Ben Simner

ben.simner@cl.cam.ac.uk
https://2plus2a.com/

Positions & Experience

2025- Research Associate, Computer Science, University of Cambridge.
2023-2025 Research Assistant, Computer Science, University of Cambridge.
2018-2025 Ph.D., Computer Science, University of Cambridge.

Autumn’18 Intern, University of Cambridge.
Summer’17 Intern, Microsoft Research, Cambridge.
Summer’'16 Intern, University of York.

Qualifications

2018-2025 Ph.D., Computer Science, University of Cambridge
Thesis: Arm system semantics
(no corrections)

2014-2018 MEng., Computer Science, University of York
First-class honours (with distinction)
Dissertation: Automated comparison of implementations of purely functional
data structures

Publications

Preamble In these fields, the primary venue for publication is peer-reviewed conference pro-
ceedings. Publications order authors by contribution, often (but not always) with the PI being
last. Those listed are all full-length papers, and not extended abstracts or pre-publications.
The Symposium on Operating System Principles (SOSP), International Symposium on Computer
Architecture (ISCA), Computer Aided Verification (CAV), and the European Symposium on Pro-
gramming (ESOP) are flagship venues in their fields, which the Australian CORE rankings rate
as A or A*, signifying the top 20% of leading Computer Science venues. These venues are all com-
petitively peer-reviewed, with acceptance rates typically around 15-25%, e.g. SOSP’25 accepted
66 of 368 submissions (18%), ISCA’25 accepted 132 of 570 submissions (23%).

Synopsis My Ph.D. investigates the behaviour of modern multiprocessors at the interface with
software, and this work forms the base for three of the listed papers: ESOP20, ESOP’22 (nom-
inated for best paper), and ISCA’25 (won best paper). During the course of my Ph.D. I have
been part of a wider group with shared software infrastructure, some of which I have played a
role in developing or maintaining, and this comprises two of the papers: CAV’21 and FMSD’23.
Previous to my Ph.D. I was part of a project to improve confidence in software by constructing
concurrent program logics, which I continue to work on; this comprises 2 papers: CAV’17 and
ISMM’23. Finally, a recently started line of research investigates improved software testing for
low-level systems, and this accounts for the final paper, SOSP’25.

> Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hy-
pervisor [pdf]
Kayvan Memarian!, Ben Simner!, David Kaloper Mersinjak, Thibaut Pérami, Peter Sewell
in Proceedings of ACM SIGOPS 31st Symposium on Operating Systems Principles (SOSP’25,
to appear), 15pp
!These authors contributed equally.

> Arm system semantics [pdf]
Ben Simner
Ph.D. thesis, 2025

> Precise exceptions in relaxed architectures [pdf]
Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar,
Jean-Pichon Pharabod, and Peter Sewell
in Proceedings of the 52nd International Symposium on Computer Architecture (ISCA’25),
pp211-224 (14pp) |BEST PAPER AWARD |

https://2plus2a.com/
https://www.core.edu.au/conference-portal
https://2plus2a.com/files/drafts/2025-SOSP-execspec-draft.pdf
https://2plus2a.com/files/drafts/top-thesis-draft-2025-03-28.pdf
https://2plus2a.com/files/publications/2025-ISCA-precise-exceptions.pdf

> Wait-Free Weak Reference Counting [pdf]
Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner
in Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory Manage-
ment, pp85-96 (12pp)

> Isla: Integrating full-scale ISA semantics and axiomatic concurrency models (ex-
tended version) [pdf]
Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell
in Formal Methods in System Design, Volume 63, May 2023, pp110-133 (24pp)

> Relaxed Virtual Memory in Armv8-A [pdf]
Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard
Grisenthwaite, and Peter Sewell
in Programming Languages and Systems: 31st European Symposium on Programming
(ESOP'22), pp143-173 (31pp) [NOMINATED FOR BEST PAPER |

> Isla: Integrating full-scale ISA semantics and axiomatic concurrency models [pdf]
Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell
in Proceedings Part I of Computer Aided Verification: 33rd International Conference (CAV'21),
pp303-316 (14pp)

> ARMVS-A system semantics: instruction fetch in relaxed architectures [pdf]
Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod,
Luc Maranget, Peter Sewell
in Programming Languages and Systems: 29th European Symposium on Programming
(ESOP’20), pp626-655 (30pp)

> Starling: Lightweight Concurrency Verification With Views [pdf]
Matthew Windsor, Mike Dodds, Ben Simner, Matthew J Parkinson
in Proceedings Part I of Computer Aided Verification: 29th International Conference (CAV’'17),
pPp544-569 (26pp)

Note: Awards are in | GREEN | Nominations are in | BLUE |.

