 2 & 0:X2 = 1 & 0:X1 = 1"

Figure 6.1: Test SM.F+ic isla-axiomatic compatible version.
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Test Arch. Intent H/W Obs.
CoFF allow 42.6k/13G
CoFR forbid 0/13G
CoRF+ctrl-isb allow 3.02G/13G
SM allow 25.8G/25.9G
SM+cachesync-isb forbid 0/25.9G
MP.RF+dmb+ctrl-isb allow 480M/6.36G
MP.RF+cachesync+ctrl-isb forbid 0/13G
MP.FR+dmb+fpo-fe forbid 0/13G
MP.FF+dmb+fpo allow 447M/13G
MP.FF+cachesync+fpo forbid F2.3k/13G
ISA2.F+dc+ic+ctrl-isb forbid 0/6.98G
SM.F+ic allow U0/12.9G
FOW allow U0/7G
MP.RF+dc+ctrl-isb-isb allow U0/12.94G
MP.R.RF+addr-cachesync+dmb+ctrl-isb forbid 0/6.97G
MP.RF+dmb+addr-cachesync allow U0/6.34G

[The hardware observations are the sum of testing seven devices: a Snapdragon 810 (4x Arm A53 + 4x Arm A57
cores), Tegra K1 (2x NVIDIA Denver cores), Snapdragon 820 (4x Qualcomm Kryo cores), Exynos 8895 (4x Arm
A53 + 4x Samsung Mongoose 2 cores), Snapdragon 425 (4x Arm A53), Amlogic 905 (4x Arm A53 cores), and
Amlogic 922X (4x Arm A73 + 2x Arm A53 cores). U: allowed but unobserved. F: forbidden but observed.]
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Chapter 72102

Pagetables and the VMSA2103

These chapters are based, in part, on: Chapter D5 of the Arm Architecture Reference Manual DDI 0487H.a; and,2104

Relaxed virtual memory in Armv8-A [34] by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher2105

Pulte, Richard Grisenthwaite, and Peter Sewell, published in the proceedings of the 31st European Symposium on2106

Programming (ESOP, 2022).2107

7.1 Introduction2108

Modern computers heavily rely on virtual memory to enforce security boundaries: hypervisors and operating2109

systems manage mappings from virtual to physical addresses in order to restrict the access individual processes2110

and guest operating systems have to the underlying physical memory, and to memory-mapped devices. With2111

the endemic use of memory-unsafe languages, even for critical infrastructure, understanding and verifying the2112

programs which manage virtual memory mappings is more vital than ever, driving current interests in hypervisors.2113

The virtual machines those hypervisors enable are the key pieces of software which have become solely responsible2114

for implementing such critical security properties.2115

The following chapters focus on these aspects of the architecture, on virtual memory and virtualisation and the2116

software they enable, with the aim of giving a precise formal semantics for the purpose of verifying real systems2117

software which use those features.2118

I first give a description of the sequential behaviour of Arm’s virtual memory (this chapter); then describe the2119

relaxed behaviours and any open questions about Arm’s virtual memory (§8); give our precise axiomatic semantics2120

that capture these behaviours (§9); and, finally, give an overview of the tooling and validation of the presented2121

models (§10).2122

This chapter overview The remainder of this chapter will give: a brief overview of Arm’s virtual memory2123

systems architecture (§7.2); a detailed description of the Arm translation table format (§7.3), and the walk performed2124

by hardware (§7.4); an overview of the multiple stages of translation (§7.5), and the different translation regimes2125

(§7.6); a detailed explanation of the official Arm translation table walk pseudocode (§7.7); and finally a discussion2126

on the existence and purpose of translation lookaside buffers (§7.8).2127

This chapter does not present any new contributions or novel research, instead, it is a brief but necessary overview2128

of the required architectural features.2129

7.2 Virtual Memory2130

Armv8-A8’s virtual memory system architecture (the VMSA) defines the virtual memory and virtulisation features2131

of the Arm architecture. Its structure is described, in detail, in Chapter D5 of the Arm Architecture Reference2132

Manual [12].2133

Conventionally, we think of memory as being a flat array of bytes, indexed by physical addresses. For smaller2134

trusted devices, such as microcontrollers, this may be the end of the story. However larger ‘application’ class2135

processors rely heavily on virtual addressing: interposing one or more layers of indirection between the accesses2136
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using the virtual addresses of the program and the ‘true’ physical addresses of memory. This indirection allows2137

systems running on those processors to:2138

1. partition the physical resources between different programs, giving access to only those resources that each2139

program needs, and protecting those resources from other programs that do not need to access them;2140

2. indirect accesses through specific ranges of addresses with convenient numeric values; and2141

3. update those indirections at runtime to add, remove, or otherwise modify, the mappings to physical memory,2142

to support techniques such as copy-on-write and paging.2143

To manage all this, typical operating systems splits the programs into distinct processes and associates each process2144

with its own virtual to physical mapping. These mappings take the form of partial functions from the process’2145

own (virtual) addresses to the real hardware physical addresses along with some permissions:2146

translate : VirtualAddress ⇀ PhysicalAddress× 2{Read,Write,Execute}

Note that this is a simplification. See The Arm translation table walk (§7.4) for a more detailed description of the2147

access permissions and memory attributes.2148

Typically an operating system would create one such mapping for every process, partitioning the physical memory2149

into disjoint subsets of physical addresses (the range of the translate function), and would allocate some convenient2150

numeric values to be the virtual addresses the process interacts with (the domain of the translate function). Having2151

this separation allows the processes to be given conveniently aligned contiguous chunks of virtual address space2152

even if the underlying physical resources are highly fragmented, or, in the case of paging, potentially not present2153

in memory at all. Additionally, operating systems can provide many processes with mappings to the same physical2154

resource (such as memory-mapped devices) and control which processes have access to such devices at any point2155

in time.2156

These mappings give rise to separate address spaces for each process. The diagram in Figure 7.1 illustrates an2157

example, with two processes named P0 and P1 each with their own virtual address space. The left-hand side2158

shows a representation of the ‘memory’ as the processes see it, with the memory split into pages (fixed-size blocks2159

of contiguous addresses). The right-hand side is the equivalent representation of the actual physical memory,2160

with each physical page of the available RAM. Note that this diagram shows the virtual address space as being2161

smaller than the physical one, but in general, they may be the same size, or the virtual address space may be even2162

larger than the physical space.2163

If we assume each page has size 0x1000 then page 1 contains addresses 0x1000 to 0x1FFF inclusive, and we can2164

interpret the diagram like so:2165

. For P0:2166

– virtual addresses in pages 1, and 3 are unmapped.2167

– virtual addresses in pages 0 and 2 map to physical addresses in physical page 1.2168

– virtual addresses in page 4 map to physical addresses in physical page 5.2169

. For P1:2170

– virtual addresses in pages 0 and 4 are unmapped.2171

– virtual addresses in page 1 map to physical addresses in physical page 5.2172

– virtual addresses in page 2 map to physical addresses in physical page 7.2173

– virtual addresses in page 3 map to physical addresses in physical page 8.2174

For example, if process P0 reads the address 0x2305, it will actually read from the physical location 0x1305, since2175

virtual page 2 was mapped to physical page 1 in P0’s address space.2176

Each address space corresponds to a distinct translate function. Note that these mappings may be: non-injective2177

(contain aliasing of multiple virtual addresses to the same physical address); partial (where some virtual addresses2178

do not map to a physical address at all); or overlapping with other processes’ address spaces, in either the domain2179

(for example, the physical page 5 is mapped in both P0 and P1), or range (for example, the virtual page 2 is mapped2180

in both P0 and P1 but to different physical pages), or both.2181

Large application-class processor architectures, such as Armv8-A, often provide hardware support in the form of2182

the memory management unit (the MMU), which, once configured by software, will automatically perform the2183

translation from virtual to physical addresses. Software is then required to manage a set of translation functions,2184
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Figure 7.1: Example virtual and physical address spaces for two processes.

and is responsible for ensuring the correct translation function is being used by the MMU whenever a context2185

switch occurs, and handle any faults that the MMU generates.2186

7.3 Arm Translation Tables2187

Software configures the MMU through the creation and modification of sets of translation tables (also referred to2188

as page tables) for each of the translation functions.2189

The translation tables form an in-memory tree data structure which encode the (partial) translate function.2190

Software creates and maintains these trees, and tells the MMU which tree (and so which translation function) to2191

use at runtime. The hardware then reads from this tree structure to perform the translation, or from one of the2192

various caching structures described in TODO: ?REF?, whenever the process reads from, or writes to, memory.2193

A pointer to the root of the tree is stored in the TTBR (“Translation table base register”) register (or rather, one2194

of the various base registers described in more detail in TODO: ?REF?), and this determines which translation2195

function is currently in use by that processor.2196

Each node in the tree is a page-aligned chunk of memory which is treated as an array of 64-bit entries. Each entry2197

is responsible for mapping some fixed part of the domain of the translation function, with the root table mapping2198

the entire address space.2199

The tree is separated into different levels. with a root table pointed to by the base register and each subsequent2200

child tree increases in level going deeper into the tree. Typically the root is at level 0 with a maximum depth of 42201

(down to level 3), but the various configurations are discussed in the next section.2202

Figure 7.2 shows a view of an example set of translation tables. Each rectangular block represents one contiguous2203

block of memory, made up of 512 64-bit entries, each drawn as a dotted box. The base register points to the start of2204

the level 0 table (the ‘root’ table). The second, seventh, and eleventh, indexes in the root table contain pointers to2205

subsequent (level 1) tables, and so on. Blank cells represent invalid entries (for which the input virtual addresses2206

are unmapped), and otherwise contain a pointer to a nested table or some output physical address. The exact2207

format of these entries is described in the next section (see §7.3.1).2208
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Figure 7.2: Schematic view for an extract of an example tree of translation tables, made of seven individual
translation tables over four levels, which defines an address space that maps four separate regions of virtual
addresses.

7.3.1 Translation table format2209

Arm’s virtual memory system architecture is highly configurable. Writing to the SCTLR (“System control register”)2210

and TCR (“Translation control register”) system registers allow the software developer to choose a configuration2211

from a whole host of various options. To give a flavour of this configurability I list some of the configuration bits,2212

some of which will be discussed in more detail in the next chapter; these include: the size of virtual addresses; the2213

number of levels in the tree; the starting level; the size of a single page (or in Arm terminology, the size of the2214

translation granule); the number of ASIDs and VMIDs; alignment requirements; memory attributes for hardware2215

walks; enabling hardware management of access flags and dirty bits; write-execute-never permissions; and so on.2216

To simplify things, in this dissertation, we consider just one common configuration, the one currently used by the2217

Linux kernel: a tree of translation tables with maximum depth 4, with 4KiB pages with 48-bit addresses, unless2218

explicitly stated otherwise.2219

Each node is a table of 512 64-bit entries, bound as one 4096-byte block of memory. Each table controls the2220

mapping of a fixed range of the virtual address space. This range is split into 512 equal slices, with each entry2221

responsible for its slice. Each of those entries can be one of:2222

1. An invalid entry, which indicates that this slice of the domain is unmapped;2223

2. A table entry, pointing to a next-level table (a child tree) which recursively maps this slice of the domain; or2224

3. A page (last-level) or block (non-last-level) entry which defines a single fixed-size mapping for this slice of2225

the domain.2226

Invalid entries An invalid entry is defined by bit[0] of the entry being 0. The top 63 bits are ignored by2227

hardware, and software is free to use those bits to store any metadata it wishes. Invalid entries may exist at any2228

level in the tree.2229

63 … 1 0
ignored 0

2230

Block or page entries Block and page entries are similar to each other; both create a mapping for a contiguous2231

slice of the domain mapped by the entry, encoded as an output address (OA) with some metadata (including access2232

permissions, memory type, and some software-defined bits).2233

The OA is aligned to the size of the slice of the domain being mapped. For page entries, the OA is aligned on a2234

page boundary. A block entry’s OA at level 2 would be 2MiB aligned, and a block entry’s OA at level 1 would2235

be GiB aligned. This corresponds to the hardware reserving bits[n:12] of the entry to be 0 depending on how2236

deep the entry is: at level 1 n==30; at level 2 n==21; and at level 3 n==12.2237

Block entries can exist at levels 1 and 2. Page entries can only exist at level 3.2238

For block entries bit[1] is 0, for page entries bit[1] is 1.2239

Metadata (access permissions, shareability, memory type) are encoded into the attrs bits.2240
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63 50 47 n (n-1) 12 11 2 1 0
1pattrsignoredoutput address00attrs

2241

Table entries A table entry contains a page-aligned pointer to a child table, but can also contain similar2242

metadata as the block or page entry, including access permissions (read/write/execute), which are combined with2243

any permissions from the child table.2244

Table entries are allowed only at levels 0–2.2245

63 50 47 12 11 2 1 0
11Res01table pointer00attrs

2246

7.4 The Arm translation table walk2247

When the processor executes an instruction which takes an address, such as the Arm LDR or STR instructions,2248

those addresses are virtual (addresses used by instructions are always virtual addresses). The hardware converts2249

each virtual address to a physical address, and the MMU performs this conversion.2250

To do this, the MMU reads the TTBR to get the currently in-use tree of translation tables. Then the MMU itself2251

reads memory and walks the tree (except when it can read from a previously cached translation, as described in2252

the next chapter) effectively computing the partial translate function the tree encodes, producing the physical2253

address and any permissions, or reporting a fault back to the processor if the virtual address was unmapped, or if2254

the permissions forbid the requested operation.2255

Walk overview The hardware walker first slices up the input virtual address into chunks: the most-significant2256

bit is used to determine which base register to use (see §7.6); the next 15 bits are typically ignored by hardware;2257

the rest of the address is split into 9–bit fields which we refer to as fields a–d, with the remaining bits as field e.2258

Fields a–d are used for indexing into the tables; and field e is the offset in the page, which is added to the final2259

output address.2260

VA

63 62 48 47 39 38 30 29 21 20 12 11 0
edcbaignored

2261

The walk then proceeds, with the MMU taking the following steps:2262

1 Read the base address from the TTBR register (See Reading the TTBR).2263

2 Perform a 64-bit single-copy atomic read of Mem[baddr+8*a] to read the entry in the Level 0 table. Call the2264

result L0entry.2265

a If L0entry[0] is 0 (that is, it’s an invalid entry) then report a fault back to the processor (See Faults).2266

b Otherwise if L0entry[1] is 0 then report a fault back to the processor (top-level tables cannot have2267

block mappings).2268

3 Perform a 64-bit single-copy atomic read of Mem[L0entry.table_pointer+8*b] to read the entry in the2269

Level 1 table, which we will call L1entry.2270

a If L1entry[0] is 0 then report a fault back to the processor.2271

b If L1entry[1] is 0 (it’s a block entry):2272

i If the access is not permitted (See Access permissions), report a fault to the processor.2273

ii Otherwise, return the output address (See Computing the final output address) back to the2274

processor.2275

4 Perform a 64-bit single-copy atomic read of Mem[L1entry.table_pointer+8*c] to read the entry in the2276

Level 1 table, which we will call L2entry.2277

a If L2entry[0] is 0 then report a fault back to the processor.2278

b If L2entry[1] is 0 (it’s a block entry):2279

i If the access is not permitted, report a fault to the processor.2280

ii Otherwise, return the output address back to the processor.2281

1The Arm architecture requires these bits are 0 and are reserved for future use.
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5 Perform a 64-bit single-copy atomic read of Mem[L2entry.table_pointer+8*d] to read the entry in the2282

Level 3 table, which we will call L3entry.2283

a If L3entry[0] is 0 then report a fault back to the processor.2284

b Else if L3entry[1] is 0, report a fault back to the processor (this encoding is reserved and is treated as2285

invalid).2286

c L3entry[1] is 1 (it’s a page entry):2287

i If the access is not permitted, report a fault to the processor.2288

ii Otherwise, return the output address back to the processor.2289

ttbr

Level 0

Level 1

Level 2

Level 3

table

table

table

page 4KiB

block 1GiB

a

b

c

d

2290

Reading the TTBR The base address register contains three fields: the higher bits store the ASID (see §7.8),2291

or the VMID if for the second stage of a two-stage regime (see §7.5,§7.6); bits 47-1 contain bits 47-1 of the physical2292

address of the root of the translation tables; the final bit is the “Common not Private” (CnP) bit, which is used to2293

indicate when a cluster of processors share the same address space and base address to enable special performance2294

optimisations.2295

TTBR

63 48 47 1 0
CnPbaddr[47:1]ASID/VMID

2296

Computing the final output address The output address (OA) of the final descriptor is the start of the range2297

mapped by the entry. The low order bits are all 0 in the output address, and need to be added on to compute the2298

final output address of the translation.2299

To compute this final output address the MMU takes the OA from the entry, and the level in the tree the entry is2300

at, and ‘completes’ the address by bitwise appending the remaining fields to create the complete 48-bit output2301

address. Recall that the OA field of the block mappings gets wider the deeper in the tree you are, and so for a 1GiB2302

entry the OA field is only 18 bits wide but for a 4KiB page entry its OA field is the full 36 bits.2303

. For a 1GiB (level 1) block entry; PA = OA::c::d::e2304

. For a 2MiB (level 2) block entry; PA = OA::d::e2305

. For a 4KiB (level 3) page entry; PA = OA::e2306

Note that this process means that the least-significant 12 bits of the input VA are unchanged and remain the same2307

in the final output PA, regardless of how the translation function is configured.2308

Access permissions Once the walk is complete, and the final output address calculated, the MMU checks to2309

see whether the requested access is permitted. Each level of the table can contain some access permissions and2310

those permissions get combined at the end to calculate the final permissions.2311

For data accesses (reading and writing), table entries have an APTable field (bits[62:61]), and block/page entries2312

have AP[2:1]1 field (bits[7:6]). These fields can be decoded using the following table:2313

1Block/page entries do not store the entire AP field but only AP[2:1]. AP[0] is not present in AArch64.
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e[
1]

AP
Ta
bl
e[
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[2
]

AP
[1
]

EL1 EL0
R W X R W X

0 0 0 0 X X X × × X
0 0 0 1 X X × X X X
0 0 1 0 X × × × × X
0 0 1 1 X × X X × ×
0 1 0 0 X X X × × X
0 1 0 1 X X × × × X
0 1 1 0 X × × × × X
0 1 1 1 X × X × × ×
1 0 0 0 X × X × × X
1 0 0 1 X × × X × X
1 0 1 0 X × × × × X
1 0 1 1 X × X X × ×
1 1 0 0 X × X × × X
1 1 0 1 X × × × × X
1 1 1 0 X × × × × X
1 1 1 1 X × X × × ×

Figure 7.3: Merging Access Permissions (Stage 1, EL1&0).
Entries in red highlight differences from the APTable=00.

Field When set (1) When unset (0)
AP[2] Read-only Read&Write
AP[1] Allow at EL1&0 Allow at EL1 only
APTable[1] Force read-only No effect on permissions.
APTable[0] Force forbid access at EL0 No effect on EL0 permissions.

2314

For executable permissions, which permit or forbid instruction fetching from some region of memory, there are2315

no dedicated encodings of the access permission bits. Instead, all mappings are executable by default, unless one2316

of the following applies: the region is mapped writeable at EL0, as writable EL0 regions are never executable2317

at EL1; a global WXN (“Write-execute-never”) configuration bit is set, and the entry was writeable; or, when one2318

of the various translation table entry XN (“Execute-never”) bits are set. For simplicity, this chapter assumes2319

that execute-never bits are always disabled; see the full description in the Arm ARM TODO: ?REF?for more2320

information.2321

To combine access permissions from the whole walk, the MMU takes the bitwise union of each of the APTable2322

fields from each table entry, and then intersects the result with the final AP[2:1] field to produce a final set of2323

permissions. Figure 7.3 contains a decoding table for a given table and leaf access permissions, for testing whether2324

a requested access is permitted. If the requested access is not permitted, then the MMU generates a permission2325

fault, which is reported back to the processor.2326

Faults The MMU may emit one of several fault types during a translation table walk (these are referred to by2327

Arm as the MMU fault types):2328

. Translation fault.2329

These are caused by the mapping being invalid, either because bit[0] was 0, or because the descriptor2330

encoding was reserved-as-invalid. Translation faults also result from trying to translate an address that is2331

outside the 48-bit input address range.2332

. Permission fault.2333

For when the mapping was valid, but the access permissions do not permit the requested access (for example,2334

trying to write to a read-only address).2335
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. Access flag fault.2336

These are generated when hardware management of access flags is disabled and the access flag bit is set.2337

. TLB Conflict aborts (see TODO: ?REF?).2338

. Alignment fault.2339

Generated when an operation expects an aligned memory address, but is given a misaligned one, and2340

alignment checking is enabled in the SCTLR.2341

. Address size fault.2342

For when the OA, or TTBR, has a value that is out of the physical address range.2343

. Synchronous external abort on a translation table walk.2344

These are external aborts (that come from the system not from the MMU) that happen due to accesses that2345

the MMU generated. For example, if the next-level table field pointed to an address for which there was no2346

memory or device, the system-on-chip would return a fault to the processor.2347

These faults lead to processor exceptions. The fault type is stored in the ESR_ELn (“exception syndrome register”)2348

register’s EC (“exception class”) field, and any supplementary information is stored in its ISS (“instruction specific2349

syndrome”) field (such as which level in the tree the fault came from, whether the originating instruction was a2350

read or a write, and ). Exception handling code can read the ESR register to determine the fault type and cause,2351

and can read the FAR_ELn (“fault address register”) to determine the virtual address which triggered the fault, and2352

handle the fault appropriately.2353

Memory Attributes The processor does not necessarily know what is located at any physical address. There2354

may be some dynamic random-access memory (DRAM, what one would generally consider ‘memory’), but there2355

may also be other memory-mapped devices, or non-volatile memory, or other peripherals, or possibly nothing at2356

all.2357

To help accommodate this, hardware allows software to mark regions of memory as one of either device memory,2358

normal cacheable memory, or normal non-cacheable memory, using the translation tables.2359

The desired memory type is determined from the AttrIndx field (bits[4:2]) in block and page entries. Instead2360

of being directly encoded into this field, Arm chose to have the actual attributes stored in a separate register:2361

the MAIR (“Memory attribute indirection register”) register. The MAIR stores an array of eight 8-bit fields each of2362

which contains an encoding of a memory type. The AttrIndx field in the entry is an integer in the range 0–7,2363

which is the index of the field in the MAIR register to use.2364

This indirection means that the final result of translation depends not only on the value of the final leaf entry in2365

memory, but on the value of certain system registers, such as the MAIR, at that time of the translation table walk.2366

Below are the three most common encodings for a MAIR field, and the ones that will be useful later when discussing2367

tests:2368

. 0b0000_0000: device memory.2369

. 0b0100_0100: normal non-cacheable memory.2370

. 0b1111_1111: normal cacheable memory, inner&outer write-back non-transient, read&write-allocating.2371

Memory locations marked as device tell the hardware that reads or writes to those locations may have side-effects.2372

This means hardware treats those locations differently: there will be no speculative instruction fetches, reads,2373

or writes to those locations; writes to those locations will not gather into larger writes; reads and writes to2374

those locations will not re-order with respect to others; those locations generally will not get cached; and other2375

thread-local optimizations get disabled. Note that Arm define a wide range of device memory types, allowing2376

the systems programmer to selectively re-enable some of the previously described behaviours to enable better2377

performance where they deem it safe to do so.2378

For normal memory the software can choose between cacheable or non-cacheable memory. Arm provide a range2379

of different options for the cacheability:2380

. non-cacheable2381

. write-back cacheable2382

. write-through cacheable2383

As with other features, there is a wide scope for configuration: separately configuring inner (L1,L2) and outer (L3)2384

caches, and adding cache allocation hints (allocating on reads, writes or both).2385

As we will see later (TODO: ?REF?), the ability to change cacheability, or even have multiple aliases with different2386

cacheability attributes, give rise to interesting behaviours and security considerations.2387
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7.5 Virtualisation and a second stage of translation2388

So far this chapter has focused on operating systems and processes. However, modern systems isolate not just2389

processes within an operating system but entire operating systems from one another, within a hypervisor.2390

To do this, software uses the virtual memory abstraction again, adding an extra layer. This layer, like the previous2391

one, is supported by hardware. Processes use virtual addresses which are converted to intermediate physical (also2392

sometimes known as guest physical) addresses using the operating system’s configured translation tables but then2393

these intermediate physical addresses (IPAs) go through another round of translation to convert those IPAs into2394

the final physical address.2395

Arm calls these stages of translation, and the MMU supports both stages and can perform the full translation from2396

virtual to physical (via the intermediate physical) address.2397

This means software must manage two sets of translation tables: operating systems manage the stage 1 tables to2398

convert VAs to IPAs; and hypervisors manage stage 2 tables to convert those IPAs to PAs; this gives two separate2399

translate functions, which the MMU composes together at runtime:2400

translate_stage1 : VirtualAddress ⇀ IPA× Permissions× MemoryType
translate_stage2 : IPA ⇀ PhysicalAddress× Permissions× MemoryType

Hypervisors (running at EL2) can configure the stage 2 translate function by creating translation tables with a2401

similar format as before and then storing a pointer to the root of this tree in the VTTBR (“Virtualization translation2402

table base register”) register. TheMMUwill read the VTTBRwhenever it needs to perform a second-stage translation2403

to convert an IPA to a PA, and will do the translation table walk over that tree in much the same way as described2404

earlier for (what we can now call) the first-stage translation.2405

This results in two address spaces, a virtual address space and an intermediate-physical address space. Figure 7.42406

contains an example layout of these address spaces for a machine running three processes (P0,P1,P2) in two2407

operating systems (OS0,OS1). As with the earlier diagram in Figure 7.1, each column is a (set of) address spaces,2408

with transformations between them defined by their respective translation functions. On the left-hand side are2409

the virtual address spaces of the various processes, whose virtual addresses are translated (using the translation2410

tables pointed to by the TTBR register) into intermediate-physical addresses in the central address spaces (for the2411

respective OS). Those IPAs are then translated (using the VTTBR) into the final physical address.2412

Concretely, if P1 reads from address 0x1001, it will be translated into the IPA 0x3001 in OS0’s address space,2413

which then gets translated again, and the processor will actually read from RAM at location 0x6001.2414

Differences in the translation table format from stage 1 Stage 2 translation tables are similar to their2415

stage 1 counterparts, but there are some minor differences:2416

. Stage 2 table entries do not have any additional attributes, and so do not have an APTable field.2417

. Stage 2 AP field (called S2AP) has a slightly different (and simpler) format, see Figure 7.5.2418

. Stage 2 block and page entries do not have a MemAttrIndx field but rather encode the memory type directly2419

into the MemAttr field bits[5:2] (see the full description in the Arm ARM [12, D5-4874] for all possible2420

encodings):2421

– 0b0000: Device memory.2422

– 0b0101: Normal non-cacheable.2423

– 0b1111: Normal write-back inner&outer cacheable.2424

These are interesting as they mean that the stage 1 and stage 2 attributes (permissions and memory types) must2425

be combined in order to produce the final output. This combination is not just a case of letting stage 2 overrule the2426

stage 1 settings but rather that both stages get a veto: if stage 1 sets the memory type to be device or non-cacheable2427

then it overrules what stage 2 sets. Similarly, if stage 1 permissions forbid an access then the stage 2 permissions2428

cannot overrule that.2429

Second-stage translations during a first-stage walk There is a complication with the story so far. The2430

stage 1 tables are created by the operating system, which is using an intermediate physical address space, not a2431

physical one. The writes the OS does to the tables will be translated, as they are normal data writes. But, the2432

tables themselves contain references to other tables, and those entries will be intermediate physical addresses,2433

and so, they must also be translated, including the value of the TTBR itself.2434
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Figure 7.4: Example virtual, intermediate physical, and physical address spaces for three processes running
on two operating systems.

Field When set (1) When unset (0)
S2AP[1] Writeable not Writeable
S2AP[0] Readable not Readable

Figure 7.5: S2AP field encoding.
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In our assumed configuration of 4KiB pages and 4 levels of translation, this leads to a maximum of 24 memory2435

accesses to perform the translation: 4 reads of stage 1 translation tables, 16 reads of stage 2 translation tables2436

during those stage 1 walks, and a final 4 reads of the stage 2 translation tables to translate the output IPA into the2437

final PA.2438

7.6 Translation regimes2439

As mentioned earlier, there are multiple translation table base registers. Each of them defines a translation2440

function, pointing to the root of the tree of translation tables which define it. These translation functions are then2441

composed together into various translation regimes, each defining the set of translation functions (and therefore2442

which translation table base registers) which will be used for translations done by the processor.2443

Arm define a set of these translation regimes. Figure 7.6 gives an overview of three of the most common regimes,2444

which are:2445

. EL1&0 (two-stage)2446

– For programs executing at EL0 or EL1 when virtualisation (at EL2) is enabled.2447

– VAs with the high bit set are translated into IPAs using the EL1-configured register, TTBR1_EL1.2448

VAs are typically split into ‘high’ and ‘low’ regions with different translations, primarily used for2449

separate kernel and user address spaces.2450

– VAs without the high bit set are translated into IPAs using the EL1-configured register, TTBR0_EL1.2451

– IPAs are translated to PAs using the EL2-configured VTTBR_EL2 register.2452

. EL1&0 (single-stage)2453

– For programs executing at EL0 or EL1 when virtualisation (at EL2) is disabled.2454

– VAs with the high bit set are translated into PAs using the EL1-configured register, TTBR1_EL1.2455

– VAs without the high bit set are translated into PAs using the EL1-configured register, TTBR0_EL1.2456

. EL22457

– For programs executing at EL2.2458

– VAs without the high bit set are translated into PAs using the EL2-configured register, TTBR0_EL2.2459

– VAs with the high bit set are always unmapped.2460

Which translation regime is being used is defined by various system registers and the current system state.2461

. Translations at EL1 or EL0 use one of the EL1&0 regimes.2462

. Translations at EL2 use the EL2 regime.2463

. TCR_EL2 (set at EL2) determines whether the EL1&0 is a single-stage or two-stage regime.2464

. TTBR0_EL1, TTBR1_EL1 determine the stage 1 of the EL1&0 regimes, and can be set at EL1 or higher.2465

. TTBR0_EL2 determines the stage 1 of the EL2 regime, and can only be set at EL2 or higher.2466

. VTTBR_EL2 determines the stage 2 of the EL1&0 regime, and can only be set at EL2 or higher.2467

Arm define a wide range of other regimes, see the Arm ARM TODO: ?REF?. For simplicity, we ignore secure2468

modes, including all of EL3.2469
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EL2 Regime (always single-stage)

Figure 7.6: Translation regimes that apply to EL0,EL1, and EL2.

7.7 Arm pseudocode2470

It is now useful to examine the official Arm pseudocode, especially those parts that relate to memory events.2471

We will do this in three steps: first, by looking at the pseudocode that is executed for an Arm store instruction;2472

following the memory accesses that it performs down to any translations it performs; finally looking at the Arm2473

translation table walker in full. There is a lot of detail infused throughout the Arm pseudocode, so in this section2474

we shall focus on the most pertinent parts, and give some idea of what detail is omitted.2475

7.7.1 The lifecycle of a store2476

Arm give precise executable semantics for every instruction in their domain-specific Architecture Specification2477

Language (ASL).2478

Recall from §2.2 that the ASL code defines the sequential (intra-instruction) behaviour of each instruction, including2479

memory accesses, and any translation table walks they perform.2480

Figure 7.7 shows the Arm ASL for the “STR (Immediate)” instruction: STR Xt,[Xn]. This instruction writes the2481

value contained in register Xt into the memory location stored in register Xn. The figure has some uninteresting2482
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1 bits (64) address;
2 bits(datasize) data;
3
4 if HaveMTE2Ext () then
5 SetTagCheckedInstruction(tag_checked);
6
7 if n == 31 then
8 if memop != MemOp_PREFETCH then CheckSPAlignment ();
9 address = SP[];

10 else
11 address = X[n];
12
13 if ! postindex then
14 address = address + offset;
15
16 case memop of
17 when MemOp_STORE
18 if rt_unknown then
19 data = bits(datasize) UNKNOWN;
20 else
21 data = X[t];
22 Mem[address , datasize DIV 8, acctype] = data;
23
24 when MemOp_LOAD
25 data = Mem[address , datasize DIV 8, acctype ];
26 if signed then
27 X[t] = SignExtend(data , regsize);
28 else
29 X[t] = ZeroExtend(data , regsize);
30
31 when MemOp_PREFETCH
32 Prefetch(address , t<4:0>);
33
34 if wback then
35 if wb_unknown then
36 address = bits (64) UNKNOWN;
37 elsif postindex then
38 address = address + offset;
39 if n == 31 then
40 SP[] = address;
41 else
42 X[n] = address;
43

Figure 7.7: Arm “STR (immediate)” ASL code.

