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Abstract
Developing systems code that robustly provides its intended
security guarantees remains very challenging: conventional
practice does not suffice, and full functional verification,
while now feasible in some contexts, has substantial barriers
to entry and use.

In this paper, we explore an alternative, more lightweight
approach to building confidence for a production hypervisor:
the pKVM hypervisor developed by Google to protect virtual
machines and the Android kernel from each other. The basic
approach is very simple and dates back to the 1970s: we spec-
ify the desired behaviour in a way that can be used as a test
oracle, and check correspondence between that and the im-
plementation at runtime. The setting makes that challenging
in several ways: the implementation and specification are
intertwined with the underlying architecture; the hypervi-
sor is highly concurrent; the specification has to be loose in
certain ways; the hypervisor runs bare-metal in a privileged
exception level; naive random testing would quickly crash
the whole system; and the hypervisor is written in C using
conventional methods. We show how all of these can be
overcome to make a practically useful specification, finding
a number of critical bugs in pKVM along the way.

This is not at all what conventional developers (nor what
formal verifiers) normally do – but we argue that, with the
appropriate mindset, they easily could and should.

1 Introduction
Developing systems code that robustly provides its intended
security guarantees remains very challenging. It has long
been painfully clear that conventional software development
practices do not suffice, motivating extensive research on
more formal approaches. Classic formal verification aims at
high assurance via mathematical proof of functional correct-
ness [25, 50], and recent years have seen many successes,
including BlueRock [37], CertiKOS [19, 20, 45], CompCert [8,
33], F∗ [41, 48], Hyper-V [32], IronFleet [21], SeKVM [34, 35,
49], seL4 [27, 28], and VST [11], among others. Several of

these have led to widely deployed verified code. However,
the broad adoption of such methods is still problematic:

• They require specialist skills and specialist tools, often
research tools under active development.

• They typically require the code to be written for verifi-
cation, in specialist languages or in restricted dialects.

• The maintenance burden, adapting proofs to new ver-
sions of the software, can be prohibitively high.

• They suffer from a step-function effort/reward curve,
requiring major up-front investment and delivering
the main payoff – the theorem – at the end.

More lightweight formal approaches aim to improve as-
surance at lower cost. These too have been advocated for
decades [22, 24], but are, we argue, still less well explored,
appreciated, and deployed than they should be.
In this paper we show how very lightweight methods,

requiring no specialist formal tooling, can improve assur-
ance of a production hypervisor, at relatively low cost. Our
target is protected KVM (pKVM), a hypervisor developed
by Google for Android, to enforce isolation between the
Android Linux kernel “host” and guest virtual machines
that handle sensitive data; it protects the latter from post-
initialisation kernel compromises, and vice versa. pKVM is
developed in the Linux kernel tree, with conventional kernel
development methods; it has been deployed since Android
13 [10, 18, 26, 42]. All this makes it a convincingly challeng-
ing target: pKVM is written in C and Arm assembly; it is
concurrent both with itself and with host, guest, and user
code; it runs at the hypervisor-privileged Arm exception
level 2 (EL2); it manages aspects of the Arm architecture
controlling its own execution, including the system registers
and page tables; and it is designed to meet its pragmatic
security and performance goals, not for verification.

The basic idea of our approach is simple, and dates back at
least to the 1970s [29, 36]: we specify the desired behaviour in
a form that can be used as a test oracle, and check against it at
runtime. Rich specifications (beyond simple assertions) have
normally been written in custom specification languages,
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which have the benefits of clear mathematical meaning, ex-
pressiveness tuned for specification, and proof or analysis
tools, but the requirements for specialised skills and tooling
are still barriers to adoption. Instead, much less commonly,
but along the same lines as Bornholt et al.’s work on S3 key-
value storage nodes [9], we write full functional-correctness
specifications in the ambient programming language.

Our new contribution lies in showing how this can be done
for a production hypervisor such as pKVM, which introduces
several interesting challenges.
The hypervisor implementation and specification

are intertwined with the specification of the under-
lying hardware architecture. pKVM, like other hypervi-
sors and operating systems, enforces controlled isolation by
managing the address translation mappings for itself and
for guests, which are used implicitly by hardware address-
translation walks. It manages stage 2 mappings used for
execution of each virtual machine, a stage 2 mapping used
for Android kernel execution, and a single-stage mapping
used for pKVM’s own execution.