Summary of individual contribution For the ESOP’20, ESOP’22 and ISCA’25 papers, I was the
primary technical lead: engaged directly in the discussions with Arm architects and others on
the contributions, in the construction of the theoretical models, in the validation of the mod-
els, and the writing of the paper. Other co-authors engaged in supplementary modelling and
discussions with architects (Flur, Pulte, Kammar, Pichon-Phararbod), in the maintenance of the
tooling and hardware testing (Armstrong, Maranget), or construction and maintenance of related
artifacts (namely Bauereiss and Campbell, working on the Arm ISA), or are industry contacts
(Richard Grisenthwaite is the Arm chief architect, and closely collaborated on the ESOP’22 pa-
per). For the CAV’'21 paper I produced the model used to exercise the tool, and jointly maintained
some parts of the tooling (the parts relevant to axiomatic modelling).

For the ISMM’23 paper I contributed a specific artifact: a mathematical proof of one of the
concurrent algorithms presented in the paper. For the CAV’17 paper I was responsible for one
of the primary technical contributions of the paper: the implementation of iterated views in the
tool, and the proof it enabled.

For the SOSP’25 paper, I am a joint lead with Memarian; responsible for much of the machinery
which forms a primary contribution of the the paper, as well as the writing of the paper.

https://2plus2a.com/files/publications/2023-ISMM-wait-free-weak-references.pdf
https://2plus2a.com/files/publications/2023-FMSD-isla.pdf
https://2plus2a.com/files/publications/2022-ESOP-rvm.pdf
https://2plus2a.com/files/publications/2021-CAV-isla.pdf
https://2plus2a.com/files/publications/2020-ESOP-ifetch.pdf
https://2plus2a.com/files/publications/2017-CAV-Starling.pdf

Research statement

Modern computer systems are core to our information infrastructure, and we are increasingly
reliant on them in our day-to-day lives. Concerningly, these systems do not always work in the
way we need them to: software errors cause disruption of public services; malicious attacks gain
access to confidential data; and buggy software interfere with peoples’ lives.

Engineers follow industry best practice, but often this is insufficient to prevent such failures.
Those practices usually involve imperfect test-and-debug processes, which further rely on in-
adequate documentation to describe the components’ intended operation. This is particularly
worrying for the core infrastructure: the systems which coordinate software and enforce security
of confidential data; the tools those systems are built with; and, ultimately, the hardware they
run on. Ensuring they perform correctly in all scenarios requires mathematical proof, which
is out of reach for the majority of modern software. Disturbingly, even the hardware-software
interface has important questions left open, leaving no solid foundation for that proof.

Crystallized down, the challenge I address is then how to build confidence in our software
infrastructure, when the foundations are shaky and the existing tools unwieldy?

Attacking this needs new theory, and the application of that theory in new tools, all in the context
of industry-owned systems. My research does all this along three threads of work:

(1) Building robust foundations for the hardware-software interface: working with Arm
Limited, whose processor designs are in most modern devices, I build mathematical models
capturing the allowed behaviour of their processors, with particular focus on those parts
relied on by critical systems software. This forms the majority of the work in my Ph.D.

(2) Exploring more approachable techniques for formal proof: constructing tooling to en-
able simpler proof of algorithms, and using the tools on examples deployed in real software.

(3) Constructing foundational safety nets for programmers: developing lightweight ap-
proaches, to give software developers the confidence they need to develop software. In-
cluding, in collaboration with Google, building lightweight verification tools which found
security vulnerabilities and bugs in Android.

