
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Ghost in the Android Shell: Pragmatic Test-oracle
Specification of a Production Hypervisor

Kayvan Memarian
University of Cambridge

UK
Kayvan.Memarian@cl.cam.ac.uk

Ben Simner
University of Cambridge

UK
Ben.Simner@cl.cam.ac.uk

David Kaloper Meršinjak
University of Cambridge

UK
dk505@cl.cam.ac.uk

Thibaut Pérami
University of Cambridge

UK
thibaut.perami@cl.cam.ac.uk

Peter Sewell
University of Cambridge

UK
Peter.Sewell@cl.cam.ac.uk

Abstract
Developing systems code that robustly provides its intended
security guarantees remains very challenging: conventional
practice does not suffice, and full functional verification,
while now feasible in some contexts, has substantial barriers
to entry and use.

In this paper, we explore an alternative, more lightweight
approach to building confidence for a production hypervisor:
the pKVM hypervisor developed by Google to protect virtual
machines and the Android kernel from each other. The basic
approach is very simple and dates back to the 1970s: we spec-
ify the desired behaviour in a way that can be used as a test
oracle, and check correspondence between that and the im-
plementation at runtime. The setting makes that challenging
in several ways: the implementation and specification are
intertwined with the underlying architecture; the hypervi-
sor is highly concurrent; the specification has to be loose in
certain ways; the hypervisor runs bare-metal in a privileged
exception level; naive random testing would quickly crash
the whole system; and the hypervisor is written in C using
conventional methods. We show how all of these can be
overcome to make a practically useful specification, finding
a number of critical bugs in pKVM along the way.

This is not at all what conventional developers (nor what
formal verifiers) normally do – but we argue that, with the
appropriate mindset, they easily could and should.

1 Introduction
Developing systems code that robustly provides its intended
security guarantees remains very challenging. It has long
been painfully clear that conventional software development
practices do not suffice, motivating extensive research on
more formal approaches. Classic formal verification aims at
high assurance via mathematical proof of functional correct-
ness [25, 50], and recent years have seen many successes,
including BlueRock [37], CertiKOS [19, 20, 45], CompCert [8,
33], F∗ [41, 48], Hyper-V [32], IronFleet [21], SeKVM [34, 35,
49], seL4 [27, 28], and VST [11], among others. Several of

these have led to widely deployed verified code. However,
the broad adoption of such methods is still problematic:

• They require specialist skills and specialist tools, often
research tools under active development.

• They typically require the code to be written for verifi-
cation, in specialist languages or in restricted dialects.

• The maintenance burden, adapting proofs to new ver-
sions of the software, can be prohibitively high.

• They suffer from a step-function effort/reward curve,
requiring major up-front investment and delivering
the main payoff – the theorem – at the end.

More lightweight formal approaches aim to improve as-
surance at lower cost. These too have been advocated for
decades [22, 24], but are, we argue, still less well explored,
appreciated, and deployed than they should be.
In this paper we show how very lightweight methods,

requiring no specialist formal tooling, can improve assur-
ance of a production hypervisor, at relatively low cost. Our
target is protected KVM (pKVM), a hypervisor developed
by Google for Android, to enforce isolation between the
Android Linux kernel “host” and guest virtual machines
that handle sensitive data; it protects the latter from post-
initialisation kernel compromises, and vice versa. pKVM is
developed in the Linux kernel tree, with conventional kernel
development methods; it has been deployed since Android
13 [10, 18, 26, 42]. All this makes it a convincingly challeng-
ing target: pKVM is written in C and Arm assembly; it is
concurrent both with itself and with host, guest, and user
code; it runs at the hypervisor-privileged Arm exception
level 2 (EL2); it manages aspects of the Arm architecture
controlling its own execution, including the system registers
and page tables; and it is designed to meet its pragmatic
security and performance goals, not for verification.

The basic idea of our approach is simple, and dates back at
least to the 1970s [29, 36]: we specify the desired behaviour in
a form that can be used as a test oracle, and check against it at
runtime. Rich specifications (beyond simple assertions) have
normally been written in custom specification languages,

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

which have the benefits of clear mathematical meaning, ex-
pressiveness tuned for specification, and proof or analysis
tools, but the requirements for specialised skills and tooling
are still barriers to adoption. Instead, much less commonly,
but along the same lines as Bornholt et al.’s work on S3 key-
value storage nodes [9], we write full functional-correctness
specifications in the ambient programming language.

Our new contribution lies in showing how this can be done
for a production hypervisor such as pKVM, which introduces
several interesting challenges.
The hypervisor implementation and specification

are intertwined with the specification of the under-
lying hardware architecture. pKVM, like other hypervi-
sors and operating systems, enforces controlled isolation by
managing the address translation mappings for itself and
for guests, which are used implicitly by hardware address-
translation walks. It manages stage 2 mappings used for
execution of each virtual machine, a stage 2 mapping used
for Android kernel execution, and a single-stage mapping
used for pKVM’s own execution.

Its specification is thus not just a simple functional prop-
erty of the result values of API calls, but has to constrain the
results of those implicit hardware walks.
We therefore express the specification using computable

abstraction functions (reified in C), from the concrete imple-
mentation state managed by the hypervisor, to abstract states
– reified ghost states, represented as C datastructures that
have intuitively clear mathematical interpretations. Our ab-
straction functions capture certain invariants on the concrete
state. They interpret implementation page tables as mathe-
matical finite maps, from virtual addresses to intermediate-
physical or physical addresses) with the associated permis-
sions and other attributes, mirroring the Arm-A architecture
specification of hardware address translation.
The hypervisor is essentially an exception handler, han-

dling both explicit hypercalls made by the Linux host and
other guests, and implicit exceptions such as stage 2 trans-
lation page faults raised to EL2. We specify the allowed be-
haviour of all these as a computable function (also reified
in C) that (roughly) calculates the intended post-exception
abstract state from the initial abstract state, with the hyper-
call arguments or other exception information. Importantly
for clarity, this is morally a pure function of its arguments,
even though, in C, some internal imperative computation is
inescapable: it depends only on the computed abstract state,
not on the actual implementation state. This gives a very
clear computational reading, and in dynamic testing it lets
one simply check equality of intended and recorded abstract
states after each exception.
The hypervisor is highly concurrent.Multiple hard-

ware threads can be running in the hypervisor concurrently;
it uses locks and a subtle ownership discipline, implicit in the
code, to prevent races among explicit accesses to its shared
memory. We handle much of this concurrency, but it adds

an interesting complication: one can only meaningfully com-
pute an abstraction of any part of the concrete state at points
where the implementation owns that state. Our specification
abstract state structure, and the infrastructure to dynam-
ically compute and record it, therefore have to mirror the
implementation ownership discipline. For example, in simple
cases, where some pKVM state is protected by a particular
lock, we compute the abstraction of that part of the state
when that lock is taken and released (we describe the more
subtle cases later). At a high level, this is taking ideas that
one might use in a separation-logic proof and recasting them
for specification and runtime testing.

There is some additional rare implementation concurrency
which at present we do not handle: a few hypercalls execute
in phases, releasing and retaking locks. The implicit stage-2
translation-table accesses from the Android kernel and vir-
tual machines (and their user processes) at lower exception
levels cannot be constrained by pKVM’s locking, and so un-
avoidably race with its updates to the page tables – so the
ordering of multiple such updates within a single hypercall
can in principle be observed. Handling that would need a
more explicitly transactional style of instrumentation, which,
although not done, seems perfectly feasible.

The hypervisor requires a loose specification. Where
one can, we believe it more intuitive to have functional rather
than relational specifications, but a good specification of
pKVM has to be loose in two ways, abstracting from some
details of the mapping-on-demand it does for kernel mem-
ory, and from the exact conditions under which it might
report out-of-memory errors. We address these, respectively,
by carefully defining the abstract state, and by making the
next-state specification function parametric on the imple-
mentation return value.
The hypervisor runs bare-metal at EL2. This brings

practical challenges: one cannot directly access its API from
user code, or use conventional coverage or testing tools. We
address these with a “hyp-proxy” patch to the Linux kernel,
to let user-space testing allocate kernel memory and invoke
pKVM hypercalls, and with custom coverage infrastructure.
Excessively random testing would crash the whole

system. pKVM aims to protect against compromised An-
droid kernels and virtual machines, so one wants to exercise
it against arbitrary inputs, but values which are too arbitrary
– in a history-dependent sense – can easily crash the kernel
being used for testing. We developed both a small library of
hand-written tests and a random tester, resolving this ten-
sion between truly random testing and excessive crashing
by including a very abstract model in the test generator.
The ambient programming language is C. On the

face of it, C is a very bad specification language – much
worse than Rust, for example – and initially it was not at all
obvious that this was feasible. In writing the specification
we had to work around the lack of a decent sublanguage of
pure computation, the lack of inductive datatype definitions

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

(which have to be verbosely coded up using structs, unions,
and enums) and of pattern matching over those definitions,
the lack of parametric polymorphism (e.g. for finite range
maps returning arbitrary types, which we worked around
with a union of the types required), and the lack of support
for memory management. For other specifications one might
also want higher-order functions and other richer types, but
those were not big issues here.
The surprising conclusion is that it has been perfectly

feasible to work around all of these, however awkward they
might appear at first sight, and to express the specification
in a way that is easily readable at the top level (with details
of memory management etc. kept below the surface).
Ultimately, one wants not just our (intensional and dis-

criminating) black-box testing of the correspondence of spec-
ification and implementation, but also confirmation that it
captures the developers’ intent. Discussions confirm that
this is viable: they can independently read and comment on
the specification in detail, while a more exotic specification
language may have prevented this.