Its specification is thus not just a simple functional prop-
erty of the result values of API calls, but has to constrain the
results of those implicit hardware walks.
We therefore express the specification using computable

abstraction functions (reified in C), from the concrete imple-
mentation state managed by the hypervisor, to abstract states
– reified ghost states, represented as C datastructures that
have intuitively clear mathematical interpretations. Our ab-
straction functions capture certain invariants on the concrete
state. They interpret implementation page tables as mathe-
matical finite maps, from virtual addresses to intermediate-
physical or physical addresses) with the associated permis-
sions and other attributes, mirroring the Arm-A architecture
specification of hardware address translation.
The hypervisor is essentially an exception handler, han-

dling both explicit hypercalls made by the Linux host and
other guests, and implicit exceptions such as stage 2 trans-
lation page faults raised to EL2. We specify the allowed be-
haviour of all these as a computable function (also reified
in C) that (roughly) calculates the intended post-exception
abstract state from the initial abstract state, with the hyper-
call arguments or other exception information. Importantly
for clarity, this is morally a pure function of its arguments,
even though, in C, some internal imperative computation is
inescapable: it depends only on the computed abstract state,
not on the actual implementation state. This gives a very
clear computational reading, and in dynamic testing it lets
one simply check equality of intended and recorded abstract
states after each exception.
The hypervisor is highly concurrent.Multiple hard-

ware threads can be running in the hypervisor concurrently;
it uses locks and a subtle ownership discipline, implicit in the
code, to prevent races among explicit accesses to its shared
memory. We handle much of this concurrency, but it adds

an interesting complication: one can only meaningfully com-
pute an abstraction of any part of the concrete state at points
where the implementation owns that state. Our specification
abstract state structure, and the infrastructure to dynam-
ically compute and record it, therefore have to mirror the
implementation ownership discipline. For example, in simple
cases, where some pKVM state is protected by a particular
lock, we compute the abstraction of that part of the state
when that lock is taken and released (we describe the more
subtle cases later). At a high level, this is taking ideas that
one might use in a separation-logic proof and recasting them
for specification and runtime testing.

There is some additional rare implementation concurrency
which at present we do not handle: a few hypercalls execute
in phases, releasing and retaking locks. The implicit stage-2
translation-table accesses from the Android kernel and vir-
tual machines (and their user processes) at lower exception
levels cannot be constrained by pKVM’s locking, and so un-
avoidably race with its updates to the page tables – so the
ordering of multiple such updates within a single hypercall
can in principle be observed. Handling that would need a
more explicitly transactional style of instrumentation, which,
although not done, seems perfectly feasible.

The hypervisor requires a loose specification. Where
one can, we believe it more intuitive to have functional rather
than relational specifications, but a good specification of
pKVM has to be loose in two ways, abstracting from some
details of the mapping-on-demand it does for kernel mem-
ory, and from the exact conditions under which it might
report out-of-memory errors. We address these, respectively,
by carefully defining the abstract state, and by making the
next-state specification function parametric on the imple-
mentation return value.
The hypervisor runs bare-metal at EL2. This brings

practical challenges: one cannot directly access its API from
user code, or use conventional coverage or testing tools. We
address these with a “hyp-proxy” patch to the Linux kernel,
to let user-space testing allocate kernel memory and invoke
pKVM hypercalls, and with custom coverage infrastructure.
Excessively random testing would crash the whole

system. pKVM aims to protect against compromised An-
droid kernels and virtual machines, so one wants to exercise
it against arbitrary inputs, but values which are too arbitrary
– in a history-dependent sense – can easily crash the kernel
being used for testing. We developed both a small library of
hand-written tests and a random tester, resolving this ten-
sion between truly random testing and excessive crashing
by including a very abstract model in the test generator.
The ambient programming language is C. On the

face of it, C is a very bad specification language – much
worse than Rust, for example – and initially it was not at all
obvious that this was feasible. In writing the specification
we had to work around the lack of a decent sublanguage of
pure computation, the lack of inductive datatype definitions

2
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(which have to be verbosely coded up using structs, unions,
and enums) and of pattern matching over those definitions,
the lack of parametric polymorphism (e.g. for finite range
maps returning arbitrary types, which we worked around
with a union of the types required), and the lack of support
for memory management. For other specifications one might
also want higher-order functions and other richer types, but
those were not big issues here.
The surprising conclusion is that it has been perfectly

feasible to work around all of these, however awkward they
might appear at first sight, and to express the specification
in a way that is easily readable at the top level (with details
of memory management etc. kept below the surface).
Ultimately, one wants not just our (intensional and dis-

criminating) black-box testing of the correspondence of spec-
ification and implementation, but also confirmation that it
captures the developers’ intent. Discussions confirm that
this is viable: they can independently read and comment on
the specification in detail, while a more exotic specification
language may have prevented this.

To summarise, our contributions are:
• Weemphasise the above approach as an under-explored

sweet spot for building confidence in production sys-
tems code such as hypervisors or operating systems.

• We demonstrate it for pKVM, explaining various sub-
tle issues that one has to address to make it really
work, especially the proper handling of concurrency
and loose specification (§3,4).

• We develop test infrastructure, coverage tooling, hand-
written tests, and random testing, to exercise the cor-
respondence between implementation and specifica-
tion (§5).

• We discuss a number of bugs found in pKVM, and the
specification size, effort, and performance (§6).

We conclude with discussion of the process and related work.
The development is available open-source at https://github.
com/rems-project/linux/tree/pkvm-verif-6.4.