(for this thesis) parts greyed out: those parts that deal with optional extensions such as memory tagging; unknown2483

register values; register writeback; and, the load and prefetch instructions which use the same ASL code.2484

The ASL code first reads the virtual address either from the stack pointer (line 9) or by reading register Xn (line 11).2485

It then reads the data from the register Xt (line 21), which will be written to memory. Finally, it performs the2486

store itself using the Mem[] function (line 22).2487

7.7.2 Writes to memory2488

The Mem[] function is responsible for checking alignment and performing each memory access the instruction2489

does. The ASL for Mem[] can be found in Figure 7.8.2490

It does some alignment checks, and then calls MemSingle[] once for each single copy atomic write the access2491

performs.2492

For example, for a fully aligned store, it calls MemSingle[] just once (lines 37 or 57), and, for a misaligned store, it2493

will call MemSingle[] once for each byte (line 51).2494

7.7. ARM PSEUDOCODE 88



1 Mem[bits (64) address , integer size , AccType acctype , boolean ispair] = bits(size
*8) value_in

2 boolean iswrite = TRUE;
3 constant halfsize = size DIV 2;
4 bits(size *8) value = value_in;
5 bits(halfsize *8) lowhalf , highhalf;
6 boolean atomic;
7 boolean aligned;
8 if BigEndian(acctype) then
9 value = BigEndianReverse(value);

10
11 if ispair then
12 // check alignment on size of element accessed , not overall access size
13 aligned = AArch64.CheckAlignment(address , halfsize , acctype , iswrite);
14 else
15 aligned = AArch64.CheckAlignment(address , size , acctype , iswrite);
16 if ispair then
17 atomic = CheckAllInAlignedQuantity(address , size , 16);
18 elsif size != 16 || !( acctype IN {AccType_VEC , AccType_VECSTREAM }) then
19 if !HaveLSE2Ext () then
20 atomic = aligned;
21 else
22 atomic = CheckAllInAlignedQuantity(address , size , 16);
23 elsif (acctype IN {AccType_VEC , AccType_VECSTREAM }) then
24 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single -copy

atomic accesses
25 // 64-bit aligned.
26 atomic = address == Align(address , 8);
27 else
28 // 16-byte integer access
29 atomic = address == Align(address , 16);
30
31 if !atomic && ispair && address == Align(address , halfsize) then
32 single_is_aligned = TRUE;
33 <highhalf , lowhalf > = value;
34 AArch64.MemSingle[address , halfsize , acctype , single_is_aligned , ispair]

= lowhalf;
35 AArch64.MemSingle[address + halfsize , halfsize , acctype ,

single_is_aligned , ispair] = highhalf;
36 elsif atomic && ispair then
37 AArch64.MemSingle[address , size , acctype , aligned , ispair] = value;
38 elsif !atomic then
39 assert size > 1;
40 AArch64.MemSingle[address , 1, acctype , aligned] = value <7:0>;
41
42 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an

unaligned Device memory
43 // access will generate an Alignment Fault , as to get this far means the

first byte did
44 // not , so we must be changing to a new translation page.
45 if !aligned then
46 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
47 assert c IN {Constraint_FAULT , Constraint_NONE };
48 if c == Constraint_NONE then aligned = TRUE;
49
50 for i = 1 to size -1
51 AArch64.MemSingle[address+i, 1, acctype , aligned] = value <8*i+7:8*i

>;
52 elsif size == 16 && acctype IN {AccType_VEC , AccType_VECSTREAM} then
53 <highhalf , lowhalf > = value;
54 AArch64.MemSingle[address , halfsize , acctype , aligned , ispair] = lowhalf

;
55 AArch64.MemSingle[address + halfsize , halfsize , acctype , aligned , ispair

] = highhalf;
56 else
57 AArch64.MemSingle[address , size , acctype , aligned , ispair] = value;
58 return;
59

Figure 7.8: Arm Mem[] write function call ASL code.
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The MemSingle[] call then performs the translation, and (if successful), the actual write to memory. Its ASL can be2495

found in Figure 7.9, with parts for extensions and store pair greyed out. On line 12, it calls AArch64.TranslateAddress2496

to do the translation table walk. If the translation succeeds, then the code calls PhysMemWrite (on line 40), an2497

uninterpreted function with no behaviour in ASL, which represents the actual write to memory. After perhaps2498

handling any external aborts from the write, the function returns.2499
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1 AArch64.MemSingle[bits (64) address , integer size , AccType acctype , boolean
aligned , boolean ispair] = bits(size *8) value

2 assert size IN {1, 2, 4, 8, 16};
3 constant halfsize = size DIV 2;
4 if HaveLSE2Ext () then
5 assert CheckAllInAlignedQuantity(address , size , 16);
6 else
7 assert address == Align(address , size);
8
9 AddressDescriptor memaddrdesc;

10 iswrite = TRUE;
11
12 memaddrdesc = AArch64.TranslateAddress(address , acctype , iswrite , aligned ,

size);
13 // Check for aborts or debug exceptions
14 if IsFault(memaddrdesc) then
15 AArch64.Abort(address , memaddrdesc.fault);
16
17 // Effect on exclusives
18 if memaddrdesc.memattrs.shareability != Shareability_NSH then
19 ClearExclusiveByAddress(memaddrdesc.paddress , ProcessorID (), size);
20
21 // Memory array access
22 AccessDescriptor accdesc;
23 if HaveTME () then
24 accdesc = CreateAccessDescriptor(acctype);
25 accdesc.transactional = TSTATE.depth > 0;
26 if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.

memattrs) then
27 FailTransaction(TMFailure_IMP , FALSE);
28 else
29 accdesc = CreateAccessDescriptor(acctype);
30
31 if HaveMTE2Ext () then
32 if AArch64.AccessIsTagChecked(ZeroExtend(address , 64), acctype) then
33 bits (4) ptag = AArch64.PhysicalTag(ZeroExtend(address , 64));
34 if !AArch64.CheckTag(memaddrdesc , accdesc , ptag , iswrite) then
35 AArch64.TagCheckFault(ZeroExtend(address , 64), acctype , iswrite)

;
36
37 PhysMemRetStatus memstatus;
38 (atomic , splitpair) = CheckSingleAccessAttributes(address , memaddrdesc.

memattrs , size , acctype , iswrite , aligned , ispair);
39 if atomic then
40 memstatus = PhysMemWrite(memaddrdesc , size , accdesc , value);
41 if IsFault(memstatus) then
42 HandleExternalWriteAbort(memstatus , memaddrdesc , size , accdesc);
43 elsif splitpair then
44 assert ispair;
45 bits(halfsize *8) lowhalf , highhalf;
46 <highhalf , lowhalf > = value;
47
48 memstatus = PhysMemWrite(memaddrdesc , halfsize , accdesc , lowhalf);
49 if IsFault(memstatus) then
50 HandleExternalWriteAbort(memstatus , memaddrdesc , halfsize , accdesc);
51 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
52 memstatus = PhysMemWrite(memaddrdesc , halfsize , accdesc , highhalf);
53 if IsFault(memstatus) then
54 HandleExternalWriteAbort(memstatus , memaddrdesc , halfsize , accdesc);
55 else
56 for i = 0 to size -1
57 memstatus = PhysMemWrite(memaddrdesc , 1, accdesc , value <8*i+7:8*i>);
58 if IsFault(memstatus) then
59 HandleExternalWriteAbort(memstatus , memaddrdesc , 1, accdesc);
60 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
61 return;
62

Figure 7.9: Arm MemSingle[] write function call ASL code.
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7.7.3 Translation table walks2500

It is the AArch64.TranslateAddress function which begins the process that performs the actual translation table2501

walk, converting the input virtual address to the physical one. The full ASL code is too much to contain in a single2502

figure, and so it can be found in §7.9 at the end of this chapter. This section will reference the relevant lines from2503

the translation table walk ASL.2504

Figure 7.10 is an example trace of the execution of the STR Xt,[Xn] instruction, as it would happen if we were to2505

execute it from EL1 in the EL1&0 two-stage regime. Each node represents an event in the trace (a memory or2506

register access), and the arrows between them represent control flow. TODO: Generate from an actual isla2507

trace rather than by hand? at least to be proper… TODO: Give labels to each event?2508

As described before, the instruction starts by reading the Xt and Xn registers, before beginning the call to2509

AArch64.TranslateAddress.2510

The events drawn inside the dotted box come from accesses during the call to the translation table walk functions.2511

It first calls FullTranslate (in AArch64.TranslateAddress, page 95, line 2), which calls S1Translate (in2512

AArch64.FullTranslate, page 96, line 12), which calls S1Walk (in AArch64.S1Translate, page 97, line 29) to2513

do the actual first-stage translation table walk. It begins by reading the relevant TTBR register to get the root2514

table address (in AArch64.S1Walk, page 100, line 9). This is stored in a walkstate struct, which the ASL code2515

uses to keep track of the state that changes as the walk progresses, notably, the next-level table address and2516

any accumulated permissions. It then begins the loop to do the walk, starting from the table address read from2517

the TTBR. On each iteration of the loop, the intermediate-physical address of the entry to be read is computed2518

(in AArch64.S1Walk, page 100, line 38), and passed through a second stage of translation (in AArch64.S1Walk,2519

page 100, line 47).2520

This second stage translation calls S2Walk, which behaves similarly to the S1Walk function, taking the following2521

steps: it reads the VTTBR (in AArch64.S2Walk, page 104, line 11); computes the (now) physical address of the entry2522

to read (in AArch64.S2Walk, page 104, line 41); and reads it (in AArch64.S2Walk, page 104, line 44), eventually2523

calling PhysMemRead (in AArch64.FetchDescriptor, page 106, line 23), which appears as the first R S2 L0 node2524

in Figure 7.10.2525

S2Walk continues to loop, each time updating the running walkstate with the next-level table address from2526

the decoded descriptor (in AArch64.S2Walk, page 104, line 53), until a leaf entry is found. It is either invalid (in2527

AArch64.S2Walk, page 105, line 65), or, a valid page or block entry (in AArch64.S2Walk, page 105, line 70). These2528

correspond to the next three R S2 Ln events in the figure.2529

Assuming the walk did not fail with a fault, the S2Translate function returns with the physical address of2530

the stage 1 level 0 table. S1Walk can continue, performing a read of the physical memory in the table (in2531

AArch64.S1Walk, page 100, line 52). From there, S1Walk continues in much the same way as the stage 2 walk did:2532

computing the current table intermediate-physical address, translating it to get the physical address, performing2533

the read of memory to get the descriptor, until a leaf entry is found.2534

This process generates all the events up to, and including, the final stage 1 entry read (the R S1 L3 event),2535

returning the intermediate-physical address that S1Walk computed.2536

Finally, FullTranslate calls S2Translate one last time (in AArch64.FullTranslate, page 96, line 22) on the2537

intermediate-physical address, generating the last Rreg(VTTBR) and R S2 Ln events, and producing the final PA2538

of the translation.2539

This output PA is what is passed to the PhysMemWrite of the MemSingle[] call we saw earlier, generating the2540

final W [pa]=data event in the trace.2541

7.8 Caching in TLBs2542

Hardware does not simply perform the (up to) 24 additional memory accesses for every instruction-fetch, read,2543

or write. This would have an unacceptable performance penalty. Instead, the results of previous translations2544

of the same address are cached, in specialised structures called Translation Lookaside Buffers, or simply TLBs.2545

These TLBs can store whole translation results, or the separate virtual and intermediate-physical mappings, or2546

individual translation table entries, or a mix of the above, which we will explore more in the next chapter.2547
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Figure 7.10: Memory and register accesses during a ‘STR Xt,[Xn]’ instruction.

When the processor translates a virtual address, it first looks for it in the TLB. If there is no entry, then this is2548

called a TLB miss and a translation table walk must be performed. The results of this walk are typically then2549

cached in the TLB, so future translations of the same address can directly grab the physical address, memory2550

attributes, and permissions, without needing to do another translation table walk. This process and the various2551

microarchitectural structures are explored more in §8.3.1.2552

If there is an entry, this is referred to as a TLB hit. In this case, the result can be taken directly from the TLB.2553

Under normal circumstances, the TLB is invisible to userspace programs. However, systems code is expected to2554

manage the TLBs explicitly, using a set of instructions which Arm provide specifically for this purpose: the family2555

of TLBI TLB-maintenance instructions. When context switching, the systems software must manually manage2556

the TLB, invalidating stale entries for old mappings out of the cache. The behaviours that arise from reading from2557

potentially stale TLB entries are explored in detail in §8.5.2558

Address space identifiers TLB misses and TLB maintenance are both expensive operations, and so to reduce2559

the burden, Arm provide a mechanism to permit multiple processes’ address spaces to be loaded into the TLB at2560

the same time, by allowing the software to mark each address space with a numeric label. Arm call these address2561

space identifiers (or ASIDs).2562

Entries in the TLB are tagged with the current ASID, and so only that process will see entries in the TLB with that2563

ASID.2564

The current ASID is encoded in the high-order bits of the current TTBR. During a context switch, the system2565

software needs only switch to the new translation tables for the new address space of the other process, without2566

doing TLB maintenance, so long as it ensures the ASIDs are distinct.2567

There are only finitely many ASIDs available (typically it is an 8-bit field), and so eventually TLB maintenance is2568

required to re-use a previously allocated ASID for a new address space. But this happens far less frequently than2569

the context switches themselves. The provided TLB maintenance instructions can target specific ASIDs, avoiding2570

the need to over-invalidate other cached address space translations, preventing a cascade of TLB misses in other2571

processes, further improving the runtime performance for a small amount of additional effort on the software side.2572

VMIDs Address space identifiers are used only for stage 1 translations. Stage 2 has virtual machine identifiers2573

(VMIDs).2574

As before, the current VMID is encoded in the VTTBR_EL2 register, and the TLB entries are additionally tagged2575

with the current VMID (as well as the ASID), and a translation will only use TLB entries that match the current2576

ASID and VMID.2577
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TLB maintenace instructions Arm define a whole family of instructions under the TLBI mnemonic.2578

The format for a TLBI instruction is a product of fields:2579

1 TLBI <type ><level ><broadcast >{,<reg >}2580
22581

3 <type > =2582

4 ALL | VMALL | ASID | VA{A|L} | IPAS22583

5 <level > =2584

6 E1 | E22585

7 <broadcast > =2586

8 {IS}2587

9 <reg > =2588

10 X0 | X1 | ... | X302589

Again, see the full description in the Arm manual for a more complete description [12, D5-4915].2590

The most common, and the ones that will be discussed in the following chapters, are as follows:2591

. TLBI VAE1,Xn: Invalidate this CPU’s cached copies of entries used to translate the virtual address in register2592

Xn, for the EL1&0 regime, for the current ASID and VMID.2593

. TLBI VALE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the virtual2594

address in register Xn, for the EL1&0 regime, for the current ASID and VMID.2595

. TLBI VAAE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the virtual2596

address in register Xn, for the EL1&0 regime, for the current VMID, for any ASID.2597

. TLBI VAE1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the virtual address in2598

register Xn, for the EL1&0 regime, for the current ASID and VMID.2599

(…and equivalent TLBI VAE2, TLBI VALE2, TLBI VAE2IS instructions for virtual addresses in the EL22600

regime)2601

. TLBI IPAS2E1,Xn: Invalidate this CPU’s cached copies of entries used to translate the intermediate physical2602

address in register Xn, for the EL1&0 regime, for the current VMID.2603

. TLBI IPAS2LE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the2604

intermediate physical address in register Xn, for the EL1&0 regime, for the current VMID.2605

. TLBI IPAS2E1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the intermediate2606

physical address in register Xn, for the EL1&0 regime, for the current VMID.2607

. TLBI VMALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the current VMID.2608

. TLBI VMALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for the current VMID.2609

. TLBI ALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for any ASID or VMID.2610

. TLBI ALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for any ASID or VMID.2611

(…and equivalent TLBI ALLE2, and TLBI ALLE2IS instructions for the EL2 regime)2612

. TLBI ASIDE1,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the ASID specified2613

in register Xn.2614

. TLBI ASIDE1IS,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the ASID2615

specified in register Xn.2616

(Note that the EL2 regime does not have ASIDs)2617
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7.9 Arm ASL Reference2618

Here I include the actual Arm ASL for the various parts of the translation machinery. This listing contains a2619

verbatim subset of the ASL pseudocode for the translation table walk.2620

The sources have per-function line numbers and are annotated to direct the reader to those parts highlighted in2621

§7.7.3. Lines which handle out-of-scope features (access flags, dirty bits, shareability domains, debugging, realms,2622

secure states, atomics) are greyed out. Key lines have coloured annotations.2623

The ASL code listed here (minus the annotations) is copyright 2022 Arm Limited, company 02557590 registered in2624

England. The ASL code is publicly available on Arm’s webpage [43], we reproduce here only those parts of the2625

ASL being discussed here (the translation table walk), for the purposes of criticism, review, and quotation [86, s.2626

30].2627

7.9.1 AArch64.TranslateAddress

1 AddressDescriptor AArch64.TranslateAddress(bits (64) va , AccType acctype , boolean
iswrite , boolean aligned , integer size)

2 result = AArch64.FullTranslate(va, acctype , iswrite , aligned); Do the translation
3
4 if !IsFault(result) && acctype != AccType_IFETCH then
5 result.fault = AArch64.CheckDebug(va, acctype , iswrite , size);
6
7 if HaveRME () && !IsFault(result) && (acctype != AccType_DC ||
8 boolean IMPLEMENTATION_DEFINED "GPC Fault on DC operations ") then
9 accdesc = CreateAccessDescriptor(acctype);

10 result.fault.gpcf = GranuleProtectionCheck(result , accdesc);
11
12 if result.fault.gpcf.gpf != GPCF_None then
13 result.fault.statuscode = Fault_GPCFOnOutput;
14 result.fault.paddress = result.paddress;
15 result.fault.acctype = acctype;
16 result.fault.write = iswrite;
17
18 if !IsFault(result) && acctype == AccType_IFETCH then
19 result.fault = AArch64.CheckDebug(va, acctype , iswrite , size);
20
21 // Update virtual address for abort functions
22 result.vaddress = ZeroExtend(va);
23
24 return result;
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7.9.2 AArch64.FullTranslate

1 AddressDescriptor AArch64.FullTranslate(bits (64) va , AccType acctype , boolean
iswrite , boolean aligned)

2
3 fault = NoFault ();
4 fault.acctype = acctype;
5 fault.write = iswrite;
6
7 ispriv = PSTATE.EL != EL0 && !( acctype IN {AccType_UNPRIV ,

AccType_UNPRIVSTREAM });
8 regime = TranslationRegime(PSTATE.EL, acctype);
9 ss = SecurityStateAtEL(PSTATE.EL);

10
11 AddressDescriptor ipa;
12 (fault , ipa) = AArch64.S1Translate

Do the first stage of translation

(fault , regime , ss , va, acctype , aligned ,
iswrite , ispriv);

13
14 if fault.statuscode != Fault_None then Check for stage 1 translation fault

15 return CreateFaultyAddressDescriptor(va, fault);
16
17 assert (ss == SS_Realm) IMPLIES EL2Enabled ();
18 if regime == Regime_EL10 && EL2Enabled () then
19 s1aarch64 = TRUE;
20 s2fs1walk = FALSE;
21 AddressDescriptor pa;
22 (fault , pa) = AArch64.S2Translate

Do the second stage of translation

(fault , ipa , s1aarch64 , ss, s2fs1walk ,
acctype , aligned , iswrite , ispriv);

23
24 if fault.statuscode != Fault_None then Check for stage 2 translation fault

25 return CreateFaultyAddressDescriptor(va, fault);
26 else
27 return pa;
28 else
29 return ipa;
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7.9.3 AArch64.S1Translate

1 (FaultRecord , AddressDescriptor) AArch64.S1Translate(FaultRecord fault_in ,
Regime regime , SecurityState ss , bits (64) va, AccType acctype , boolean
aligned_in , boolean iswrite_in , boolean ispriv)

2 FaultRecord fault = fault_in;
3 boolean aligned = aligned_in;
4 boolean iswrite = iswrite_in;
5 // Prepare fault fields in case a fault is detected
6 fault.secondstage = FALSE;
7 fault.s2fs1walk = FALSE;
8
9 if !AArch64.S1Enabled(regime) then

10 return AArch64.S1DisabledOutput(fault , regime , ss , va, acctype , aligned);
11
12 walkparams = AArch64.GetS1TTWParams(regime , va);
13
14 if (AArch64.S1InvalidTxSZ(walkparams) ||
15 (! ispriv && walkparams.e0pd == '1') ||
16 (! ispriv && walkparams.nfd == '1' && IsDataAccess(acctype) && TSTATE.depth

> 0) ||
17 (! ispriv && walkparams.nfd == '1' && acctype == AccType_NONFAULT) ||
18 )AArch64.VAIsOutOfRange(va, acctype , regime , walkparams)) then

Check VA is valid19 fault.statuscode = Fault_Translation;
20 fault.level = 0;
21 return (fault , AddressDescriptor UNKNOWN);
22
23 AddressDescriptor descaddress;
24 TTWState walkstate;
25 bits (64) descriptor;
26 bits (64) new_desc;
27 bits (64) mem_desc;
28 repeat
29 (fault , descaddress , walkstate , descriptor) = AArch64.

Do the translation table walk

S1Walk(fault ,
walkparams , va, regime , ss, acctype , iswrite , ispriv);

30
31 if fault.statuscode != Fault_None then Check for S1 translation fault
32 return (fault , AddressDescriptor UNKNOWN);
33
34 if acctype == AccType_IFETCH then
35 // Flag the fetched instruction is from a guarded page
36 SetInGuardedPage(walkstate.guardedpage == '1');
37
38 if AArch64.S1HasAlignmentFault(acctype , aligned , walkparams.ntlsmd ,

walkstate.memattrs) then
39 fault.statuscode = Fault_Alignment;
40 elsif IsAtomicRW(acctype) then
41 if AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams , ispriv

, acctype , FALSE) then
42 // The Permission fault was not caused by lack of write permissions
43 fault.statuscode = Fault_Permission;
44 fault.write = FALSE;
45 elsif AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams ,

ispriv , acctype , TRUE) then
46 // The Permission fault was caused by lack of write permissions
47 fault.statuscode = Fault_Permission;
48 fault.write = TRUE;
49 elsif AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams ,

ispriv , acctype , iswrite) then Check for permission fault

50 fault.statuscode = Fault_Permission;
51
52 new_desc = descriptor;
53 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
54 // Set descriptor AF bit
55 new_desc <10> = '1';
56
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57 // If HW update of dirty bit is enabled , the walk state permissions
58 // will already reflect a configuration permitting writes.
59 // The update of the descriptor occurs only if the descriptor bits in
60 // memory do not reflect that and the access instigates a write.
61 if (fault.statuscode == Fault_None &&
62 walkparams.ha == '1' &&
63 walkparams.hd == '1' &&
64 descriptor <51> == '1' && // Descriptor DBM bit
65 (IsAtomicRW(acctype) || iswrite) &&
66 !( acctype IN {AccType_AT , AccType_ATPAN , AccType_IC , AccType_DC })) then
67 // Clear descriptor AP[2] bit permitting stage 1 writes
68 new_desc <7> = '0';
69
70 AddressDescriptor descupdateaddress;
71 FaultRecord s2fault;
72 // Either the access flag was clear or AP <2> is set
73 if new_desc != descriptor then
74 if regime == Regime_EL10 && EL2Enabled () then
75 s1aarch64 = TRUE;
76 s2fs1walk = TRUE;
77 aligned = TRUE;
78 iswrite = TRUE;
79 (s2fault , descupdateaddress) = AArch64.S2Translate(fault , descaddress ,

s1aarch64 , ss, s2fs1walk , AccType_ATOMICRW , aligned , iswrite , ispriv);
80
81 if s2fault.statuscode != Fault_None then
82 return (s2fault , AddressDescriptor UNKNOWN);
83 else
84 descupdateaddress = descaddress;
85
86 (fault , mem_desc) = AArch64.MemSwapTableDesc(fault , descriptor , new_desc ,

walkparams.ee, descupdateaddress);
87
88 until new_desc == descriptor || mem_desc == new_desc;
89
90 if fault.statuscode != Fault_None then
91 return (fault , AddressDescriptor UNKNOWN);
92
93 // Output Address
94 oa = StageOA(va, walkparams.tgx , walkstate); Compute IPA

95 MemoryAttributes memattrs;
96 if (acctype == AccType_IFETCH &&
97 (walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(

regime))) then
98 // Treat memory attributes as Normal Non -Cacheable
99 memattrs = NormalNCMemAttr ();

100 memattrs.xs = walkstate.memattrs.xs;
101 elsif (acctype != AccType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
102 walkstate.memattrs.memtype == MemType_Normal) then
103 // Treat memory attributes as Normal Non -Cacheable
104 memattrs = NormalNCMemAttr ();
105 memattrs.xs = walkstate.memattrs.xs;
106
107 // The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
108 // on the Tagged attribute
109 if HaveMTE2Ext () && walkstate.memattrs.tagged then
110 memattrs.tagged = ConstrainUnpredictableBool(Unpredictable_S1CTAGGED);
111 else
112 memattrs = walkstate.memattrs;
113
114 // Shareability value of stage 1 translation subject to stage 2 is

IMPLEMENTATION DEFINED
115 // to be either effective value or descriptor value
116 if (regime == Regime_EL10 && EL2Enabled () && HCR_EL2.VM == '1' &&
117 !( boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage

1")) then
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118 memattrs.shareability = walkstate.memattrs.shareability;
119 else
120 memattrs.shareability = EffectiveShareability(memattrs);
121
122 if acctype == AccType_ATOMICLS64 && memattrs.memtype == MemType_Normal then
123 if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC

then
124 fault.statuscode = Fault_Exclusive;
125 return (fault , AddressDescriptor UNKNOWN);
126
127 ipa = CreateAddressDescriptor(va , oa, memattrs);
128 return (fault , ipa) Return IPA and Memory Attributes;
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7.9.4 AArch64.S1Walk

1 (FaultRecord , AddressDescriptor , TTWState , bits (64)) AArch64.S1Walk(FaultRecord
fault_in , S1TTWParams walkparams , bits (64) va, Regime regime , SecurityState
ss , AccType acctype , boolean iswrite_in , boolean ispriv)

2 FaultRecord fault = fault_in;
3 boolean iswrite = iswrite_in;
4 if HasUnprivileged(regime) && AArch64.S1EPD(regime , va) == '1' then
5 fault.statuscode = Fault_Translation;
6 fault.level = 0;
7 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN

);
8
9 walkstate = AArch64.S1InitialTTWState(walkparams , va, regime , ss); read TTBR

10
11 // Detect Address Size Fault by TTB
12 if AArch64.OAOutOfRange(walkstate , walkparams.ps , walkparams.tgx , va) then
13 fault.statuscode = Fault_AddressSize;
14 fault.level = 0;
15 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN

);
16
17 bits (64) descriptor;
18 AddressDescriptor walkaddress;
19
20 walkaddress.vaddress = va;
21 if !AArch64.S1DCacheEnabled(regime) then
22 walkaddress.memattrs = NormalNCMemAttr ();
23 walkaddress.memattrs.xs = walkstate.memattrs.xs;
24 else
25 walkaddress.memattrs = walkstate.memattrs;
26
27 // Shareability value of stage 1 translation subject to stage 2 is

IMPLEMENTATION DEFINED
28 // to be either effective value or descriptor value
29 if (regime == Regime_EL10 && EL2Enabled () && HCR_EL2.VM == '1' &&
30 !( boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage

1")) then
31 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
32 else
33 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.

memattrs);
34
35 DescriptorType desctype;
36 repeat For each level in {0,1,2,3}

37 fault.level = walkstate.level;
38 FullAddress descaddress = AArch64.TTEntryAddress

Get IPA of entry to read

(walkstate.level , walkparams
.tgx , walkparams.txsz , va, walkstate.baseaddress);

39
40 walkaddress.paddress = descaddress;
41
42 if regime == Regime_EL10 && EL2Enabled () then
43 s1aarch64 = TRUE;
44 s2fs1walk = TRUE;
45 aligned = TRUE;
46 iswrite = FALSE;
47 (s2fault , s2walkaddress) = AArch64.S2Translate

Do S2 translation to get the
PA of the entry

(fault , walkaddress ,
s1aarch64 , ss, s2fs1walk , AccType_TTW , aligned , iswrite , ispriv);

48
49 if s2fault.statuscode != Fault_None then Check for S2 fault
50 return (s2fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
51
52 (fault , descriptor) = FetchDescriptor

Read memory to get descriptor
(walkparams.ee, s2walkaddress , fault)

;
53 else
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54 (fault , descriptor) = FetchDescriptor(walkparams.ee , walkaddress , fault);
55
56 if fault.statuscode != Fault_None then Check for external abort
57 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
58
59 desctype = AArch64.DecodeDescriptorType(descriptor , walkparams.ds,

walkparams.tgx , walkstate.level);
60
61 case desctype of
62 when DescriptorType_Table
63 walkstate = AArch64.S1NextWalkStateTable

Extract next level table address

(walkstate , regime , walkparams ,
descriptor);

64
65 // Detect Address Size Fault by table descriptor
66 if AArch64.OAOutOfRange(walkstate , walkparams.ps , walkparams.tgx , va)

then
67 fault.statuscode = Fault_AddressSize;
68 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
69
70 when DescriptorType_Page , DescriptorType_Block
71 walkstate = AArch64.S1NextWalkStateLast

Extract page start address

(walkstate , regime , ss ,
walkparams , descriptor);

72
73 when DescriptorType_Invalid
74 fault.statuscode = Fault_Translation;
75 return

Return fault if invalid

(fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)
UNKNOWN);

76
77 otherwise
78 Unreachable ();
79
80 until desctype IN {DescriptorType_Page , DescriptorType_Block };
81
82 if (walkstate.contiguous == '1' &&
83 AArch64.ContiguousBitFaults(walkparams.txsz , walkparams.tgx , walkstate.

level)) then
84 fault.statuscode = Fault_Translation;
85 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor)

then
86 fault.statuscode = Fault_Translation;
87 // Detect Address Size Fault by final output
88 elsif AArch64.OAOutOfRange(walkstate , walkparams.ps , walkparams.tgx , va) then
89 fault.statuscode = Fault_AddressSize;
90 // Check descriptor AF bit
91 elsif (descriptor <10> == '0' && walkparams.ha == '0' &&
92 !( acctype IN {AccType_DC , AccType_IC} &&
93 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC

operations ")) then
94 fault.statuscode = Fault_AccessFlag;
95
96 return (fault , walkaddress , walkstate , descriptor);

7.9. ARM ASL REFERENCE 101



7.9.5 AArch64.S2Translate

1 (FaultRecord , AddressDescriptor) AArch64.S2Translate(FaultRecord fault_in ,
AddressDescriptor ipa , boolean s1aarch64 , SecurityState ss , boolean s2fs1walk
, AccType acctype , boolean aligned , boolean iswrite , boolean ispriv)