To summarise, our contributions are:
• Weemphasise the above approach as an under-explored

sweet spot for building confidence in production sys-
tems code such as hypervisors or operating systems.

• We demonstrate it for pKVM, explaining various sub-
tle issues that one has to address to make it really
work, especially the proper handling of concurrency
and loose specification (§3,4).

• We develop test infrastructure, coverage tooling, hand-
written tests, and random testing, to exercise the cor-
respondence between implementation and specifica-
tion (§5).

• We discuss a number of bugs found in pKVM, and the
specification size, effort, and performance (§6).

We conclude with discussion of the process and related work.
The development is available open-source at https://github.
com/rems-project/linux/tree/pkvm-verif-6.4.

Our high-level message is that this is both hard and easy:
a priori, it was not at all obvious that it was feasible, but,
given this existence proof and the ways in which we address
the above challenges, and with the appropriate mindset of
writing executable specification rather than implementation
code, we believe conventional developers could do similarly
with quite modest effort. This does not itself provide the
assurance of full verification, although it can be a useful step
towards that. But it applies to existing or newly written sys-
tems code as-is, expressed idiomatically in its conventional
implementation language; it relies only on that language and
its conventional tooling; it can be maintained with (non-zero
but) reasonable cost; and it provides gradual benefits.
Note: a related paper under submission [1] makes use of

the testing infrastructure developed here, and both target
the same hypervisor. The two papers are otherwise distinct:

�ËProtected VM

Firmware (hardware-specific) EL3

EL2

EL1

EL0

pKVM (hypervisor)

Android Kernel VM

Application Application
svc

hvc

smc

Figure 1. The Android Virtualisation Framework (AVF) [18],
with pKVM, the Android “host” kernel, and a protected VM,
and pKVM-enforced protection boundaries in blue.

this focusses on top-level functional specification, while that
on TLB synchronisation disciplines.

2 Context: The pKVM hypervisor
We begin by explaining the high-level design of pKVM, and
how it manages the Arm-A architecture to enforce isolation.
Protected KVM (pKVM) is a new hypervisor, though it

reuses parts of the KVM codebase. It supports protected
guests, whose memory is not directly accessible by Android
or vice versa. It does so using Arm-A virtualisation and vir-
tual memory. Access to hardware features on Arm is con-
strained by the current privilege level, the exception level.
Exception level 0 (EL0) has the least privilege, used by appli-
cations and other user-level programs, and EL3 has the most
privilege, used primarily for firmware; there are also ‘secure
world’ exception levels which we omit here. OS kernels typi-
cally execute at EL1, and the pKVM hypervisor executes at
EL2, as in Fig. 1. Execution of a hardware thread transitions
from one exception level to a higher one via explicit super-
visor (svc), hypervisor (hvc), and secure monitor (smc) calls,
and on implicit exceptions, e.g. on certain page faults and
other memory aborts. On such entries to pKVM (which can
be concurrent, from concurrent hardware threads executing
at EL0 and EL1), the hardware thread picks up a hardware-
thread-specific stack for its EL2 execution; pKVM has some
shared state and some thread-local state.
pKVM is a pure isolation kernel: it manages virtual ma-

chines (VMs), providing them and the host Android kernel
with a limited API to construct, destroy, context-switch be-
tween, and interact with VMs. It does not do scheduling,
device handling, or file systems, which are left to the host.

pKVM enforces controlled isolation, between the Android
host, virtual machines, and its own execution, by managing
the virtual memory mappings used for each. In Arm-A, as
in most architectures, the hardware translates the virtual
addresses in the running hardware thread into the physical
addresses used to index memory, and performs any required
permission checks. To support virtualisation, this can be
done in two stages of translation: Stage 1 translating virtual
to intermediate-physical addresses, managed by the Android
host or the VM, and Stage 2 translating those into physical

3

https://github.com/rems-project/linux/tree/pkvm-verif-6.4
https://github.com/rems-project/linux/tree/pkvm-verif-6.4

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

addresses, managed by the hypervisor. pKVM enforces iso-
lation by maintaining a Stage 2 translation for the host and
for each VM, along with a (single-stage) translation for its
own execution, and ensuring that the ranges of all these are
disjoint except where specifically requested. When context
switching, pKVM installs the root address of the appropriate
translation tables in a hardware system register.

The APIs that pKVM provide to the host and to guests are
relatively simple. For the host, it provides hvc calls for the
host to share and unshare additional memory with pKVM, to
create new virtual machines and virtual CPUs within them,
to destroy virtual machines and reclaim donated pages, and
to context switch to a chosen vCPU. The guest API is more
limited: guests can share/unshare virtual machine memory
back with the host and communicate with the host through
pagefaults (typically with virtio).
When the host, a guest, or pKVM itself tries to access a

memory location that is not mapped in pKVM’s pagetables,
the processor takes a pagefault which is handled by pKVM.

In most cases, pKVM switches back to the host, injecting
a fake interrupt into EL1, allowing the host to decide how
to respond (e.g. for the virtio case above). There are two
exceptions: if pKVM has an internal error, it panics; and if
the host accesses memory that is not mapped but it logically
owns, pKVM maps it on-demand. pKVM does not map all of
the host’s memory in the host Stage 2 page table at initiali-
sation. Instead, it maps host memory (that the host logically
has permission to access) when needed: making the host
take a pagefault on first access, and filling in the page table
lazily so that a host post-exception retry will succeed. pKVM
maintains the ‘logical’ state of ownership of the memory:
for each page in memory, which of pKVM, host, or a guest,
owns it, encoded in otherwise unused page-table-entry bits.

3 Reified ghost state and abstraction
functions

In this section, we explain the shape of the ghost state that
we define as an abstraction of pKVM’s concrete state; we
describe how it is recorded, and howwe observe its evolution
during pKVM execution. In the next section, we describe how
we specify hypercalls in terms of this. In both, we show only a
small and relatively simple part of the complete specification,
but we aim to give enough detail to expose the issues, so that
one can see how the same could be done for other broadly
similar systems code.

Conceptually, the ghost state is a mathematical abstraction
of pKVM’s concrete state, expressed with simple mathemati-
cal structures (as one would find in a conventional functional
specification language), that abstracts from the engineering
details of the concrete state, such as its pointer structures
and the Arm architecture representation of in-memory page
tables. This is akin to the ghost state that one would define
in a more conventional verification setting. We reify this in

C, and compute and record it with executable abstraction
functions, also reified in C.
The behaviour of pKVM can then be specified by spec-

ifying how each exception handler can change the ghost
state. We express this with specification functions, again
in C, that compute the expected post-handler ghost state
from the recorded pre-handler ghost state. These are pure in
the sense that they only access their input ghost state, not
the concrete pKVM execution state. One can then compare,
at runtime, the expected post-handler ghost state with the
recorded post-handler ghost state, checking equality.
For some systems, one might need a relational form of

specification, e.g. taking the recorded pre- and post-handler
ghost states, and computing a boolean ofwhether that change
was allowed. That would accommodate more specification
looseness, but we believe it would be less intuitive to read
for conventional developers than the functional form that
directly computes the new ghost state. For pKVM, all the
required specification looseness can be accommodated with
modifications of the functional approach.
All this is expressed in C within the source tree of, and

linked with, pKVM; it builds with the normal Linux kernel
build process, and runs in QEMU with the normal setup used
by the developers for exercising pKVM. Despite this, it is
not intrusive: it is almost all factored out into separate .h

and .c files in new ghost/ directories, with just a few calls
within the main pKVM code, guarded by #ifdefs controlled
by kernel configuration parameters.

3.1 Computable ghost state
Logically, the memory isolation property that pKVM aims to
provide is roughly the invariant that there exists a partition
of physical memory pages, where each partition has a single
owner (either the Android host, pKVM itself, or a guest
virtual machine) and some access permissions, but might
also be shared with another entity.
In the concrete state of pKVM, this is implemented by

careful management of its collection of page tables, poten-
tially shared among all hardware threads when executing
within pKVM. pKVM’s shared concrete state also contains
metadata for each guest virtual machine, including their
configuration, whether they are currently executing on a
physical CPU, and, if not, their last-saved register state. In
addition, the pKVM concrete state has components that are
local to each hardware thread, holding the current execution
context: the saved context of the Android host or guest reg-
isters at EL1 before entry into the current pKVM C handler,
and the current context of pKVM at EL2 (its registers and
stack). Hardware pagetable walks for threads at EL0 and EL1
implicitly access the appropriate page tables.