Our high-level message is that this is both hard and easy:
a priori, it was not at all obvious that it was feasible, but,
given this existence proof and the ways in which we address
the above challenges, and with the appropriate mindset of
writing executable specification rather than implementation
code, we believe conventional developers could do similarly
with quite modest effort. This does not itself provide the
assurance of full verification, although it can be a useful step
towards that. But it applies to existing or newly written sys-
tems code as-is, expressed idiomatically in its conventional
implementation language; it relies only on that language and
its conventional tooling; it can be maintained with (non-zero
but) reasonable cost; and it provides gradual benefits.
Note: a related paper under submission [1] makes use of

the testing infrastructure developed here, and both target
the same hypervisor. The two papers are otherwise distinct:

�ËProtected VM

Firmware (hardware-specific) EL3

EL2

EL1

EL0

pKVM (hypervisor)

Android Kernel VM

Application Application
svc

hvc

smc

Figure 1. The Android Virtualisation Framework (AVF) [18],
with pKVM, the Android “host” kernel, and a protected VM,
and pKVM-enforced protection boundaries in blue.

this focusses on top-level functional specification, while that
on TLB synchronisation disciplines.

2 Context: The pKVM hypervisor
We begin by explaining the high-level design of pKVM, and
how it manages the Arm-A architecture to enforce isolation.
Protected KVM (pKVM) is a new hypervisor, though it

reuses parts of the KVM codebase. It supports protected
guests, whose memory is not directly accessible by Android
or vice versa. It does so using Arm-A virtualisation and vir-
tual memory. Access to hardware features on Arm is con-
strained by the current privilege level, the exception level.
Exception level 0 (EL0) has the least privilege, used by appli-
cations and other user-level programs, and EL3 has the most
privilege, used primarily for firmware; there are also ‘secure
world’ exception levels which we omit here. OS kernels typi-
cally execute at EL1, and the pKVM hypervisor executes at
EL2, as in Fig. 1. Execution of a hardware thread transitions
from one exception level to a higher one via explicit super-
visor (svc), hypervisor (hvc), and secure monitor (smc) calls,
and on implicit exceptions, e.g. on certain page faults and
other memory aborts. On such entries to pKVM (which can
be concurrent, from concurrent hardware threads executing
at EL0 and EL1), the hardware thread picks up a hardware-
thread-specific stack for its EL2 execution; pKVM has some
shared state and some thread-local state.
pKVM is a pure isolation kernel: it manages virtual ma-

chines (VMs), providing them and the host Android kernel
with a limited API to construct, destroy, context-switch be-
tween, and interact with VMs. It does not do scheduling,
device handling, or file systems, which are left to the host.

pKVM enforces controlled isolation, between the Android
host, virtual machines, and its own execution, by managing
the virtual memory mappings used for each. In Arm-A, as
in most architectures, the hardware translates the virtual
addresses in the running hardware thread into the physical
addresses used to index memory, and performs any required
permission checks. To support virtualisation, this can be
done in two stages of translation: Stage 1 translating virtual
to intermediate-physical addresses, managed by the Android
host or the VM, and Stage 2 translating those into physical

3
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addresses, managed by the hypervisor. pKVM enforces iso-
lation by maintaining a Stage 2 translation for the host and
for each VM, along with a (single-stage) translation for its
own execution, and ensuring that the ranges of all these are
disjoint except where specifically requested. When context
switching, pKVM installs the root address of the appropriate
translation tables in a hardware system register.

The APIs that pKVM provide to the host and to guests are
relatively simple. For the host, it provides hvc calls for the
host to share and unshare additional memory with pKVM, to
create new virtual machines and virtual CPUs within them,
to destroy virtual machines and reclaim donated pages, and
to context switch to a chosen vCPU. The guest API is more
limited: guests can share/unshare virtual machine memory
back with the host and communicate with the host through
pagefaults (typically with virtio).
When the host, a guest, or pKVM itself tries to access a

memory location that is not mapped in pKVM’s pagetables,
the processor takes a pagefault which is handled by pKVM.

In most cases, pKVM switches back to the host, injecting
a fake interrupt into EL1, allowing the host to decide how
to respond (e.g. for the virtio case above). There are two
exceptions: if pKVM has an internal error, it panics; and if
the host accesses memory that is not mapped but it logically
owns, pKVM maps it on-demand. pKVM does not map all of
the host’s memory in the host Stage 2 page table at initiali-
sation. Instead, it maps host memory (that the host logically
has permission to access) when needed: making the host
take a pagefault on first access, and filling in the page table
lazily so that a host post-exception retry will succeed. pKVM
maintains the ‘logical’ state of ownership of the memory:
for each page in memory, which of pKVM, host, or a guest,
owns it, encoded in otherwise unused page-table-entry bits.