My work spans multiple fields: by testing real software (systems); in clarifying the interfaces
our software rely on (computer architecture); and building the theory and tooling which under-
pins it all (programming languages and verification). 1 tackle pure research problems, with the
construction of new mathematical models and techniques, but in a way which benefits the
computing industry as a whole, working on artifacts people really care about: Android, used
by billions; and the Arm architecture, powering over a hundred billion devices; giving an exciting
opportunity to directly impact practice. My research is highly collaborative. I had the unique
opportunity to engage in deep technical discussions, and build a productive relationship with,
Arm and their Chief Architect. As a member of RISC-V, I have been part of a cross-industry
effort into open architecture, advising on research-relevant parts. In contracting with Google,
we explored how my research scales to industry software, and formed close connections to the
Android kernel team. Academic co-authors are many and distributed worldwide, in: Edinburgh,
Aarhus (Denmark), SNU (South Korea), INRIA (France), and TAU (Israel).

I now give a short overview of each thread of work so far, plus a plan for future work.

Thread I: Clarifying the Arm architecture (the dissertation)

Challenge: how to give a solid and trustworthy specification of the hardware-software
interface which enables mathematical reasoning about systems software?

This requires taking architecture away from prose documents, as they had historically been, and
towards precise mathematics. For 15 years there has been a significant push in this direction.
However, those parts required for our systems’ security have remained mostly obscure. My
dissertation develops mathematical models for those aspects, in a way which allows one to probe
the specification, either manually or for automated testing of small programs, and validates
those models against currently available hardware and the architectural intent. In doing so it
clarifies the architecture, increasing confidence that future hardware and software will conform.

Thread II: Reasoning about concurrent algorithms

Challenge: how can proof of concurrent algorithms be made more accessible?

Multiple components accessing the same memory at the same time is a pattern often found
in critical components of software. The correctness of these components often rely on implicit,
intangible, concepts, which has historically made proof challenging to achieve. Starling, designed
by Matt Windsor during the course of his Ph.D. (2019), automatically checks simple facts, greatly
reducing the burden on the engineer; I joined that project in 2016, and became a co-author, by
extending it with support for richer facts, and we used that to prove a Rust-style atomic reference
counter. Starling has since been used to prove some small concurrent algorithms, including a
proof I did for an algorithm used in Microsoft’s experimental Verona language. This work is
entirely independent of the Ph.D. and the work at Cambridge.

Thread III: Building confidence in systems software

Challenge: how can we help systems programmers gain confidence in their code without
requiring full mathematical proof?

Without proof, programmers rely on testing. This thread of research develops lightweight strate-
gies, somewhere in-between testing and proof, and demonstrate they work at scale by employing
them on pKVM: a security component of Android, deployed since Android 13. My research tack-
les two distinct challenges here: (1) how to check the hardware-software interface, especially
in the context of concurrent systems features (c.f. Thread I); and (2) harmonising full formal
specifications with testing, by writing specifications just as one would when writing proofs,
but integrating them into the testing process, giving more confidence than just testing alone but
without the investment of full proof.

Plan of future work

The success of the threads of work enable a rich set of possibilities of new work. For building
new theory, investigating new techniques, and building deeper connections. My research plan
over the next 5 years is split into three major tasks.

Unifying the hardware interface (1-2 py) We now have, in no small part thanks to my work
here, a number of models of various features of the Arm architecture. However, real software
typically uses a mix of features. Thus, one needs a single unified model of them all. My
plan is to construct such a model, for Arm, enabling full mathematical proof of real systems
software, a goal not achievable today.

Reasoning about systems software (2-3 py) Building on the lessons learned from Threads
II and III, my research will produce tools which can be used to reason abstractly about
systems software. In particular, to produce simplified architectural models, to make reasoning
about low-level software easier; and to take the work from Thread III(1), and lift its lightweight
check into something more foundational, which can be used to verify real software.

Scaling to industry speed (1+ py) Thread III built lightweight verification which scales to
industry-sized software. However, the process was slow, often only finding bugs months after
the code was written — or worse, after it was deployed to users. My future research will scale
those techniques up to industry speed: to find bugs as they are written, not months after.

A long-term research agenda FEach thread contributes a deeper understanding of the way
software and hardware interact. This moves us one step closer to being able to build confidence
in our infrastructure, but, of course, with much still left to do. An independent position would
give me the opportunity to push those boundaries, beyond merely clarifying architectural inter-
faces, as has historically been the subject of my supervisor’s research, and progress towards
reasoning above those interfaces: continuing the lines of research in Threads 2 and 3, and the
planned future tasks. Over a longer timescale, this research will seek to make reasoning at that
hardware-software interface possible and feasible: with more robust foundations, less unwieldy
tools for proof, and moving towards making those tools scale to industry size and speed.