Following the ownership structure. The ghost state
structure has to follow the ownership discipline used by
pKVM for its concrete state. Rather than an expensive big

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

lock, pKVM protects each page table with a separate lock:
one for its own Stage 1 mapping, one for the host Stage 2, and
one for each guest Stage 2, with one more lock protecting its
table holding the metadata of the guest virtual machines. The
implementation of each exception only takes the locks that
are actually needed for its operation (e.g. host_share_hyp
only takes the locks of the host and pKVM page tables), and
only when required, not simply on exception entry and exit.

There is therefore no point in time after initialisationwhen
we could safely record the whole state of pKVM. One could
introduce a big lock for specification instrumentation, but
that would significantly change the observable concurrent
behaviour of pKVM by reducing the allowed interleaving.
We instead structure the ghost state to follow the imple-

mentation ownership structure, and to allow for partiality.
Each component associated with a lock in the implementa-
tion is encapsulated in the ghost state in (a C representation
of) an option type, which can then be recorded as being
absent when the corresponding lock was never held.
The ownership structure for guest virtual machine meta-

data has an additional subtlety. In addition to the single lock
protecting the metadata of all VMs, mentioned above, before
a vCPU can be run, it must first be ‘loaded’ onto the phys-
ical CPU which is going to run it. This implicitly transfers
ownership of the metadata for that vCPU, from that lock to
the local state of the hardware thread.

Ghost state types. We define the ghost state as a C struc-
ture whose members reflect the above partitioning of the
concrete state, as protected by the various locks and the parts
local to physical CPUs.

1 struct ghost_state {

2 struct ghost_pkvm pkvm;

3 struct ghost_host host;

4 struct ghost_vms vms;

5 struct ghost_globals globals;

6 struct ghost_cpu*
7 locals[NR_CPUS];

8 };

1 struct ghost_pkvm {

2 bool present;

3 abstract_pgtable pgt;

4 };

5 struct ghost_host {

6 bool present;

7 mapping annot, shared;

8 };

The ghost_state pkvm member, if present (as encoded
with its first boolean member), comprises an abstract map-
ping (as described below) that captures the translation func-
tion encoded in the Stage 1 page table for pKVM.
The host member, if present, is not simply an abstrac-

tion of the current host mapping, for two reasons. First, the
pKVM mapping-on-demand on host Stage 2 memory-abort
exceptions adds mappings when needed, but sometimes for
more than just the requested page (e.g. when it can add a
block mapping), and sometimes removing mappings (e.g. if
it splits a block mapping). Specifying exactly the implemen-
tation behaviour would be over-fitting, and the appropriate
specification for those exceptions is interestingly loose: it
allows any legal host Stage 2 mapping on exit. The abstract
state therefore records just enough to determine the up-
per and lower bounds on what must be mapped. Secondly,

pKVM uses the host page tables also to record which pages
are owned by pKVM or a guest VM – these should not be
mapped on demand. The ghost state for the host therefore
comprises two abstract mappings: one captures the pages
which are owned by pKVM or a guest virtual machine, and
the second captures the pages which are either owned by
the host and shared, or owned by another and borrowed by
the host. These evolve deterministically.
The vms member holds a dynamic array recording meta-

data for each guest virtual machine, including their Stage 2
translation mapping and the state of their vCPUs.
The globals member holds constants established during

the initialisation of pKVM: the number of physical CPUs, the
offset of the linear mapping used by pKVM, and constants
specifying the conversion between host and pKVM virtual
addresses. The specification code could read these when re-
quired from the pKVM concrete state, but that would break
the hygiene distinction that we maintain between implemen-
tation and specification; it is cleaner to maintain copies in
the ghost state. Finally, the locals is an array holding the
abstractions of the physical CPU states (e.g. their registers).

Abstracting away from implementation details. There
are many aspects of the concrete state which are not fun-
damental to the external behaviour of the hypervisor, most
obviously its memory management: allocation of internal
structures, and reference counting of pages. These should
not be reflected in the abstract state, to avoid overfitting the
specifications and making them overly sensitive to future
internal changes in the implementation.

Abstract mappings. Page tables are stored in memory
in the format determined by the Arm-A architecture. In the
configuration used by Android, these are trees with at most
4 levels, of 4KB pages each containing 512 page-table en-
tries. Each entry is either a leaf, determining that the virtual-
address range corresponding to its position in the tree is
mapped to a physical-address range (with permissions and
other software-defined attributes) or unmapped (with poten-
tial software-defined attributes), or a pointer to a sub-tree.
Page tables are, of course, a compact and efficient represen-
tation of the data they contain, and one that supports fast
page-table walks by the hardware – but for the specifica-
tion, one wants a different structure that supports different
operations. The above tree structure is irrelevant to the exten-
sional meaning of a page table. What is relevant is the finite
partial mapping from 4KB-page input addresses to tuples
of their output address, permissions, and software-defined
attributes: the extension of the Arm-A page-table walk func-
tion. We therefore define a C type mapping for finite range
maps, with the finite-map operations that one wants to use
in specification (empty and singleton finite maps, addition
and subtraction of finite maps, etc). These are implemented
with a sufficiently performant data structure: ordered linked

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

1 void _interpret_pgtable(mapping *mapp, kvm_pte_t *pgd, ghost_stage_t stage, u8 level,...)

2 { ...

3 for (u64 idx = 0; idx < 512; idx++) { // iterate over the current table entries

4 u64 va_offset_in_region = idx * nr_pages * PAGE_SIZE; // compute va mapped by this entry

5 u64 va_partial_new = va_partial | va_offset_in_region;

6 u64 pte = pgd[idx]; // read page-table entry from the table

7 enum entry_kind ek = entry_kind(pte, level); // compute kind of the page-table entry (pointer-to-table, block, leaf, or invalid)

8 switch(ek) { // case split on that

9 case EK_BLOCK: { // block entry

10 u64 oa = pte & PTE_FIELD_OA_MASK[level]; // compute output address

11 u64 attr = pte & PTE_FIELD_ATTRS_MASK; // compute attributes

12 struct maplet_target_mapped t =

13 parse_mapped(stage, mair, level, oa, nr_pages, attr, next_level_aal); // compute target of maplet

14 // extend mapping with maplet from va_partial_new to oa, of nr_pages, coalescing if possible

15 extend_mapping_coalesce(mapp, stage, va_partial_new, nr_pages, maplet_target_mapped(va_partial_new, nr_pages, t));

16 break;

17 }

18 ...

Figure 2. Part of the abstraction function that interprets a concrete page table at pgd to a finite map mapp

lists of maximally coalesced maplets, each of which captures
a contiguous range of the mapping.

We then combine these mappings with the memory foot-
print of the pagetables themselves into an abstract_pgtable,
which allows checking separation invariants of the concrete
memory backing page tables (see §4.4).

3.2 Recording the abstraction
The abstraction functions. Our abstraction functions

compute each part of the ghost state from the correspond-
ing implementation concrete state. This recording follows
the ownership structure, e.g. with a function for each lock
recording the abstraction of the data protected by the lock.

One interesting part of this abstraction is the computation
of abstract mappings from concrete pagetables. This involves
a complete traversal of the page tables being recorded, in
contrast to the hardware page-table walk and the (software)
pKVM page-table walker, which only walk a specific input
address range. The general format of Arm pagetables is intri-
cate, withmany configurations, but specialised to the specific
configuration used by Android, the recording becomes a sim-
ple traversal, incrementally constructing a mapping using
the above operations. Some of the definition of this, includ-
ing the case for block page-table entries, is shown in Fig. 2
(including some details that we cannot describe here). It is
imperative C code, but relatively close to the pure-functional
definition that it morally represents.

Recording the ghost state. With the above structure,
recording the relevant ghost state at the correct points be-
comes straightforward and remarkably non-invasive, we
merely need to add instrumentation at a few key points in
the code: at entry and exit of the top-level C handler func-
tions, for the host and guest exception handlers, to record the
thread-local parts of the state; and on taking or releasing any
of the locks protecting the pagetables, to record their abstract

mappings; and on taking and releasing the locks which own
parts of the VMs and vCPUs, to record the abstract metadata
about them (e.g. their register states).

For example, pKVM calls the host_lock_component func-
tion to acquire the lock protecting the host’s Stage 2 pageta-
bles.We instrument this to record the host’s abstract pagetable,
perform some sanity checks (e.g. that it is unchanged since
the end of the last trap) and save it to thread-local storage:
1 static void host_lock_component(void) {

2 hyp_spin_lock(&host_mmu.lock);

3 #ifdef CONFIG_NVHE_GHOST_SPEC

4 record_and_check_abstraction_host_pre();

5 #endif /* CONFIG_NVHE_GHOST_SPEC */

6 }

Memory management for the ghost computation. As
the ghost infrastructure executes alongside pKVM at EL2,
the environment is very limited: there is only one page of
stack per hardware thread, no existing heap allocator, and
no standard-library printf or other IO beyond a UART. Our
implementation of mappings uses an simple arena allocator,
and other components of the ghost state that can grow after
initialisation (ghost virtual machines and their ghost vCPUs)
use a simple implementation of malloc.