3 Reified ghost state and abstraction
functions

In this section, we explain the shape of the ghost state that
we define as an abstraction of pKVM’s concrete state; we
describe how it is recorded, and howwe observe its evolution
during pKVM execution. In the next section, we describe how
we specify hypercalls in terms of this. In both, we show only a
small and relatively simple part of the complete specification,
but we aim to give enough detail to expose the issues, so that
one can see how the same could be done for other broadly
similar systems code.

Conceptually, the ghost state is a mathematical abstraction
of pKVM’s concrete state, expressed with simple mathemati-
cal structures (as one would find in a conventional functional
specification language), that abstracts from the engineering
details of the concrete state, such as its pointer structures
and the Arm architecture representation of in-memory page
tables. This is akin to the ghost state that one would define
in a more conventional verification setting. We reify this in

C, and compute and record it with executable abstraction
functions, also reified in C.
The behaviour of pKVM can then be specified by spec-

ifying how each exception handler can change the ghost
state. We express this with specification functions, again
in C, that compute the expected post-handler ghost state
from the recorded pre-handler ghost state. These are pure in
the sense that they only access their input ghost state, not
the concrete pKVM execution state. One can then compare,
at runtime, the expected post-handler ghost state with the
recorded post-handler ghost state, checking equality.
For some systems, one might need a relational form of

specification, e.g. taking the recorded pre- and post-handler
ghost states, and computing a boolean ofwhether that change
was allowed. That would accommodate more specification
looseness, but we believe it would be less intuitive to read
for conventional developers than the functional form that
directly computes the new ghost state. For pKVM, all the
required specification looseness can be accommodated with
modifications of the functional approach.
All this is expressed in C within the source tree of, and

linked with, pKVM; it builds with the normal Linux kernel
build process, and runs in QEMU with the normal setup used
by the developers for exercising pKVM. Despite this, it is
not intrusive: it is almost all factored out into separate .h

and .c files in new ghost/ directories, with just a few calls
within the main pKVM code, guarded by #ifdefs controlled
by kernel configuration parameters.

3.1 Computable ghost state
Logically, the memory isolation property that pKVM aims to
provide is roughly the invariant that there exists a partition
of physical memory pages, where each partition has a single
owner (either the Android host, pKVM itself, or a guest
virtual machine) and some access permissions, but might
also be shared with another entity.
In the concrete state of pKVM, this is implemented by

careful management of its collection of page tables, poten-
tially shared among all hardware threads when executing
within pKVM. pKVM’s shared concrete state also contains
metadata for each guest virtual machine, including their
configuration, whether they are currently executing on a
physical CPU, and, if not, their last-saved register state. In
addition, the pKVM concrete state has components that are
local to each hardware thread, holding the current execution
context: the saved context of the Android host or guest reg-
isters at EL1 before entry into the current pKVM C handler,
and the current context of pKVM at EL2 (its registers and
stack). Hardware pagetable walks for threads at EL0 and EL1
implicitly access the appropriate page tables.

Following the ownership structure. The ghost state
structure has to follow the ownership discipline used by
pKVM for its concrete state. Rather than an expensive big

4
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lock, pKVM protects each page table with a separate lock:
one for its own Stage 1 mapping, one for the host Stage 2, and
one for each guest Stage 2, with one more lock protecting its
table holding the metadata of the guest virtual machines. The
implementation of each exception only takes the locks that
are actually needed for its operation (e.g. host_share_hyp
only takes the locks of the host and pKVM page tables), and
only when required, not simply on exception entry and exit.

There is therefore no point in time after initialisationwhen
we could safely record the whole state of pKVM. One could
introduce a big lock for specification instrumentation, but
that would significantly change the observable concurrent
behaviour of pKVM by reducing the allowed interleaving.
We instead structure the ghost state to follow the imple-

mentation ownership structure, and to allow for partiality.
Each component associated with a lock in the implementa-
tion is encapsulated in the ghost state in (a C representation
of) an option type, which can then be recorded as being
absent when the corresponding lock was never held.
The ownership structure for guest virtual machine meta-

data has an additional subtlety. In addition to the single lock
protecting the metadata of all VMs, mentioned above, before
a vCPU can be run, it must first be ‘loaded’ onto the phys-
ical CPU which is going to run it. This implicitly transfers
ownership of the metadata for that vCPU, from that lock to
the local state of the hardware thread.

Ghost state types. We define the ghost state as a C struc-
ture whose members reflect the above partitioning of the
concrete state, as protected by the various locks and the parts
local to physical CPUs.