2 walkparams = AArch64.GetS2TTWParams(ss, ipa.paddress.paspace , s1aarch64);
3 FaultRecord fault = fault_in;
4
5 // Prepare fault fields in case a fault is detected
6 fault.statuscode = Fault_None; // Ignore any faults from stage 1
7 fault.secondstage = TRUE;
8 fault.s2fs1walk = s2fs1walk;
9 fault.ipaddress = ipa.paddress;

10
11 if walkparams.vm != '1' then Check if in a two-stage regime

12 // Stage 2 translation is disabled
13 return (fault , ipa);
14
15 if (AArch64.S2InvalidTxSZ(walkparams , s1aarch64) ||
16 AArch64.S2InvalidSL(walkparams) ||
17 AArch64.S2InconsistentSL(walkparams) ||
18 AArch64.IPAIsOutOfRange(ipa.paddress.address , walkparams)) then
19 fault.statuscode = Fault_Translation;
20 fault.level = 0;
21 return (fault , AddressDescriptor UNKNOWN);
22
23 AddressDescriptor descaddress;
24 TTWState walkstate;
25 bits (64) descriptor;
26 bits (64) new_desc;
27 bits (64) mem_desc;
28 repeat
29 (fault , descaddress , walkstate , descriptor) = AArch64.S2Walk

Do translation table walk

(fault , ipa ,
walkparams , ss, acctype , iswrite , s1aarch64);

30
31 if fault.statuscode != Fault_None then Check for stage 2 translation fault

32 return (fault , AddressDescriptor UNKNOWN);
33
34 if AArch64.S2HasAlignmentFault(acctype , aligned , walkstate.memattrs) then
35 fault.statuscode = Fault_Alignment;
36 elsif IsAtomicRW(acctype) then
37 if AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss , walkparams ,

ispriv , acctype , FALSE) then
38 // The Permission fault was not caused by lack of write permissions
39 fault.statuscode = Fault_Permission;
40 fault.write = FALSE;
41 elsif AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss , walkparams ,

ispriv , acctype , TRUE) then
42 // The Permission fault was caused by lack of write permissions.
43 // However , HW updates , which are atomic writes for stage 1
44 // descriptors , permissions fault reflect the original access.
45 fault.statuscode = Fault_Permission;
46 if !fault.s2fs1walk then
47 fault.write = TRUE;
48 elsif AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss , walkparams ,

ispriv , acctype , iswrite) then Check for stage 2 permission fault

49 fault.statuscode = Fault_Permission;
50
51 new_desc = descriptor;
52 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
53 // Set descriptor AF bit
54 new_desc <10> = '1';
55
56 // If HW update of dirty bit is enabled , the walk state permissions
57 // will already reflect a configuration permitting writes.
58 // The update of the descriptor occurs only if the descriptor bits in
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59 // memory do not reflect that and the access instigates a write.
60 if (fault.statuscode == Fault_None &&
61 walkparams.ha == '1' &&
62 walkparams.hd == '1' &&
63 descriptor <51> == '1' && // Descriptor DBM bit
64 (IsAtomicRW(acctype) || iswrite) &&
65 !( acctype IN {AccType_AT , AccType_ATPAN , AccType_IC , AccType_DC })) then
66 // Set descriptor S2AP [1] bit permitting stage 2 writes
67 new_desc <7> = '1';
68
69 // Either the access flag was clear or S2AP <1> is clear
70 if new_desc != descriptor then
71 (fault , mem_desc) = AArch64.MemSwapTableDesc(fault , descriptor , new_desc ,

walkparams.ee, descaddress);
72
73 until new_desc == descriptor || mem_desc == new_desc;
74
75 if fault.statuscode != Fault_None then
76 return (fault , AddressDescriptor UNKNOWN);
77
78 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
79 // Output Address
80 oa = StageOA(ipa_64 , walkparams.tgx , walkstate); Compute final PA

81 MemoryAttributes s2_memattrs;
82 if (( s2fs1walk &&
83 walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||
84 (acctype == AccType_IFETCH &&
85 (walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
86 (acctype != AccType_IFETCH &&
87 walkstate.memattrs.memtype == MemType_Normal && HCR_EL2.CD == '1')) then
88 // Treat memory attributes as Normal Non -Cacheable
89 s2_memattrs = NormalNCMemAttr ();
90 s2_memattrs.xs = walkstate.memattrs.xs;
91 else
92 s2_memattrs = walkstate.memattrs;
93
94 if !s2fs1walk && acctype == AccType_ATOMICLS64 && s2_memattrs.memtype ==

MemType_Normal then
95 if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs !=

MemAttr_NC then
96 fault.statuscode = Fault_Exclusive;
97 return (fault , AddressDescriptor UNKNOWN);
98
99 MemoryAttributes memattrs;

100 if walkparams.fwb == '0' then
101 memattrs = S2CombineS1MemAttrs(ipa.memattrs , s2_memattrs); Merge memory attributes

102 else
103 memattrs = s2_memattrs;
104
105 pa = CreateAddressDescriptor(ipa.vaddress , oa , memattrs);
106 return (fault , pa); Return PA and Memory Attributes
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7.9.6 AArch64.S2Walk

1 (FaultRecord , AddressDescriptor , TTWState , bits (64)) AArch64.S2Walk(
2 FaultRecord fault_in , AddressDescriptor ipa , S2TTWParams walkparams ,

SecurityState ss, AccType acctype , boolean iswrite , boolean s1aarch64)
3
4 FaultRecord fault = fault_in;
5 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
6
7 TTWState walkstate;
8 if ss == SS_Secure then
9 walkstate = AArch64.SS2InitialTTWState(walkparams , ipa.paddress.paspace);

10 else
11 walkstate = AArch64.S2InitialTTWState(ss , walkparams); read VTTBR
12
13 // Detect Address Size Fault by TTB
14 if AArch64.OAOutOfRange(walkstate , walkparams.ps , walkparams.tgx , ipa_64) then
15 fault.statuscode = Fault_AddressSize;
16 fault.level = 0;
17 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN

);
18
19 bits (64) descriptor;
20 AddressDescriptor walkaddress;
21
22 walkaddress.vaddress = ipa.vaddress;
23 if HCR_EL2.CD == '1' then
24 walkaddress.memattrs = NormalNCMemAttr ();
25 walkaddress.memattrs.xs = walkstate.memattrs.xs;
26 else
27 walkaddress.memattrs = walkstate.memattrs;
28
29 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs

);
30
31 DescriptorType desctype;
32 repeat For each level in {0,1,2,3}

33 fault.level = walkstate.level;
34
35 FullAddress descaddress;
36 if walkstate.level == AArch64.S2StartLevel(walkparams) then
37 // Initial lookup might index into concatenated tables
38 descaddress = AArch64.S2SLTTEntryAddress(walkparams , ipa.paddress.address ,

walkstate.baseaddress);
39 else
40 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
41 descaddress = AArch64.TTEntryAddress(walkstate.level , walkparams.tgx ,

walkparams.txsz , ipa_64 , walkstate.baseaddress);

Get PA of entry to read
42
43 walkaddress.paddress = descaddress;
44 (fault , descriptor) = FetchDescriptor

Read descriptor from memory
(walkparams.ee, walkaddress , fault);

45
46 if fault.statuscode != Fault_None then Check for external abort
47 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
48
49 desctype = AArch64.DecodeDescriptorType(descriptor , walkparams.ds,

walkparams.tgx , walkstate.level);
50
51 case desctype of
52 when DescriptorType_Table
53 walkstate = AArch64.S2NextWalkStateTable

Extract next level table address
(walkstate , walkparams ,

descriptor);
54
55 // Detect Address Size Fault by table descriptor
56 if AArch64.OAOutOfRange(walkstate , walkparams.ps , walkparams.tgx , ipa_64

) then
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57 fault.statuscode = Fault_AddressSize;
58 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
59
60 when DescriptorType_Page , DescriptorType_Block
61 walkstate = AArch64.S2NextWalkStateLast

Extract page start address

(walkstate , ss, walkparams , ipa ,
descriptor);

62
63 when DescriptorType_Invalid
64 fault.statuscode = Fault_Translation;
65 return

Return fault if invalid

(fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)
UNKNOWN);

66
67 otherwise
68 Unreachable ();
69
70 until desctype IN {DescriptorType_Page , DescriptorType_Block };
71
72 if (walkstate.contiguous == '1' &&
73 AArch64.ContiguousBitFaults(walkparams.txsz , walkparams.tgx , walkstate.

level)) then
74 fault.statuscode = Fault_Translation;
75 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor)

then
76 fault.statuscode = Fault_Translation;
77 // Detect Address Size Fault by final output
78 elsif AArch64.OAOutOfRange

Check output address is within bounds
(walkstate , walkparams.ps, walkparams.tgx , ipa_64)

then
79 fault.statuscode = Fault_AddressSize;
80 // Check descriptor AF bit
81 elsif (descriptor <10> == '0' && walkparams.ha == '0' &&
82 !( acctype IN {AccType_DC , AccType_IC} &&
83 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC

operations ")) then
84 fault.statuscode = Fault_AccessFlag;
85
86 return (fault , walkaddress , walkstate , descriptor);
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7.9.7 AArch64.FetchDescriptor

1 (FaultRecord , bits(N)) FetchDescriptor(bit ee , AddressDescriptor walkaddress ,
FaultRecord fault_in)

2 // 32-bit descriptors for AArch32 Short -descriptor format
3 // 64-bit descriptors for AArch64
4 //or AArch32 Long -descriptor format
5 assert N == 32 || N == 64;
6 bits(N) descriptor;
7 FaultRecord fault = fault_in;
8 AccessDescriptor walkacc;
9

10 walkacc.acctype = AccType_TTW;
11 // MPAM PARTID for translation table walk is determined by the access invoking

the translation
12 walkacc.mpam = GenMPAMcurEL(fault.acctype);
13
14 if HaveRME () then
15 fault.gpcf = GranuleProtectionCheck(walkaddress , walkacc);
16 if fault.gpcf.gpf != GPCF_None then
17 fault.statuscode = Fault_GPCFOnWalk;
18 fault.paddress = walkaddress.paddress;
19 fault.gpcfs2walk = fault.secondstage;
20 return (fault , bits(N) UNKNOWN);
21
22 PhysMemRetStatus memstatus;
23 (memstatus , descriptor) = PhysMemRead(walkaddress , N DIV 8, walkacc);
24 if IsFault(memstatus) then
25 fault = HandleExternalTTWAbort(memstatus , fault.write , walkaddress , walkacc ,

N DIV 8, fault);
26 if IsFault(fault.statuscode) then
27 return (fault , bits(N) UNKNOWN);
28
29 if ee == '1' then
30 descriptor = BigEndianReverse(descriptor);
31
32 return (fault , descriptor);
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Chapter 82628

Relaxed virtual memory2629

Now we will introduce the main concurrency architecture design questions that arise for virtual memory in2630

Arm. As usual, the architecture defines the envelope of behaviours which hardware must guarantee and on which2631

software may rely. This envelope must be tight enough to give the guarantees software needs to function, but still2632

loose enough to admit the range of existing and conceivable microarchitectures whose optimization techniques2633

are necessary for performance.2634

This chapter therefore will discuss both the relevant microarchitecture as we understand it, and also the behaviours2635

which it is believed software relies upon. The discussion will touch on points of several kinds: some which are2636

clear in the current Arm prose documentation; some where Arm are in the process of architecting a change; some2637

that are not documented but where the semantics is (perhaps, after discussion with Arm) clear or constrained by2638

current hardware or software practice; and, some where their modelling raised questions for which the architecture2639

is not yet well-defined, and Arm must make an architectural decision.2640

Ideally, we would be able to specify which points belong to which kind. It is, however, not so easy. There is2641

no clean separation between aspects there are clearly defined in the architecture reference, and those that are2642

not; instead, the manual has a shallow covering of many of the behaviours described here. In other places, the2643

reference may have been updated or changed over the course of the work, clarifying parts of the architecture, and2644

while this may have happened concurrently with discussing those and other points with Arm, the reference text2645

itself is solely the responsibility of Arm. In §8.9 we will return to this question, and more directly address the2646

kinds of each point discussed.2647

Chapter overview The body of this chapter will explore a sequence of key behaviours, some of which the2648

architecture guarantees and some that it does not. Each contains a description of the behaviour, including2649

whether software relies on it or known hardware guarantees it; a short discussion of the architectural intent as2650

we understand it; and any associated litmus tests.2651

This chapter will discuss a variety of interesting behaviours. In an attempt to make this chapter more approachable,2652

it is broken down into a logical progression: slowly building up from the most simple and fundamental parts of2653

the architecture, to increasingly more complex cases.2654

We will first discuss (in §8.2) how translation affects the prior usermode tests covered in previous work. Then, we2655

shall see how the caching of translation entries is limited (§??) and the fundamental behaviours of the translation2656

table walk (§8.4). Building upon that, we will see that these translation table walks may be cached and re-used in2657

later translations, which is explored in detail in §8.5. Then (in §8.6), we will explore how the various kinds of TLB2658

maintenance interact with those cached translations, and other translation table walks. Finally, we touch on how2659

all of the above fit together with system registers and other context changing and synchronising operations in2660

§8.7.2661
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8.1 Virtual memory litmus tests2704

AArch64 CoW
Initial State

0:R0=0x2
0:R1=x
0:R3=y
0:R4=z
0:R5=z
0:R6=0b0
0:R7=pte3(x)
0:R8=page(x)
0:R9=mkdesc3(oa=pa2)
0:R10=pte3(x)
0:R20=0b0
0:VBAR_EL1=0x1000

virtual x y z;
physical pa1 pa2;
x |-> pa1 with [AP = 0b11] and default;
x ?-> invalid;
x ?-> pa2 with [AP = 0b01] and default;
y |-> pa1;
z |-> pa2;
identity 0x1000 with code;
*pa1 = 1;
*pa2 = 0;

Thread 0
01. STR X0,[X1]

Thread 0 EL1 Handler
01. 0x1400:
02. CBNZ X20,exit
03. LDR X2,[X3]
04. STR X2,[X4]
05. DC CIVAC,X5
06. DSB SY
07. STR X6,[X7]
08. DSB SY
09. TLBI VALE1IS,X8
10. DSB SY
11. STR X9,[X10]
12. MOV X20,#1
13. ERET
14. exit:
15. MRS X21,ELR_EL1
16. ADD X21,X21,#4
17. MSR ELR_EL1,X21
18. ERET

Final State
pa1=1 & pa2=2

Allow

Figure 8.1: Test CoW: code listing

Virtual memory poses its own challenges, but is fundamentally no different2705

than the other fragments of Armwe have seen, and exploring the architectural2706

intent is best done through the creation, discussion, and evaluation of, small2707

programs which are representative examples of common software patterns.2708

As we explore more of the system semantics, more and more of the system2709

state plays an integral role in the behaviours we see. For this reason, to2710

describe the litmus tests exploring those behaviours, we need a new language2711

for describing the state of the system in a terse way, covering features not2712

supported by the litmus test formats supported by the previous litmus, rmem,2713

herd, and diy tools [64, 49, 39, 87].2714

The litmus tests here are given in the isla-axiomatic test format, extended2715

with a small DSL for describing the initial state (and runtime constraints2716

of) the pagetables. This format is described in detail in the isla-axiomatic2717

documentation [88].2718

A virtual memory litmus test To illustrate this isla test format, Figure 8.12719

contains the test listing for a non-trivial virtual memory litmus test called2720

CoW (or “Copy-on-Write”).2721

This test is derived from sequence of operations the Linux kernel takes when2722

performing copy-on-write. Thread 0 tries to write to a location (call it x) that2723

is currently read-only (line 1 in the thread code), then when the fault is taken2724

the Linux exception handler begins executing (line 1 in the handler), Linux2725

performs some checks that it’s okay to copy and that it hasn’t already done2726

so (not part of the test), and then copies the physical page (lines 3 and 4 in2727

the handler, although the test here only copies one value as demonstration),2728

before flushing the data caches (line 5) so that later reads will be guaranteed2729

to see the copied values. Then Linux needs to swap over the pagetable entry2730

for x from a read-only view on the original page to a writeable mapping on2731

the freshly copied page. It does this by first ‘breaking’ the entry, making2732

it invalid (line 7), then performing the necessary TLB maintenance (line 9),2733

before writing a new mapping to the new page (line 11). Now, Linux can2734

return from the handler (line 13) and re-try the store instruction, hopefully2735

this time successfully writing to the new page.2736

The test format is split into 4 main parts:2737

. The initial state, comprised of:2738

– the per-thread register state.2739

– the global memory and pagetable state.2740

. The thread code and any exception-handler code.2741

. The interesting final state, as a predicate over the final register and2742

memory state.2743

. And, optionally, whether the outcome is allowed or forbidden by the2744

model.2745

Initial state The initial state has three virtual addresses (x, y and z), and two physical addresses (pa1 and pa2).2746

Initial register values are written like 0:R4=z, meaning register R4 on Thread 0 initially contains the value z (in2747

this case, a virtual address). Helper functions like pte3, page and mkdesc3 are used to get the address of the leaf2748

entry, the page offset and to create a new valid descriptor with the given OA, a more detailed description of the2749

functions are given later.2750

Behind the scenes, isla creates a full instantiation of the Arm translation tables, but with some holes for symbolic2751

values where the test may modify the tables. There is a default translation table, where the code and the tables2752

themselves are mapped by default and everything else is invalid.2753
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Thread 0

a2: Fault (W)a1: T s1:l3pte(x)

b: R y/pa1 = 0x1

c: W z/pa2 = 0x1

d: dsb sy

e: W 0x303000/s1:l3pte(x) = 0x0

f: dsb sy

g: TLBI VALE1IS page=page(x)

h: dsb sy

i: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

j: eret

k2: W pa2 = 0x2k1: T s1:l3pte(x)

coco

Figure 8.2: Test CoW: execution diagram

The pagetable setup is then defined in a small DSL which defines a delta to that default table, specifying that2754

certain pages should be mapped or unmapped initially, as well as being able to specify the set of locations and2755

their initial memory values the test will need.2756

Fundamentally we categorise those locations as either virtual, intermediate, or physical. The line virtual x y2757

z in the CoW test allocates 3 virtual contiguous pages, and labels their page-aligned addresses as x, y, and z. It2758

then allocates two physical pages with addresses pa1 and pa2. Next, the setup defines the initial value of the2759

translation tables, as well as specifying the set of potential translation tables that may be in use by the test (for2760

isla to create symbolic ‘holes’ for those). Namely, the initial state starts with x mapped to pa1 with the access2761

permissions bits set to 0b11 (read-only). The next two lines tell isla that during the test x may become unmapped2762

(the descriptor may be invalid), or mapped to pa2 with AP=0b01. The test also defines two other variables, y and z2763

as aliases to the two physical pages, to help with copying the data between them, just as Linux would. Since there2764

is an exception handler in this test, we need to ensure that the code page of the handler is mapped executable at2765

EL1, which is what the identity 0x1000 with code line does (note that the handler section starts within the2766

0x1000 page). Finally, we say that the initial values of pa1 and pa2 are 1 and 0 respectively.2767

Register translation helpers The initial register state can reference parts of the initial state related to pagetables2768

through the use of helper functions. Here are the helpers used by CoW, and most of the tests in this section. The2769

full description of this format is given in TODO: ?REF?if more information is needed.2770

. pte<N>(va): The (intermediate) physical address of the level N entry in the default translation tables that2771

maps va.2772

. desc<N>(va): The 64-bit descriptor from the initial state of the level N entry that maps va (the value of2773

pte<N>(va) in the initial state).2774

. page(va): The page number that va is in (equivalently: va � 12).2775

. mkdesc<N>(oa=pa): A fresh 64-bit descriptor for a valid leaf entry at level N where the output address is2776

given by the oa parameter.2777

. mkdesc<N>(table=pa): A fresh 64-bit descriptor for a valid table entry at level N where the next-level-table2778

address is given by the table parameter.2779

Entries listed as f<N> mean a family of functions f1, f2, f3 and so on.2780

Execution diagrams Figure 8.2 is the isla-generated execution diagram for the CoW test. It illustrates a2781

candidate execution which isla found (with any symbolic holes filled with concrete values) which matched the2782

final state of the execution, and was consistent with the axioms of the model (given in Chapter 9).2783
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The execution is rendered as a diagram, with separate traces for each thread, with multiple columns per thread,2784

for translations and explicit events. In the diagram, there is one thread (Thread 0), and all events belong to2785

its trace. There are two columns; the right-hand side are the explicit events rendered in program-order, and2786

the left-hand side contains translation events alongside any explicit events from the same instruction. Not all2787

events from the trace are displayed in the execution diagram; many uninteresting events, of register reads and2788

writes, and translation reads of unchanged entries, are suppressed. The execution displayed here is one where the2789

initial store’s translation table walk (event a1) reads an valid entry from the initial state but which did not have2790

permissions to do a write, and so generates a Fault event (a2). The execution continues, copying the memory over2791

to a new page (events b-c), before updating the translation tables to point to the new page (d-h, see §8.6.5), before2792

returning from the exception handler (j) and re-trying the store which succeeds in writing to the new page (k2),2793

giving a final state consistent with the expected final state from the test listing in Figure 8.1.2794

In general, while there could be multiple executions that correspond to the final execution, the tests are usually2795

written in a way to ensure that there is only one consistent candidate execution which corresponds to the final2796

state. In cases where the test is forbidden by the model, we still have isla induce a concrete candidate, and render2797

a diagram of the interesting forbidden execution.2798

8.2 Aliased data memory2799

Much of the previous work on relaxed memory has been concerned with what we shall call ‘data memory’: the2800

weak behaviour of concurrent loads and stores to memory. For Arm, we shall see that these previous models were2801

implicitly assuming that all locations in the test were virtual addresses, with well-formed, constant, and injective,2802

address translation mappings, which mapped all locations as readable, writable, and executable, normal cacheable2803

memory.2804

Consider a non-injective mapping. Such mappings give rise to aliasing: the situation where two distinct virtual2805

addresses in the same address space map to the same output physical address. This section will explore how the2806

behaviours of those data memory tests change in the presence of aliasing.2807

8.2.1 Virtual coherence2808

For data memory accesses, one of the most fundamental guarantee that architectures provide is coherence: in2809

any execution, for each memory location, there is a total order of the accesses to that location, consistent2810

with the program order of each thread, with reads reading from the most recent write in that order. Hardware2811

implementations provide this, despite their elaborate cache hierarchies and out-of-order pipelines, by a combination2812

of coherent cache protocols and pipeline hazard checking, identifying and restarting instructions when possible2813

coherence violations are detected.2814

For Arm, coherence is with respect to physical addresses [12, B2.3.1 (p157)] [12, D5.11.1 (p4931)] . This means that2815

if two virtual addresses alias to the same physical address, then:2816

. a load from one virtual address cannot ignore a program-order previous store to the other, as seen in the2817

following CoWR.alias test (Figure 8.3, p112):2818
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AArch64 CoWR.alias
Initial State

0:R0=0x1
0:R1=x
0:R3=y

physical pa1;
x |-> pa1;
y |-> pa1;
*pa1 = 0;

Thread 0
STR X0,[X1]
LDR X2,[X3]

Final State
0:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: R y/pa1 = 0x0

rf po

This test is a variation on the standard CoWR test, where the VA is
replaced with two distinct VAs, which both alias to the same PA.
The initial state is a configuration with two virtual addresses, x and
y, which are both mapped to the physical address pa1, whose initial
value is 0. The thread then stores 1 to x, then loads y. It is then
forbidden for this load to read 0.
While the Armv8-A architecture reference manual describes data
caches as being physically-indexed [12, D5.11.1 (p4931)] and so
accesses via the same PA are ‘fully coherent’, further discussions with
Arm clarify that this implies not just this coherence test, but that all
prior data memory behaviours previously examined still apply when
subjected to aliasing.

Figure 8.3: CoWR.alias test

. a load from one virtual address cannot ignore the write that a program-order previous load of the other2819

address saw (CoRR0.alias+po (Figure 8.4), CoRR2.alias+po (Figure 8.5, p113)).2820

. a load from one virtual address can have its value forwarded from a store to the other, and similarly on a2821

speculative branch (MP.alias3+rfi-data+dmb (Figure 8.6, p114), PPOCA.alias (Figure 8.6, p114)).2822

AArch64 CoRR0.alias+po
Initial State

0:R0=0b1 1:R1=x
0:R1=x 1:R3=y

physical pa1;
x |-> pa1;
y |-> pa1;
*pa1 = 0;

Thread 0 Thread 1

STR X0,[X1]
LDR X0,[X1]
LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

Thread 1

b: R x/pa1 = 0x1

c: R y/pa1 = 0x0

rf po
rf

This test is a variation of the data memory CoRR0 test, where
one of the loads has been replaced with a load of a distinct
virtual address which aliases to the same underlying physical
address.
Note that, like the original test, it is forbidden to read from the
initial state in the later load, as this would violate coherence:
exactly what the earlier text from the manual explicitly forbade.

Figure 8.4: CoRR0.alias+po test
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AArch64 CoRR2.alias+po
Initial State

0:R0=0b01 1:R0=0b10 2:R1=w 3:R1=y
0:R1=u 1:R1=v 2:R3=x 3:R3=z

physical pa1;
u |-> pa1;
v |-> pa1;
w |-> pa1;
x |-> pa1;
y |-> pa1;
z |-> pa1;
*pa1 = 0;

Thread 0 Thread 1 Thread 2 Thread 3

STR X0,[X1] STR X0,[X1]
LDR X0,[X1]
LDR X2,[X3]

LDR X0,[X1]
LDR X2,[X3]

Final State
2:X0=1 & 2:X2=2 & 3:X0=2 & 3:X2=1

Forbid

Thread 0

a: W u/pa1 = 0x1

Thread 1

b: W v/pa1 = 0x2

Thread 2

c: R w/pa1 = 0x1

d: R x/pa1 = 0x2

Thread 3

e: R y/pa1 = 0x2

f: R z/pa1 = 0x1

po po
co

rf

rf

rf

rf

This test is a variation of the data memory CoRR2 test. Here there are many options for adding aliasing,
so we choose the maximally aliased version where each individual store and load uses a distinct virtual
address but where all those virtual addresses alias to the same physical one.
This gives us a classic coherence shape, where it is forbidden for different threads to observe writes to the

same physical location in different orders.

Figure 8.5: CoRR2.alias+po test
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AArch64 MP.alias3+rfi-data+dmb
Initial State

0:R0=0x1 1:R1=y
0:R1=x 1:R3=x
0:R3=z
0:R5=y

physical pa1 pa2;
x |-> pa1;
y |-> pa2;
z |-> pa1;
*pa1 = 0;
*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]
LDR X2,[X3]
STR X2,[X5]

LDR X0,[X1]
DMB SY
LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Allow

AArch64 PPOCA.alias
Initial State

0:R0=0x1 1:R1=y
0:R1=z 1:R2=0x1
0:R2=0x1 1:R3=x
0:R3=y 1:R5=w

1:R7=z

physical pa1 pa2 pa3;
w |-> pa1;
x |-> pa1;
y |-> pa2;
z |-> pa3;
*pa1 = 0;
*pa2 = 0;
*pa3 = 0;

Thread 0 Thread 1

STR X0,[X1]
DMB SY
STR X2,[X3]

LDR X0,[X1]
CBNZ X0,L0

L0:
STR X2,[X3]
LDR X4,[X5]
EOR X8,X4,X4
LDR X6,[X7,X8]

Final State
1:X0=1 & 1:X4=1 & 1:X6=0

Allow

Thread 0

a: W x/pa1 = 0x1

b: R z/pa1 = 0x1

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: dmb sy

f: R x/pa1 = 0x0

porf

po

podata

porf

rf

Thread 0

a: W z/pa3 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W x/pa1 = 0x1

f: R w/pa1 = 0x1

g: R z/pa3 = 0x0

po

rf

poctrl

ctrl

ctrl

addr po

po

rf
rf po

These tests are variations of the standard PPOCA and MP+rfi-data+dmb tests, but with some aliasing.
Both are examples of forwarding: a thread-local read of a write before that write has been propagated to
memory. These two tests, determined to be allowed architecturally from our discussions with Arm, show
that the processor can forward from a write even if the read was for a different virtual address so long as

the physical addresses match, even down a speculative path.

Figure 8.6: PPOCA.alias and MP.alias3+rfi-data+dmb tests.
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8.2.2 Aliasing different locations2823

In the previous section, we explored taking tests over a single location, and rewriting the test to use many locations,2824

which all alias to the same address. One can also take a test that has multiple locations and make some of them2825

alias to the same address.2826

Multi-location data memory tests, which are architecturally allowed, may become forbidden in the presence of2827

aliasing. For example, taking the traditional MP+pos test, when the two locations are aliased to the same physical2828

address then we get the forbidden MP.alias+pos test (Figure 8.7). This new test is, essentially, equivalent to the old2829

CoRR0 test: coherence with two writes and two reads to the same location; just using different aliases.2830

AArch64 MP.alias+pos
Initial State

0:R0=0x1 1:R1=y
0:R1=x 1:R3=x
0:R2=0x1
0:R3=y

physical pa1;
x |-> pa1;
y |-> pa1;
*pa1 = 0;

Thread 0 Thread 1
STR X0,[X1]
STR X2,[X3]

LDR X0,[X1]
LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: W y/pa1 = 0x1

Thread 1

c: R y/pa1 = 0x1

d: R x/pa1 = 0x0

rf po
rf

co po

Because x and y alias to the same physical address
pa1, the two loads (c and d) read the same location,
and so cannot read different writes out-of-order.

Figure 8.7: Test MP.alias+pos
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8.2.3 Might be same (physical) address2831

There is a corner case that we now should consider. For load and store instructions, when the last register used in2832

the calculation of the address is read, the address becomes known. This allows, in the flat model, for program-order2833

later instructions to begin execution (or at least, know they will not be restarted) at that point.2834

With the introduction of address translation, however, this point happens much later, after the whole translation2835

table walk is performed. Between the read of the register and the completion of the translation table walk, other2836

instructions may perform some part of their functionality. This may include reading from a different virtual2837

address, before the physical address of a program-order previous instruction is known, but after the virtual address2838

is known.2839

One might expect that, when deciding whether to propagate a store, if the page offset of the virtual address is2840

different to that of the in-flight program-order earlier instructions, then the write could go ahead early, knowing2841

that the access could not be to the same physical address as any of those instructions. However, this is not the2842

case. Although the accesses definitely will not access the same physical address, the program-order earlier access2843

may still fault, meaning the write will not be reached. This means that writes must wait for program-order earlier2844

translations to finish (or at least, be known to not fault) before they can be propagated to other threads.2845

8.3 What can be cached in TLBs2846

As was described in §7.8, Arm hardware can have TLBs, caching previously seen translations. But, there are2847

some restrictions to this; both in what information a TLB must cache when it does so, but also in what kind of2848

information it is not permitted to cache at all.2849

8.3.1 Microarchitectural TLBs2850

Herewemust make a clear distinction between the actualmicroarchitectural translation caching onemay encounter2851

inspecting hardware, and the architectural model being discussed here.2852

While there are possibly many different ways to describe the same architectural intent, here we carefully choose2853

one which will make building tooling, extending the model, discussions with architects, and explaining individual2854

tests easier. We will first look at a specific example to pin down terminology and gain some intuition for hardware,2855

before giving a model MMU and TLB that abstracts away from the details.2856

Microarchitectural MMU – A53 Let us explore more closely how the actual hardware fill and walk works on2857

a modern microprocessor. The Arm Cortex A53 is an Arm-designed application class processor. Previous relaxed2858

memory work included exercising this core design extensively during litmus testing validation of the models,2859

finding it to be relaxed, exhibiting many relaxed behaviours, but not aggressively so. This makes the A53 a good2860

candidate as a demonstrator of an average relaxed processor design. While other processors by Arm are more2861

aggressive in their optimisations, the MMU and TLB layout of the A53 seems typical: other cores, such as the2862

A57 TODO: ?CITE?, A72 TODO: ?CITE?, A76 TODO: ?CITE?, A78 TODO: ?CITE? and A715 TODO: ?CITE?2863

all have comparable, or simpler, TLB configurations.2864

The Arm A53 Technical Reference Manual (TRM) describes, in detail, the structure of the Memory Management2865

Unit [89, 5-2] of the A53, and its constituent parts. Figure 8.8 shows a hand-written block diagram representing2866

the key information from the TRM.2867

We see that each core has its own MMU, and that each MMU contains a unit that will perform the translation2868

table walk, in addition to a selection of translation caching structures:2869

. one instruction micro-TLB;2870

. one data micro-TLB;2871

. one unified TLB;2872

. one walk cache; and,2873

. one IPA cache.2874

The microarchitectural TLBs store whole translations: virtual to physical mappings, plus permissions and so-on,2875

tagged with their context. The TLBs are arranged hierarchically. With small, 10-entry, ‘micro’ TLBs for instruction2876

and data streams separately, and one large 512-entry unified TLB.2877
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MMU

Walker

i-µTLB d-µTLB

Unified TLB

Walk Cache IPA Cache

Figure 8.8: A53 Memory Management Block Diagram.