Impact of the reification of the ghost state. We aim for
the specification to be minimally invasive on the execution
of pKVM. It uses some memory for the ghost state and the
specification computations, and this has to be mapped in
pKVM’s Stage 1 page tables, but we simply fix some memory
for this at pKVM initialisation time, so the specification com-
putation does not induce changes in the abstract state post
initialisation. The ghost infrastructure leaves the existing
locking of pKVM unchanged, but adds some locks for its own
data. Our mapping and heap allocators each have their own
lock, though they could instead have per-hardware-thread
arenas. Our printing infrastructure also requires a lock to get

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

1 int __pkvm_host_share_hyp(u64 pfn)

2 {

3 int ret;

4 u64 host_addr = hyp_pfn_to_phys(pfn);

5 u64 hyp_addr = (u64)__hyp_va(host_addr);

6 struct pkvm_mem_share share = {

7 // ... instantiate generic structure

8 };

9 host_lock_component(); hyp_lock_component();

10 ret = do_share(&share);

11 hyp_unlock_component(); host_unlock_component();

12 return ret;

13 }

Figure 3. Top-level host_share_hyp implementation

coherent output. None of these reduce the implementation
concurrency in principle – though of course the specification
execution does affect the timing (and the specification locks
prevent some potential relaxed behaviour across them).

4 Reified specifications: specifying the
pKVM exception handlers

We now describe how the specification can be expressed in
terms of the above reified ghost state, as reified functions
that compute the intended final ghost states of hypercall and
other exception handlers. We do so in some detail for one of
the simpler pKVM hypercalls, host_share_hyp, comparing
its implementation (§4.1) with its specification (§4.2). We
then describe some of the additional complexity arising from
the more interesting hypercalls (§4.3). Finally we touch on
other invariants in pKVM which we also check (§4.4).

4.1 The pKVM implementation of host_share_hyp
Memory owned by the host is not by default accessible to
pKVM, but pKVM does sometimes need to access it. For
example, many hypercalls pass arguments through memory
(e.g. to initialise a new VM). The host must explicitly ask
pKVM to share the memory containing these with pKVM
making the physical pages accessible in both the hypervisor’s
Stage 1 and the host Stage 2 page tables.

It does so with the pvkm_host_share_hyp hypercall, which
is invoked by placing a magic number into register x0 and
the (physical) address of the page it wishes to share with
pKVM into register x1, and issuing an Arm hvc instruction,
which raises a hardware exception to EL2.

After dispatch by pKVM’s top-level handle_trap excep-
tion handler, and reading the registers of the hypercall and
argument(s), pKVM calls __pkvm_host_share_hyp (Fig. 3).
Given the page address to be shared (technically, its shifted
‘page frame number’), it makes that page available to pKVM,
and marks it as shared in both pKVM and the host’s page
tables, in a way that is both thread-safe and resilient to a
potentially malicious host. The top-level exception handler
then takes the return value and performs the context switch

back to the host, writing the return value back to the host
registers in the process.
In the function body: lines 4–5 convert the physical ad-

dress into the input addresses of the relevant address spaces,
which are used to create a generic share transaction on lines
6–8; lines 9–10 and 12–13 follow a two-phase locking pro-
tocol for the resources the share will need, taking the locks
protecting the pKVM single-stage and host Stage 2 page
tables; and line 11 calls a generic do_share which actually
performs the necessary checks and page-table updates.
The do_share function makes repeated use of a generic

page-table walker to check properties of and mutate the page
tables. The walker code (not shown) is common with KVM
and is typical kernel code: highly optimized with support for
the many potential architectural configurations of Arm page
tables. To make the walker reusable for multiple purposes, it
is higher-order, taking pointers to callback functions to call
during the walk to perform the actual checks and updates
(and pointers to callbacks for memory management). The
walk itself does a traversal of the page-table tree for the given
input address range, following the Arm architecture hard-
ware translation-table-walk algorithm, calling the callback
functions at the table entries and/or leaf nodes as required.

A version of pKVM’s do_share, simplified and inlined for
presentation to show its three calls to the generic page ta-
ble walker kvm_pgtable_walk, is in Fig. 4. At a high level,
do_share can be split into two phases: a check that the re-
quested share operation is valid, which involves (at least)
one page table walk; then the actual updates to the host
and pKVM page tables (each requiring their own separate
walk, to install the new mappings). Each walk incrementally
performs additional checks, or updates to the state, or both.

It starts bywalking the host page table for the host interme-
diate physical address, calling __check_page_state_visitor
at each leaf entry, which fails if the page is not able to be
shared. If that succeeds, it does another walk over the host’s
page table, but this time with the stage2_map_walker call-
back, which adds an identity mapping andmarks the location
as shared. This walk may, in principle, also fail, e.g. due to
running out of memory or reaching an inconsistent state if
the pKVM invariant was ever broken. If it succeeds, do_share
does the final walk to update the pKVM page table, to add a
new mapping marked as borrowed in the pKVM page table.

4.2 The specification of host_share_hyp
As seen in the previous subsection, the implementation of
even a relatively straightforward hypercall is full of intricate
detail: the complex architectural definition of a page table;
the performant and generic walker inside KVM to traverse
it; the repetitive checks and updates, with further nested
checks some of which are relevant and some are not; all tied
together with a careful two-phase-locking scheme.

However, the effect of the hypercall on the abstract ghost
state of pKVM is relatively simple: it atomically either fails

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

1 static int do_share(...)

2 {

3 int ret;

4 /* in check_share() */

5 struct kvm_pgtable_walker walker = {

6 .cb = __check_page_state_visitor,

7 .flags = KVM_PGTABLE_WALK_LEAF,

8 };

9 ret = kvm_pgtable_walk(&host_mmu.pgt, addr, size, &walker);

10 if (ret)

11 return ret;

12 /* in host_initiate_share() */

13 struct kvm_pgtable_walker walker = {

14 .cb = stage2_map_walker,

15 .flags = KVM_PGTABLE_WALK_TABLE_PRE

16 | KVM_PGTABLE_WALK_LEAF,

17 .arg = PKVM_PAGE_SHARED_OWNED,

18 };

19 ret = kvm_pgtable_walk(&host_mmu.pgt, addr, size, &walker);

20 /* in hyp_complete_share() */

21 struct kvm_pgtable_walker walker = {

22 .cb = hyp_map_walker,

23 .flags = KVM_PGTABLE_WALK_LEAF,

24 .arg = PKVM_PAGE_SHARED_BORROWED,

25 };

26 ret = kvm_pgtable_walk(&pkvm_pgtable, addr, size, &walker);

27 return ret;

28 }

Figure 4. do_share implementation, with helpers inlined.

with a permission error if this was an illegal request,or up-
dates the state to have new mappings for the requested page
in the host and pKVM’s mappings. This can be described
mathematically fairly concisely as an update to the part of
the state the hypercall takes ownership of.
If the location is not exclusively owned by the host then

it returns an error code (by setting a thread-local regis-
ter), otherwise the state is updated with new entries in the
host_shared and pkvm mappings in the abstract state, with
a zero return code indicating success. Transitions between
whole states can be then described by applying the update
atomically, at the linearisation point of the hypercall.
We reify this simple mathematical specification (includ-

ing the elided details) into C, by defining, for each possible
exception, the update as a computable function from ini-
tial to final abstract states. Each such function takes three
arguments: g_pre, a reference to a ghost_state structure
holding the pre-state of the hypercall; g_post, a reference to
a blank ghost_state structure, into which the specification
will write the expected post-state; and call, a reference to a
ghost structure holding additional data from the call, used
to resolve any non-determinism in the spec (c.f. §4.3). The
specification functions return a boolean stating whether the
post state has a valid specification, enabling the writing of
gradual specifications. The specification function only reads
from the ghost pre-state and the ghost call data, never from
the implementation state.

4.2.1 Specification functions. We specify pKVM’s top-
level C exception handler functions. These are the entry
points for all traps and interrupts into the hypervisor. The
top-level specification function for a trap then further dis-
patches on which hypercall or other exception has been
invoked, and calls that specific hypercall’s own specification
function. We show this for host_share_hyp in Fig. 5.

4.2.2 Recording and runtime checks. We can now put
the pieces together and see what it means to do a runtime
check of the spec of a hypercall. Combining this with the
computation and recording of the ghost pre- and post-states
described in the previous section, Fig. 6 shows how the
executable-as-test-oracle specification works for this case.

At (1) the hypercall begins on this hardware thread when
the exception handler is triggered at EL2, and the spec ma-
chinery begins recording into the pre-state starting with
the thread-local data. The execution continues through the
first phase of the two-phase locking section acquiring at (2)
the host and at (3) the pKVM page table locks, triggering
the recording of the abstract mappings of those components
into the pre-state. At (4) and (5) come the second phase of
the 2PL discipline where pKVM releases the locks protect-
ing those page tables, but with the spec machinery taking
snapshots just before, this time recording them into the post-
state. Finally, at (6) the hypercall ends and the final thread-
local state can be recorded into the post-state, as well as
any ghost call data collected during execution (for resolving
non-determinism, c.f. §4.3).

We can then use the pre-state from (1), (2) and (3) plus any
call data from (6) to (7) compute an expected post-state, using
the C function in Fig. 5. Then (8) we can compare the post-
state we just computed with the one we recorded. This com-
parison is really a ternary check between the pre, recorded-
post, and computed-post states: where the computed-post
is not partial it must be equal to the recorded-post, and ev-
erywhere else must be the same in the pre-state and the
recorded-post.