1 struct ghost_state {

2 struct ghost_pkvm pkvm;

3 struct ghost_host host;

4 struct ghost_vms vms;

5 struct ghost_globals globals;

6 struct ghost_cpu*
7 locals[NR_CPUS];

8 };

1 struct ghost_pkvm {

2 bool present;

3 abstract_pgtable pgt;

4 };

5 struct ghost_host {

6 bool present;

7 mapping annot, shared;

8 };

The ghost_state pkvm member, if present (as encoded
with its first boolean member), comprises an abstract map-
ping (as described below) that captures the translation func-
tion encoded in the Stage 1 page table for pKVM.
The host member, if present, is not simply an abstrac-

tion of the current host mapping, for two reasons. First, the
pKVM mapping-on-demand on host Stage 2 memory-abort
exceptions adds mappings when needed, but sometimes for
more than just the requested page (e.g. when it can add a
block mapping), and sometimes removing mappings (e.g. if
it splits a block mapping). Specifying exactly the implemen-
tation behaviour would be over-fitting, and the appropriate
specification for those exceptions is interestingly loose: it
allows any legal host Stage 2 mapping on exit. The abstract
state therefore records just enough to determine the up-
per and lower bounds on what must be mapped. Secondly,

pKVM uses the host page tables also to record which pages
are owned by pKVM or a guest VM – these should not be
mapped on demand. The ghost state for the host therefore
comprises two abstract mappings: one captures the pages
which are owned by pKVM or a guest virtual machine, and
the second captures the pages which are either owned by
the host and shared, or owned by another and borrowed by
the host. These evolve deterministically.
The vms member holds a dynamic array recording meta-

data for each guest virtual machine, including their Stage 2
translation mapping and the state of their vCPUs.
The globals member holds constants established during

the initialisation of pKVM: the number of physical CPUs, the
offset of the linear mapping used by pKVM, and constants
specifying the conversion between host and pKVM virtual
addresses. The specification code could read these when re-
quired from the pKVM concrete state, but that would break
the hygiene distinction that we maintain between implemen-
tation and specification; it is cleaner to maintain copies in
the ghost state. Finally, the locals is an array holding the
abstractions of the physical CPU states (e.g. their registers).

Abstracting away from implementation details. There
are many aspects of the concrete state which are not fun-
damental to the external behaviour of the hypervisor, most
obviously its memory management: allocation of internal
structures, and reference counting of pages. These should
not be reflected in the abstract state, to avoid overfitting the
specifications and making them overly sensitive to future
internal changes in the implementation.

Abstract mappings. Page tables are stored in memory
in the format determined by the Arm-A architecture. In the
configuration used by Android, these are trees with at most
4 levels, of 4KB pages each containing 512 page-table en-
tries. Each entry is either a leaf, determining that the virtual-
address range corresponding to its position in the tree is
mapped to a physical-address range (with permissions and
other software-defined attributes) or unmapped (with poten-
tial software-defined attributes), or a pointer to a sub-tree.
Page tables are, of course, a compact and efficient represen-
tation of the data they contain, and one that supports fast
page-table walks by the hardware – but for the specifica-
tion, one wants a different structure that supports different
operations. The above tree structure is irrelevant to the exten-
sional meaning of a page table. What is relevant is the finite
partial mapping from 4KB-page input addresses to tuples
of their output address, permissions, and software-defined
attributes: the extension of the Arm-A page-table walk func-
tion. We therefore define a C type mapping for finite range
maps, with the finite-map operations that one wants to use
in specification (empty and singleton finite maps, addition
and subtraction of finite maps, etc). These are implemented
with a sufficiently performant data structure: ordered linked
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1 void _interpret_pgtable(mapping *mapp, kvm_pte_t *pgd, ghost_stage_t stage, u8 level,...)

2 { ...

3 for (u64 idx = 0; idx < 512; idx++) { // iterate over the current table entries

4 u64 va_offset_in_region = idx * nr_pages * PAGE_SIZE; // compute va mapped by this entry

5 u64 va_partial_new = va_partial | va_offset_in_region;

6 u64 pte = pgd[idx]; // read page-table entry from the table

7 enum entry_kind ek = entry_kind(pte, level); // compute kind of the page-table entry (pointer-to-table, block, leaf, or invalid)

8 switch(ek) { // case split on that

9 case EK_BLOCK: { // block entry

10 u64 oa = pte & PTE_FIELD_OA_MASK[level]; // compute output address

11 u64 attr = pte & PTE_FIELD_ATTRS_MASK; // compute attributes

12 struct maplet_target_mapped t =

13 parse_mapped(stage, mair, level, oa, nr_pages, attr, next_level_aal); // compute target of maplet

14 // extend mapping with maplet from va_partial_new to oa, of nr_pages, coalescing if possible

15 extend_mapping_coalesce(mapp, stage, va_partial_new, nr_pages, maplet_target_mapped(va_partial_new, nr_pages, t));

16 break;

17 }

18 ...

Figure 2. Part of the abstraction function that interprets a concrete page table at pgd to a finite map mapp

lists of maximally coalesced maplets, each of which captures
a contiguous range of the mapping.

We then combine these mappings with the memory foot-
print of the pagetables themselves into an abstract_pgtable,
which allows checking separation invariants of the concrete
memory backing page tables (see §4.4).