On a TLB miss, the MMU performs a translation table walk using the walker, computing the Arm translation2878

table walk ASL code which we previously explored in §7.7.2879

When it begins this walk, the MMU first checks the walk cache for a matching entry. Walk cache entires are2880

mappings from virtual address to the physical address of the last level translation table. If an entry is present the2881

MMU can skip most of the walk entirely, performing just the very last read to read the leaf entry.2882

If a second stage of translation is required during the walk, the IPA cache is used (and may be, or not, used many2883

times during the same walk). The IPA cache stores mappings from intermediate physical to physical memory —2884

with no associated virtual address — which can be used during both the final stage 2 walk and any intermediate2885

stage 2 walks during a stage 1 walk.2886

TODO: PS: walk cache s1 only? BS: that is one of thibaut’s questions to RG2887

The MMU is free to save the result of any translation table walk into these structures, including for walks due to2888

speculation, prefetching, or architectural execution. This, essentially, allows the MMU to perform a walk for any2889

arbitrary VA or IPA, at any point in time.2890

8.3.2 Model MMU2891

To abstract away from any specific microarchitecture, we will model the MMU as if it were a separate asynchronous2892

unit, one for each thread, each with an overapproximate ‘TLB’.2893

Later, we will see tests that justify and ground this particular choice of abstraction, and we will explore this model2894

and the mathematics which corresponds to it in more rigorous detail. But for now, we can imagine this model2895

MMU as a set of (concurrently) executing translation table walks and a ‘model TLB’ cache of translation table2896

entries.2897

Model TLB entries In general, the architecture permits hardware to cache whatever information from the2898

translation process the hardware sees fit, this may include the output of whole translation table walks (complete2899

virtual to physical mappings) or individual translation table entries, or even the result of partial walks (the address2900

of the last-level table, for example).2901

It would not be feasible to even attempt to enumerate all the possible shapes of TLBs and the kinds of information2902

they can cache. Instead, we will define amodel TLB.This model will treat the TLB as a cache of writes of translation2903

table entries, each tagged with some context. This allows the model to cache any combination of entries read from2904

a translation table walk, making it weak enough to allow all known TLB implementations, but strong enough to2905

not break any of the guarantees Arm require of those TLB implementations. These guarantees are explored, in2906

detail, in §8.4 and §8.5.2907
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Trans lat ionTableEntry ≡ u64
Context ≡ ArchContext × Stage × opt ion VA × opt ion IPA × PA × Level
ArchContext ≡ VMID × ASID × Regime
CachedTranslationTableEntry ≡ PA × Trans lat ionTableEntry × Context
TLB ≡ s e t CachedTranslationTableEntry

Figure 8.9: Model TLB type definitions.

Each entry in the model TLB contains the information about the write itself: the physical address of the entry,2908

and the cached 64-bit entry. But it must also be tagged with some contextual information, some used during TLB2909

lookup and some used to identify cached entries during TLB invalidation. Figure 8.9 gives a consise summary of2910

the model TLB definition in some psuedo-type-definitions.2911

This contextual information includes:2912

. the architectural context information of the translation: the VMID, ASID (or a “global indicator”), and the2913

translation regime;2914

. some extended context information, required for implementing TLB maintenance:2915

– the virtual address, intermediate physical address, and/or physical address of the translation;2916

– the translation stage and level at which the write was used;2917

– the system register values used in the translation (those which can be cached); and,2918

– for an entry used for a Stage 1 translation, whether it has been invalidated at both stages.2919

The model MMU then performs all translations by doing a full translation table walk, but being able to optionally2920

satisfy any read during that walk from a matching entry in the model TLB which matches the architectural context2921

and input address.2922

We imagine that any behaviour exhibited by a specific micro-architectural MMU and TLB configuration would2923

also be explainable in this model.2924

TLB fills Hardware has a variety of mechanisms which may lead to a translation table walk: direct architectural2925

execution of instructions, pre-fetching of data or instructions, and speculation down branches. These translation2926

table walks may result in TLB misses, and those misses then result in reads from memory and the MMU ‘filling’2927

the TLB with a copy of the information it can use in future.2928

Arm do not wish to enumerate all the possible speculation machinery or prefetchers so instead opt for a model2929

that is weaker: at any point in time, any thread’s MMU can spontaneously perform a translation table walk for any2930

virtual or intermediate-physical address for the current architectural context (VMID, ASID, etc, as in §8.3.2), and2931

any reads that the translation table walk performs can either read from other TLB entries, or perform a non-TLB2932

read of memory and then potentially cache a copy of the write it reads from in the TLB tagged with the extended2933

context information from the walk. The behaviour of those non-TLB reads are explored more in §8.4.2934

8.3.3 Invalid entries2935

It is architecturally forbidden to cache information from attempted translations which result in translation faults,2936

access flag faults, or address size faults (Note that a translation table walk may give rise to other faults as well,2937

as discussed in §7.4, such as permission faults and alignment faults, which do not impose restrictions on TLB2938

caching). More specifically, a TLB entry cannot be a write of a translation table entry which is the direct cause of2939

such a fault. In particular, the TLB cannot cache translation table entries whose valid bit is not set.2940

This is important, as it gives software a mechanism in which it can safely update a mapping without potentially2941

having multiple entries in the TLB for the same virtual address. These problems are described in more detail2942

during the exploration of break-before-make in §8.6.5.2943

TODO: PS: no forward refs to tests?2944
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AArch64 CoWTf.inv+po
Initial State

0:R0=desc3(y)
0:R1=pte3(x)
0:R3=x
0:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

po

trf

iio

po

Thread local re-ordering lets the translation (b1) of
the load instruction happen earlier than the write
to the translation table (a). This allows the load to
trigger a data abort (a translation fault, b2).

Figure 8.10: Test CoWTf.inv+po

8.4 Reads not from TLB2945

The requirement that invalid entries are not cached in the TLB gives us a way to directly observe non-TLB reads:2946

translation table reads which result in a translation fault must have come from a non-TLB read.2947

We will see that these reads have some important properties that software can rely on, but that some of those2948

properties will depend on certain architecture features being enabled (namely FEAT_ETS).2949

In this section will we explore the properties these reads have, and the guarantees software can rely on. We shall2950

see that these reads are affected by thread-local re-ordering, even to a greater extent than data memory reads, and2951

the synchronization that recovers the sequential semantics. We will see how these reads from the translation2952

table walk relate to data memory reads, with respect to coherence, multi-copy atomicity, write forwarding and so2953

on. Finally, we will see how the FEAT_ETS architectural feature can change the required synchronization software2954

needs to perform.2955

8.4.1 Out-of-order execution2956

First, let us consider whether reads that do not come from the TLB preserve the original program order.2957

po-previous writes One of the simplest questions one might ask is whether a translation-table-walk non-TLB2958

read can ignore a program-order previous store.2959

This scenario is captured by the CoWTf.inv+po test (Figure 8.10). Starting with a VA x initially invalid at level 3,2960

and so cannot have its level 3 entry cached in any TLB (directly or indirectly), the test then overwrites the invalid2961

entry with a new valid entry pointing to the physical address pa1. Program-order later, the thread then attempts2962

to read x.2963

We see that the thread can take a translation fault. This fault is caused by reading an invalid entry, which was read2964

from a stale entry in memory, ignoring the program-order previous store to the translation table entry’s location.2965

One explanation that suffices to allow this outcome is that the instructions can be locally re-ordered; the translation2966

table walk of the later load instruction can happen much earlier than the program-order previous store, and satisfy2967

its read from memory first.2968

po-previous reads Similarly, the reads of a translation table walk can be locally re-ordered with respect to2969

program-order earlier loads of the translation table entry, as demonstrated in the CoRpteTf.inv+po test (Figure 8.11,2970

p120).2971
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AArch64 CoRpteTf.inv+po
Initial State

0:R0=desc3(y) 1:R1=pte3(x)
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

option default_tables = true;
physical pa1;
intermediate ipa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
identity 0x1000 with code;
*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]
LDR X0,[X1]
LDR X2,[X3]
Thread 1 EL1 Handler
0x1400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=desc3(y) & 1:X2=0

Allow

The translation read (event c1) can be re-ordered
with respect to the program-order previous load of
l3pte(x) (b), even though the load read the new
translation table entry, for the same location the
translation reads from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf po

iio

rf

Figure 8.11: Test CoRpteTf.inv+po

po-future writes A translation table walk read may not, in general, be re-ordered with program-order later2972

stores.2973

This is consistent with the description in §8.2.3, as the program-order later store might not architecturally happen2974

if the translation table walk read were to fault. So, the later writes are speculative until the translation has finished,2975

preventing the write from propagating until then.2976

This forbids both the general re-ordering of the propagation of the write to other threads (LB.TT.inv+pos (Fig-2977

ure 8.12, p121)) with program-order earlier translation table walks, and, translations reading from program-order2978

later writes (CoTW1.inv (Figure 8.13, p121)).2979

8.4.2 Enforcing thread-local ordering2980

Since non-TLB reads do not necessarily preserve the program order, it appears that there are no coherence2981

guarantees one can make about them. However, by introducing some thread-local ordering constructs, we can2982

recover some of the strong guarantees we are used to.2983

To force a non-TLB read to happen after some program-order earlier event we can insert the two-instruction2984

sequence DSB SY ; ISB between them. The DSB (“Data Synchronization Barrier”) waits for all loads to satisfy2985

and for all stores to have finished and be visible to translation table walkers, before the ISB (“Instruction2986

Synchronization Barrier”) flushes the pipeline and restarts any program-order later instructions, including any2987

translation table walks they perform.2988

Locally-ordered-previous writes If we introduce this sequence into the previous CoWTf.inv+po test we obtain2989

the CoWTf.inv+dsb-isb test (Figure 8.14, p122), which is forbidden by Arm. This is because the non-TLB reads,2990

in the absence of non-coherent TLB caching structures (discussed more in §8.6.1), will read from the coherent2991

storage subsystem, and so will be required to see the new write, or something coherence after it.2992
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AArch64 LB.TT.inv+pos
Initial State

0:R1=x 1:R1=y
0:R2=mkdesc3(oa=pa1) 1:R2=mkdesc3(oa=pa1)
0:R3=pte3(y) 1:R3=pte3(x)
0:VBAR_EL1=0x1000 1:VBAR_EL1=0x2000

physical pa1;
x |-> invalid;
y |-> invalid;
x ?-> pa1;
y ?-> pa1;
*pa1 = 1;
identity 0x1000 with code;
identity 0x2000 with code;

Thread 0 Thread 1
MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

MOV X0,#0
LDR X0,[X1]
STR X2,[X3]

Thread 0 EL1 Handler Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

0x2400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
0:X0=1 & 1:X0=1

Forbid

The writes to the translation tables (b and d) are
forbidden from propagating to other threads before
the program-order earlier translations (a1 and c1)
are satisfied, forbidding them from reading from each
other’s writes.

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303008/s1:l3pte(y) = mkdesc(addr=page(pa1))

Thread 1

c2: R y/pa1 = 0x1c1: T s1:l3pte(y)

d: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio iio
po potrf

trf

Figure 8.12: Test LB.TT.inv+pos

AArch64 CoTW1.inv
Initial State

0:R1=x
0:R2=desc3(y)
0:R3=pte3(x)
0:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0
LDR X0,[X1]
STR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X0,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
0:X0=1

Forbid

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio
po

trf

The store to the translation table (b) cannot be re-
ordered with the program-order earlier translation
table walk (a), preventing that walk from reading
from the store.

Figure 8.13: Test CoTW1.inv
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AArch64 CoWTf.inv+dsb-isb
Initial State

0:R0=desc3(y)
0:R1=pte3(x)
0:R3=x
0:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
0:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

The write to the translation table (a) is ordered before
the non-TLB read of the entry (d1) because of the
intervening DSB;ISB sequence, creating local order.
This ordering ensures that the non-TLB read respects
the coherence order up to the point of the write a,
preventing the non-TLB read from reading from a
write coherence-before a.

Figure 8.14: Test CoWTf.inv+dsb-isb

Locally-ordered-previous reads If a program-order previous load has already seen some other-thread write,2993

either through a translation (CoTTf.inv+dsb-isb (Figure 8.15, p123)), or through a normal data load of the translation2994

table (CoRpteTf.inv+dsb-isb (Figure 8.16, p124)), then translation table non-TLB reads which are ordered after that2995

read must also see that write, or a write coherence after it. These tests use the DSB; ISB sequence previously2996

described, but any ordering to the translation table walk (described in §8.4.3) will suffice.2997

Microarchitecturally this is because translation table walkers are ‘separate observers’. The idea is that the MMU2998

performs reads of memory the same way any of the other observers (threads) do, meaning that those reads behave2999

almost exactly like normal data memory reads.3000

This ‘separate observers’ principle is a reasonable model, however, we will see later on in §8.4.4 where it begins to3001

break down.3002

Instruction synchronization barrier and control dependencies The ISB instruction naturally orders all3003

translation table walks of program-order later instructions with the ISB itself. This is because the ISB effectively3004

restarts all program-order later instructions, including any translations they do.3005

However, an ISB is not naturally ordered with respect to program-order earlier instructions. That is why in the3006

previous tests we introduced a DSB. But a control-dependency would also work (CoTTf.inv+ctrl-isb (Figure 8.17,3007

p125)).3008

Address dependencies In previous work, address dependencies were assumed fundamental, but now we can3009

define what an address dependency is: a register dataflow dependency into the translation table walk reads.3010

Address dependencies remain a strong way to order events. Arm, here and in general, avoid speculation of the3011

values and addresses of the explicit reads and writes to memory. This means that a translation table walk will not3012

start until after its address dataflow dependent registers are fully determined. Note, that this does not mean that3013

pre-fetching and caching of the walk cannot happen, it’s just that the architectural translation table walk must3014

retrieve any cached values after it is known what the address will be, see §TODO: ?REF?.3015

For non-TLB translation reads this means that a non-TLB read is locally ordered after any read whose value flows3016

into the non-TLB read, as in CoRpteTf.inv+addr (Figure 8.18, p126).3017

Memory barriers Much of the earlier work in relaxed-memory concurrency was dedicated to the behaviour of3018

barriers. The Arm data memory barrier (DMB) creates ordering between memory events program-order earlier3019

than the barrier, and memory events program-order after the barrier.3020
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AArch64 CoTTf.inv+dsb-isb
Initial State

0:R0=desc3(y) 1:R1=x
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]
Thread 1 EL1 Handler
0x1400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Forbid

The second translation-table non-TLB read of x (e1)
is locally ordered after the first translation table walk
(b1) because of the intervening dsb; isb sequence,
and so cannot see a write coherence-before the write
the earlier (b1) translation-read read from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

iio
po

iio

trf

Figure 8.15: Test CoTTf.inv+dsb-isb
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AArch64 CoRpteTf.inv+dsb-isb
Initial State

0:R0=desc3(y) 1:R1=pte3(x)
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

option default_tables = true;
physical pa1;
intermediate ipa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
identity 0x1000 with code;
*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]
Thread 1 EL1 Handler
0x1400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=desc3(y) & 1:X2=0

Forbid

The final translation table walk of x (e1) cannot
be re-ordered with the program-order previous load
of pte3(x) (b), because of the intervening DSB;ISB
sequence. The non-TLB translation read of pte3(x)
(e1) therefore must read from the same write as the
earlier load, or something coherence-after it.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

po

iio

rf

Figure 8.16: Test CoRpteTf.inv+dsb-isb
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AArch64 CoTTf.inv+ctrl-isb
Initial State

0:R0=desc3(y) 1:R1=x
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

MOV X0,#0
LDR X0,[X1]
EOR X4,X0,X0
CBNZ X4,LC00

LC00:
ISB
MOV X2,#0
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Forbid

Control-ISB locally-orders the later translation table
walk (d1) after the resolution of the control flow,
which happens only after the satisfaction of the read
b2.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

trf

iio
poctrl

ctrl

ctrl

iio

trf

Figure 8.17: Test CoTTf.inv+ctrl-isb
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AArch64 CoRpteTf.inv+addr
Initial State

0:R0=desc3(y) 1:R1=pte3(x)
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

option default_tables = true;
physical pa1;
intermediate ipa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
identity 0x1000 with code;
*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]
LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]
Thread 1 EL1 Handler
0x1400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=desc3(y) & 1:X2=0

Forbid

The address dependency from the load b to the second
load, orders the reads due to the translation table
walk of that load (c1) after b. Since c1 is a non-TLB
read, it cannot read from a write coherence-before
the write b read from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf
addr

po

iio

rf

Figure 8.18: Test CoRpteTf.inv+addr
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AArch64 CoWTf.inv+dmb
Initial State

0:R0=desc3(y)
0:R1=pte3(x)
0:R3=x
0:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1;
y |-> pa1;
*pa1 = 1;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X2,#0
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
0:X2=0

Allow (if not ETS)

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

po

trf

iio

po

The non-TLB read c1 is not locally ordered after the
write a, despite the intervening dmb sy barrier (b).

Figure 8.19: Test CoWTf.inv+dmb

We will see that this applies to explicit memory events only: the principal reads and writes that load and store3021

instructions perform, not the implicit reads and writes they do during translations (or instruction fetching, TODO:3022

ref: ifetch chapter).3023

Ordering of the explicit memory events does not, automatically, induce ordering between those explicit events3024

and any reads due to translation table walks performed by those instructions. In the next subsection, we will3025

see how FEAT_ETS (§8.4.3) extends the architecture to include more orderings between translations and other3026

memory events in the same thread.3027

Figure 8.19 shows a simple coherence test, with a data memory barrier between a store to the translation tables3028

and a load whose translation table walk might read from that. We can see that the barrier does not enforce that3029

the translation table walk sees the update to the translation tables. From the previous tests, we know this means3030

that the translation table walk happened (microarchitecturally) before the store was propagated to memory.3031

The arm DMB vs DSB instructions TODO: PS: discuss DMB v DSB3032

The architectural intent for DMB’s ordering with respect to translation table walkers in the absence of FEAT_ETS is3033

still tentative, so we shall focus on the fragment with FEAT_ETSTODO: … and continue.3034

8.4.3 Enhanced Translation Synchronization3035

TODO: PS: litmus tests?3036

Recent versions of the Arm architecture require support for FEAT_ETS: Enhanced Translation Synchronization.3037

This feature does not change the ISA, but instead, requires implementations to enforce extra ordering.3038

The Arm Architecture Reference Manual says the following [12, D5.2.5 (p4802)] :3039

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second
memory access RW2, then RW1 is also Ordered-before any translation table walk
generated by RW2 that generates any of the following:

. A Translation fault.

. An Address size fault.

. An Access flag fault.
3040

This prose description is a little ambiguous, and we feel, needs some clarification: The scenario being described3041

here is a case with two instructions, I1 and I2, each either a load or store. Imagine I1 and I2 both executing to3042

completion, without generating any translation, address size, or access flag faults. Then, each instruction would3043
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T100 T101 E10: R x

T200 Tf201 E20: Fault (W)

iio iio

iio iio

addrob

I1:

I2:

Figure 8.20: ETS Ghost events example: A load instruction (I1) followed followed (in program order)
by a store instruction (I2), which faults. The address dependency means that the read event E10 is
syntactically ordered-before the (ghost) write event E20, and so the read event is ordered before the reads
of the translation table walk for I2 read from the TLB or memory (represented by the dashed ob line).

have generated one or more explicit memory events. For example, a store might generate up to 8 separate write3044

events (one for each byte). Call those events Eij for the jth explicit event of instruction Ii.3045

Each explicit event Eij would have required a translation table walk, generating translation read events which we3046

can call Tijk for the kth translation-table-walk read for the jth explicit memory event for instruction Ii.3047

Then, if I2 generates a translation, address size, or access flag fault, and E1n would have been locally-ordered-before3048

E2m in the imagined execution without the fault (and which we can consider a kind of ghost event in the real3049

execution), and FEAT_ETS is enabled, then, E1n is locally ordered before any translation table read T2m_ in the3050

execution with the fault. This scenario is described pictographically in Figure 8.20.3051

The intuition here is that, microarchitecturally, on implementations that support FEAT_ETS, when an instruction3052

takes an exception, the access that caused it is re-tried once the prefix of instructions is non-restartable. This3053

reduces spurious aborts: faults that come from an out-of-order read of a (what is now) stale value from memory.3054

Other effects Thearchitecturally desired effect of FEAT_ETS seems to be that no additional context-synchronisation3055

should be required to prevent spurious aborts, and that simple local orderings (barriers, dependencies) should be3056

enough. To make this so, ETS must implicitly enforce more than just the aforementioned ordering constraints.3057

Specifically, TLBI instructions must have stronger thread-local orderings to translation-table walks (described in3058

more detail later); translation table walks must be (other) multi-copy atomic; and, translation table walk reads3059

must be coherent and single-copy atomic.3060

non-ETS fragment There is a question here as to whether we should consider the non-ETS behaviours of the3061

architecture. On the one hand, hardware in use today is from a pre-ETS version of the architecture and so we3062

cannot assume that the behaviours of those devices are consistent with ETS. On the other hand, ETS is a feature3063

that is widely assumed by software, even if not present on hardware.3064

Linux, for example, assumes implementations are ETS compatible even when they are not. Building models that3065

capture the full extent of the non-ETS fragment would have questionable benefits as one would have to assume3066

an ETS model when verifying software. Additionally, as ETS is becoming a mandatory feature, the concerns over3067

non-ETS hardware will diminish over time, perhaps even by the publication of this thesis, they will be questions of3068

the past. Finally, the semantics of this non-ETS fragment is still unclear; there are numerous questions, especially3069

around forwarding and multi-copy atomicity generally, which are grey areas in the non-ETS fragment which Arm3070

have yet to explicitly decide one way or another.3071

For these reasons we will assume FEAT_ETS is present and enabled, unless explicitly stated otherwise.3072

Ordering to the translation table walk We can now define which constructs give rise to local ordering3073

into a translation table walk. Address dependencies, and locally-ordered context-synchronisation (in particular,3074

the DSB; ISB sequence) always give rise to ordering to the translation table walks. Control dependencies, on3075

their own, never give rise to such ordering. If using FEAT_ETS, then a plain DSB orders translation table walks of3076

program-order later instructions after it. TODO: BS: even if there’s no fault? Other barriers may give ordering3077

to the translation table walker, if using FEAT_ETS and the translation results in a translation fault, and those3078

barriers would have ordered the event that would have happened otherwise.3079

8.4. READS NOT FROM TLB 128



AArch64 R.TR.inv+dmb+trfi
Initial State

0:R0=0x2 1:R0=mkdesc3(oa=pa1) 2:R1=pte3(w)
0:R1=x 1:R1=pte3(w)
0:R2=0x2 1:R3=w
0:R3=pte3(w) 1:VBAR_EL1=0x1000

physical pa1;
w |-> invalid;
w ?-> pa1;
w ?-> raw(2);
x |-> pa1;
*pa1 = 0;
identity 0x1000 with code;

Thread 0 Thread 1 Thread 2
STR X0,[X1]
DMB SY
STR X2,[X3]

STR X0,[X1]
MOV X2,#1
LDR X2,[X3]

LDR X0,[X1]
LDR X2,[X1]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X2=0 & 2:X0=2 & 2:X2=mkdesc3(oa=pa1)

Allow

The write of the new valid entry (d) can
be forwarded locally to the translation of
w (e1) allowing the read of w (e2) to satisfy
early. TODO: PS: Thread2 needs explain-
ing

Thread 0

a: W x/pa1 = 0x2

b: dmb sy

c: W 0x303000/s1:l3pte(w) = 0x2

Thread 1

d: W 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

e2: R w/pa1 = 0x0e1: T s1:l3pte(w)

Thread 2

f: R 0x303000/s1:l3pte(w) = 0x2

g: R 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

po

rf po

iio

po
rf

po
trf

co

rf

Figure 8.21: Test R.TR.inv+dmb+trfi

8.4.4 Forwarding to the translation table walker3080

Writes take time to propagate out to memory to other cores. One common performance optimization is gathering:3081

collecting multiple writes together in a store buffer and propagating them all out together.3082

To maintain uniprocessor semantics, the core can read from its own store buffer, in effect, allowing it to read from3083

writes before they’ve been propagated out to other cores. This behaviour is referred to as write forwarding.3084

Although the translation table walker is described as a ‘separate’ observer, it is also part of the core that hosts it,3085

and is allowed to read from that core’s store buffer, effectively allowing writes to be ‘forwarded’ to the walker, as3086

shown in the R.TR.inv+dmb+trfi test (Figure 8.21).3087

The simplest model here is one where non-TLB translation reads behave as a normal data memory read, reading3088

either from forwarding from the store buffer, or from the coherence-latest write in the storage subsystem.3089

8.4.5 Speculative execution3090

To facilitate fast out-of-order pipelines the machine has to begin fetching and executing the next instruction3091

before the earlier instructions are finished. But, those instructions might control the flow of execution through3092

the program. Executing later instructions before they are finished means that those later instructions are being3093

executed speculatively: they may, if the predicted flow turns out to be incorrect, need to be discarded, TODO: PS:3094

what about restarting on coherence violations? to avoid the need for rollback across threads.3095

When executing down a speculative path like this, there are additional restrictions that the core must adhere to. For3096

example, stores should not be propagated out to memory, although they can still be read from by program-order3097

later reads in the same thread.3098

Since we know reads and writes can be performed speculatively, their associated translations must also be allowed3099

to have been performed speculatively. This is what allows the MP.RTf.inv+dmb+ctrl test (Figure 8.22, p130) to3100

see an old value for the translation table entry, as the translation can be performed speculatively. TODO: PS:3101
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AArch64 MP.RTf.inv+dmb+ctrl
Initial State

0:R0=desc3(z) 1:R1=y
0:R1=pte3(x) 1:R3=x
0:R2=0b1 1:VBAR_EL1=0x1000
0:R3=y

physical pa1 pa2;
x |-> invalid;
x ?-> pa1;
z |-> pa1;
*pa1 = 1;
y |-> pa2;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]
DMB SY
STR X2,[X3]

LDR X0,[X1]
CBNZ X0,L0

L0:
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Allow

The non-TLB read in Thread 1 (e1) is not locally
ordered after the earlier load (d), despite the control
dependency. This is because the processor can spec-
ulatively perform the translation table walk, before
the earlier read is satisfied.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po po

trf ctrlpo

ctrliio

po

rf

Figure 8.22: Test MP.RTf.inv+dmb+ctrl

If this were a ”user” test, I’d say that e1 was satisfied out-of-order w.r.t. d, not that e1 was ”performed3102

speculatively”. Or I’d expect to see a test with control-flow speculation, or argument that the second3103

instruction is speculative until the first is known not to fault. Are you not distinguishing between3104

out-of-order and speculative execution any more? TODO: BS: but speculation implies OoO?3105

However, forwarding from a speculative write to the translation table walker is disallowed. Since reads to3106

read-sensitive locations (such as devices) can have side-effects, software can protect those locations by marking3107

them as device memory in the translation tables, or leaving them unmapped altogether. A speculative write3108

could update the translation tables arbitrarily, including allowing reads to read-sensitive locations, so it must be3109

forbidden for a translation read to read from a still speculative write. The MP.RT.inv+dmb+ctrl-trfi test (Figure 8.23,3110

p131) demonstrates this, requiring that the translation table walk on the speculative path cannot read from the3111

still-speculative store to the translation tables.3112

Instruction restarts A related, but separate, concept, is that of instruction restarts. In the TODO: PS: user-3113

mode? base memory model a read might be satisfied early, out-of-order with respect to program-order previous3114

instructions, even before those instructions’ accesses addresses are known. If such an earlier access turned out to3115

be to the same address, and the later access is not a read of the same write, then the later access must be restarted3116

to avoid coherence violations.3117

Translation table walk reads, while they are reads, do not do this hazard checking, and so are not required to be3118

restarted to recover coherence. See §8.2 for more discussion on this. TODO: PS: 8.2 has a lot of stuff, point to3119

specifics?3120
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AArch64 MP.RT.inv+dmb+ctrl-
trfi

Initial State
0:R0=0b1 1:R1=y
0:R1=x 1:R2=mkdesc3(oa=pa1)
0:R2=0b1 1:R3=pte3(w)
0:R3=y 1:R5=w

1:VBAR_EL1=0x1000

physical pa1 pa2;
w |-> invalid;
w ?-> pa1;
x |-> pa1;
*pa1 = 0;
y |-> pa2;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]
DMB SY
STR X2,[X3]

LDR X0,[X1]
CBZ X0,LC00

LC00:
STR X2,[X3]
LDR X4,[X5]

Thread 1 EL1 Handler
0x1400:
MOV X4,#2
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X4=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

f2: R w/pa1 = 0x0f1: T s1:l3pte(w)

po rf

ctrl

ctrl po

iio

po

rf

trf
po

The non-TLB read of the translation table entry
(f1) cannot read from a forwarded thread-local write
(event e) when on a speculative path, requiring that
f1 be ordered after d. TODO: PS: manual layout this

Figure 8.23: Test MP.RT.inv+dmb+ctrl-trfi

8.4.6 Single-copy atomicity3121

In the base memory model, there are two key guarantees on the atomicity of reads and writes: single-copy and3122

multi-copy atomicity.3123

Recall that, single-copy atomic reads always read the maximum it can from another single-copy atomic write; in3124

particular a 64-bit atomic never partially reads from another 64-bit atomic write.3125

Translation table walk reads are 64-bit single-copy-atomic reads of memory. This means that each of the reads3126

generated by a translation table walk will read the entire descriptor in one shot. This causes the CoWroW.inv+dsb-3127

isb test (Figure 8.24, p132) to be forbidden, disallowing reading the output address obtained from one write, and3128

access permissions from another.3129

8.4.7 Multi-copy atomicity3130

Multi-copy atomicity is a guarantee that requires any update to memory to propagate to all other threads3131

simultaneously. This is one of the core guarantees Armv8 and RISC-V give, but earlier versions of Arm and IBM’s3132

current Power architectures do not. This has a caveat for Armv8, which is described as other-multi-copy atomic:3133

threads can observe their own writes early (through write forwarding).3134

Microarchitecturally, a thread can only read another thread’s write by reading from a global coherent storage3135

subsystem. This ensures that after the thread reads from that write, any other thread must also see that write, or3136

something coherence after it. While this is a property that the base model seems to have, whether it is true for3137

accesses during translation table walks is a separate question.3138

The non-TLB reads during a translation table walk, in fact, do seem to respect this property: if one other thread3139

has observed a write through a translation table walk then future translation table walk non-TLB reads by other3140

threads will also observe that write (or something newer). Axiomatically, if one thread translation-reads-from a3141

write, then all translation-table-walk reads locally-ordered after another memory event, which is itself ordered3142

after the other thread’s translation-table-walk read, will be ordered after that translation-table-walk read.3143

There are three combinations of multi-thread reads of interest, where a weaker architecture (with separate3144

pagetable and data memory storage) might have mixed non-multi-copy atomic behaviours. The first of these is3145

the most basic; translation-read to translation-read, that is, the pagetable accesses are multi-copy atomic, and3146

this is what forbids reading the old translation table value in Thread 2 in the WRC.TRTf.inv+po+dsb-isb test3147
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AArch64 CoWroW.inv+dsb-isb
Initial State

0:R0=mkdesc3(oa=pa1, AP=0b11)
0:R1=pte3(x)
0:R2=0x1
0:R3=x
0:VBAR_EL1=0x1000

physical pa1;
x |-> invalid;
x ?-> pa1 with [AP = 0b11] and default;
*pa1 = 0;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DSB SY
ISB
STR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
pa1=1

Forbid

The translation table walk of
the second store must read from
the entire write from the earlier
store, or not at all, forbidding its
translation walk from reading a
mix of both the initial state and
the earlier write. This means
there should be no way the fi-
nal store can happen, as it must
either be invalid or read-only.
Note that, isla does not gener-
ate candidates with non-atomic
reads which are supposed to be
single-copy atomic, and so the
diagram is hand-drawn TODO:
Draw it.