Printing and diffing ghost states. With runtime com-
putation and recording of reified ghost datatypes, we can
implement diffing of two abstract states, invaluable in error
reporting and debugging of both code and spec. For example:
recorded post ghost state diff from recorded pre:
host.share +ipa :...101b18000 phys:101b18000 SO RWX M
pkvm.pgt +virt:8000c1b18000 phys:101b18000 SB RW- M
regs -r0=......c600000d r1=........101b18
regs +r0=.............0 r1=.............0

This shows the change to the abstract state computed from
the concrete-state change performed by a host_share_hyp

call in our test suite: one new page for the host mapping, iden-
tity mapped, marked as Shared-and-Owned, Read-Write-
eXecute, and normalMemory; one new page for pKVM, with
the same physical location but mapped at a different virtual
address, marked as Shared-and-Borrowed, with read-write

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

1 static bool compute_post__pkvm_host_share_hyp(

2 struct ghost_state *g_post, struct ghost_state *g_pre,

3 struct ghost_call_data *call)

4 {

5 // (1) Address space conversions

6 u64 pfn = ghost_read_gpr(g_pre, 1);

7 phys_addr_t phys = hyp_pfn_to_phys(pfn);

8 host_ipa_t host_addr = host_ipa_of_phys(phys);

9 hyp_va_t hyp_addr = hyp_va_of_phys(g_pre, phys);

10 int ret = 0;

11

12 // (2) Permissions checks

13 if (!is_owned_exclusively_by(g_pre, GHOST_HOST, phys)) {

14 ret = -EPERM;

15 goto out;

16 }

17

18 // (3) Initialisation of the (partial) post-state

19 copy_abstraction_host(g_post, g_pre);

20 copy_abstraction_pkvm(g_post, g_pre);

21

22 // (4) Construction of abstract mapping attributes

23 bool is_memory = ghost_addr_is_allowed_memory(g_pre, phys);

24 struct maplet_attributes host_attrs =

25 ghost_host_memory_attributes(is_memory, SHARED_OWNED);

26 struct maplet_attributes hyp_attrs =

27 ghost_hyp_memory_attributes(is_memory, SHARED_BORROWED);

28

29 // (5) Update abstract mappings with new targets

30 mapping_update(

31 &g_post->host.shared,

32 g_pre->host.shared,

33 MAP_INSERT_PAGE, GHOST_STAGE2, host_addr, 1,

34 maplet_target_mapped_attrs(phys, 1, host_attrs)

35);

36 mapping_update(

37 &g_post->pkvm.pgt.mapping,

38 g_pre->pkvm.pgt.mapping,

39 MAP_INSERT_PAGE, GHOST_STAGE1, hyp_addr, 1,

40 maplet_target_mapped_attrs(phys, 1, hyp_attrs)

41);

42

43 // (6) Epilogue: update the host register state

44 out:

45 ghost_write_gpr(g_post, 1, ret);

46 copy_registers_to_host(g_post);

47 return true;

48 }

(1) Address space conversions. Mirroring the implemen-
tation, the spec retrieves the hypercall argument from the
initial ghost state, in its copy of the saved on-entry host
(register) context for the current hardware thread, and looks
up the value of the x1 register. The argument here is the
page frame number of the page the host is requesting to
share with pKVM. The specification computes from this
the corresponding physical address phys, host intermediate-
physical address host_addr, and pKVM-internal virtual ad-
dress hyp_addr. These are pure computations using the ghost
state, and have no side-effects.

(2) Permissions checks. The spec is given in two parts:
the pre-condition, which checks the recorded pre-state for
error cases; and the update, computing the new expected
post-state. For host_share_hyp, it fails (with -ENOMEM) if the
physical page that the host is trying to share does not belong
exclusively to the host. That is, if it is not in the host anno-
tations or is already in the host’s shared mappings. Usually
these two checks come as a pair, and so we define an auxil-
iary function which checks both. If the check fails, the whole
spec function exits out early, before recording any update
(other than the error code) to the post-state.
This one relatively simple check on the pre-state captures
all the complex logic of the check_share walk seen earlier.
(3) Initialisation of the (partial) post-state. The update
for host_share_hyp should touch only the relevant parts of
the pre-state: the host and pKVM’s page tables. We start by
cloning those (and only those) parts of the pre-state into the
memory reserved for the post-state, which we will modify
to reflect the hypercall’s action later. Importantly, the spec
function does not mention the rest of the ghost state: the
state is partial and those parts may not exist on the pre-state.
(4) Construction of abstract mapping attributes. When
defining the abstract mapping wemust construct the maplets
with not only the correct target address, but also the at-
tributes: permissions, memory type, and what pKVM calls
the ‘page state’ which encodes the logical owner of the phys-
ical resource pointed to.
For pKVM the computation of these attributes is relatively
simple, there are two possible values for the permissions and
memory type depending on whether the address is in the
region defined to be DRAM or not (line 23), and then the
page state is marked as either owned-but-shared for the host
(line 25) or borrowed for pKVM (line 27).
(5) Update abstract mappings with new targets. Now the
specification updates the abstract mappings for the host and
pKVM, using the attributes we just computed.
For the host, we must update the mapping in the post-state
for the host, for the host input address host_addr (lines 30−
35) using the above host memory attributes. Similarly, the
pKVM abstract mapping in the post-state is updated with a
new mapping from hyp_addr to phys (lines 36 − 41).
(6) Epilogue: update the host register state and return to
the host. Finally, on success or error, the current hardware
thread’s registers need to be updated to reflect the return
code. The return code is stored in the post-state’s x1 register
for the current hardware thread. The call then returns true,
informing the parent specification function for the entire
exception handler (not shown) that a valid specification has
been written to the post-state.

Figure 5. Executable C specification for host_share_hyp.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

pKVM (EL2)

Android(EL1)

Enter pKVM
(handle trap)

1
record-pre
call ctxt

host lock

2
record-pre
host state

hyp lock

3
record-pre
hyp state

hyp unlock

4
record-post
hyp state

host unlock

5
record-post
host state

Exit pKVM
(handle trap)

6
record-post
call return

7
compute expected
post state

8 check equality

Figure 6. Instrumentation and checking timeline for host_share_hyp

but without execute permissions, and also normal memory;
and the zeroing of the registers used for passing arguments.

4.3 Recovering determinism
So far we have discussed the specifications as a deterministic
computation of the pre-state, to obtain a single post-state.
In practice, (a) the specification is parameterised over the
interaction with the environment, and (b) the specification
is loose in some ways. Both affect our ability to express the
specification as a deterministic function of the pre-state.

For example, the specification should not precisely model
how pKVM manages its memory, and exactly when hyper-
calls might fail with an out-of-memory error. Instead, we
adopt a loose specification that permits many hypercalls to
arbitrarily fail with −ENOMEM. We express this by making the
specification functions parametric not just on the abstract
pre-state, but also on the return code, which in runtime
checking we take from the implementation behaviour.

Nondeterminism also arises from pKVM’s interactions via
memory shared with the host, e.g. where pKVM reads hy-
percall struct arguments. The host still owns those locations
and can write to them freely, so pKVM’s accesses to them,
done with kernel READ_ONCE operations, do not have fixed
values. We therefore parameterise the specification on the
values read by these, and in runtime checking we record
them from the implementation.
The information recorded during implementation execu-

tion is stored in the local call data (§4.2) and is thus available
to the specification functions as the call argument (Fig. 5).

4.4 Separation and Interference
We additionally check two invariants: (1) non-interference
on the abstract state outside of locks, (2) separation of the
memory footprint of parts of pKVM’s concrete state.
To check that the abstract state is not changed between

hypercalls we maintain a single shared copy of the entire
ghost state which we use to check on acquiring a lock that
the state it protects has not changed since the last time the
abstract state was recorded.

We additionally track the maximal footprint of each page
table and fail if pages are allocated into the page tables out-
side of that footprint. This is essentially enforcing, at runtime,

a separation logic style separation of the page table part of
the heap and the rest of pKVM.

5 Exercising the executable specification
Testing and coverage analysis of hypervisor code is a chal-
lenge in itself, as the usual tools are not available in the
privileged EL2 state it executes in. Conventional pKVM de-
velopment relies largely on integration tests (e.g. booting the
Android kernel and running Android tests), and some tests
at the kernel syscall level, neither of which aim directly at
exercising the hypervisor code.

Test infrastructure. pKVM exposes its hypercall (and
other exception) API to the Linux kernel, which provides a
more generic virtual-machine API for user space (the KVM).
However, the security model of pKVM assumes that the ker-
nel is untrusted after initialisation, with the hypercall API
as the security boundary. We therefore have to exercise arbi-
trary such calls, but one wants to program tests in userspace,
not in the kernel. We develop a “hyp-proxy” kernel patch
to expose pKVM API calls, and the required kernel mem-
ory management, to user-space. We express tests above an
OCaml library that provides functions both for well-behaved
and arbitrary invocations of the pKVM API.