3.2 Recording the abstraction
The abstraction functions. Our abstraction functions

compute each part of the ghost state from the correspond-
ing implementation concrete state. This recording follows
the ownership structure, e.g. with a function for each lock
recording the abstraction of the data protected by the lock.

One interesting part of this abstraction is the computation
of abstract mappings from concrete pagetables. This involves
a complete traversal of the page tables being recorded, in
contrast to the hardware page-table walk and the (software)
pKVM page-table walker, which only walk a specific input
address range. The general format of Arm pagetables is intri-
cate, withmany configurations, but specialised to the specific
configuration used by Android, the recording becomes a sim-
ple traversal, incrementally constructing a mapping using
the above operations. Some of the definition of this, includ-
ing the case for block page-table entries, is shown in Fig. 2
(including some details that we cannot describe here). It is
imperative C code, but relatively close to the pure-functional
definition that it morally represents.

Recording the ghost state. With the above structure,
recording the relevant ghost state at the correct points be-
comes straightforward and remarkably non-invasive, we
merely need to add instrumentation at a few key points in
the code: at entry and exit of the top-level C handler func-
tions, for the host and guest exception handlers, to record the
thread-local parts of the state; and on taking or releasing any
of the locks protecting the pagetables, to record their abstract

mappings; and on taking and releasing the locks which own
parts of the VMs and vCPUs, to record the abstract metadata
about them (e.g. their register states).

For example, pKVM calls the host_lock_component func-
tion to acquire the lock protecting the host’s Stage 2 pageta-
bles.We instrument this to record the host’s abstract pagetable,
perform some sanity checks (e.g. that it is unchanged since
the end of the last trap) and save it to thread-local storage:
1 static void host_lock_component(void) {

2 hyp_spin_lock(&host_mmu.lock);

3 #ifdef CONFIG_NVHE_GHOST_SPEC

4 record_and_check_abstraction_host_pre();

5 #endif /* CONFIG_NVHE_GHOST_SPEC */

6 }

Memory management for the ghost computation. As
the ghost infrastructure executes alongside pKVM at EL2,
the environment is very limited: there is only one page of
stack per hardware thread, no existing heap allocator, and
no standard-library printf or other IO beyond a UART. Our
implementation of mappings uses an simple arena allocator,
and other components of the ghost state that can grow after
initialisation (ghost virtual machines and their ghost vCPUs)
use a simple implementation of malloc.

Impact of the reification of the ghost state. We aim for
the specification to be minimally invasive on the execution
of pKVM. It uses some memory for the ghost state and the
specification computations, and this has to be mapped in
pKVM’s Stage 1 page tables, but we simply fix some memory
for this at pKVM initialisation time, so the specification com-
putation does not induce changes in the abstract state post
initialisation. The ghost infrastructure leaves the existing
locking of pKVM unchanged, but adds some locks for its own
data. Our mapping and heap allocators each have their own
lock, though they could instead have per-hardware-thread
arenas. Our printing infrastructure also requires a lock to get
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1 int __pkvm_host_share_hyp(u64 pfn)

2 {

3 int ret;

4 u64 host_addr = hyp_pfn_to_phys(pfn);

5 u64 hyp_addr = (u64)__hyp_va(host_addr);

6 struct pkvm_mem_share share = {

7 // ... instantiate generic structure

8 };

9 host_lock_component(); hyp_lock_component();

10 ret = do_share(&share);

11 hyp_unlock_component(); host_unlock_component();

12 return ret;

13 }

Figure 3. Top-level host_share_hyp implementation

coherent output. None of these reduce the implementation
concurrency in principle – though of course the specification
execution does affect the timing (and the specification locks
prevent some potential relaxed behaviour across them).

4 Reified specifications: specifying the
pKVM exception handlers

We now describe how the specification can be expressed in
terms of the above reified ghost state, as reified functions
that compute the intended final ghost states of hypercall and
other exception handlers. We do so in some detail for one of
the simpler pKVM hypercalls, host_share_hyp, comparing
its implementation (§4.1) with its specification (§4.2). We
then describe some of the additional complexity arising from
the more interesting hypercalls (§4.3). Finally we touch on
other invariants in pKVM which we also check (§4.4).

4.1 The pKVM implementation of host_share_hyp
Memory owned by the host is not by default accessible to
pKVM, but pKVM does sometimes need to access it. For
example, many hypercalls pass arguments through memory
(e.g. to initialise a new VM). The host must explicitly ask
pKVM to share the memory containing these with pKVM
making the physical pages accessible in both the hypervisor’s
Stage 1 and the host Stage 2 page tables.

It does so with the pvkm_host_share_hyp hypercall, which
is invoked by placing a magic number into register x0 and
the (physical) address of the page it wishes to share with
pKVM into register x1, and issuing an Arm hvc instruction,
which raises a hardware exception to EL2.