Figure 8.24: Test CoWroW.inv+dsb-isb

(Figure 8.25, p133). The other two are combinations of read-to-translation-read and translation-read-to-read, these3148

show us that the translation accesses and explicit data accesses are architecturally unified: information about the3149

memory state learned through one kind of access apply to accesses of the other. This is what forbids the following3150

WRC.RRTf.inv+dmb+dsb-isb (Figure 8.26, p134) and WRC.TRR.inv+po+dsb (Figure 8.27, p135) tests, from reading3151

the old value from memory at the end of Thread 2.3152

TODO: PS: these all need text captions3153

8.4.8 Translation-table-walk intra-walk ordering3154

All the tests so far have been concerned with changes to at most one of the translation table entries during a3155

single walk, however, as we saw in §7 a translation table walk may perform many reads for a single translation.3156

The ASL for the translation table walker performs each translation, in order, starting with the root, and ending3157

with the leaf entry.3158

While reads in a thread can be re-ordered, translation-reads within a translation table walk cannot, as this would3159

require the hardware to do value speculation on the next-level table address, and as discussed in §8.4.5 reading3160

from speculative values in a translation table walk is generally forbidden.3161

Requiring the translation reads from a translation table walk to be satisfied in translation walk order has an3162

observable effect, for example in the following ROT.inv+dsb test (Figure 8.28, p136) the translation table walk3163

of the read in Thread 1 must see the writes to the translation table done by Thread 0 in the order they were3164

propagated out to memory, and so reading from the old level 3 entry is forbidden.3165

8.4.9 Multiple translations within a single instruction3166

Some instructions generate multiple explicit memory events, such as for the load pair and store pair instructions,3167

or misaligned accesses, or potentially some read-modify-writes. When there are multiple explicit memory events,3168

there will be a dedicated translation for each of them, with its own translation table walk.3169

Here the architecture as it is written today is overly sequentialised: the ASL for these cases performs each3170

translation (and the respective access) in some order, but the architectural intent is that the separate translations3171

should be unordered with respect to each other.3172

Misaligned accesses, and the load and store pair instructions, should generate explicit memory events and3173

associated translations which are unordered with respect to each other.3174

TODO: PS: litmus test with misalgined?3175
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AArch64 WRC.TRTf.inv+po+dsb-isb
Initial State

0:R0=desc3(z) 1:R1=x 2:R1=y
0:R1=pte3(x) 1:R2=0b1 2:R3=x

1:R3=y 2:VBAR_EL1=0x2000
1:VBAR_EL1=0x1000

physical pa1 pa2;
x |-> invalid;
x ?-> pa1;
z |-> pa1;
*pa1 = 1;
y |-> pa2;
identity 0x1000 with code;
identity 0x2000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]
LDR X0,[X1]
STR X2,[X3]

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1 EL1 Handler Thread 2 EL1 Handler
0x1400:
MOV X0,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

0x2400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 2:X0=1 & 2:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: isb

g2: Fault (R)g1: T s1:l3pte(x)

h: eret

po

po

po

trf

iio
popo

iio

trf

rf

Figure 8.25: Test WRC.TRTf.inv+po+dsb-isb
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AArch64 WRC.RRTf.inv+dmb+dsb-isb
Initial State

0:R0=desc3(z) 1:R1=pte3(x) 2:R1=y
0:R1=pte3(x) 1:R2=0b1 2:R3=x

1:R3=y 2:VBAR_EL1=0x2000

physical pa1 pa2;
x |-> invalid;
x ?-> pa1;
z |-> pa1;
*pa1 = 1;
y |-> pa2;
identity 0x1000 with code;
identity 0x2000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]
LDR X0,[X1]
DSB SY
STR X2,[X3]

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]
Thread 2 EL1 Handler
0x2400:
MOV X2,#0
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=desc3(z) & 2:X0=1 & 2:X2=0

Forbid

TODO: PS: why DSB not just any R/R ordering.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: W y/pa2 = 0x1

Thread 2

e: R y/pa2 = 0x1

f: dsb sy

g: isb

h2: Fault (R)h1: T s1:l3pte(x)

i: eret

po po

po

po

trf

popo

iio

rf

rf

Figure 8.26: Test WRC.RRTf.inv+dmb+dsb-isb
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AArch64 WRC.TRR.inv+po+dsb
Initial State

0:R0=mkdesc3(oa=pa1) 1:R0=0b0 2:R1=y
0:R1=pte3(x) 1:R1=x 2:R3=pte3(x)

1:R2=0b1
1:R3=y
1:VBAR_EL1=0x1000

physical pa1 pa2;
x |-> invalid;
x ?-> pa1;
y |-> pa2;
*pa1 = 1;
identity 0x1000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]
LDR X0,[X1]
STR X2,[X3]

LDR X0,[X1]
DSB SY
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 2:X0=1 & ~2:X2=0

Allow

TODO: PS: why DSB not just any R/R ordering.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

po

iio
popo

trf

rf

rf

Figure 8.27: Test WRC.TRR.inv+po+dsb
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AArch64 ROT.inv+dsb
Initial State

0:R0=mkdesc3(oa=ipa1) 1:R1=x
0:R1=pte3(x, new_table) 1:VBAR_EL1=0x1000
0:R2=mkdesc2(table=0x283000)
0:R3=pte2(x)
0:PSTATE.EL=0b01

physical pa1;
intermediate ipa1;
assert pa1 == ipa1;
ipa1 |-> pa1;
x |-> invalid at level 2;
x ?-> table(0x283000) at level 2;
s1table new_table 0x280000 {

x |-> invalid;
x ?-> ipa1;

};
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
STR X2,[X3]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
// read ESR_EL1.ISS, to see if fault at Level 2 or 3.

MRS X14,ESR_EL1
AND X14,X14,#0b111
CMP X14,#0b111
MOV X17,#1

// if ESR_EL1.ISS.DFSC == Translation Level 3 then x0 = 1 else x0 = 2
MOV X18,#2

// advance ELR
CSEL X0,X17,X18,eq
MRS X13,ELR_EL1
ADD X13,X13,#4

// return
MSR ELR_EL1,X13
ERET

Final State
1:X0=1

Forbid

The translation-table walk from the read of x in
Thread 1 must perform its translation non-TLB reads
in the order they appear in the walk, forbidding
reading from the new level 2 table entry in d1, but
then reading the stale initial value for that entry from
memory.
The test listing contains some concrete values to make
it executable in isla, namely fixing the location of the
new table at 0x280000 so it’s not symbolic, and the
exact location of the level 3 entry within the new
table will be at 0x283000 (known from the fixed isla
configuration). Whether the exception comes from
the level 2 or the level 3 entry can be determined by
reading the ISS field of the ESR_EL1 register, which
the exception handler does.

Thread 0

a: W 0x283000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: Fault (R)d2: T new table:l3pte(x)d1: T s1:l2pte(x)

e: eret

po

po

trf

iio iio
po

trf

Figure 8.28: Test ROT.inv+dsb
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AArch64 CoWinvT+po
Initial State

0:R0=0b0
0:R1=pte3(x)
0:R3=x
0:VBAR_EL1=0x1000

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X2,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b2: R x/pa1 = 0x0b1: T s1:l3pte(x)

trf

iio

po

The translation read (b1) of the last-level entry for x
can be re-ordered with respect to the program-order
earlier store (a) to pte3(x).

Figure 8.29: Test CoWinvT+po

8.5 Caching of translations in TLBs3176

We have seen in §8.4 that, while non-TLB reads do not necessarily preserve the program-order without additional3177

synchronisation due to the out-of-order execution of instructions, those translation table reads get satisfied from3178

the coherent storage subsystem or from forwarding from earlier stores, much like the normal explicit data reads3179

do. This section will explore what happens when translation table walk reads may instead be satisfied from the3180

TLB.3181

Unfortunately for the programmer, the TLB need not be coherent with memory: it can have stale values. This3182

section explores the behaviours that arise from this caching of stale values.3183

8.5.1 Cached translations3184

In the previous section we carefully constructed tests which began with an initially invalid translation, to avoid3185

TLB caching issues. Here, we will generally start with entries that are valid, and so might be present in the TLB.3186

The following CoWinvT+po test (Figure 8.29) begins with an initially valid (and therefore potentially initially3187

cached in the TLB) translation for the virtual address x. It then updates the last-level translation table entry for x,3188

setting it to 0, making it invalid (and thus unmapping x). Then, program order later, the same thread tries to read3189

x.3190

The read can succeed, as its translation can read from the old value from memory. We saw earlier that translation3191

table walks can be re-ordered with respect to program order, but even inserting thread-local ordering to the3192

translation, such as in test CoWinvT+dsb-isb (Figure 8.30, p138), does not forbid it.3193
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AArch64 CoWinvT+dsb-isb
Initial State

0:R0=0b0
0:R1=pte3(x)
0:R3=x
0:VBAR_EL1=0x1000

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:
MOV X2,#1
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: R x/pa1 = 0x0d1: T s1:l3pte(x)

po

potrf

iio

po

The translation read (d1) of the last-level entry for
x is required to be satisfied after the earlier store
(a) to the entry’s location because of the intervening
dsb sy; isb sequence, but can be satisfied from a
cached value in the TLB, allowing d1 to read from a
stale value.

Figure 8.30: Test CoWinvT+dsb-isb

8.5.2 TLB fills3194

Translation table walks can be requested by the core in two different ways: (1) through the architectural execution3195

of an instruction; or, (2) from a spontaneous translation table walk (for example, due to speculation and prefetching3196

of data or instructions). In either case, the result of that walk can be cached in the TLB and recalled for other3197

translation table walks.3198

Architecturally a TLB fill is no different to a normal translation table walk; each fill originates from a non-TLB3199

read, with all the behaviours described in the previous sections. Later translation table walks are allowed, however,3200

to recall an earlier value and then reuse that rather than doing a fresh read.3201

Spontaneous walks The hardware may, at any time, try to prefetch or speculatively read some address.3202

Architecturally these appear as spontaneous translation table walks. Those spontaneous walks may be cached. We3203

can see this occuring in the following MP.RT.inv+poloc-dmb+ctrl-isb test (Figure 8.31, p139), where a spontaneous3204

translation and the resulting TLB fill allows a future translation table walk to see a stale value.3205

Speculative paths Since translation table walks, and therefore TLB fills from the result of those walks, can3206

happen at any point, there is no need to consider TLB fills of architectural translation table walks down speculative3207

paths as any such behaviour is subsumed by a spontaneous fill.3208

However, as described earlier, we saw that writes cannot be forwarded to translation table walks when down3209

speculative paths (§8.4.5), as this would lead to security violations. This naturally excludes TLB fills of still3210

speculative writes; since a speculative write cannot be used in the result of a translation table walk, it cannot end3211

up cached in a TLB.3212

8.5.3 micro-TLBs3213

So far we have spoken as if entries are, at any particular moment in time, either present in the TLB or not.3214

Hardware, however, may have multiple micro-TLBs for the same thread, each with their own potential cached3215

entry for the same address.3216

In effect, these micro-TLBs behave as if they were a larger non-deterministic TLB with potentially many values3217

for each entry. The presence of these smaller caching structures in a superscalar machine means that different3218

instructions may be accessing different TLBs at the same time. This allows later instructions to ‘skip’ over a3219

previously seen cached entry, and then see it again later.3220

These effects can be seen in the CoTfT+dsb-isb test (Figure 8.32, p140), where the presence of these micro-TLBs3221

(or other distributed caching structures) allow later events (even locally-ordered later) to see old cached entries3222
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AArch64 MP.RT.inv+poloc-
dmb+ctrl-isb

Initial State
0:R0=mkdesc3(oa=pa1) 1:R1=y
0:R1=pte3(x) 1:R3=x
0:R2=0b0 1:VBAR_EL1=0x1000
0:R3=pte3(x)
0:R4=0b1
0:R5=y

physical pa1 pa2;
x |-> invalid;
x ?-> pa1;
y |-> pa2;
*pa1 = 0;
*pa2 = 0;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]
STR X2,[X3]
DMB SY
STR X4,[X5]

LDR X0,[X1]
CBNZ X0,L0

L0:
ISB
MOV X2,#1
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Allow

A spontaneous walk and fill can happen on Thread 1
after the write of the valid entry to pte3(x) (a), but
before the immediate re-invalidation of that entry (b),
allowing the later translation table walk to see the
old cached entry (g1), even though the architectural
translation table walk could not have happened while
the valid entry was visible.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x303000/s1:l3pte(x) = 0x0

c: dmb sy

d: W y/pa2 = 0x1

Thread 1

e: R y/pa2 = 0x1

f: isb

g2: R x/pa1 = 0x0g1: T s1:l3pte(x)

po

po

poctrl

ctrl

iio

copo

trf
po

rf

Figure 8.31: Test MP.RT.inv+poloc-dmb+ctrl-isb
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AArch64 CoTfT+dsb-isb
Initial State

0:R0=0b0 1:R1=x
0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

physical pa1;
x |-> pa1;
x ?-> invalid;
y |-> pa1;
*pa1 = 0;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

LDR X2,[X1]
MOV X0,X2
DSB SY
ISB
LDR X2,[X3]
Thread 1 EL1 Handler
0x1400:
MOV X2,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

Thread 1

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

iiotrf

The earlier translation read (b1) reads from the new
invalid entry, reading from memory (as it cannot have
been in the TLB), but a later translation read (f1)
of the same location can still potentially see a stale
cached entry.

Figure 8.32: Test CoTfT+dsb-isb

after earlier events witnessed a TLB miss.3223

Break-before-make and restrictions We will see later that the ability to have multiple cached entries for a3224

single address causes problems for software managing coherence, and imposes extra restrictions on software3225

practice. This means that, in general, the effects of the micro-TLBs are restricted to only those combinations that3226

do not cause break-before-make violations (see §8.6.5).3227

8.5.4 Partial caching of walks3228

TLBs need not cache entire virtual to physical translations. Instead, they are free to cache any subset of the reads3229

from the walk separately.3230

Caching up to last-level table The most common kind of caching structure we are aware of in microarchitec-3231

ture is the walk cache (see §8.3.1). Traditionally a TLB would store entire virtual to physical mappings, making it3232

fast to lookup the translation (often a single cycle), but there was limited space and induced heavy burden on3233

a TLB miss or TLB invalidation. Walk caches store the last-level table entry, allowing TLB invalidation of leaf3234

entries and TLB misses to re-use a prefix of the walk and perform a minimal number of accesses. This can be seen3235

in the MP.RTT.inv3+dmb-dmb+dsb-isb test (Figure 8.33, p141), where a walk cache could allow the table entry to3236

be cached separately from the last-level entry, allowing the last translation read to read from a much newer value.3237

Caching of whole translation A common configuration for the TLB is to cache whole translation walks, from3238

virtual to physical. This kind of caching has an important caveat: there is no requirement for the TLB to remember3239

the intermediate physical address of any stage 2 translations that were done during the walk, including the final3240

stage 2 walk of the access address itself. This means that TLB invalidations by IPA might not remove all the3241

cached data associated with a cached entry for that IPA, if there is a whole cached translation which used that3242

entry. TODO: ?REF?.3243

Independent caching of IPAs In a two-stage regime, the virtual addresses are first translated into intermediate3244

physical address. The secondary translations based on the intermediate physical addresses, either of the final3245

output address or of any of the intermediate table addresses, may be cached in the TLB without remembering the3246

originating virtual address.3247

This means these cached translations may be recalled for translations of different virtual addresses.3248

In addition, pre-fetching may perform translations of arbitrary IPAs. This means that any cached translations3249

might not correspond to any valid whole translation table walk, but may still be used during such walks.3250
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AArch64 MP.RTT.inv3+dmb-
dmb+dsb-isb

Initial State
0:R0=0b0 1:R1=y
0:R1=pte2(x) 1:R3=x
0:R2=mkdesc3(oa=pa1) 1:VBAR_EL1=0x1000
0:R3=pte3(x)
0:R4=0b1
0:R5=y

virtual x y;
physical pa1 pa2;
assert x[48..21] = y[48..21];!
x |-> invalid;
x ?-> pa1;
x ?-> invalid at level 2;
y |-> pa2;
*pa1 = 0;
*pa2 = 0;
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]
Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Allow

The translation-read of the level 2 entry for x (i1)
can read from stale writes from a translation that the
subsequent level 3 translation-read (i2) does not read
from, as the level 2 entry could have been cached
in the ‘TLB’ (in this case, a co-located ‘walk cache’
structure), while the level 3 entry gets read from
memory. TODO: PS: explain the magic numbers and
tfr edge a bit.

Thread 0

a: W 0x302018/0x302018 = 0x0

b: dmb sy

c: W 0x303000/0x303000 = mkdesc(addr=page(pa1))

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i3: R x/pa1 = 0x0i2: T 0x303000i1: T 0x302018

po po

po

po

trf

po

iio iio

po

po

trf
rf

Figure 8.33: Test MP.RTT.inv3+dmb-dmb+dsb-isb
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This is most clear in ROT.invs1+dmb2 (Figure 8.34, p143), where, although the IPA was never reachable from the3251

stage 1 translations, the old IPA to PA mapping was cached and used later.3252

Caching of individual entries Architecturally, Arm wish to allow many more implementations of TLBs and3253

translation caching structures than currently known hardware contains.3254

The weakest variation on this is allowing each individual translation table entry to be cached separately and3255

independently.3256

One could construct litmus tests for each of the possible combination of translation table entries, but there would3257

be overwhelmingly many of these, or even a ‘most relaxed’ version where every translation table entry comes3258

from different previous translations, but this would be too large to show here. So, for simplicity I show just one3259

of them here, ROT.inv2+dmb (Figure 8.35, p144); where the last-level entry came from a newer value than the3260

previous levels.3261

8.5.5 Reachability3262

One key property that the TLB must have is that it may only cache translation table entries which are reachable3263

from a translation in the current context. That is, it can only cache an entry which is the result of a valid translation3264

table walk, either using values from memory or other valid translation table entries from the TLB, using the3265

current system register state.3266

This means that writes coherence-before the most recent write at the time a translation table entry location3267

becomes reachable are not visible to the walker, and cannot have been cached in any TLB.3268

This is captured in the RUE+isb (Figure 8.36, p144) (“Read-unreachable-entry”) test, which is forbidden as the3269

write to the translation table from before the time the location becomes reachable by translation table walkers3270

cannot have been cached in any TLBs, or read from by any spontaneous walks.3271

This area is currently under discussion with Arm.3272

8.6 TLB maintenance3273

Recovering coherence for translation reads in the presence of TLB caching can be achieved through the use of3274

TLB maintenance instructions: namely the TLBI (“TLB invalidate” instruction).3275

TLB maintenance generally causes two microarchitectural effects: erasing stale entries from the TLB, ensuring3276

future TLB fills (for example, due to a translation read) will see the coherent value from memory; and, discarding3277

any partially executed instructions, on other cores, which had already begun execution using a stale entry but3278

had not yet finished executing. We will explore both of these effects and the subtle interaction with other parts of3279

the virtual memory systems architecture in more detail throughout this section.3280

8.6.1 Recovering coherence3281

We saw earlier, in Section 8.5.1, that stale values cached in the TLB can cause coherence violations in the translation,3282

for example, in the CoWinvT+dsb-isb test (Figure 8.30, p138). By inserting the correct TLBI sequence into that3283

test, we produce a new test, CoWinvT.EL1+dsb-tlbi-dsb-isb (Figure 8.37, p145), which is now forbidden.3284

There are many flavours of TLBI that could have been inserted into this test, the one in the figure is TLBI VAE1, or,3285

TLB invalidation by virtual address, for the EL1&0 translation regime. Using a TLBI-by-VA means the programmer3286

has to provide the virtual page to invalidate, and the TLBI only affects addresses for that specific invalidated entry,3287

not all of them.3288

Using the incorrect TLBI leads to insufficient invalidation occuring. For example, if in the aforementioned3289

CoWinvT.EL1+dsb-tlbi-dsb-isb the TLBI had the wrong page, then it would have no effect and the test would3290

remain allowed.3291

8.6. TLB MAINTENANCE 142



AArch64 ROT.invs1+dmb2
Initial State

0:R0=mkdesc3(oa=pa1) 1:R1=x
0:R1=pte3(x, s2_table) 1:VBAR_EL1=0x1000
0:R2=0b0 1:VBAR_EL2=0x2000
0:R3=pte3(x, s2_table)
0:R4=mkdesc3(oa=ipa1)
0:R5=pte3(x)
0:PSTATE.EL=0b01

physical pa1;
intermediate ipa1;
x |-> invalid at level 2;
x ?-> ipa1;
ipa1 |-> pa1;
ipa1 ?-> invalid;
*pa1 = 1;
identity 0x1000 with code;
identity 0x2000 with code;

Thread 0 Thread 1
STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

MOV X0,#0
LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET
Thread 1 EL2 Handler
0x2400:
MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final State
1:X0=1

Allow

The translation read of the stage 2 leaf entry for x
(f2) can read from an old cached version, from the
write (a) even though it was not reachable by any
translation table walk for any VA, as the IPA it maps
was not mapped by any stage 1 tables before it was
overwritten by (b).
This test relies on translation table walks being nat-
urally ordered (by iio), see §8.4.8.

Thread 0

a: W 0x203000/s2:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W 0x203000/s2:l3pte(x) = 0x0

d: dmb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

f3: R x/pa1 = 0x1f2: T s2:l3pte(x)f1: T s1:l3pte(x)

po

po

iio iio

co

po

trf

po
trf

Figure 8.34: Test ROT.invs1+dmb2
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AArch64 ROT.inv2+dmb
Initial State

0:R0=0b0 1:R1=x
0:R1=pte3(x, new_table) 1:VBAR_EL1=0x1000
0:R2=mkdesc2(table=0x283000)
0:R3=pte2(x)
0:PSTATE.EL=0b01

physical pa1;
intermediate ipa1;
assert pa1 == ipa1;
ipa1 |-> pa1;
x |-> invalid at level 2;
x ?-> table(0x283000) at level 2;
s1table new_table 0x280000 {

x |-> ipa1;
x ?-> invalid;

};
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DMB SY
STR X2,[X3]

MOV X0,#1
LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=0

Allow

The translation-read of the level 3 entry (d2) can read
from a stale cached translation, which was cached
before the write to the level 2 entry (c). Note that
this test assumes that the original new_table was
reachable (and therefore could be cached) before the
write c. See §8.5.5 for a discussion on this.

Thread 0

a: W 0x283000/new table:l3pte(x) = 0x0

b: dmb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: R x/pa1 = 0x0d2: T new table:l3pte(x)d1: T s1:l2pte(x)

po

trf

iio iio
po

trf

Figure 8.35: Test ROT.inv2+dmb

TODO: file not found ./all-litmus-
tests/isla//src/tex/RUE+isb.tex

Thread 0

a: W 0x2c4000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x2c4000/new table:l3pte(x) = 0x0

c: l0pte(x))

d: isb

e2: R x/pa1 = 0x0e1: T new table:l3pte(x)

po

po

iio

trf

co po

po

The write to the new_table translation table entry
for x (a) is not visible at the point of the change of
TTBR (c), and so the later translation table walk (e1)
cannot read from it.
Note that isla currently does not do any kind of
reachability analysis, and so does not forbid this
test.

Figure 8.36: Test RUE+isb
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AArch64 CoWinvT.EL1+dsb-tlbi-
dsb-isb

Initial State
0:R0=0b0
0:R1=pte3(x)
0:R3=x
0:R5=page(x)
0:VBAR_EL1=0x1000
0:PSTATE.EL=0b01

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DSB SY
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1000:
MOV X2,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
0:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1 page=page(x)

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

po

The read of the translation table entry for x (f1) is
required to happen after the earlier store (a), because
of the intervening dsb sy; isb sequence (d and e),
and cannot be satisfied from the TLB, because of the
TLBI (c), forbidding it from still seeing a stale value.
Note that TLBI instructions can only be executed
from EL1, so this test starts execution at EL1 rather
than the usual default of EL0.

Figure 8.37: Test CoWinvT.EL1+dsb-tlbi-dsb-isb

FEAT_nTLBPA3292

Armv8.4-A introduced a new optional Arm feature, FEAT_nTLBPA [12, A2.2.1 (p79)] .3293

This feature adds a field to the memory model feature register (AA64MMFR1_EL1) which can identify whether the3294

current processor’s TLB (and related microarchitectural caching structures) may contain non-coherent copies of3295

stage 1 entries indexed by those entries intermediate physical address. Microarchitecturally, this corresponds to3296

there being non-coherent caches associated with the TLB, which must be flushed on a TLBI.3297

These caches would allow TLB misses to read from a non-coherent cache, thus not seeing the most up-to-date3298

value from the coherent storage subsystem like described in §8.4.3299

Note that the text in the reference manual is a little ambiguous, the entry in A2.2.1 describes it as a “mechanism3300

to identify if [TLB caching] does not include non-coherent caches [of old translation entries] since the last3301

completed TLBI”. This change adds a field to the register, whose reserved value in Armv8.0 corresponds to the3302

non-coherent caches existing. This implies that implementation of the feature is not only the existence of the3303

runtime identification register’s field, but additionally that its value is 0b0001 (that is, that non-coherent caches3304

do not exist). This further implies that in processors without FEAT_nTLBPA one should assume that TLBs may3305

contain non-coherent caching structures.3306

8.6.2 Thread-local ordering and TLBI3307

TLB maintenance instructions are not naturally locally ordered with respect to other instructions in the instruction3308

stream, this means that they can be re-ordered with other instructions. To ensure they are synchronized with3309

other instructions, the programmer can use the DSB barrier instruction to order instructions before and after it.3310

Leaving out one, or both, of the DSBs around the TLBI leads to insufficient ordering around the TLBI and allows3311

the invalidation to occur at the wrong time. For example, the CoWinvT.EL1+tlbi-dsb-isb test (Figure 8.38, p146) is3312

allowed as the initial write and TLBI may be re-ordered, negating the architectural effect of the TLBI.3313

TODO: talk about FEAT_ETS3314
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AArch64 CoWinvT.EL1+tlbi-dsb-
isb

Initial State
0:R0=0b0
0:R1=pte3(x)
0:R3=x
0:R5=page(x)
0:VBAR_EL1=0x1000
0:PSTATE.EL=0b01

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
TLBI VAE1,X5
DSB SY
ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1000:
MOV X2,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
0:X2=0

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: TLBI VAE1 page=page(x)

c: dsb sy

d: isb

e2: R x/pa1 = 0x0e1: T s1:l3pte(x)

po

po

potrf

iio

po

The TLBI (b) can be re-ordered with program-order
earlier events, due to the lack of DSBs ordering it after
them, allowing the store (a) to happen later, letting
the final translation read (e1) still see the old stale
translation.

Figure 8.38: Test CoWinvT.EL1+tlbi-dsb-isb

8.6.3 Broadcast3315

Arm provide broadcast variants of the TLBI instructions. These are generally suffixed with the letters IS (for3316

“Inner-shareable”).3317

Broadcast TLBIs, sometimes referred to as TLB shootdowns, allow one processor to perform maintenance on3318

another core’s TLB.3319

This is in contrast to other systems, such as for IBM’s Power architecture, where maintenance of other cores must3320

be achieved in software through the use of only thread-local invalidation instructions.3321

TLB invalidation on another core One of the simplest examples is a message passing invalidation pattern,3322

where the old entry is removed and a message is sent to another core. This can be seen in the MP.RT.EL1+dsb-3323

tlbiis-dsb+dsb-isb test (Figure 8.39, p147).3324

Instruction restarts Broadcast TLBIs must do more than touch the other thread’s TLB. If the other processor3325

had already performed translation, using the old stale value, but has not yet finished execution, then that instruction3326

must be restarted.3327

This ensures that Arm broadcast TLBIs have the same behaviour as the traditional software IPI-based shootdown3328

(With context synchronization); but also provides a needed security guarantee.3329

If a mapping is taken away from a process, then future writes to the physical location it used to map to, should3330

not be visible to that process anymore.3331

This guarantee is captured in the RBS+dsb-tlbiis-dsb (Figure 8.40, p147) (Read-broken-secret) test. Once a3332

mapping has been broken, and sufficient TLB maintenance performed, any future reads or writes to the original3333

physical location will not be visible through that mapping anymore. Note, however, that this does not mean3334

that instructions which have already completed their execution will be restarted, even if they occur after an3335

earlier restarted instruction. This can be seen in the RBS+dsb-tlbiis-dsb+poloc test (Figure 8.41, p148), where the3336

program-order later load can see the old value, even after the first faults.3337

While here I describe things in terms of instruction restarting, these behaviours can be (and presumably are)3338

implemented in terms of waiting: instead of the TLBI forcibly restarting instructions that already started but3339

haven’t finished, the TLBI can simply wait for them to complete. This phrasing of waiting for completion is how3340

this process is described in the Arm ARM [12, D5.10.2 (p4928)] .3341
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AArch64 MP.RT.EL1+dsb-tlbiis-
dsb+dsb-isb

Initial State
0:R0=0b0 1:R1=y
0:R1=pte3(x) 1:R3=x
0:R2=0b1 1:VBAR_EL1=0x1000
0:R3=y
0:R4=page(x)
0:PSTATE.EL=0b01

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
y |-> pa2;
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI VAE1IS,X4
DSB SY
STR X2,[X3]

LDR X0,[X1]
DSB SY
ISB
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MOV X2,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T s1:l3pte(x)

po

po po

po

po

trf

po

iio

po

rf

The broadcast TLBI on Thread 0 (c) ensures that
the earlier unmapping (a) is seen by the ordered
later translation read on Thread 1 (i1), by ensuring
Thread 1’s local TLB is cleaned of any stale entries
for x.

Figure 8.39: Test MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb

AArch64 RBS+dsb-tlbiis-dsb
Initial State

0:R0=0b0 1:R1=x
0:R1=pte3(x) 1:VBAR_EL1=0x1000
0:R5=page(x)
0:R2=0x2
0:R3=y
0:PSTATE.EL=0b01

physical pa1;
x |-> pa1;
x ?-> invalid;
y |-> pa1;
*pa1 = 0;
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
MOV X0,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=2

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: R x/pa1 = 0x2f1: T s1:l3pte(x)

po

po

po

trf

iio
po

rf

The broadcast TLBI of x (c) ensures that the execution
of the load of x in Thread 1 either entirely executes
using the old translation and finishes before the TLBI
does, or begins execution after the TLBI finishes.