Coverage. Coverage, both of the implementation and of
the specification, is a useful initial guide when testing – but
the Linux built-in GCOV tooling for coverage is not applica-
ble to pKVM at EL2. We use the existing compiler support,
but had to implement the instrumentation hooks, re-engineer
the linker-dependent initialisation, and move the data from
the EL2 to EL1 to EL0 address spaces, to make it available in
userspace. This gives us branch, line, and function coverage
both of pKVM and of the specification code.

Handwritten Testing. We first wrote a small suite of
handwritten tests, currently 41, of which 19 target error-
free paths, 22 target various errors, and a handful are highly
concurrent and target locking. Coverage was important es-
pecially to hit the error cases. However, absolute coverage
numbers do not account for unreachable code paths, which
arises here e.g. in the use of generalised page-table utilities.
To accurately assess coverage for a sample exception handler,
the __pkvm_host_share_hyp of §4, we manually identified

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

unreachable code in its call graph. Our manual tests give
100% line coverage of the remainder; we believe the other
hypercalls are similar. We also assess the coverage of the
specification functions. The specification for the same han-
dler (Fig. 5) is fully covered; overall coverage of specification
functions is 92% (459 of 497 lines), with only a few error
cases missing – some of which we believe are unreachable.

Random testing. Beyond handwritten tests, because it is
hard to anticipate how a corrupted host or VM could abuse
the API, one wants to do random testing with arbitrary val-
ues. However, there is a tension between randomness and
effective testing: (a) random API calls can crash the host by
changing memory ownership (and too many crashes would
lead to negligible test throughput); and (b) random calls
would be unlikely to make significant progress through the
pKVM state machine. We resolve this by guiding random
API call generation with a careful abstraction of the speci-
fication’s (already abstract) ghost state: a pool of allocated
host memory, the subset of that which has been donated to
pKVM, the VMs with their handles and their correspond-
ing shared memory, the vCPUs also with their handles and
corresponding shared memory, and the vCPU memcache
pages. This is used to guide the random sampling, e.g. to
choose known-valid memory addresses in some cases, and
to reject steps which it predicts will crash the host kernel or
the testing process (while finding pKVM crashes is of course
desirable). We ran the random tests in QEMU, on a Mac Mini
M2, which completes about 200,000 hypercalls per hour, with
our longest runs taking 24 hours. We found 9 errors in the
specification this way, all related to subtle error scenarios.

Synthetic bug testing. To further confirm the discrimi-
nating power of our testing, we introduced a small number
of synthetic bugs into pKVM and checked that it finds them.

6 Discussion
Bugs found. To date this work has found five bugs in

pKVM, all acknowledged by the development team and all
but the last fixed in pKVM and/or upstream Linux: (1) A
missing alignment check in the internal allocator (memcache)
topup path, permitting a malicious host to zero memory. (2)
A missing size check in the memcache topup, potentially
hitting a signed integer overflow. (3) Missing synchronisa-
tion in the vCPU load/vCPU init permitted a relaxed race,
potentially accessing uninitialised memory. (4) On a host
pagefault, pKVM was not robust to the host modifying its
virtual mappings concurrently, potentially leading to a hy-
pervisor panic. (5) During initialisation of the pKVM virtual
linear map, for devices with very large amounts of physical
memory, the code could overlap the IO mappings and linear
map leading to unchecked accesses to IO devices.

Interestingly, most of these have been found while reading
the code, to understand it well enough to write the specifica-
tion. Exercising the specification then tests the correspon-
dence between our understanding and the implementation,
which found many errors in the specification itself, also
leading to clarifications with the developers. Thus, the speci-
fication process itself is a tool for thinking, just as much as
the specification itself is a tool for testing – and the ability
to cross-check by testing is essential for both.

Post hoc specification. A specification could be written
before, with, or after the implementation, with differing costs
and benefits. In this case it is the latter – it is a post hoc spec-
ification, following [5], built in communication with, but not
by, the pKVM development team. That brings an extra cost
for deeply understanding the code, but has the advantage
that the specifiers come without preconceptions, and can fo-
cus on potential pathological corners. It also means the code
we examine is already well-tested in their conventional ways,
and reasonably mature. Finer-grain integration, now that
feasibility has been demonstrated, would presumably find
more low-hanging bugs in code during early development.

Specification size. pKVM itself, including the parts shared
with KVM and local header files, but excluding generic Linux
header files, is approximately 11 000 raw LoC. Our specifi-
cation is 2600 for the hypercalls and traps and 1300 for the
abstraction recording functions, along with 4500 for the var-
ious abstract data types, and additional boilerplate code for
configuration, diffing, and printing; it totals around 14 000.
A hypervisor specification is necessarily somewhat in-

volved, but the specification abstracts from many implemen-
tation details, and it is expressed in a quite different style
to the implementation, emphasising clarity and with a flat-
ter structure. Writing it thus gives useful redundancy, with
limited chance of common-mode errors – and forces close
inspection of the code.

Effort and maintenance. For this to truly be a light-
weight approach to improving assurance, it is important that
the effort required is manageable. Our initial experiments
were low-intensity, exploring and establishing our solutions
to the challenges described in the introduction, at less than a
person-month per year from late 2020 to mid 2023. The main
specification development was then done by two people for
around four months, alongside other activities, with testing
infrastructure by two others, and maintenance and further
testing to the time of writing in early 2025. All this totals
around one person-year, a small fraction of the roughly 30
person-year pKVM development effort to date.
Maintainability is also crucial. Because our specification

has to check intensional properties of the pKVM state (as
those are observed by hardware page table walks), and be-
cause it is structured following the implementation owner-
ship structure, substantial changes to the implementation

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

require corresponding changes to the instrumentation and
specification. We have successfully ported our machinery
across multiple Android version changes, with a port to An-
droid15 in progress. TheAPI and specifications do not change
much release-to-release, but some changes to ownership do
create friction.

Performance. Our specification is intended for use in
testing, not in production, so its overheads must be low
enough for that to be viable in the pKVM developers’ normal
(QEMU) environment. Beyond that, the exact performance
is not critical, except that the Linux kernel is designed to
ensure progress, and has timers that both monitor and as-
sume this. If the specification were too slow, tests might
not make progress. Perhaps surprisingly, given the poten-
tially expensive instrumentation, the overheads are perfectly
viable. The memory impact is minimal, around 18MB, domi-
nated by page-table representations and growing somewhat
with time and activity. The runtime overhead for boot is 3.2x
(1.49s to 4.76s), and for our hand-written tests is 11.5x (1.07s
to 12.3s). All these are using 4 cores, on an Intel Xeon Gold
6240 with 72 cores and 384GB.

Our specification should in principle also run on hardware,
but custom builds on devices that run development versions
of Android have required proprietary drivers, not available
to us. This should become feasible in future.

7 Related work
Research since the 1960s has explored many approaches to
improving software quality with varying combinations of
specification, testing, and verification – with many advances,
and interestingly different trade-offs in different contexts.

Full functional correctness verification with inter-
active proof assistants. As we noted in the Introduction,
interactive mechanised proof is very flexible, provides high
level of assurance, and has had notable recent successes –
but it also carries substantial barriers to broad adoption.

More automated verification. Chong et al. [13] ver-
ify functional correctness by CBMC model-checking (fully
unwinding loops). Their specifications are pre and post-
conditions, in C extended with CBMC builtins (assume, as-
sert, is_writable, etc.). They do not do runtime testing of
specifications. This is applied to several substantial exam-
ples of existing code, and integrated into their development.
Whether such model-checking would be feasible for code
like pKVM, and for pKVM together with the spec, are inter-
esting questions. There is extensive recent work on semi-
automated verification tools, such as Boogie [4], CN [43],
F∗ [48], Frama-C [15], Prusti [2], RefinedC [44], VeriFast [23],
and Verus [30, 31, 51], some successfully applied to (or gen-
erating) low-level systems code. These aim for lower verifi-
cation costs and specialised skills than interactive proof, but
still present substantial barriers to entry from a conventional

developer perspective. Most do not attempt to combine proof
and runtime testing. Turning to full automation, Nelson et al.
[40] (Hyperkernel) and Cebeci et al. [12] (TPot) propose au-
tomation for code written for verification following very
specific disciplines, which would be impractical for a pro-
duction hypervisor like pKVM. Nelson et al. [39] (Serval)
applies to larger examples but again substantially designed
and simplified for verification: finitised, and avoiding general
page-table manipulation.

Testing against rich specifications. The idea of writing
specifications that one can use for both testing and proof
dates back at least to the 1970s with Euclid [29], and run-
time checking of assertions and of pre- and post-conditions
has been emphasised in Design-by-Contract by Meyer [38]
since the 1980s, and by many others. Much of this work uses
custom specification languages for pre- and post-conditions,
e.g. recently the Frama-C E-ACSL [16, 46, 47], and CN Fulmi-
nate [3], respectively in an extension of first-order logic and
in separation logic, that can be translated into in-line C for
runtime testing. Bishop et al. [6, 7] emphasised the post-hoc
construction of test-oracle specifications by testing against
implementations, expressing the specifications in a theorem-
prover language. Disselkoen et al. [17] develop new code
(Cedar, in Rust) in tandem with a formal specification (in
Lean), with proofs about the latter and differential random
testing between the two, and some property-based testing.