After dispatch by pKVM’s top-level handle_trap excep-
tion handler, and reading the registers of the hypercall and
argument(s), pKVM calls __pkvm_host_share_hyp (Fig. 3).
Given the page address to be shared (technically, its shifted
‘page frame number’), it makes that page available to pKVM,
and marks it as shared in both pKVM and the host’s page
tables, in a way that is both thread-safe and resilient to a
potentially malicious host. The top-level exception handler
then takes the return value and performs the context switch

back to the host, writing the return value back to the host
registers in the process.
In the function body: lines 4–5 convert the physical ad-

dress into the input addresses of the relevant address spaces,
which are used to create a generic share transaction on lines
6–8; lines 9–10 and 12–13 follow a two-phase locking pro-
tocol for the resources the share will need, taking the locks
protecting the pKVM single-stage and host Stage 2 page
tables; and line 11 calls a generic do_share which actually
performs the necessary checks and page-table updates.
The do_share function makes repeated use of a generic

page-table walker to check properties of and mutate the page
tables. The walker code (not shown) is common with KVM
and is typical kernel code: highly optimized with support for
the many potential architectural configurations of Arm page
tables. To make the walker reusable for multiple purposes, it
is higher-order, taking pointers to callback functions to call
during the walk to perform the actual checks and updates
(and pointers to callbacks for memory management). The
walk itself does a traversal of the page-table tree for the given
input address range, following the Arm architecture hard-
ware translation-table-walk algorithm, calling the callback
functions at the table entries and/or leaf nodes as required.

A version of pKVM’s do_share, simplified and inlined for
presentation to show its three calls to the generic page ta-
ble walker kvm_pgtable_walk, is in Fig. 4. At a high level,
do_share can be split into two phases: a check that the re-
quested share operation is valid, which involves (at least)
one page table walk; then the actual updates to the host
and pKVM page tables (each requiring their own separate
walk, to install the new mappings). Each walk incrementally
performs additional checks, or updates to the state, or both.

It starts bywalking the host page table for the host interme-
diate physical address, calling __check_page_state_visitor
at each leaf entry, which fails if the page is not able to be
shared. If that succeeds, it does another walk over the host’s
page table, but this time with the stage2_map_walker call-
back, which adds an identity mapping andmarks the location
as shared. This walk may, in principle, also fail, e.g. due to
running out of memory or reaching an inconsistent state if
the pKVM invariant was ever broken. If it succeeds, do_share
does the final walk to update the pKVM page table, to add a
new mapping marked as borrowed in the pKVM page table.

4.2 The specification of host_share_hyp
As seen in the previous subsection, the implementation of
even a relatively straightforward hypercall is full of intricate
detail: the complex architectural definition of a page table;
the performant and generic walker inside KVM to traverse
it; the repetitive checks and updates, with further nested
checks some of which are relevant and some are not; all tied
together with a careful two-phase-locking scheme.

However, the effect of the hypercall on the abstract ghost
state of pKVM is relatively simple: it atomically either fails
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1 static int do_share(...)

2 {

3 int ret;

4 /* in check_share() */

5 struct kvm_pgtable_walker walker = {

6 .cb = __check_page_state_visitor,

7 .flags = KVM_PGTABLE_WALK_LEAF,

8 };

9 ret = kvm_pgtable_walk(&host_mmu.pgt, addr, size, &walker);

10 if (ret)

11 return ret;

12 /* in host_initiate_share() */

13 struct kvm_pgtable_walker walker = {

14 .cb = stage2_map_walker,

15 .flags = KVM_PGTABLE_WALK_TABLE_PRE

16 | KVM_PGTABLE_WALK_LEAF,

17 .arg = PKVM_PAGE_SHARED_OWNED,

18 };

19 ret = kvm_pgtable_walk(&host_mmu.pgt, addr, size, &walker);

20 /* in hyp_complete_share() */

21 struct kvm_pgtable_walker walker = {

22 .cb = hyp_map_walker,

23 .flags = KVM_PGTABLE_WALK_LEAF,

24 .arg = PKVM_PAGE_SHARED_BORROWED,

25 };

26 ret = kvm_pgtable_walk(&pkvm_pgtable, addr, size, &walker);

27 return ret;

28 }

Figure 4. do_share implementation, with helpers inlined.

with a permission error if this was an illegal request,or up-
dates the state to have new mappings for the requested page
in the host and pKVM’s mappings. This can be described
mathematically fairly concisely as an update to the part of
the state the hypercall takes ownership of.
If the location is not exclusively owned by the host then

it returns an error code (by setting a thread-local regis-
ter), otherwise the state is updated with new entries in the
host_shared and pkvm mappings in the abstract state, with
a zero return code indicating success. Transitions between
whole states can be then described by applying the update
atomically, at the linearisation point of the hypercall.
We reify this simple mathematical specification (includ-

ing the elided details) into C, by defining, for each possible
exception, the update as a computable function from ini-
tial to final abstract states. Each such function takes three
arguments: g_pre, a reference to a ghost_state structure
holding the pre-state of the hypercall; g_post, a reference to
a blank ghost_state structure, into which the specification
will write the expected post-state; and call, a reference to a
ghost structure holding additional data from the call, used
to resolve any non-determinism in the spec (c.f. §4.3). The
specification functions return a boolean stating whether the
post state has a valid specification, enabling the writing of
gradual specifications. The specification function only reads
from the ghost pre-state and the ghost call data, never from
the implementation state.