Figure 8.40: Test RBS+dsb-tlbiis-dsb
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AArch64 RBS+dsb-tlbiis-
dsb+poloc

Initial State
0:R0=0b0 1:R1=x
0:R1=pte3(x) 1:R3=x
0:R5=page(x) 1:VBAR_EL1=0x1000
0:R2=0x2
0:R3=y
0:PSTATE.EL=0b01

physical pa1;
x |-> pa1;
x ?-> invalid;
y |-> pa1;
*pa1 = 0;
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI VAE1IS,X5
DSB SY
STR X2,[X3]

MOV X0,#1
LDR X0,[X1]
MOV X2,#1
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=1 & 1:X2=0

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: Fault (R)f1: T s1:l3pte(x)

g: eret

h2: R x/pa1 = 0x0h1: T s1:l3pte(x)

po

po

po

po

potrf rf

iio

iio

trf
po

Even though the broadcast TLBI on Thread 0 (c)
ensures that not-yet-completed instructions using the
old mapping are restarted, it does not require that
the second load of x in Thread 1 (h) be restarted if
it has already satisfied its value, as that value must
have come from a write before the TLBI.

Figure 8.41: Test RBS+dsb-tlbiis-dsb+poloc

Atomic TLBIs In the previous RBS-shaped tests, I describe the behaviour in terms of writes that occur ‘before’3342

the TLBI.3343

Microarchitecturally a TLBI instruction is very non-atomic: it sends messages to all other cores, performs some3344

action, and sends messages back to the originating core. The program-order earlier DSB ensures that program-order3345

earlier instructions are complete before sending the messages. The program-order later DSB ensures that all3346

program-order later instructions wait for those messages to return.3347

The presence of these DSBs ensure that the TLBI’s effect happens entirely at that point in the instruction stream,3348

and cannot be broken up and re-ordered amongst the other instructions in the stream. This, coupled with the fact3349

that these messages strengthen and never weaken the behaviour of other cores, means that you cannot observe a3350

partial TLBI effect. So long as the programmer takes care to maintain the required thread-local ordering.3351

Because of this, we can think of the TLBI as executing either before an instruction or after an instruction, but3352

do not need to consider a TLBI executing in the middle of another instruction. This allows us to simplify things,3353

fitting TLBIs into a (generalised) coherence order, with other writes occurring either before or after.3354

8.6.4 Virtualization3355

Throughout this section we have considered tests for stage 1 translation with virtual mappings. But many of these3356

questions and behaviours also apply to the stage 2 intermediate physical mappings, with some key differences.3357

Virtual to physical and IPA caches The existence of TLBs that cache virtual to physical mappings (§8.5.4)3358

complicates the TLB maintenance sequence required for changes to the intermediate physical mappings.3359

When invalidating stale second stage entries from the TLB, it is required for the programmer to do two sets of3360

invalidations: first one TLB invalidation to remove any of the old entries for the old IPA to PA, then, perhaps3361

surprisingly, a second TLB invalidation is needed to remove any stale whole translation, VA to PA mappings or3362

any combination thereof, as these could have indirectly cached the result of a second stage translation without3363

remembering the IPA.3364

This can be seen in MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb (Figure 8.42, p149), where invalidation of just the IPA is3365

not enough. Adding an invalidation of the VA (or all VAs), like in MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb3366

(Figure 8.43, p150), ensures that later translations cannot see the stale value anymore.3367
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AArch64 MP.RT.EL2+dsb-
tlbiipais-dsb+dsb-isb

Initial State
0:R0=0b0 1:R1=y
0:R1=pte3(ipa1, s2_table) 1:R3=x
0:R2=0b1 1:VBAR_EL2=0x2000
0:R3=z
0:R4=page(ipa1)
0:PSTATE.EL=0b10

physical pa1 pa2;
intermediate ipa1 ipa2;
x |-> ipa1;
ipa1 |-> pa1;
ipa1 ?-> invalid;
y |-> ipa2;
ipa2 |-> pa2;
z |-> pa2;
identity 0x2000 with code;
*pa1 = 0;
*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
STR X2,[X3]

LDR X0,[X1]
DSB SY
ISB
MOV X2,#1
LDR X2,[X3]
Thread 1 EL2 Handler
0x2400:
MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final State
1:X0=1 & 1:X2=0

Allow (if not ETS)

Despite the TLB invalidation of the stale IPA (c), a
later stage 2 translation-read of that IPA (i1) can still
see the old stale value.

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: W z/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T 0x203000

po

popo

po

po

trf

po

iio

po

rf

Figure 8.42: Test MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb
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AArch64 MP.RT.EL2+dsb-
tlbiipais-dsb-tlbiis-

dsb+dsb-isb
Initial State

0:R0=0b0 1:R1=y
0:R1=pte3(ipa1, s2_table) 1:R3=x
0:R2=0b1 1:VBAR_EL2=0x2000
0:R3=z
0:R4=page(ipa1)
0:PSTATE.EL=0b10

physical pa1 pa2;
intermediate ipa1 ipa2;
x |-> ipa1;
ipa1 |-> pa1;
ipa1 ?-> invalid;
y |-> ipa2;
ipa2 |-> pa2;
z |-> pa2;
identity 0x2000 with code;
*pa1 = 0;
*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI IPAS2E1IS,X4
DSB SY
TLBI VMALLE1IS
DSB SY
STR X2,[X3]

LDR X0,[X1]
DSB SY
isb
LDR X2,[X3]

Thread 1 EL2 Handler
0x2400:
MOV X2,#1
MRS X13,ELR_EL2
ADD X13,X13,#4
MSR ELR_EL2,X13
ERET

Final State
1:X0=1 & 1:X2=0

Forbid

By performing TLB invalidation of the stage 1 entries
(e) after invalidating the stage 2 ones (c1), it is guar-
anteed that the later translation-read (k1) cannot see
the old stale value anymore.

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: TLBI VMALLE1IS vmid=0x0

f: dsb sy

g: W z/pa2 = 0x1

Thread 1

h: R y/pa2 = 0x1

i: dsb sy

j: isb

k2: R x/pa1 = 0x0k1: T 0x203000

po

po

popo

po

po

po

trf

po

iio

po

rf

Figure 8.43: Test MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb
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8.6.5 Break-before-make3368

TLBs are not required to store only a single cached translation for a given address. There may, in general, be3369

multiple valid translations cached in the TLB.3370

To avoid this possibility, the architecture provides a break-before-make sequence, which will ensure that there3371

cannot be two cached translations existing in the TLB at the same time.3372

The architecture requires break-before-make when writing to the translation tables to update an already valid3373

entry with a new valid entry, and the change involves any of the following1:3374

. A change in output address, if the new or old entry is writeable.3375

. A change in output address, if the new and old locations have different contents.3376

. A change in memory type.3377

. A change in block size (e.g. replacing a page of 4KiB leaf with a 2MiB block mapping).3378

For those cases where break-before-make is required, the programmer must:3379

(1) write an invalid entry to overwrite the currently valid translation table entry in memory;3380

(2) perform a dsb sy (or equivalent);3381

(3) perform any TLB maintenance required to sufficiently invalidate the old entry from any TLB(s) required;3382

(4) perform a dsb sy (or equivalent);3383

(5) write the new valid translation table entry, overwriting the old invalid entry.3384

Litmus test For completeness, the BBM+dsb-tlbiis-dsb (Figure 8.44, p152) gives possibly the simplest valid to3385

valid concurrent update test,3386

Break-before-make violations3387

Architecturally, there is no hard requirement to perform break-before-make. Failure to do so simply leads to a3388

degraded state, defined by ConstrainedUnpredictable behaviour.3389

The Arm reference manual does make it clear that failure to perform break-before-make when required can lead3390

to failure of single-copy atomicity, coherence or even the full breakdown of uniprocessor semantics. While the3391

reference manual does not give motivation for this, we can speculate that this is to allow hardware to perform3392

multiple translations during execution of the instruction, for example, during hazard checking. As such, we do3393

not try to give a full picture of ConstrainedUnpredictable behaviour arising from break-before-make not being3394

followed.3395

Understanding ConstrainedUnpredictable in full is future work, but a quick summary might be ‘any behaviour3396

that this program could have performed if it wanted to’. That is, an instantenous change in the state to a random3397

new state that would have been reachable by executing arbitrary code at that same exception level, security state3398

and translation regime.3399

8.6.6 ASIDs and VMIDs3400

In an effort to reduce the expense of TLB maintenance the architecture provides a mechanism to separate out the3401

address spaces by tagging translations with address space identifiers (or ASIDs). These ASIDs allow TLB entries to3402

be tagged with only the address space they are used with, and allow TLB maintenance operations to selectively3403

target only the address space being updated.3404

Crucially, this allows software to switch between address spaces without having to invalidate the TLB.3405

This idea is extended not just to address spaces at EL1 (used primary for the operating system and its processes),3406

but to EL2 with virtual machine identifiers (or VMIDs). These VMIDs serve the same function as ASIDs, giving IDs3407

to address spaces, except in this case IDs to second-stage IPA to PA address spaces.3408

1See the Arm ARM “TLB maintenance requirements and the TLB maintenance instructions” [12, D5.10.1 (p4913)] . for
the full list of conditions.
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AArch64 BBM+dsb-tlbiis-dsb
Initial State

0:R0=0b0 1:R1=x
0:R1=pte3(x) 1:VBAR_EL1=0x1000
0:R2=mkdesc3(oa=pa2)
0:R4=0b1
0:R6=page(x)
0:PSTATE.EL=0b01

physical pa1 pa2;
x |-> pa1;
x ?-> invalid;
x ?-> pa2;
identity 0x1000 with code;
*pa2 = 2;

Thread 0 Thread 1
STR X0,[X1]
DSB SY
TLBI VAE1IS,X6
DSB SY
STR X2,[X1]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
MOV X0,#1
MRS X13,ELR_EL1
ADD X13,X13,#4
MSR ELR_EL1,X13
ERET

Final State
1:X0=0

Allow

The update of the translation table entry for x in
Thread 0 follows the break-before-make sequence,
first breaking x (a), then performing the necessary
TLBI sequence (b-c-d), before making x be the new
mapping (e). This ensures the concurrent access in
Thread 1 is guaranteed to see either the old value,
the intermediate broken page (and so a page fault),
or the new value. This test is the variant whose final
state asserts that the old value was read.

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

Thread 1

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

trf

iio
po

co

Figure 8.44: Test BBM+dsb-tlbiis-dsb
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8.6.7 Access permissions3409

Accesses which result in permission faults can have been satisfied from the TLB, and writes which update3410

translation table entries AP field can be cached in the TLB.3411

Translations can give rise to permission faults. These are unlike translation faults, in that, they are based not just3412

upon the descriptor read, but also on the kind of access requested: whether a read, or a write.3413

Accesses which result in permission faults result in exceptions, much like translation faults do, but may have been3414

read from the TLB. This can clearly be seen in the CoWinvTp.ro+dsb-isb test (Figure 8.45, p154), where ordered3415

after a write to the translation tables a permission failure is experienced, whose descriptor must have come from3416

the TLB.3417

Multiple cached entries The changing of access permissions not necessarily being break-before-make vio-3418

lations allows us to observe multiple cached entries within the TLB. It is permitted for these entries to exist3419

simultaneously.3420

When reading from the TLB, and there existing multiple entries for the same input address, it is allowed for the3421

hardware to generate a TLB conflict abort. These aborts are reported as data aborts.3422

If the hardware does not generate a conflict abort, then translation reads of that address are ConstrainedUn-3423

predictable, nondeterministically able to read one or the other or an “amalgamation” of the values [12, K1.2.33424

(p11243)] .3425

Here there seems a contradiction:it is not required to perform break-before-make, but there is no requirement that3426

only one entry be cached in the TLB. We can side step this issue by constructing a test that only changes a single3427

bit of the descriptor, in a way that is not a break-before-make violation, and therefore avoiding any questions3428

about how ‘amalgamation’ of entries happens. This can be seen with the MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb3429

test (Figure 8.46, p155), where the existence of multiple cached entries in the TLB allows multiple translation-reads3430

to read from different stale writes.3431

Atomic TLB reads Existence of multiple cached translation table entries in the TLB, without break-before-3432

make violations, introduces the question of whether those TLB fills and subsequence TLB reads must read from3433

entire single-copy atomic writes of the original translation table entries (much like a read of memory would) or3434

whether a translation read can read from a mix of different writes. RMD+dmb (Figure 8.47, p156) (“Read-mixed-3435

descriptor”) shows that translation reads cannot read partially read from a write, it must read from the entire3436

write or none of it.3437
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AArch64 CoWinvTp.ro+dsb-isb
Initial State

0:R0=0x0
0:R1=pte3(x)
0:R2=0x1
0:R3=x
0:VBAR_EL1=0x1000

physical pa1;
x |-> pa1 with [AP = 0b11] and default;
x ?-> invalid;
*pa1 = 0;
identity 0x1000 with code;

Thread 0
STR X0,[X1]
DSB SY
ISB
MOV X13,#0
STR X2,[X3]

Thread 0 EL1 Handler
0x1400:
// read ESR_EL1.ISS to see if Permission or Translation fault

MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111

// Permission
MOV X15,#1

// Translation
MOV X16,#2
CSEL X13,X15,X16,eq
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
0:X13=1

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: Fault (W)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

The translation-read (d1) of x, which happens after
the program-order earlier store to the translation ta-
bles (a) because of the intervening dsb; isb sequence
(b-c), can read from a stale value and result in a per-
mission fault, as the read-only entry from the initial
state may be cached in the TLB.

Figure 8.45: Test CoWinvTp.ro+dsb-isb
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AArch64 MP.RTpT.ro+dmb-
dmb+dsb-isb-dsb-isb

Initial State
0:R0=mkdesc3(oa=pa1, AP=0b10)1:R1=y
0:R1=pte3(x) 1:R4=x
0:R2=0b0 1:VBAR_EL1=0x1000
0:R3=pte3(x)
0:R4=0b1
0:R5=y

physical pa1 pa2;
x |-> pa1 with [AP = 0b11] and default;
x ?-> pa1 with [AP = 0b10] and default;
x ?-> invalid;
y |-> pa2;
*pa1 = 0;
identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]
DMB SY
STR X2,[X3]
DMB SY
STR X4,[X5]

LDR X0,[X1]
DSB SY
ISB
LDR X13,[X4]
MOV X2,X13
DSB SY
ISB
LDR X13,[X4]
MOV X3,X13
Thread 1 EL1 Handler
0x1400:
// read ESR_EL1.ISS to see if Permission or Translation fault

MRS X14,ESR_EL1
AND X14,X14,#0b1111
CMP X14,#0b1111

// Permission
MOV X15,#1

// Translation
MOV X16,#2
CSEL X13,X15,X16,eq
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
1:X0=1 & 1:X2=1 & 1:X3=0

Allow

The first translation-read of x (i1) reads from the
write that removes read permissions (a) and this
write must have come from the TLB because of the
intervening invalidation (c), message pass (e-f), and
dsb; isb sequence (g-h). The later translation-read
of x (m1) can still see an even older value with read
permissions, from the initial state, as it may also have
been cached in the TLB.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(AP=0x3, addr=page(pa1))

b: dmb sy

c: W 0x303000/s1:l3pte(x) = 0x0

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: Fault (R)i1: T s1:l3pte(x)

j: eret

k: dsb sy

l: isb

m2: R x/pa1 = 0x0m1: T s1:l3pte(x)

po

po

po

po po

po

po po

trf

iio

po

iio

co
trf

po

po

rf

Figure 8.46: Test MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb
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AArch64 RMD+dmb
Initial State

0:R0=mkdesc3(oa=pa2, AP=0b10)1:R1=x
0:R1=pte3(x) 1:VBAR_EL1=0x1000
0:R2=0x1
0:R3=y

physical pa1 pa2;
x |-> pa1 with [AP = 0b11] and default;
x ?-> pa2 with [AP = 0b10] and default;
y |-> pa2;
*pa1 = 0;
*pa2 = 1;
identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]
DMB SY
STR X2,[X3]

MOV X0,#0
LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:
MRS X20,ELR_EL1
ADD X20,X20,#4
MSR ELR_EL1,X20
ERET

Final State
1:X0=1

Forbid

The translation-read of x (d1) cannot read from both
the 64-bit single-copy atomic write a as well as from
the initial state. Note that this test does not, as far
as we can see, violate the break-before-make require-
ments, as currently prescribed by the Arm manual,
as the contents in memory of both locations pa1 and
pa2 are the same at the time of the write to the trans-
lation tables.
This diagram was generated by hand, as isla does not
generate a candidate execution of this shape.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d2: R x/pa2 = 0x1d1: T s1:l3pte(x)

po

trf

iiotrf
po

rf

Figure 8.47: Test RMD+dmb
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8.7 Context synchronisation3438

There are many operations which change the current context the system is in. We will focus in on two of these:3439

taking and returning from exceptions, and writing to system registers.3440

These actions can change the context that the system is executing in: the current exception level, the translation3441

regime, the translation table base, the ASID or VMID, and a variety of other system configuration state.3442

8.7.1 Relaxed system registers3443

So far, in this and previous work, register reads and writes have been completely coherent: instructions program-3444

order after a write to a register will always read from that write (or an intervening write) when it reads that3445

register. System registers break this guarantee.3446

Arm System registers may require the programmer to insert explicit synchronization, as stated clearly in the Arm3447

reference manual [12, D13.1.2 (p5235)] :3448

Reads of the System registers can occur out of order with respect to earlier instructions
executed on the same PE, provided that both:

. Any data dependencies between the instructions, including read-after-read depen-
dencies, are respected.

. The reads to the register do not occur earlier than the most recent Context syn-
chronization event to its architectural position in the instruction stream.

3449

This means a read of a system register might not read from the most recent write to that system register.3450

To ensure that writes to system registers are seen by program-order later reads, the programmer can ensure3451

that a Context synchronization event occurs. These are typically things which flush the pipeline causing future3452

instructions to restart: The ISB instruction and taking and returning from exceptions.3453

There are two important caveats: (1) this does not apply to non-System registers, such as special-purpose or3454

general-purpose registers, and they never require synchronization; and (2), the synchronization required for3455

System registers depends on the kind of accesses.3456

There are typically two kinds of accesses to System registers: direct, and indirect. Direct accesses are the way we3457

think of registers: instructions which specifically read or write to those registers. Indirect accesses happen when3458

an instruction which does not explicitly mention the register by name performs an access, a read or a write, to3459

that register, during the execution of its behaviour.3460

Because of the out-of-order nature of the pipeline, these indirect register reads and writes may occur out-of-order3461

with respect to any program-order earlier direct reads or writes of that register. This means that before any direct3462

read, and after any direct write, the programmer must perform a context-synchronizing event to ensure that these3463

direct accesses occur in-order with respect to other indirect accesses. The programmer does not have to insert3464

context-synchronization after any direct read, as it is guaranteed that register reads or writes cannot be affected3465

by program-order later accesses.3466

System register ASL In the previous chapter we explored the Arm ASL code for the translation table walk3467

and for one of the store instructions. We saw that this ASL code reads from system registers (as indirect reads).3468

A naive attempt at a first interpretation of the relaxed semantics is to allow these reads to read-from the most3469

recent indirect write and any program-order later direct writes since the last context synchronization event.3470

However, this would not give the correct behaviour.3471

The Arm ASL is not written to accommodate relaxed system register behaviours. It leaves questions open about3472

whether these registers can be redundant re-read during execution, whether the instruction reads the entire3473

register at once or piecemeal over the course of execution, and whether repeated accesses to the same register3474

within an instruction are able to read-from different writes. These questions, and others, are still under discussion3475

with Arm.3476

We will see later in §TODO: ?REF? that we give a simple incomplete (and possibly unsound) interpretation in3477

our model in the pointed set semantics of system registers, which allows the model to observe some of the known3478

behaviours in this area, without yet fully exploring the architecture.3479
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Caching of system registers in TLBs In addition to being out-of-order due to pipeline effects, some system3480

registers may be indirectly cached within the TLB.3481

We have already seen one of these: the MAIR register. Direct writes to the MAIR may not be seen by program-order3482

later translations, even after context-synchronization, as the translations may get their value from the TLB and3483

the TLB may have stored a result which depended on the previous value of the MAIR, effectively causing a stale3484

read of it at that point in the instruction stream.3485

To ensure that an update to the MAIR is observed by later translations therefore requires both TLB maintenance3486

and context synchronization, in that order.3487

The registers which can be cached in this way, and the behaviours that arise from this caching, are still under3488

current investigation with Arm.3489

8.8 Details likely to change3490

There have been a few places so far I’ve added words to the effect of ‘this is currently under discussion with Arm’.3491

In this section I will summarise those things which we know some things, but also know that it is is likely to3492

change and the ways in which it will.3493

Caching of entries in the TLB The biggest change we are aware of to the model is a strengthening in caching3494

of entries in the TLB. We have assumed that the TLB can cache any combination of translation table entries for a3495

walk, and recall any cached combination as well. We are aware that Arm wish to strengthen this, to make the3496

model TLB more in-line with the hardware TLB: essentially requiring the model TLB to behave as a walk cache,3497

caching whole walks (or prefixes of walks) rather than individual entries.3498

TLB Invalidation We have primarily considered TLB invalidations of cached level 3 (that is, last level) entries.3499

When invalidating entries higher in the table, they affect more of the address space (as described in §7.3.1), and3500

so the TLB invalidation must affect addresses outside of just the page referenced. The model currently does not3501

support this, this is a simple oversight and we believe not hard to update the model to handle this case.3502

More complex invalidation patterns, for example, zeroing and invalidating table entries, is still under discussion3503

with Arm.3504

ETS We are aware of changes to the architecture regarding ETS. Every attempt has been made to try incorporate3505

those changes into the model as we become aware, however, often they are changes driven by others and we only3506

become aware as they are publically released.3507

It is very likely the parts of the model dedicated to ETS will gain new strength over the coming weeks and months,3508

it is unfortunately not possible at this time to give a detailed description of what the final state of ETS will look3509

like, partially for confidentiality reasons and partially because Arm have not yet decided.3510

System registers As previously described, the current state of relaxed system register reads and writes is3511

unclear. We are in discussion with Arm on this aspect. It is not possible at this time to describe what the final3512

model will look like, or what changes will need to be done to the model presented here.3513

Exceptions and context-synchronisation We are in discussion with Arm about the nature of exceptions and3514

their context-synchronising nature and how this interacts with the memory model.3515

We believe the changes required to the model presented here will be minor, although they will probably be neither3516

a relaxation nor a strengthening of the current model, but rather an incomparable change.3517

8.9 Contributions3518

We have now covered all the relaxed memory behaviours, and will, in the next chapter, move on to discuss the3519

extant models created to capture those behaviours. But before that, it may at this point be unclear what the3520

contribution of this chapter is. They come in three forms: (1) the attempt at some systematic coverage of the kinds3521

of behaviours which systems software must account for; (2) the precise, formal description (in prose, and as litmus3522
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tests) of those behaviours; and, (3) the clarification of the architecture where such behaviours were otherwise3523

unclear.3524

Coverage of behaviours While this chapter attempts to systematically cover the behaviours we imagine3525

software may try to rely on, starting from the basics of translation table walks and exploring the effects of3526

out-of-order pipelines, caching, and barriers, we cannot claim it is exhaustive. As this is a manually compiled and3527

curated list of behaviours, from reading the text and talking with architects, there are surely corner cases missed3528

and software patterns overlooked. However, we believe we have covered those patterns known and required for3529

the features we cover enough for software verification efforts of microkernels and hypervisors.3530

Clarification of architecture Attempts to clarify the architecture come primarily from the confidential discus-3531

sions with architects. The behaviours discussed usually fell into one of three categories, whether they were clear3532

already, needed further exploration or are, still, under invesitgation by Arm.3533

The first major category are those behaviours which were already clear and potentially covered in the architecture3534

text. As alluded to right at the start of this chapter, these are not whole sections or sub-sections or even necessarily3535

whole tests. The most obvious cases are §8.3.3 (‘Invalid entries’), §8.2.1 (‘Virtual coherence’), and §8.6.5 (‘Break-3536

before-make’). These are fundamental behaviours to the correctness of all modern systems software, and for3537

which the architecture reference manual has clear words (at least, enough to cover the basic sequences software3538

rely upon).3539

Most of the subsections fall into a more general category, of things that either had some associated reference3540

materials, or was otherwise clear from discussion with architects, but for which further invesitgation was needed.3541

This includes: forwarding (§8.4.4) and speculation (§8.4.5) for translation table walks; multi-copy atomic translation3542

table walks (§8.4.7); intra-instruction ordering (§8.4.8,§8.4.9); micro-TLBs (§8.5.3) and partial walk caching (§8.5.4);3543

a variety of TLBI questions (§8.6); and, system register accesses (§8.7.1).3544

Despite the work conducted here, from reading the architecture reference text, discussions with architects, and3545

the testing of existing hardware, there are still many questions which are under current invesitgation with Arm.3546

These include further questions about the scope of TLBIs, interaction with exceptions and interrupts, changes in3547

cacheability, translations for instruction fetching, and relaxed system register accesses. Those areas will require3548

more work before giving a concrete semantics.3549

8.10 Related work3550

For address translation, the authoritative Arm-internal ASL model [10, 11, 66], and Sail model derived from it [44]3551

cover this, and other features sufficient to boot an OS (Linux), as do the handwritten Sail models for RISC-V (Linux3552

and FreeBSD) and MIPS/CHERI-MIPS (FreeBSD, CheriBSD), but without any cache effects. Goel et al. [80, 90]3553

describe an ACL2 model for much of x86 that covers address translation; and the Forvis [91] and RISCV-PLV [92]3554

Haskell RISC-V ISA models are also complete enough to boot Linux.3555

Syeda and Klein [93, 94] provide an somewhat idealisedmodel for ARMv7 address translation and TLBmaintenance.3556

Komodo [55] uses a handwritten model for a small part of ARMv7, as do Guanciale et al. [56, 57]. Romanescu et3557

al. [95, 96] do discuss address translation in the concurrent setting, but with respect to idealised models.3558

Lustig et al. [82] describe a concurrent model for address translation based on the Intel Sandy Bridge microar-3559

chitecture, combined with a synopsis of some of the relevant Linux code, but not an architectural semantics for3560

machine-code programs.3561
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Chapter 93562

An axiomatic VMSA model3563

We now define a semantic model for Armv8-A relaxed virtual memory that, to the best of our knowledge, captures3564

the Arm architectural intent for the questions discussed in Chapter 8, including Stage 1 and Stage 2 translation-table3565

walks and the required TLB maintenance.3566

In §8 we described the design issues in microarchitectural terms, discussing the behaviour of translation table3567

walks and TLB caching, along with the needs of system software. We now abstract from microarchitecture:3568

constructing a model based on ordering between translation-read events and others, avoiding modelling TLBs3569

and out-of-order pipelines directly.3570

This chapter will present this model, as an extention to the ‘user-mode’ Armv8-A axiomatic model presented in3571

§TODO: ?REF?.3572

9.1 Extended candidate executions3573

The base Armv8-A axiomatic model is defined as a predicate over candidate executions, each of which is a graph3574

with various events (reads, writes, barriers) and relations over them, notably the per-thread program order3575

po, the per-location coherence order co, the reads-from relation rf from writes to reads, the addr, data, and3576

ctrl-dependency subsets of po, and others.3577

We extend these candidates with both new events and new relations over those events, as well as modifying some3578

of the original ones.3579

9.1.1 Candidate events3580

In addition to the events of the original model, we add the following events to the candidates:3581

. T for reads originating from architected translation-table walks.3582

These roughly correspond to the actual satisfaction from memory which with TLBs may happen very early.3583

. TLBI events for each TLBI instruction, with a single such event per TLBI instruction, corresponding to the3584

TLBI being completed on all relevant cores.3585

. TE and ERET events for taking and returning from an exception (these might not correspond to changes in3586

exception level).3587

. MSR events for writes to relevant system registers, such as the TTBR.3588

. DSB events for DSB instructions.3589

. Fault events for translation and permission faults.3590

Translation-reads During execution of the ASL TranslateAddress function (§7.7) there will be many reads,3591

which would usually generate R events. When those reads happen during the TranslateAddress call, they3592

instead generate T events. This means that each translation table walk may generate up to 24 T events, before the3593

instruction generates the (explicit) R|W event.3594

Alternative representations were explored, including leaving them as R events or collecting all reads into a single3595

large translation event. But these options did not give the clarity and fine granularity we desired in the model,3596

and would require more relations and axioms than presented here.3597
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We also choose not to include TLB hits and misses in the model directly, but instead model the TLB as a relaxation3598

of the values the walk can read from, much like normal R data memory read events and modelling load buffering,3599

write gathering and caches.3600

We add a helper set, T_f, for translation reads which read-from a write whose value is even. That is, an entry3601

whose invalid bit is 0. If a translation read results in a fault, either because it was an invalid entry and we get a3602

translation fault, or because the access permissions of the resulting translation do not permit the kind of requested3603

access and so result in a permission fault, the candidate will contain a Fault event (partitioned into Fault_t and3604

Fault_p for translation and permission faults) in po order where the explicit memory event would have been.3605

See text on obETS for more discussion of these ‘ghost’ fault events.3606

We partition the T set into two subsets: Stage1 and Stage2 for translation read events from a stage 1 or stage 23607

walk respectively (stage 2 reads during a stage 1 walk are marked as stage 2, not stage 1).3608

Finally, we leave the M set unchanged, which contains only the explicit reads and writes performed by instructions.3609

TLBIs As described in §7.8 Arm have a variety of TLBI instructions, with varying arguments. All of these3610

TLBIs generate a single TLBI event.3611

To aide in modelling, there are a set of subsets of TLBI for various kinds of TLBI:3612

. TLBI-S1 for invalidations of Stage 1 entries.3613

. TLBI-S2 for invalidations of Stage 2 entries.3614

. TLBI-IPA for invalidations by intermediate physical address.3615

. TLBI-VA for invalidations by virtual address.3616

. TLBI-ASID for invalidations by ASID.3617

. TLBI-VMID for invalidations by VMID.3618

. TLBI-ALL for the TLBI ALL instructions.3619

. TLBI-IS for broadcast TLBIs.3620

. TLBI-EL1 for invalidations of the EL1&0 regime.3621

. TLBI-EL2 for invalidations of the EL2 regime.3622

These events do not cut the TLBI set into partitions, but rather any TLBI event may belong to multiple. For3623

example, a TLBI VAE1IS event would belong to TLBI-VA, TLBI-VMID, TLBI-EL1, and TLBI-IS.3624

We also include all TLBIs in a general C (“Cache maintenance”) set.3625

Exceptions Despite not modelling exceptions in general in this work, we do need to include some exception ma-3626

chinery in the model to capture the minimal ordering requirements arising from both their context synchronisation3627

effects and also behaviours from crossing exception level boundaries.3628

To support this we add two new events to capture taking and returning from exceptions: TE (“Take-exception”)3629

and ERET.3630

Barriers The Arm DSB (“Data synchronization barrier”) instruction is required for TLB maintenace, as was seen3631

in the previous chapter. We include DSB events, one for each kind of DSB instruction:3632

. DSBSY and DSBISH (here, equivalent as we do not model shareability domains)3633

. DSBNSH, for thread-local effects.3634

. DSBST, DSBLD, for DSBs affecting only loads or stores.3635

. DSBISHST, DSBISHLD, and so on, for all combinations of DSB instruction domain and access types.3636

Arm define a hierarchy of barriers where, for example: DMB.LD < DMB.SY < DSB.SY That is, any ordering imposed3637

by a DMB.LD is also imposed by a DMB.SY, and therefore also a DSB.SY.3638

To help capture this, and reduce the explosion in the number of relations in the model later on, we simplify and3639

update the barrier story in the Arm model and include the helper sets given in Figure 9.1.3640

Context changing and synchronisation Finally, we add events for context-changing and context-synchronising3641

operations. Context changes involve updates to system registers which change the current translation regime,3642

which generate MSR events. We add a general context-synchronisation event set CSE which includes ISB, TE and3643

ERET.3644
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1 let dsbsy = DSBISH | DSBSY | DSBNSH
2 let dsbst = dsbsy | DSBST | DSBISHST | DSBNSHST
3 let dsbld = dsbsy | DSBLD | DSBISHLD | DSBNSHLD
4 let dsbnsh = DSBNSH
5 let dmbsy = dsbsy | DMBSY
6 let dmbst = dmbsy | dsbst | DMBST | DSBST | DSBISHST |

DSBNSHST
7 let dmbld = dmbsy | dsbld | DMBLD | DSBISHLD | DSBNSHLD
8 let dmb = dmbsy | dmbst | dmbld
9 let dsb = dsbsy | dsbst | dsbld

Figure 9.1: Barrier helper sets.