All the above require custom tooling of some kind. Property-
based testing [14] generates tests and checks against specifi-
cations written in the ambient language – typically, though
not necessarily, partial specifications of particular properties,
rather than full functional correctness.

Closest to our work, Bornholt et al. [9] define a sequential
executable functional-correctness specification for a key-
value storage node in the language (Rust) of the production
code, and differentially test the production code against that
– along with stateless model-checking of linearisability. They
aim for essentially the same position in the trade-off space,
foregoing the high assurance of full verification, and the
convenience and expressiveness of custom specification lan-
guages, for the sake of very low barrier to entry (no custom
tooling for the first part), and incremental benefits scaling
with effort. The differences between our work and theirs
arise mainly from the different context, of a concurrent hy-
pervisor in C, rather than a user-space fault-tolerant storage
node in Rust, and the challenges we describe in the Intro-
duction that led us to specifications using abstract states and
abstraction functions that mirror implementation ownership.

For both, it is striking that the basic approach could have
been followed, and become pervasive, at any point since the
1970s, but it remains vanishingly rare – so further convincing
demonstrations can be valuable.

Testing against implicit specifications. Even lighter-
weight, as they do not require writing specifications, but for

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

correspondingly weaker properties, are sanitisers, fuzzing,
model-checking, and static analysis against implicit specifi-
cations, of no crashes or no undefined behaviour.

8 Conclusion
Very lightweight full-functional-correctness specification
and testing is eminently feasible and useful, even for a con-
current production hypervisor in C. It requires no special
skills or tooling beyond those that developers already have,
beyond the ability to clearly distinguish specification and
implementation as activities and code styles. It does need
careful structuring and attention to the implementation own-
ership discipline (which brings some specification mainte-
nance burden).

Acknowledgments
We thank the pKVM development team, especially Will Dea-
con and Keir Fraser, for extensive discussions, and Ben Laurie
and Sarah de Haas for their support. We thank Jean Pichon-
Pharabod for the stimulus to write the paper, and for the
first part of the title.
This work was funded in part by Google. This work was

funded in part by UK Research and Innovation (UKRI) under
the UK government’s Horizon Europe funding guarantee
for ERC-AdG-2022, EP/Y035976/1 SAFER. This project has
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 789108, ERC-AdG-
2017 ELVER). This work is supported by ERC-2024-POC
grant ELVER-CHECK, 101189371. Funded by the European
Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council Execu-
tive Agency. Neither the European Union nor the granting
authority can be held responsible for them. This work was
supported in part by the Innovate UK project Digital Security
by Design (DSbD) Technology Platform Prototype, 105694.
The authors would like to thank the Isaac Newton Institute
for Mathematical Sciences, Cambridge, for support and hos-
pitality during the programme Big Specification, where work
on this paper was undertaken. This work was supported by
EPSRC grant EP/Z000580/1.

References
[1] Anonymous. 2025. Abstract architecture to catch concrete bugs: check-

ing Android hypervisor TLB synchronisation. Under submission.
[2] Vytautas Astrauskas, Aurel Bílý, Jonás Fiala, Zachary Grannan,

Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. 2022. The Prusti Project: Formal Verification for Rust. In NFM
(Lecture Notes in Computer Science, Vol. 13260). Springer, 88–108.

[3] Rini Banerjee, Kayvan Memarian, Dhruv C. Makwana, Christopher
Pulte, Neel Krishnaswami, and Peter Sewell. 2025. Fulminate: Testing
CN Separation-Logic Specifications in C. Proc. ACM Program. Lang. 9,
POPL (2025), 1260–1292. https://doi.org/10.1145/3704879

[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier
for Object-Oriented Programs. In FMCO (Lecture Notes in Computer
Science, Vol. 4111). Springer, 364–387.

[5] Steve Bishop, Matthew Fairbairn, Hannes Mehnert, Michael Norrish,
Tom Ridge, Peter Sewell, Michael Smith, and Keith Wansbrough. 2019.
Engineering with Logic: Rigorous Test-Oracle Specification and Vali-
dation for TCP/IP and the Sockets API. J. ACM 66, 1 (2019), 1:1–1:77.
https://doi.org/10.1145/3243650

[6] Steve Bishop, Matthew Fairbairn, Hannes Mehnert, Michael Norrish,
Tom Ridge, Peter Sewell, Michael Smith, and Keith Wansbrough. 2019.
Engineering with Logic: Rigorous Test-Oracle Specification and Vali-
dation for TCP/IP and the Sockets API. J. ACM 66, 1 (2019), 1:1–1:77.
https://doi.org/10.1145/3243650

[7] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. 2005. Rigorous specification
and conformance testing techniques for network protocols, as applied
to TCP, UDP, and sockets. In Proceedings of the ACM SIGCOMM 2005
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Philadelphia, Pennsylvania, USA, Au-
gust 22-26, 2005, Roch Guérin, Ramesh Govindan, and Greg Minshall
(Eds.). ACM, 265–276. https://doi.org/10.1145/1080091.1080123

[8] Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for
the Clight Subset of the C Language. J. Autom. Reason. 43, 3 (2009),
263–288. https://doi.org/10.1007/S10817-009-9148-3

[9] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,
Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node in
Amazon S3. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021, Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM, 836–
850. https://doi.org/10.1145/3477132.3483540

[10] David Brazdil and Serban Constantinescu. 2022. Android Virtualiza-
tion Framework — Protected computing for the next generation use
cases. presented at the Linux Plumbers Conference Android Micro-
conference.

[11] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify
Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422.
https://doi.org/10.1007/s10817-018-9457-5

[12] Can Cebeci, Yong-Hao Zou, Diyu Zhou, George Candea, and Clément
Pit-Claudel. 2024. Practical Verification of System-Software Com-
ponents Written in Standard C. In Proceedings of the ACM SIGOPS
30th Symposium on Operating Systems Principles, SOSP 2024, Austin,
TX, USA, November 4-6, 2024, Emmett Witchel, Christopher J. Ross-
bach, Andrea C. Arpaci-Dusseau, and Kimberly Keeton (Eds.). ACM,
455–472. https://doi.org/10.1145/3694715.3695980

[13] Nathan Chong, Byron Cook, Jonathan Eidelman, Konstantinos Kallas,
Kareem Khazem, Felipe R. Monteiro, Daniel Schwartz-Narbonne, Ser-
dar Tasiran, Michael Tautschnig, and Mark R. Tuttle. 2021. Code-
level model checking in the software development workflow at Ama-
zon Web Services. Softw. Pract. Exp. 51, 4 (2021), 772–797. https:
//doi.org/10.1002/SPE.2949

[14] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000, Martin Odersky
and Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/
351240.351266

[15] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-C – A Software
Analysis Perspective. In Software Engineering and Formal Methods -
10th International Conference, SEFM 2012, Thessaloniki, Greece, October

13

https://doi.org/10.1145/3704879
https://doi.org/10.1145/3243650
https://doi.org/10.1145/3243650
https://doi.org/10.1145/1080091.1080123
https://doi.org/10.1007/S10817-009-9148-3
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3694715.3695980
https://doi.org/10.1002/SPE.2949
https://doi.org/10.1002/SPE.2949
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Kayvan Memarian, Ben Simner, David Kaloper Meršinjak, Thibaut Pérami, and Peter Sewell

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1-5, 2012. Proceedings. 233–247. https://doi.org/10.1007/978-3-642-
33826-7_16

[16] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. 2013. Com-
mon specification language for static and dynamic analysis of C
programs. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013,
Sung Y. Shin and José Carlos Maldonado (Eds.). ACM, 1230–1235.
https://doi.org/10.1145/2480362.2480593

[17] Craig Disselkoen, Aaron Eline, Shaobo He, Kyle Headley, Michael
Hicks, Kesha Hietala, John H. Kastner, Anwar Mamat, Matt Mc-
Cutchen, Neha Rungta, Bhakti Shah, Emina Torlak, and Andrew
Wells. 2024. How We Built Cedar: A Verification-Guided Approach.
In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, FSE 2024, Porto de Galin-
has, Brazil, July 15-19, 2024, Marcelo d’Amorim (Ed.). ACM, 351–357.
https://doi.org/10.1145/3663529.3663854

[18] Google LLC. 2024. Android Virtualization Framework (AVF) overview.
https://source.android.com/docs/core/virtualization Accessed 2024-
11-11.

[19] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Mumbai, India) (POPL ’15).
ACM, New York, NY, USA, 595–608. https://doi.org/10.1145/2676726.
2676975

[20] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS
Kernels. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. 653–669. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gu

[21] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael Lowell Roberts, Srinath T. V. Setty, and Brian Zill. 2015.
IronFleet: proving practical distributed systems correct. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, Ethan L. Miller and Steven Hand
(Eds.). ACM, 1–17. https://doi.org/10.1145/2815400.2815428

[22] D. Jackson and J. Wing. 1996. Lightweight Formal Methods. IEEE
Computer (April 1996), 21–22.

[23] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A Powerful, Sound,
Predictable, Fast Verifier for C and Java. In NASA Formal Methods,
Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41–55.

[24] Cliff Jones. 1996. Formal Methods Light. ACM Comput. Surv. 28 (12
1996), 121. https://doi.org/10.1145/242224.242380

[25] Cliff B. Jones. 2017. Turing’s 1949 Paper in Context. In Unveiling
Dynamics and Complexity - 13th Conference on Computability in Europe,
CiE 2017, Turku, Finland, June 12-16, 2017, Proceedings (Lecture Notes in
Computer Science, Vol. 10307), Jarkko Kari, Florin Manea, and Ion Petre
(Eds.). Springer, 32–41. https://doi.org/10.1007/978-3-319-58741-7_4

[26] Dave Kleidermacher. 2024. Why AVF? article in Dave Kleidermacher’s
blog. https://davek.substack.com/p/why-avf

[27] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David A. Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2010. seL4: formal verification of an operating-
system kernel. Commun. ACM 53, 6 (2010), 107–115. https://doi.org/
10.1145/1743546.1743574

[28] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-
hensive Formal Verification of an OS Microkernel. ACM Trans-
actions on Computer Systems 32, 1 (Feb. 2014), 2:1–2:70. https:
//doi.org/10.1145/2560537

[29] Butler W. Lampson, James J. Horning, Ralph L. London, James G.
Mitchell, and Gerald J. Popek. 1977. Report on the programming
language Euclid. ACM SIGPLAN Notices 12, 2 (1977), 1–79. https:
//doi.org/10.1145/954666.971189

[30] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chan-
hee Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej
Chajed, Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Oded Padon,
and Bryan Parno. 2024. Verus: A Practical Foundation for Sys-
tems Verification. In Proceedings of the ACM SIGOPS 30th Sympo-
sium on Operating Systems Principles, SOSP 2024, Austin, TX, USA,
November 4-6, 2024, Emmett Witchel, Christopher J. Rossbach, An-
drea C. Arpaci-Dusseau, and Kimberly Keeton (Eds.). ACM, 438–454.
https://doi.org/10.1145/3694715.3695952

[31] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc.
ACM Program. Lang. 7, OOPSLA1 (2023), 286–315. https://doi.org/10.
1145/3586037

[32] Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft
Hyper-V Hypervisor with VCC. In FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Pro-
ceedings. 806–809. https://doi.org/10.1007/978-3-642-05089-3_51

[33] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom.
Reasoning 43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-009-
9155-4

[34] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. 2021. Formally VerifiedMemory Protection for a CommodityMul-
tiprocessor Hypervisor. In 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, Michael Bailey and Rachel Green-
stadt (Eds.). USENIX Association, 3953–3970. https://www.usenix.
org/conference/usenixsecurity21/presentation/li-shih-wei

[35] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. 2021. A Secure and Formally Verified Linux KVM Hypervisor.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, Los Alamitos, CA, USA, 839–856. https://doi.org/10.1109/
SP40001.2021.00049

[36] David C. Luckham and Friedrich W. von Henke. 1985. An Overview
of Anna, a Specification Language for Ada. IEEE Softw. 2, 2 (1985),
9–22. https://doi.org/10.1109/MS.1985.230345

[37] Gregory Malecha, Gordon Stewart, Frantisek Farka, Jasper Haag, and
Yoichi Hirai. 2022. Developing With Formal Methods at BedRock
Systems, Inc. IEEE Secur. Priv. 20, 3 (2022), 33–42. https://doi.org/10.
1109/MSEC.2022.3158196

[38] Bertrand Meyer. 1992. Applying "Design by Contract". Computer 25,
10 (1992), 40–51. https://doi.org/10.1109/2.161279

[39] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling symbolic evaluation for automated
verification of systems codewith Serval. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.).
ACM, 225–242. https://doi.org/10.1145/3341301.3359641

[40] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017. ACM, 252–269. https://doi.org/10.1145/3132747.3132748

[41] Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ra-
mananandro, and Nikhil Swamy. 2023. ASN1*: Provably Correct,
Non-malleable Parsing for ASN.1 DER. In Proceedings of the 12th ACM

14

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/2480362.2480593
https://doi.org/10.1145/3663529.3663854
https://source.android.com/docs/core/virtualization
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/2676726.2676975
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/242224.242380
https://doi.org/10.1007/978-3-319-58741-7_4
https://davek.substack.com/p/why-avf
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1145/954666.971189
https://doi.org/10.1145/954666.971189
https://doi.org/10.1145/3694715.3695952
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1109/MS.1985.230345
https://doi.org/10.1109/MSEC.2022.3158196
https://doi.org/10.1109/MSEC.2022.3158196
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3132747.3132748

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Ghost in the Android Shell: Pragmatic Test-oracle Specification of a Production Hypervisor

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2023, Boston, MA, USA, January 16-17, 2023, Robbert Krebbers,
Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (Eds.). ACM,
275–289. https://doi.org/10.1145/3573105.3575684

[42] Sandeep Patil and Irene Ang. 2023. Virtual Machine as a
core Android Primitive. article in the Android Developers
blog. https://android-developers.googleblog.com/2023/12/virtual-
machines-as-core-android-primitive.html

[43] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan
Memarian, Peter Sewell, and Neel Krishnaswami. 2023. CN: Verifying
Systems C Code with Separation-Logic Refinement Types. Proc. ACM
Program. Lang. 7, POPL (2023), 1–32. https://doi.org/10.1145/3571194

[44] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: automat-
ing the foundational verification of C code with refined ownership
types. In PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.).
ACM, 158–174. https://doi.org/10.1145/3453483.3454036

[45] Xiaomu Shi, Jean-François Monin, Frédéric Tuong, and Frédéric Blan-
qui. 2011. First Steps towards the Certification of anARMSimulator Us-
ing Compcert. In Certified Programs and Proofs, Jean-Pierre Jouannaud
and Zhong Shao (Eds.). Lecture Notes in Computer Science, Vol. 7086.
Springer Berlin Heidelberg, 346–361. https://doi.org/10.1007/978-3-
642-25379-9_25

[46] Julien Signoles. 2018. From Static Analysis to Runtime Verification with
Frama-C and E-ACSL. https://tel.archives-ouvertes.fr/tel-04469397

[47] Julien Signoles. 2021. The e-ACSL perspective on runtime assertion
checking. In VORTEX 2021: Proceedings of the 5th ACM International
Workshop on Verification and mOnitoring at Runtime EXecution, Virtual
Event, Denmark, 12 July 2021, Wolfgang Ahrendt, Davide Ancona,
and Adrian Francalanza (Eds.). ACM, 8–12. https://doi.org/10.1145/
3464974.3468451

[48] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzin-
dohoué, and Santiago Zanella-Béguelin. 2016. Dependent Types and
Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL). ACM, 256–270.
https://www.fstar-lang.org/papers/mumon/

[49] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. 2021. Formal Verification of a Multiprocessor Hypervisor
on Arm Relaxed Memory Hardware. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zel-
dovich (Eds.). ACM, 866–881. https://doi.org/10.1145/3477132.3483560

[50] Alan M. Turing. 1949. Checking a Large Routine. In Report on a
Conference on High Speed Automatic Computation, June 1949. Univer-
sity Mathematical Laboratory, Cambridge University, Cambridge, UK,
67–69. http://www.turingarchive.org/browse.php/B/8. A corrected
version is printed in Morris and Jones, 1984 https://ieeexplore.ieee.
org/document/4640518. Accessed 2025-04-10..

[51] Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Hawblitzel,
and Weidong Cui. 2024. VeriSMo: A Verified Security Module for
Confidential VMs. In 18th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2024, Santa Clara, CA, USA, July
10-12, 2024, Ada Gavrilovska and Douglas B. Terry (Eds.). USENIX
Association, 599–614. https://www.usenix.org/conference/osdi24/
presentation/zhou

15

https://doi.org/10.1145/3573105.3575684
https://android-developers.googleblog.com/2023/12/virtual-machines-as-core-android-primitive.html
https://android-developers.googleblog.com/2023/12/virtual-machines-as-core-android-primitive.html
https://doi.org/10.1145/3571194
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1007/978-3-642-25379-9_25
https://doi.org/10.1007/978-3-642-25379-9_25
https://tel.archives-ouvertes.fr/tel-04469397
https://doi.org/10.1145/3464974.3468451
https://doi.org/10.1145/3464974.3468451
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/3477132.3483560
http://www.turingarchive.org/browse.php/B/8
https://ieeexplore.ieee.org/document/4640518
https://ieeexplore.ieee.org/document/4640518
https://www.usenix.org/conference/osdi24/presentation/zhou
https://www.usenix.org/conference/osdi24/presentation/zhou

	Abstract
	1 Introduction
	2 Context: The pKVM hypervisor
	3 Reified ghost state and abstraction functions
	3.1 Computable ghost state
	3.2 Recording the abstraction

	4 Reified specifications: specifying the pKVM exception handlers
	4.1 The pKVM implementation of host_share_hyp
	4.2 The specification of host_share_hyp
	4.3 Recovering determinism
	4.4 Separation and Interference

	5 Exercising the executable specification
	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References