Changes to system registers may have relaxed behaviours, as described in §8.7.1, but full relaxation of the system3645

register reads done by the Arm psueocode is unlikely to be valid, consistent or meaningful. Instead, we introduce3646

a pointed-set semantics: when generating a candidate, we keep a per-system-register set of writes to that register,3647

remembering which one is the most recent. On a write to that system register, we add it to the set. On a read of that3648

system register, we generate one candidate for each value in the set, and then ‘lock’ the remainder of the execution3649

of that instruction to that value so repeated reads will see the new value. When a context-synchronization event3650

is generated (that is, an event that will be in the CSE set) all the sets are reduced to singleton sets containing only3651

the most recent write.3652

This gives us some relaxed behaviours, enough to see relaxed behaviours around changes to the TTBR, but we3653

note that this is unlikely to be the full story for relaxed system registers.3654

9.1.2 Candidate relations3655

In addition to those new events, we introduce new relations over those (and other) events:3656

. trf and tfr as analogues to rf and fr but for translation-read (T) events.3657

. iio (“intra-instruction order”) which relates events of the same instruction in the order they occur during3658

execution of that instruction’s intra-instruction semantics as defined by the Arm ASL.3659

. same-va, same-ipa, same-pa relations which relate events whose virtual, intermediate physical or physical3660

address of the associated explicit memory access are the same.3661

. same-va-page, same-ipa-page, same-pa-page which relate events whose associated explicit memory3662

events are in the same page (e.g. 4KiB chunk) of the virtual, intermediate physical or physical address space.3663

. same-asid, same-vmid relates events for which translations for the associated memory event are using the3664

same ASID or VMID.3665

. wco, a generalised coherence order which includes TLBIs.3666

Addresses, ASIDs and VMIDs Each translation table walk will read from registers and system registers and3667

get a value for the (input) address, the current ASID and current VMID. We then relate each T with any other T3668

where the translation associated with it is for the same virutal address (with same-va), the same intermediate-3669

physical address (with same-ipa), or the same resulting physical address (same-pa). This means that all T events3670

within a translation have the same same-* relations. We also include relations which match translation’s virtual,3671

intermediate physical and physical addresses if they are in the same page rather than exactly, with the same rules,3672

but as a same-*-page relation.3673

If two translations are for the same ASID, their translation reads are related by same-asid. If two translations are3674

for the same VMID, their translation reads are related by same-vmid.3675

To use these relations we also include TLBI events. A TLBI-X is related to T by same-X if the parameter to the3676

TLBI instruction (the page, vmid, or asid) either passed by register, immediate or through the current context, if3677

the T event’s associated translation matches X. For example, a TLBI-IPA event would be same-ipa-page related3678

to a T whose translation was for an intermediate physical address in the page provided as the parameter to the3679

TLBI IPA instruction.3680

Generalised coherence order We create an extended coherence order wco, which is the usual co (a per-location3681

total order of writes to that location) as well as their relative ordering to all TLBI events.3682
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One might be concerned at the validity of doing this, on two fronts. Generally, extending coherence to a total3683

order over all locations is sound [6, §10.5 p174], and so there is no issue in doing this. Secondly, for broadcast3684

TLBIs, microarchitecture will implement these with message passing to and from each core separately, and so3685

there is no single moment the TLBI ‘happens’. However, as described in §8.6.7 we seem to be able to consider3686

TLBI instructions as executing ‘atomically’ so long as there are no break-before-make violations. This is a similar3687

justification as to including DC and IC events in a similar generalised coherence order for instruction fetching [32,3688

§5 p29].3689

Dependencies A candidate execution consists not only of events, and reads-from relations but also a set of3690

dependencies: addr, data, ctrl, po and loc. We add iio and tdata to these.3691

The intra-instruction ordering iio relation relates two events in the same instruction in the order the Arm3692

pseudocode generated the events. This relation therefore captures a total order over all events within an instruction,3693

regardless of the intra-instruction dependencies (control, data) or unordered accesses (for example, for misaligned3694

accesses). We are currently invesitagting a relaxation of this ordering, and associated changes in the underlying3695

Arm pseudocode definitions, to enable a more relaxed definition of the ordering within an instruction to handle3696

these cases.3697

We make loc relate events with the same physical address (for T events, this is the physical location of the3698

translation table entry).3699

Program order (po) is restricted to explicit events: R, W, F, C, CSE and MSR. Implicit translation reads (T) and any3700

indirect reads or writes of registers are not included in po.3701

Address dependencies were once fundamental, but now we can define address dependencies in the presence of3702

address translation as dependencies into the translation table walk. To do this, we include a new relation tdata3703

that relates reads with the translation read events of a translation which reads from the register written by that3704

read to compute the address. The traditional addr can be recovered as tdata ; iio* ; [M].3705

9.2 Cat model3706

The base Arm axiomatic model had three axioms: internal, external, and atomic. These were acyclicity and3707

emptyness checks of unions of set of relations: obs, dob, aob and bob. We will slightly modify three of these3708

relations obs, bob and dob, and add 5 new ones (tob, obtlbi, ctxob, obfault, obETS) to handle the ordering3709

between translations and TLBIs, and include them in the external acyclicity check. Then we will introduce one3710

final new axiom translation-internal.3711

Figure 9.2 contains the axioms and relations for the updated Armv8-A relaxed virtual memory axiomatic model3712

(RVM). Unchanged parts from the original are greyed out. Note that some helper relations are elided here, and will3713

be described in more detail later.3714

9.3 Axioms3715

The RVM model axioms are, mostly, a syntactic extension to the original Armv8-A axiomatic model presented in3716

§TODO: ref intro. This is deliberate. Although there may be other, perhaps even nicer or more succinct, ways of3717

phrasing the given model, the variation presented here is designed to be syntactically as close as possible to the3718

original. This helps with readability for those familiar with the original; it allows us to present the differences3719

to the original in an easier form; it makes recovery of the original model easier; and, it makes it easier to prove3720

equivalance of the axiomatic models in the presence of constant address translation, increasing the confidence we3721

have in the model.3722

The model has 3 kinds of axioms: internal ones for per-location guarantees, an external axiom for the global3723

happens-before ordering, and the atomic axiom for RMWs (untouched in this work).3724

Internal axioms The new model has two per-location axioms: internal and translation-internal.3725
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1 let speculative =
2 ctrl
3 | addr; po
4 | [T]; instruction -order
5
6 (* translation -ordered -before *)
7 let tob =
8 [T_f]; tfre
9 | [T]; iio; [R|W]; po; [W]

10 | speculative; trfi
11
12 (* observed by *)
13 let obs = rfe | fr | wco
14 | trfe
15
16 (* ordered -before TLBI and

translate *)
17 let obtlbi_translate =
18 [T & Stage1] ; tlb_barriered

; [TLBI -S1]
19 | ([T & Stage2] ; tlb_barriered

; [TLBI -S2])
20 & (same -translation ; [T &

Stage1] ; trf−1 ; wco−1 )
21 | (([T & Stage2] ;

tlb_barriered ; [TLBI -S2]) ;
wco? ; [TLBI -S1])

22 & (same -translation ; [T &
Stage1] ; maybe_TLB_cached)

23
24 (* ordered -before TLBI *)
25 let obtlbi =
26 obtlbi_translate
27 | [R|W|Fault_T ]; iio−1 ; (

obtlbi_translate & ext); [TLBI
]

28
29 (* context -change ordered -before

*)
30 let ctxob =
31 speculative; [MSR]
32 | [CSE]; instruction -order
33 | [ContextChange ]; po; [CSE]
34 | speculative; [CSE]
35 | po; [ERET]; instruction -order

; [T]
36
37 (* ordered -before a translation

fault *)
38 let obfault =
39 data; [Fault_T & FaultFromW]
40 | speculative; [Fault_T &

FaultFromW]
41 | [dmbst ]; po; [Fault_T &

FaultFromW]
42 | [dmbld ]; po; [Fault_T & (

FaultFromW| FaultFromR)]
43 | [A|Q]; po; [Fault_T & (

FaultFromW | FaultFromR)]
44 | [R|W]; po; [Fault_T &

FaultFromReleaseW]
45
46 (* ETS -ordered -before *)
47 let obETS =
48 (obfault; [Fault_T ]); iio−1 ;

[T_f]
49 | ([TLBI]; po; [dsb];

instruction -order; [T]) & tlb -
affects

50
51 (* dependency -ordered -before *)
52 let dob =
53 addr | data
54 | speculative; [W]
55 | addr; po; [W]
56 | (addr | data); rfi
57 | (addr | data); trfi
58
59 (* atomic -ordered -before *)
60 let aob = rmw
61 | [range(rmw)]; rfi; [A | Q]
62
63 (* barrier -ordered -before *)
64 let bob = [R]; po; [dmbld]
65 | [W]; po; [dmbst]
66 | [dmbst]; po; [W]
67 | [dmbld]; po; [R|W]
68 | [L]; po; [A]
69 | [A | Q]; po; [R | W]
70 | [R | W]; po; [L]
71 | [F | C]; po; [dsbsy]
72 | [dsb]; po
73
74 (* Ordered -before *)
75 let ob = (obs | dob | aob | bob
76 | iio | tob | obtlbi | ctxob |

obfault | obETS)+
77
78 (* Internal visibility

requirement *)
79 acyclic po-loc | fr | co | rf as

internal
80 (* External visibility

requirement *)
81 irreflexive ob as external
82 (* Atomic requirement *)
83 empty rmw & (fre; coe) as atomic
84 (* Writes cannot forward to po-

future translates *)
85 acyclic (po-pa | trfi) as

translation -internal

Figure 9.2: RVM axioms and relations
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1 (* Internal visibility requirement *)
2 acyclic po-loc | fr | co | rf as internal
3 (* Writes cannot forward to po-future translates *)
4 acyclic (po-pa | trfi) as translation -internal

3726

Unchanged from the original, the internal axiom captures the SC-per-location guarantee briefly discussed in3727

§TODO: ?REF?. Translations, however, do not have the same per-location guarantees. To account for this,3728

we introduce a second axiom, translation-internal, which captures the weaker per-location guarantee for3729

translation table walks. Since translation reads, in the presence of TLB caching and out-of-order pipelines, do not3730

guarantee even coherence, the only behaviour this axiom ends up preventing is translation reads reading from3731

program-order later stores.3732

External axiom The external axiom asserts acyclicity of the global happens-before ordering for Arm. The3733

happens-before (called ob, ‘ordered-before’, in Arm) relation is the union of all the ordering relations, given in3734

§9.4.3735

1 (* Ordered -before *)
2 let ob = (obs | dob | aob | bob | iio | tob | obtlbi | ctxob

| obfault | obETS)+

3 (* External visibility requirement *)
4 irreflexive ob as external

3736

We choose to include all the pipeline and TLB effects as ordering requirements, rather than introducing new3737

ordering axioms just for translation and TLB invalidation. This produces a model that is more consistent with3738

the previous Arm memory models, and ensures ordering information gained through observing translation table3739

walks are respected by non-translation-table accesses.3740

Atomic axiom The atomic axiom remains unchanged. In this work we do not consider the interaction of3741

translation with atomic accesses.3742

1 (* Atomic requirement *)
2 empty rmw & (fre; coe) as atomic

3743

9.4 Relations3744

The RVM model modifies some of the original, and introduces some new, ordering relations. This section goes3745

through each in detail, describing the mechanism and justifying the existence or non-existence of particular3746

clauses.3747

9.4.1 obs3748

1 (* observed by *)
2 let obs = rfe | fr | wco | trfe

3749

The ‘observed-by’ relation. It includes the original rf and fr (over physical locations), the generalised coherence3750

order wco (§9.1.2), and the trfe (translation-reads-from-external) relation.3751

Generalised coherence Including wco, which is existentially quantified over the candidates, fixes some global3752

order the writes and TLBIs happen in. Consider, informally, somemicroarchitectural execution. It would propagate3753

writes to the coherent storage subsystem, and would complete TLBI instructions, and these events would be3754

interleaved in some whole-machine trace. The generalised wco relation captures the relative ordering of these3755

events in the axiomatic model, as they would have happened in the traces of machine executions. The model is3756

then quantified over all such orderings, accounting for any interleaving of these events.3757
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External translation reads Inclusion of trfe enforces that translation-table-walk translation reads, which3758

could not come from forwarding, must have originally come from the coherent storage subsystem and so the3759

write must have been globally propagated before the translation read happened (§8.4.2, §8.4.7).3760

However, the translation read might have happened much later, either due to extreme out-of-order (§8.4.1) or TLB3761

caching (§8.5.1), and so we do not include tfre (translation-from-reads-external) in ob.3762

Additionally, writes may be propagated to that thread’s translation table walker before they are propagated to the3763

coherent storage subsystem (§8.4.4), in other words, they can be forwarded. Therefore we do not include trfi3764

(translation-reads-from-internal) in obs.3765

9.4.2 dob3766

1 let dob =
2 addr | data
3 | speculative; [W]
4 | addr; po; [W]
5 | (addr | data); rfi
6 | (addr | data); trfi

3767

The dependency-ordered-before relation is mostly unchanged, we add a single (addr | data); trfi clause to3768

the end to forbid thin-air creation of values (§8.4.1, §8.4.2, TODO: need dedicated thin air paragraph/test in3769

prev chapter) similarly to the original model for data memory reads.3770

9.4.3 bob3771

1 let bob =
2 [R]; po; [dmbld]
3 | [W]; po; [dmbst]
4 | [dmbst]; po; [W]
5 | [dmbld]; po; [R|W]
6 | [L]; po; [A]
7 | [A | Q]; po; [R | W]
8 | [R | W]; po; [L]
9 | [F | C]; po; [dsbsy]

10 | [dsb]; po

3772

We rewrite the original barrier-ordered-before relation to use the barrier helpers defined in Figure 9.1. This3773

does not change the underlying model for DMB instructions, but allows those same clauses to capture the barrier3774

hierarchy imposing the same ordering when using stronger barriers (namely, DSBs).3775

The Arm DSB instruction has some extra ordering however. Firstly that a DSB SY orders TLBI instructions (§8.6.2)3776

and so we include [F|C];po;[dsbsy]. Secondly, all program-order later events must wait for an earlier DSB to3777

finish before performing its explicit memory events, so we also include [dsb];po in ob.3778

9.4.4 tob3779

1 let tob =
2 [T_f]; tfre
3 | [T]; iio; [R|W]; po; [W]
4 | speculative; trfi

3780

Translation table walks themselves impose ordering on the surrounding events.3781

Invalid writes The first of these is one of the key behaviours described in §8.3.3, that reads of invalid entries3782

must not have come from the TLB. So we add the [T_f];tfre edge to capture this, that any translation-reads3783

which read an invalid entry must happen before any writes coherence after the one it read from.3784
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There is a major caveat here: write forwarding to the translation table walker. We cannot simply have [T_f];tfr3785

as a thread-local write may be forwarded to the translation table walker before it’s propagated to memory (§8.4.4).3786

However, it should not be the case that the write is forwarded from a write that is too old or behind a DSB if3787

FEAT_ETS, except it may be the case that there might be other intervening writes in between. For now, we are3788

unable to give a precise bound on the ordering for thread-local [T_f];tfr, and this area is still currently under3789

investigation with Arm.3790

Speculation As we saw earlier, speculation interacts with translation in two ways: first, it is forbidden to3791

read-from a still speculative write (§8.4.5), and, secondly, events program-order after an instruction which does a3792

translation table walk are speculative until the translation table walk completes (§8.4.1).3793

To capture these we first define when one event is considered speculative until another event happens, with a3794

new speculative relation, defined as following:3795

1 let speculative = ctrl | addr; po | [T]; instruction -order

3796

This captures all the control-flow dependencies that we model here, the classic ctrl and addr; po, as well as a3797

new general [T]; instruction-order which says that all events ordered (iio|po)+ after a translation read are3798

speculative until the translation read satisfies. We can then include speculative ; trfi to succinctly forbid3799

any forwarding of still-speculative writes to translation table walks.3800

Finally, we include [T]; iio; [M]; po; [W] which captures that writes cannot propagate until program-order3801

earlier instructions have their physical address (so, do not fault). Although, this edge is subsumed by the3802

speculative; [W] edge in dob, it is kept here for clarity.3803

9.4.5 ctxob3804

NOTE: The model for exceptions and context-synchronising events is currently under
revision, and what is presented here is likely to change.

3805

1 let ctxob =
2 speculative; [MSR]
3 | [CSE]; instruction -order
4 | [ContextChange ]; po; [CSE]
5 | speculative; [CSE]
6 | po; [ERET]; instruction -order; [T]

3806

The ctxob relation captures the orderings required from context changing and synchronising operations, without3807

trying to capture the full extent of the relaxed behaviours. As such, these orderings are likely to be incomparable3808

to the real semantics.3809

Speculation The first guarantee we see is that context changes and synchronisation should not happen specu-3810

latively. Speculative context changes may end up creating translation table roots and therefore translation table3811

walks using unreachable writes (§8.5.5). To prevent this we ensure that context changing operations only happen3812

once they are non-speculative, by enforcing speculative; [MSR] in ob. Forbidding speculative execution of3813

context synchronisation is done through the inclusion of speculative; [CSE] in ob.3814

Context synchronising A context synchronisation event (such as an ISB or ERET instruction) should ensure that3815

program-order earlier context-changing events are seen by program-order later instructions. Microarchitecturally3816

this is achieved by having context-synchronisation events flushing the pipeline, restarting all program-order later3817

instructions. For now this effect seems fixed in the architecture (§8.7), and so we get [CSE]; instruction-order3818

in ob subsuming the earlier ISB orderings.3819

To ensure that context changes are seen after the synchronisation we include [ContextChange]; po; [CSE],3820

and the union of these two relations ensures the context change is ordered before any program-order later events.3821
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Exceptions Taking and returning from exceptions are context synchronising (§8.7), and so those are captured3822

by the previous clauses. However, translation reads of a lower exception level should not satisfy during execution3823

at a higher exception level. We over approximate this with po; [ERET]; instruction-order; [T] ensuring3824

all translation reads after an ERET wait.3825

9.4.6 obfault and obETS3826

1 (* ordered -before a translation fault *)
2 let obfault =
3 data ; [Fault_T & FaultFromW]
4 | speculative ; [Fault_T & FaultFromW]
5 | [dmbst] ; po ; [Fault_T & FaultFromW]
6 | [dmbld] ; po ; [Fault_T & (FaultFromW | FaultFromR)]
7 | [A|Q] ; po ; [Fault_T & (FaultFromW | FaultFromR)]
8 | [R|W] ; po ; [Fault_T & FaultFromW & FaultFromReleaseW]
9

10 (* ETS -ordered -before *)
11 let obETS =
12 (obfault; [Fault_T ]); iio−1 ; [T_f]
13 | ([TLBI]; po; [dsb]; instruction -order; [T]) & tlb -affects

3827

To capture the specific guarantees described by FEAT_ETS (§8.4.3, §8.6.2), we include ‘ghost’ Fault events in the3828

candidate executions. These events sit in the execution (in po order) where the explicit memory event would have3829

been if there was no fault, and tags the fault with the kind of fault it was (translation or permission).3830

Ordering to a fault To fully capture the strength of FEAT_ETS we keep track of syntactic dependencies into3831

the instruction which faulted, and apply those dependencies to the Fault event itself. obfault then the syntactic3832

subset of bob and dob where the right-hand side of each clause is substituted with a Fault_T (a translation fault).3833

Using obfault we can then keep track of the (syntactic) subset of ob that would have ordered the explicit event3834

after, and associate those relations with the Fault_T event instead. obETS’s first clause then adds to ob this3835

ordering, but attached to the translation read of the invalid entry itself, as architected by FEAT_ETS.3836

Note that dependencies and orderings from a faulting instruction seem not respected, and so we do not induce3837

orderings out of a Fault_T.3838

FEAT_ETS and TLBI The second clause of obETS captures the second architected behaviour of FEAT_ETS3839

(§TODO: TLBI ordering needs ETS explained), that faults after a thread-local TLBIs do not need context3840

synchronisation to be ordered after the TLBI. Note that one still needs a DSB to complete the TLBI in that case.3841

9.4.7 obtlbi3842

1 (* ordered -before TLBI *)
2 let obtlbi =
3 obtlbi_translate
4 | [R|W|Fault_T ]; iio−1 ; (obtlbi_translate & ext); [TLBI]
5
6 (* translate ordered -before TLBI *)
7 let obtlbi_translate =
8 [T & Stage1] ; tlb_barriered ; [TLBI -S1]
9 | (([T & Stage2] ; tlb_barriered ; [TLBI -S2]) ; wco? ; [TLBI -

S1])
10 & (same -translation ; [T & Stage1] ; maybe_TLB_cached)
11 | ([T & Stage2] ; tlb_barriered ; [TLBI -S2])
12 & (same -translation ; [T & Stage1] ; trf−1 ; wco−1 )

3843

Finally, there is the obtlbi relation which captures the ordering from translations (and their explicit memory3844

events) and the TLB invalidations which affect them. The relation is split in two: the obtlbi_translate clause3845

enforces order between stale translations and the TLBIs they are invalidated by, the second clause covers broadcast3846

TLBIs.3847
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Capturing stale TLB entries When a translation read happens, it is allowed for it to read from a stale write3848

(§8.5.1). That is, the translation need not be ordered before writes which come after the write it actually reads3849

from. Consequently the tfre relation is not included in ob.3850

We strengthen this, by including some edges from translations to TLBIs, when there is an interposing newer write.3851

The general shape of this ordering is illustrated in Figure 9.3.3852

a: W pte(x)=old

b: W pte(x)=new

c: TLBI

d: T x

trfwco

wco

tfr

tlb-affects

ob

Figure 9.3: General obtlbi_translate shape.

This shape is succinctly captured by the tlb_barriered auxiliary relation, which relates any translate-read that3853

reads from a write which is wco before another write which is wco before a TLBI which targets the address, ASID3854

or VMID of the translation:3855

1 let tlb_barriered =
2 ([T] ; tfr ; wco ; [TLBI]) & tlb -affects−1

3856

We cannot simply include tlb_barriered in ob, however. Instead, we must consider the orderings for stage 13857

and stage 2 translation reads separately.3858

Stale stage 1 reads For stage 1 translation reads, either in single-stage regimes or as part of a two-stage3859

regime, we can include a variant of tlb_barried specialised to stage 1 translation-reads and TLBIs which affect3860

stage 1 entries.3861

Stale stage 2 reads Stage 2 walks are more subtle. The requirement to perform stage 1 invalidation (§8.6.4)3862

means that, in those instances, we do not get tlb_barriered directly.3863

Instead, we have to case split on the execution: either, (1) the translation table walk does a stage 1 translation3864

read which reads-from an older write, in which case there may have been a whole cached translation that must3865

be invalidated; or, (2) one of the stage 1 translation reads of the translation table walk reads from a write that is3866

newer than the stage 2 TLBI and so there cannot have been any cached whole translation entries in the TLB and3867

so, logically, we only need the stage 2 invalidation. These cases are illustrated in Figure 9.4, and correspond to the3868

two clauses of obtlbi_translate which match on stage 2 translation reads.3869

a: W s1pte(x)=new

b: W s2pte(x)=new

c: TLBI-S2

d: TLBI-S1

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

wco?

same-trans

ob

Case (1)

a: W s2pte(x)=new

b: TLBI-S2

c: W s1pte(x)=new

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

same-trans

ob

Case (2)

Figure 9.4: obtlbi stage 2 scenarios.
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We capture the general shape of (1), where a translation-read may have been cached in the TLB, with the following3870

maybe_TLB_cached relation:3871

1 let maybe_TLB_cached = ([T]; trf−1 ; wco; [TLBI]) & tlb -
affects−1

3872

We then use this relation to add ordering from a stage 2 translation-read to the stage 1 TLBI, wco-after a stage 23873

TLBI that removed any stale IPA mappings, which would remove any cached whole-translation any stage 13874

translation-read might have read from, and after which any fresh translation table walk would be required to not3875

see the stale stage 2 entry the translation-read read from.3876

Broadcast TLBIs Recall that broadcast TLBIs impose restrictions on other threads (§8.6.3). When a broadcast3877

TLBI’s invalidation affects a translation on another core, then it must also affect the explicit memory effect3878

associated with it. This shape is illustrated in Figure 9.5, and corresponds to the final clause of obtlbi.3879

a: W pte(x)=new

b: TLBI

e1: T x

e2: R|W x

tfr

obtlbi_translate
iio

ob

Figure 9.5: obtlbi broadcast TLBI shape.

Connecting TLB invalidations to translation reads The final part of the puzzle is how to relate TLBI events3880

with translations which may be affected by the invalidation. Recall that the TLBIs are grouped into subsets of3881

TLBI-S1, TLBI-VA, and so on. We define a tlb_might_affect that is the cross-product of these with the same-*3882

relations:3883

1 let tlb_might_affect =
2 [ TLBI -S1 & ~TLBI -S2 & TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -va-page & same -asid & same -vmid) ; [T & Stage1]
3 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & TLBI -ASID & TLBI -VMID]

; (same -asid & same -vmid) ; [T & Stage1]
4 | [ TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage1]
5 | [~TLBI -S1 & TLBI -S2 & TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; (same -ipa -page & same -vmid) ; [T & Stage2]
6 | [~TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T & Stage2]
7 | [ TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID]

; same -vmid ; [T]
8 | ( TLBI -S1 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage1)
9 | ( TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID)

* (T & Stage2)

3884

Finally, we get tlb-affects by attaching tlb_might_affect to events in the same thread, and if a TLBI-IS, to3885

ones in other threads too:3886

1 let tlb -affects =
2 [TLBI -IS]; tlb_might_affect
3 | ([~TLBI -IS]; tlb_might_affect) & int

3887
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1 (* F for all fences *)
2 accessor F: bool = is sail_barrier
3
4 (* from the Arm ASLl , compiled to sail *)
5 union Barrier = {
6 Barrier_DSB : DxB ,
7 Barrier_DMB : DxB , // The nXS field is ignored from DMBs
8 Barrier_ISB : unit ,
9 Barrier_SSBB : unit ,

10 Barrier_PSSBB : unit ,
11 Barrier_SB : unit ,
12 }
13
14 (* accessors for each relevant constructor *)
15 accessor z_dmb: bool =
16 .match {
17 Barrier_DMB => true ,
18 _ => false
19 }
20
21 accessor z_dsb: bool =
22 .match {
23 Barrier_DSB => true ,
24 _ => false
25 }
26
27 accessor z_isb: bool =
28 .match {
29 Barrier_ISB => true ,
30 _ => false
31 }
32
33
34 (* cat event sets for the different barriers *)
35 define DMB(ev: Event): bool =
36 F(ev) & z_dmb(ev)
37
38 define DSB(ev: Event): bool =
39 F(ev) & z_dsb(ev)
40
41 define ISB(ev: Event): bool =
42 F(ev) & z_isb(ev)

Figure 9.6: isla-cat accessors for Arm barriers.

9.5 Interface3888

To support the new Armv9 ISA and the new concurrency interface, we produce architecture-specific definitions3889

using the new isla-cat language features in isla-axiomatic.3890

Barriers are instances of the sail_barrier outcome. For Arm we instantiate these with the Arm Barrier union.3891

Figure 9.6 contains the isla-cat definitions for the Arm barriers. The sail Arm Barrier union is reproduced3892

here for the reader’s benefit but is not required (nor present) in the source cat file. Similar unions, structs, enums3893

and corresponding accessors and definitions exist for the Arm barrier domains (NSH, ISH, OSH) and access types3894

(ST, LD, SY), elided here for brevity.3895

We make use of accessors to access fields of the sail structs and unions, both here for barriers, and also for3896

exceptions (faults), and TLBIs, as well as defining the trf and wco (found in Figure 9.7) relations. The full3897

isla-cat-defined interface can be found in the AppendixTODO: make appendix.3898
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1 declare wco(Event , Event): bool
2
3 (* wco has domain and range of W,CacheOp *)
4 assert forall ev1: Event , ev2: Event =>
5 wco(ev1 , ev2) -->
6 (W(ev1) | C(ev1) | (ev1 == IW)) & (W(ev2) | C(ev2))
7
8 (* wco is transitive *)
9 assert forall ev1: Event , ev2: Event , ev3: Event =>

10 wco(ev1 , ev2) & wco(ev2 , ev3) --> wco(ev1 , ev3)
11
12 (* wco is total *)
13 assert forall ev1: Event , ev2: Event , ev3: Event =>
14 wco(ev1 , ev3) & wco(ev2 , ev3) & ~(ev1 == ev2) -->
15 wco(ev1 , ev2) | wco(ev2 , ev1)
16
17 (* wco is irreflexive *)
18 assert forall ev1: Event , ev2: Event , ev3: Event =>
19 wco(ev1 , ev2) --> ~(ev1 == ev2)
20
21 (* wco is antisymmetric *)
22 assert forall ev1: Event , ev2: Event =>
23 wco(ev1 , ev2) --> ~wco(ev2 , ev1)
24
25 (* all write/cache -op pairs are wco related *)
26 assert forall ev1: Event , ev2: Event =>
27 W(ev1) & C(ev2) -->
28 wco(ev1 , ev2) | wco(ev2 , ev1)
29
30 (* wco is consistent with co *)
31 assert forall ev1: Event , ev2: Event =>
32 co(ev1 , ev2) --> wco(ev1 , ev2)
33
34 (* all C are wco after IW
35 * n.b. all W are wco after IW, because all W are co after IW

and co => wco
36 *)
37 assert forall ev: Event =>
38 C(ev) --> wco(IW, ev)

Figure 9.7: wco.cat: isla-cat definition of wco.
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Chapter 103899

Validating the VMSA model3900

10.1 Validation against the architecture3901

To ensure the proposed virtual memory model presented in Ch. 9 correctly captures the architectural intent where3902

known we engage in detailed discussions with Arm.3903

The model is produced through an iterative process, where the production of interesting litmus tests, guided by3904

hardware testing and surveying of software requirements, are presented to, and discussed with, Arm architects.3905

The desired architectural intent for those tests become known, new models are created and those models inform3906

new interesting tests to produce.3907

Ideally we would run this process to a fixed point, however that is not always possible. Here, we know the model3908

presented in Ch. 9 is incomplete and the litmus tests presented in Ch. 8 are not exhaustive. More work needs to,3909

and is, being done to further update the models.3910

10.1.1 Clarity of architecture3911

We claim that the litmus tests presented in Ch. 8 have known architectural intent, and (as will be discussed in the3912

following sections) the presented model correctly captures that intent for those tests.3913

For some of these behaviours it seems unlikely for the architectural intent to change. Specifically, the guarantess3914

given by the break (e.g. RBS), break-before-make sequences, and general TLB-maintenance shapes, are fundamental3915

to the security and correctness of modern software and so are highly unlikely to weaken over time.3916

Some of the behaviours arise as consequences of other parts of the design, specifically around TLB fills (§8.5.2)3917

where the strength of the fill itself arises from a historical design of the processors and not a fundamental software3918

requirement. As modern hardware advances, Arm add features to specifically weaken those areas (such as with3919

FEAT_nTLBPA).3920

Conversely, many of the relaxed behaviours may see changes as the architecture evolves. We already saw how3921

the introduction of FEAT_ETS strengthened some aspects of the architecture, and features such as ETS are still3922

in-flux and there seems no reason to believe that Arm have settled on the final design. Hopefully the questions3923

raised in this thesis have helped guide Arm in that design, towards a more stable architecture.3924

10.1.2 Remaining questions and updates3925

There are a number of places where the model as presented lacks the underlying architectural clarity to yet give3926

more precise bounds on the architectural envelope.3927

There are a few places this is apparent in the model presented here:3928

. ConstrainedUnpredictable behaviours due to TLB conflicts (break-before-make violations).3929

. Architectural features such as FEAT_nTLBPA, FEAT_ETS2, FEAT_TTL, and FEAT_BBM.3930

. Caching of access permissions, memory types, shareability and so on.3931

. Sharing TLBs betwen PEs.3932

. Caching of non-last-level block entries in the TLB.3933
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The first of those are self-evident, where more discussions with architects are required to be able to present a3934

model with any confidence.3935

The last one (caching of non-last-level block entries) is more interesting, and represents a gap in the model3936

presented in the previous chapter. When an block entry is cached in the TLB, the hardware has a choice between3937

caching entries per-page or only one for the whole block. The model currently is too weak, allowing separately3938

cached entries per-page, and the architectural intent is now clearly to ensure that TLB invalidations would remove3939

any cached entries for the whole block. TODO: Say more?3940

10.2 Validating against hardware: system-litmus-harness3941

Hardware testing is an important aspect in gaining confidence in any relaxed memory model, and without3942

thorough evaluation of a range of microarchitecture it would not be possible to make strong claims of soundness3943

of such a model.3944

However, testing systems-level features on hardware is much more challenging than the previous user-level3945

features (including for instruction fetch as the required cache mainteance instructions were all unprivileged).3946

Testing virtual memory requires a setup running at least at EL1, both to be able to run the TLB maintenance3947

instructions and to enable catching of any generated exceptions.3948

An obvious choice for this would be klitmus7, an experimental version of litmus TODO: ?CITE?which produces3949

a kernel module that runs at EL1. However, kernel modules run as a part of the Linux kernel and any attempts to3950

modify the currently in-use translation tables or exception vectors would interfere with Linux’s operations. Using3951

klitmus7 would therefore require a custom kernel as well as test infrastructure.3952

Instead, we build a brand new test harness designed for running tests which use systems features such as TLB3953

maintenance and exception handlers: https://github.com/rems-project/system-litmus-harness.3954

Limitations Some limitations upfront: (1) the harness runs at EL1 and (for now) cannot run tests at EL2; (2) we3955

do not check for known CPU errata for the device being ran on, instead relying on extra-defensive programming;3956

(3) while the harness can run with QEMU/KVM on any device, running it bare metal (without a VM) is supported3957

on only a limited number of devices; and (4) the harness currently uses an ad-hoc litmus test format which is not3958

unified with either isla-axiomatic or litmus7 itself.3959

We do not believe any of these are fundamental, but are solvable with additional engineering resources dedicated3960

to the project.3961

10.2.1 Harness overview3962

system-litmus-harness is a relatively simple micro-kernel which runs at EL1. It has built-in a set of litmus3963

tests, with fixed code for each thread and an ad-hoc language for describing the initial state. The user gives the3964

harness (as arguments at boot) the name(s) of litmus tests to run and other run configuration options, and then3965

the harness will run the litmus tests, collect the results, and echo those results back to the user (through the serial3966

output, which can be directed to stdout in QEMU).3967

The structure of the test runner inside the harness is in a typical litmus style. It runs the tests in batches, executing3968

each thread in a loop, where each iteration of the loop operates on a different set of locations making each iteration3969

independent from one another.3970

Litmus test format Figure 10.1 gives an example litmus test in the system-litmus-harness format. Litmus3971

tests are dedicated C files which define a litmus_test_t struct containing the litmus test data. The test displayed3972

here can be found at https://github.com/rems-project/system-litmus-harness/blob/master/litmus/3973

litmus_tests/pgtable/CoTR.inv%2Bdsb-isb.c.3974

The header VARS and REGS define the global variables to allocate (in this case, we want two, named x and y), and3975

the names of output variables (which we usually style after the names of the machine registers which store them)3976

for the final register values to save from the test.3977

The test then defines two threadswith two static functions P0 and P1, both take some data stored in a litmus_test_run3978

struct which contain the virtual addresses of each of the global and output variables.3979
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1 #include "lib.h"
2
3 #define VARS x, y
4 #define REGS p1x0 , p1x2
5
6 static void P0(litmus_test_run* data)

{
7 asm volatile (
8 /* setup */
9 "mov x0 , %[ ydesc ]\n\t"

10 "mov x1 , %[xpte]\n\t"
11 /* code */
12 "str x0 , [x1]\n\t"
13 :
14 : ASM_VARS(data , VARS),
15 ASM_REGS(data , REGS)
16 : "cc", "memory", "x0", "x1"
17 );
18 }
19
20 static void sync_handler(void) {
21 asm volatile (
22 "mov x0 , #0\n\t"
23
24 ERET_TO_NEXT(x10)
25 );
26 }
27
28 static void P1(litmus_test_run* data)

{
29 asm volatile (
30 /* setup */
31 "mov x1 , %[x]\n\t"
32 "mov x3 , %[xpte]\n\t"
33 /* code */
34 "ldr x0 , [x1]\n\t"
35 "dsb sy\n\t"
36 "isb\n\t"
37 "ldr x2 , [x3]\n\t"

38 /* teardown */
39 "str x0 , [%[ outp1r0 ]]\n\t"
40 "cbz x2 , .after\n\t"
41 "mov x2 ,#1\n\t"
42 ".after :\n\t"
43 "str x2 , [%[ outp1r2 ]]\n\t"
44 :
45 : ASM_VARS(data , VARS),
46 ASM_REGS(data , REGS)
47 : "cc", "memory", "x0", "x1",
48 "x2", "x3", "x10"
49 );
50 }
51
52 litmus_test_t CoTRinv_dsbisb = {
53 "CoTR.inv+dsb -isb",
54 MAKE_THREADS (2),
55 MAKE_VARS(VARS),
56 MAKE_REGS(REGS),
57 INIT_STATE(
58 2,
59 INIT_UNMAPPED(x),
60 INIT_VAR(y, 1)
61 ),
62 .interesting_result = (u64 []){
63 /* p0:x0 =*/1,
64 /* p0:x2 =*/0,
65 },
66 .thread_sync_handlers =
67 (u32 **[]){
68 (u32 *[]){NULL , NULL},
69 (u32 *[]){(u32*) sync_handler ,

NULL},
70 },
71 .requires_pgtable = 1,
72 .no_sc_results = 3,
73 };

Figure 10.1: CoTR.inv+dsb-isb litmus test, system-litmus-harness source.

Taking the code for P1 as an example, it is just an asm block which contains the test code sandwiched between3980

some setup and teardown code that moves values from the C code into and out of the machine registers the test3981

uses.3982

There is an exception handler, sync_handler which simply resets x0 to 0, and then performs an ERET to the next3983

instruction address (that is, to ELR+4).3984

The final block of the test is the litmus_test_t struct definition for the test. It gives the name, the number of3985

threads, the global and output variables, which exception handlers to install for each thread, the particular relaxed3986

result to mark, and the initial machine state to run the test from. In this case, the initial state says that x starts3987

unmapped (invalid at level 3) and y is mapped to a location that contains the value 1. Implicitly global variables3988

have virtual addresses in distinct pages.3989

Litmus test format reference3990

The test format supports writing a variety of kinds of pagetable tests, through both the initial state setup and3991

the data passed from the harness allocator via the litmus_test_run data struct. Appendix ?? describes the test3992

format in full.3993

As an example, take the INIT_STATE from the ROT1+dsb-dsb-tlbi-dsb test1, which defines three variables x, y and3994

z. Its initial state is reproduced in Figure 10.2 for convenience. It says that they all start out mapped with initial3995

1which can be found at https://github.com/rems-project/system-litmus-harness/blob/master/litmus/litmus_tests/
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values 0, 1 and 2 respectively (L13-15). Next it tells the allocator that x should be allocated in its own 2MiB region3996

(L16), but to nevertheless place y in that region too (L17) with the same page offset (overlaps in the last 12 bits) as3997

x (L18). Finally, it tells the allocator to place z in its own 2MiB region, with the same PMD offset (bits 20-12) as x3998

has (L20). This ensures that bits 12-0 overlap for x and y, and bits 20-12 overlap for x and z, and therefore the table3999

containing the entry for y can be assigned to the level 2 entry for x, as required by the ROT test shape (see §8.4.8).4000

1 #define VARS x, y, z
2 #define REGS p0x4
3
4 /* see source for full test */
5
6 litmus_test_t ROT1_dsbtlbidsb = {
7 "ROT1+dsb -dsb -tlbi -dsb",
8 MAKE_THREADS (1),
9 MAKE_VARS(VARS),

10 MAKE_REGS(REGS),
11 INIT_STATE(
12 8,
13 INIT_VAR(x, 0),
14 INIT_VAR(y, 1),
15 INIT_VAR(z, 2),
16 INIT_REGION_OWN(x, REGION_OWN_PMD),
17 INIT_REGION_PIN(y, x, REGION_SAME_PMD),
18 INIT_REGION_OFFSET(y, x, REGION_SAME_PAGE_OFFSET),
19 INIT_REGION_OWN(z, REGION_OWN_PMD),
20 INIT_REGION_OFFSET(z, x, REGION_SAME_PMD_OFFSET),
21 ),
22 .interesting_result = (u64 []){
23 /* p0:x2 =*/1,
24 },
25 .start_els = (int[]){1},
26 .requires_pgtable = 1,
27 .no_sc_results = 2,
28 };

Figure 10.2: system-litmus-harness initial state for an ROT-shaped test.

10.2.2 Results from hardware4001

We ran a collection of hand-written litmus tests on three hardware devices using system-litmus-harness running4002

inside KVM: a Raspberry Pi 4; a Raspberry Pi 3B+; and an AWS m6g-metal instance (claiming to be an A76). Note4003

that the hardware tests are an overlapping set of tests than those presented in Ch. 8, some contain BBM violations,4004

and some tests are not reproduced on hardware, and ones that are may appear with slightly different names (for4005

example, CoWTf.inv+dmb test (Figure 8.19, p127) appears in the table as CoWT.inv+dmb). Tables 10.1 and 10.24006

list the total results for all the tests from all three devices. TODO: Go through and add backlinks to tests4007

previously discussed4008

Our testing revealed some incompatibilities between the architectural intent and the current implementa-4009

tions. For some break-before-make sequences, such as test MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb (ar-4010

chitecturally forbidden, experimentally observed) there were some very rare violations observed. The related4011

MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb test (with a detour after the write) is never observed,4012

suggesting it is related to the DSB not fully propagating the store, which is consistent with related CPU errata4013

TODO: Quote which ones. These anomalous results have been reported, and are under investigation by Arm.4014

10.3 Validation by abstraction4015

We cannot ‘prove’ that the model is correct. Correctness of a relaxed memory model like this depends on the4016

whims of the architects, and may change as new revisions of the architecture are released. However, we can4017

pgtable/pmds/ROT1%2Bdsb-dsb-tlbi-dsb.c
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Table 10.1: system-litmus-harness hardware results from three devices: Part I.

Type Name rpi4b rpi3bp graviton2
pgtable CoRT 964.72K/8M 520.06K/3M 2.29M/108M
pgtable CoRT+dsb-isb 802.86K/8M 327.02K/3M 3.41M/108M
pgtable CoTR 2.51M/8M 0/3M 21.70M/107.50M
pgtable CoTR+addr 0/8M 1/3M 0/107.50M
pgtable CoTR+dmb 1/8M 0/3M 4/107.50M
pgtable CoTR+dsb 2/8M 0/2.50M 5/107M
pgtable CoTR+dsb-isb 1/8M 0/2.50M 1/107M
pgtable CoTR.inv 3.63M/6.50M 0/2.50M 32.28M/43M
pgtable CoTR.inv+dsb-isb 0/6.50M 0/2.50M 0/43M
pgtable CoTR1+dsb-dc-dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 4/43M
pgtable CoTR1+dsb-tlbi-dsb-isb 2/6.50M 0/2.50M 3/43M
pgtable CoTR1.tlbi+dsb-isb 6/6.50M 1/2.50M 29/43M
pgtable CoTT 0/6.50M 0/2M 0/43M
pgtable CoTW 0/1.50M 0/1.50M 0/10.50M
pgtable CoWT 3.77M/6.50M 1.85M/2M 22.64M/43M
pgtable CoWT+dsb 3.76M/6.50M 995.06K/2M 21.50M/43M
pgtable CoWT+dsb-isb 3.78M/6.50M 995.77K/2M 21.50M/43M
pgtable CoWT+dsb-svc-tlbi-dsb 0/6.50M 0/2M 0/42.50M
pgtable CoWT.inv 10/6.50M 1.73M/2M 169/42.50M
pgtable CoWT.inv+dmb 8/6.50M 69.38K/2M 42/42.50M
pgtable CoWT.inv+dsb 1/6.50M 0/2M 57/42M
pgtable CoWT.inv+dsb-isb 0/6.50M 0/2M 0/42M
pgtable CoWT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42.50M
pgtable CoWT1+dsb-tlbi-dsb-isb 0/6.50M 0/2M 0/42.50M
pgtable CoWinvT 4.17M/6.50M 1.79M/2M 26.81M/42M
pgtable CoWinvT+dsb-isb 4.19M/6.50M 1.83M/2M 26.80M/42M
pgtable CoWinvT1+dsb-tlbi-dsb 0/6.50M 0/2M 0/42M
pgtable CoWinvWT1+dsb-tlbi-dsb-dsb-isb 0/6.50M 0/2M 0/42M
pgtable ISA2.TRR+dmb+po+dmb 0/6.50M 0/2M 0/42M
pgtable MP.BBM1+[dmb.ld]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/437.50M
pgtable MP.BBM1+[dmb.ld]-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/198.50M 0/1.06G 0/129.50M
pgtable MP.BBM1+[po]-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/108.50M 0/1.50M 0/145.50M
pgtable MP.BBM1+dsb-isb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/6.50M 0/2M 52/135.50M
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb+dsb 1/6.50M 0/2M 7/42.50M
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb+dsb-isb 0/6.50M 0/2M 2/42.50M
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb 1/6M 0/2M 0/42.50M
pgtable MP.BBM1+dsb-tlbiis-dsb-dsb-isb+dsb-isb 2/6M 0/2M 3/42.50M
pgtable MP.BBM1+po-dsb-tlbiis-dsb-isb-dsb-isb+dsb-isb 0/1M 0/1.50M 9/191.50M
pgtable MP.BBM1.id+dsb-tlbiis-dsb-dsb+dsb-isb 10/6M 2/2M 87/42.50M
pgtable MP.RT+svc-dsb-tlbi-dsb+dsb-isb 1/6M 0/2M 3/42M
pgtable MP.RT+svc-dsb-tlbiis-dsb+dsb-isb 1/6M 0/2M 3/42M
pgtable MP.RT.inv+dmb+addr 0/6M 0/2M 0/42M
pgtable MP.RT.inv+dmb+po 0/6M 6/1.50M 0/42M
pgtable MP.RT1+[dmb.ld]-dmb+dsb-isb 7.15K/6M 986/1.50M 1.26K/42M
pgtable MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dmb 0/1M 0/1M 0/23M
pgtable MP.RT1+[dmb.ld]-dsb-isb-tlbiis-dsb-isb+dsb-isb 0/1M 0/1M 0/23M
pgtable MP.RT1+[dmb.ld]-dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 0/42M
pgtable MP.RT1+dc-dsb-tlbiall-dsb+dsb-isb 4/6M 1/1.50M 5/41.50M
pgtable MP.RT1+dc-dsb-tlbiall-dsb-isb+dsb-isb 3/6M 0/1.50M 2/41.50M
pgtable MP.RT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 4/41M
pgtable MP.RT1+dsb-tlbi-dsb+dsb-isb 0/6M 0/1.50M 2/41M
pgtable MP.RT1+dsb-tlbiall-dsb+dsb-isb 5/6M 0/1.50M 6/41M
pgtable MP.RT1+dsb-tlbiallis-dsb+dsb-isb 3/6M 0/1.50M 2/41M
pgtable MP.RT1+dsb-tlbiis-dsb+dsb-isb 1/6M 0/1.50M 1/41M
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Table 10.2: system-litmus-harness hardware results from three devices: Part II.

Type Name rpi4b rpi3bp graviton2
pgtable MP.RT1+dsb-tlbiis-dsb-isb+dmb 0/6M 0/1.50M 1/41M
pgtable MP.RT1+dsb-tlbiis-dsb-isb+dsb-isb 0/6M 0/1.50M 1/41M
pgtable MP.RT1+dsb-tlbiis-dsb-tlbiis-dsb+dsb-isb 0/6M 0/1.50M 3/41M
pgtable MP.TT+Winv-dmb-Winv+tpo 254.83K/6M 114.48K/1.50M 170.96K/41M
pgtable MP.TT+dmb+dsb-isb 688.65K/5.50M 174.78K/1.50M 492.98K/41M
pgtable MP.TT+dmb+tpo 843.79K/5.50M 157.80K/1.50M 480.31K/41M
pgtable MP.TT.inv+dmb+dsb-isb 0/5.50M 0/1.50M 0/41M
pgtable MP.TT.inv+dmb+tpo 0/5.50M 0/1.50M 0/41M
pgtable MP.invRT+dsb+dsb-isb 871.53K/5M 101.75K/1.50M 1.78M/40.50M
pgtable MP.invRT1+dsb-isb-tlbiis-dsb-isb+dsb-isb 0/5.50M 0/1.50M 1/41M
pgtable MP.invRT1+dsb-tlbiis-dsb+dsb 0/5M 0/1.50M 2/41M
pgtable MP.invRT1+dsb-tlbiis-dsb+dsb-isb 1/4.50M 0/1.50M 1/41M
pgtable WRC.AT+ctrl+dsb 128.64K/4.50M 77.36K/1.50M 214.45K/40M
pgtable WRC.TRR+addr+dmb 0/4.50M 0/1.50M 0/40M
pgtable WRC.TRR.inv+addrs 0/4.50M 0/1.50M 0/40M
pgtable WRC.TRT+addr+dmb 35.28K/4.50M 32.50K/1.50M 103.16K/40M
pgtable WRC.TRT+dmbs 53.60K/4.50M 36.76K/1.50M 171.51K/40M
pgtable WRC.TRT+dsb-isbs 18.80K/4.50M 30.44K/1.50M 104.62K/39.50M
pgtable WRC.TRT.inv+addrs 0/4M 0/1.50M 0/38.50M
pgtable WRC.TRT.inv+dsb-isbs 0/4M 0/1M 0/38M
pgtable WRC.TRT.inv+po+addr 0/4M 0/1M 0/37.50M
pgtable WRC.TRT.inv+po+dmb 0/4M 0/1M 0/37M
pgtable WRC.TRT1+dsb-tlbiis-dsb+dmb 0/4.50M 0/1M 0/38M
pgtable WRC.TRT1+dsb-tlbiis-dsb+dsb-isb 0/4.50M 0/1M 0/38M
aliasing CoWR.alias 0/6M 0/1.50M 0/36M
aliasing MP+dmb-data+dmb 0/5M 0/1.50M 0/36M
aliasing MP.alias+dmbs 0/5M 0/1.50M 0/36M
aliasing MP.alias2+dmb-data+dmb 0/5M 0/1.50M 0/36M
aliasing MP.alias2+dmbs 0/3M 0/1.50M 0/19.50M
aliasing MP.alias2+po-data+dmb 2.23K/5M 3.17K/1.50M 407.36K/36M
aliasing MP.alias3+rfi-data+dmb 51/3M 16/1.50M 36.35K/19.50M
aliasing SB.alias+dmbs 0/5M 0/1M 0/35.50M
aliasing WRC.alias2+addrs 0/4M 0/43M 0/19M
aliasing WRC.alias2+dmbs 0/4M 0/43M 0/18.50M
cacheability MP.NC+dsb-dc-dsb-dmb+dmb 138.80K/8M 364.97K/26M 54.95K/25.50M
cacheability MP.NC+po-dmb+dmb 345.33K/7.50M 642.90K/25.50M 333.55K/25.50M
cacheability MP.NC1+dsb-tlbiis-dsb-dc-dsb-dmb+dmb 0/7.50M 0/25.50M 0/25.50M
cacheability MP.NC1+dsb-tlbiis-dsb-dmb+dmb 556/7.50M 482/25.50M 6/25.50M
cacheability WR.NC+dsb 0/0 0/0 0/0
cacheability WR.NC+po 0/0 0/0 0/0
cacheability WR.WARA-NC+dsb 0/0 0/0 0/0
cacheability WR.WARA-NC+po 0/0 0/0 0/0
cacheability WWR.NC+po-po 0/0 0/0 0/0
pmds CoWT.L23+dsb-isb 11.45M/13M 6.73M/13.50M 48.94M/84.50M
pmds CoWT.L23+po 12.88M/13M 13.39M/13.50M 80.61M/84.50M
pmds CoWT1.L23+dsb-tlbi-dsb-isb 0/13M 0/13.50M 0/84.50M
pmds ROT+dsb-dsb 0/13M 0/13.50M 0/84.50M
pmds ROT+po-po 0/13M 0/13.50M 0/84M
pmds ROT1+dsb-dsb-tlbi-dsb 0/13M 0/13.50M 0/84M
pmds ROT1+dsb-dsb-tlbivaa-dsb 0/13M 0/13.50M 0/84M
same_page CoTT+dsb-popage 0/35.50M 0/31M 0/1.12G
same_page CoTT+po-popage 1/47M 0/43.50M 0/1.20G
sysreg WR.MAIR1+dsb-isb-dc-dsb 0/0 0/0 0/0
sysreg WR.MAIR1+dsb-isb-po 0/0 0/0 0/0
sysreg WR.MAIR1+dsb-tlbi-dsb-isb-dc-dsb 0/0 0/0 0/0
sysreg WR.MAIR1+dsb-tlbi-dsb-isb-po 0/0 0/0 0/0
sysreg WR.MAIR1+po-po 0/0 0/0 0/0
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identify properties we believe any sound model would have, and check that the model presented here has those4018

properties.4019

The key property that we will prove the presented model has is a ‘virtual memory abstraction’. There is no single4020

definition of what such an abstraction is defined to be, but we give one intuitive and informal definition: a program4021

with a fixed injective translation table mapping behaves as if executing above physical memory directly.4022

10.3.1 Precise statement4023

We can state the virtual memory abstraction as a property over candidate executions. If given a full (with all the4024

translation table walk events) well-formed (consistent with the intra-instruction semantics) candidate C , with no4025

TLBI events, no T_f events, and no W events to any pagetable location, then, the candidate is consistent in the4026

VMSA model if and only if the translation-erased candidate C∼T (see below) is consistent in the base model.4027

Translation-erasure We define a translation erasure operation over candidate executions.4028

Given a candidate C the translation-erased candidate C∼T is C but where all TLBI, T, and T_f events are erased,4029

and any edge containing such events as source or target are removed from the candidate relations, and including4030

in C∼T the derived relations addr and po from C .4031

10.3.2 Proof4032

Informally the proof is a straight-forward inclusion proof by relation algebra. The internal (and translation-4033

internal) and atomic axioms are trivially subset inclusions of one another under translation erasure. For external,4034

we show that ob in the base model implies ob in the VMSA model and that ob in the VMSA model implies the4035

same ob in the base model. Therefore they must forbid the same cycles.4036

See TODO: Appendix A for the full proof. TODO: Include JPP proof4037
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Chapter 114038

Conclusion4039

We presented models for two key parts of the Arm architecture required for systems software, for instruction fetch4040

and required cache maintenance instructions, and virtual memory and its required TLB maintenance instructions.4041

We have produced a corpus of hand-written litmus tests for these architectural aspects, covering a range of4042

interesting hardware optimisations and software requirements. We’ve clarified the architecture by extracting the4043

architectural intent for those tests, especially where that intent was not clear beforehand, and produced models4044

that capture that intent.4045

We produced axiomatic-style declarative semantics, based on the herdtools ‘cat’ language, for both aspects of the4046

architecture. Additionally we produced a microarchitectural-style operational semantics for the instruction fetch4047

fragmnet intended equivalent to the axiomatic one.4048

These models were validated against hardware implementations, finding places where modern microprocessors4049

deviate from the desired architectural intent. For instruction fetch we extended the herdtool’s suite to be able to4050

generate new litmus tests, and run those tests on hardware. We built a brand new test runner, able to run tests on4051

a variety of hardware at EL1, either bare metal or in KVM.4052

Wemade thesemodels executable as a test oracle, allowing the user to experimentally check behaviours manually or4053

even do rudimentary model checking of a larger software pattern, by implementing them in our isla-axiomatic4054

or RMEM tools. This allowed us to validate the models against each other where applicable, and against the4055

architectural intent, and comparing the results from hardware test runs against the model’s predictions.4056

Finally, for virtual memory we proved a simple virtual memory abstraction which gives confidence that the model4057

correctly captures a key property the model is intended to have.4058

11.1 Limitations4059

While we endeavour to be as faithful to the architectural intent as we can and to produce models that are sound4060

abstractions of that intent, we have had to make tradeoffs in places.4061

We presented two models for two separate parts of the architecture, instruction fetching and virtual memory, but4062

did not merge them together into a single architectural model. The two models can be unioned together to produce4063

a combined model with all the events and relations from both, although more work is needed to understand4064

the interactions between the architectural features: instruction fetches are memory reads which themselves are4065

translated but where that translation behaves subtley different from the normal translations with different caching4066

rules. We do not imagine this is a hugely complex task, but one that we have not yet done.4067

We have seen three separate languages for defining litmus tests so far. Ideally we would have one unified language4068

that all tools (litmus, isla-axiomatic and system-litmus-harness) all accepted. As stated earlier, we do not believe4069

there is a fundamental restriction to unifying these languages, as currently they have not diverged so far as to be4070

incompatible.4071

TODO: Some words about virtual memory model and RG/Thibuat questions TODO: Some words about4072

interface4073
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11.2 Future work4074

There are many areas where the work presented here is only the start, and where further effort could yield fruit.4075

For more confidence in the architectural intent more hardware testing (especially for the virtual memory tests) is4076

essential, especially running at EL2 (for stage 2 tests) and over more varied devices.4077

Capturing more of the architecture is always desireable, we made a start here but this is no means the end, and4078

modern systems software relies on much more of the architecture than just covered here, such as: interrupts and4079

exceptions TODO: del?, the variety of Arm features for virtual memory (FEAT_ETS2, FEAT_BBM, FEAT_nTLBPA),4080

access permissions and caceheability and shareability domains, device memory and DMA, and much more.4081

With the models themselves, they can always be improved to be more performant and the tools more usable.4082

isla-axiomatic can run the virtual memory tests, but needs optimisations to be able to run in any reasonable4083

timeframe, and even then still takes hours on a modern high-end machine. This seriously restricts the current4084

usefulness of such tools to the average programmer.4085

There are nowmany concurrently existingmodels for Arm for a variety of features, we present two here (instruction4086

fetching and virtual memory) but also from the wider community for persistent memory, memory tagging, access4087

bits and dirty flags, capabilities and probably many others. Simply gluing these together into a single model is4088

not sound, as there are many interactions that would need to be explored and the architectural intent clarified4089

first. However, it seems a necessity that such work is carried out to enable future verification efforts of complex4090

systems.4091

Work on relaxed virtual memory, on relaxed instruction fetching, and even further afar, has not ceased at the4092

finalization of this work. We are continuing to improve on the models given here, to engage in fruitful discussions4093

with Arm, to produce new models for more of the architecture, and to build more confidence in the models we4094

have already created.4095

Hopefully this work enables future researchers, academics, engineers, architects, and hardware designers to better4096

understand the environment as it is today, and to produce clearer and more robust architectures and to take the4097

first steps in verifying the complex systems software that underpins so much of the modern base of computing4098

with respect to the reality of the hardware we run them on.4099
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Appendix A4100

Test format: system-litmus-harness4101

The test format supports writing a variety of kinds of pagetable tests, through both the initial state setup and the4102

data passed from the harness allocator via the litmus_test_run data struct.4103

The data struct contains, for each global variable (e.g. x): the virtual address (%[x]); the initial last-level descriptor4104

(%[xdesc]); the address of the last-level entry (%[xpte]); the address of the entry at level N (%[xpteN]); the page4105

index, e.g. for arguments to TLB maintenance (%[xpage]). With some aliases for the different levels to match4106

Linux terminology: %[xpmd] for the level 2 entry (xpte2); %[xpud] for the level 1 entry (xpte1).4107

The initial state enables specifying a rich variety of related machine states, each INIT_STATE can include directives4108

for the initial value of the variable:4109

. INIT_UNMAPPED(var): that the pagetable entry for var starts out invalid.4110

. INIT_VAR(var, value): that var starts out mapped and the location at its physical address starts out4111

containing value.4112

. INIT_ALIAS(var1, var2): that var1 and var2 should be aliased to the same location.4113

The programmer can also choose the initial permissions and memory attributes the variables are mapped with:4114

. INIT_PERMISSIONS(var, prot, value): that var should be mapped with field prot set to value:4115

– for prot=PROT_AP, value can be any int, but there are some helpful aliases:4116

∗ PROT_AP_RWX_X (0x0): read-write-execute at EL1, execute only at EL0.4117

∗ PROT_AP_RW_RWX (0x1): read-write at EL1, read-write-execute at EL0.4118

∗ PROT_AP_RX_X (0x2): read-execute at EL1, execute only at EL0.4119

∗ PROT_AP_RX_RX (0x3): read-execute at EL1 and EL0.4120

– for prot=PROT_ATTRIDX, value defines the memory attributes as the index to the default MAIR value,4121

and can be any of:4122

∗ PROT_ATTR_DEVICE_nGnRnE (0): use strongly-ordered device memory.4123

∗ PROT_ATTR_DEVICE_GRE (1): standard device memory (with re-ordering, gathering and early4124

write acknowledgement).4125

∗ PROT_ATTR_NORMAL_NC (2): normal non-cacheable memory.4126

∗ PROT_ATTR_NORMAL_RA_WA (3): normal cacheable memory.4127

∗ indexes 4-7 are unused.4128

. INIT_MAIR(value): defines the otherwise unused MemAttr7 field of the MAIR for custom tests.4129

– MAIR_DEVICE_nGnRnE (0x00): strongly ordered device memory.4130

– MAIR_DEVICE_GRE (0x0c): standard device memory (with re-ordering, gathering and early write4131

acknowledgement).4132

– MAIR_NORMAL_NC (0x44): normal non-cacheable memory.4133
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– MAIR_NORMAL_RA_WA (0xff): normal cacheable memory.4134

Finally, the harness allocator can be guided to place variables in locations with particular relationships between4135

them (in the same page or cache line, or at the same offset into their respective regions):4136

. INIT_REGION_OWN(var, region): that var owns a region of memory larger than the default of a page,4137

region can take values:4138

– REGION_OWN_CACHE_LINE: this variable only takes up a single cache line.4139

– REGION_OWN_PAGE: don’t allocate other variables in the same page (the default).4140

– REGION_OWN_PMD: don’t allocate other variables in the same 2MiB region.4141

– REGION_OWN_PUD: don’t allocate other variables in the same 1GiB region.4142

. INIT_REGION_PIN(var1, var2, region): place var1 and var2 in the same region, where region is one4143

of:4144

– REGION_SAME_CACHE_LINE: place both in the same cache line.4145

– REGION_SAME_PAGE: place both in same page.4146

– REGION_SAME_PMD: place both same 2MiB region.4147

– REGION_SAME_PUD: place both same 1GiB region.4148

. INIT_REGION_OFFSET(var1, var2, region): ensure that var1 and var2 have the same offset into the4149

region (that is, the least significant bits overlap), where region can be one of:4150

– REGION_SAME_CACHE_LINE_OFFSET: ensure both have same lower CACHE_LINE_SHIFT bits.4151

– REGION_SAME_PAGE_OFFSET: ensure both have same offset into the page (bits 12-0).4152

– REGION_SAME_PMD_OFFSET: ensure both have same offset into the 2MiB region (bits 20-12).4153

– REGION_SAME_PUD_OFFSET: ensure both have same offset into the 1GiB region (bits 29-20).4154
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