4.2.1 Specification functions. We specify pKVM’s top-
level C exception handler functions. These are the entry
points for all traps and interrupts into the hypervisor. The
top-level specification function for a trap then further dis-
patches on which hypercall or other exception has been
invoked, and calls that specific hypercall’s own specification
function. We show this for host_share_hyp in Fig. 5.

4.2.2 Recording and runtime checks. We can now put
the pieces together and see what it means to do a runtime
check of the spec of a hypercall. Combining this with the
computation and recording of the ghost pre- and post-states
described in the previous section, Fig. 6 shows how the
executable-as-test-oracle specification works for this case.

At (1) the hypercall begins on this hardware thread when
the exception handler is triggered at EL2, and the spec ma-
chinery begins recording into the pre-state starting with
the thread-local data. The execution continues through the
first phase of the two-phase locking section acquiring at (2)
the host and at (3) the pKVM page table locks, triggering
the recording of the abstract mappings of those components
into the pre-state. At (4) and (5) come the second phase of
the 2PL discipline where pKVM releases the locks protect-
ing those page tables, but with the spec machinery taking
snapshots just before, this time recording them into the post-
state. Finally, at (6) the hypercall ends and the final thread-
local state can be recorded into the post-state, as well as
any ghost call data collected during execution (for resolving
non-determinism, c.f. §4.3).

We can then use the pre-state from (1), (2) and (3) plus any
call data from (6) to (7) compute an expected post-state, using
the C function in Fig. 5. Then (8) we can compare the post-
state we just computed with the one we recorded. This com-
parison is really a ternary check between the pre, recorded-
post, and computed-post states: where the computed-post
is not partial it must be equal to the recorded-post, and ev-
erywhere else must be the same in the pre-state and the
recorded-post.

Printing and diffing ghost states. With runtime com-
putation and recording of reified ghost datatypes, we can
implement diffing of two abstract states, invaluable in error
reporting and debugging of both code and spec. For example:
recorded post ghost state diff from recorded pre:
host.share +ipa :...101b18000 phys:101b18000 SO RWX M
pkvm.pgt +virt:8000c1b18000 phys:101b18000 SB RW- M
regs -r0=......c600000d r1=........101b18
regs +r0=.............0 r1=.............0

This shows the change to the abstract state computed from
the concrete-state change performed by a host_share_hyp

call in our test suite: one new page for the host mapping, iden-
tity mapped, marked as Shared-and-Owned, Read-Write-
eXecute, and normalMemory; one new page for pKVM, with
the same physical location but mapped at a different virtual
address, marked as Shared-and-Borrowed, with read-write
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1 static bool compute_post__pkvm_host_share_hyp(

2 struct ghost_state *g_post, struct ghost_state *g_pre,

3 struct ghost_call_data *call)

4 {

5 // (1) Address space conversions

6 u64 pfn = ghost_read_gpr(g_pre, 1);

7 phys_addr_t phys = hyp_pfn_to_phys(pfn);

8 host_ipa_t host_addr = host_ipa_of_phys(phys);

9 hyp_va_t hyp_addr = hyp_va_of_phys(g_pre, phys);

10 int ret = 0;

11

12 // (2) Permissions checks

13 if (!is_owned_exclusively_by(g_pre, GHOST_HOST, phys)) {

14 ret = -EPERM;

15 goto out;

16 }

17

18 // (3) Initialisation of the (partial) post-state

19 copy_abstraction_host(g_post, g_pre);

20 copy_abstraction_pkvm(g_post, g_pre);

21

22 // (4) Construction of abstract mapping attributes

23 bool is_memory = ghost_addr_is_allowed_memory(g_pre, phys);

24 struct maplet_attributes host_attrs =

25 ghost_host_memory_attributes(is_memory, SHARED_OWNED);

26 struct maplet_attributes hyp_attrs =

27 ghost_hyp_memory_attributes(is_memory, SHARED_BORROWED);

28

29 // (5) Update abstract mappings with new targets

30 mapping_update(

31 &g_post->host.shared,

32 g_pre->host.shared,

33 MAP_INSERT_PAGE, GHOST_STAGE2, host_addr, 1,

34 maplet_target_mapped_attrs(phys, 1, host_attrs)

35 );

36 mapping_update(

37 &g_post->pkvm.pgt.mapping,

38 g_pre->pkvm.pgt.mapping,

39 MAP_INSERT_PAGE, GHOST_STAGE1, hyp_addr, 1,

40 maplet_target_mapped_attrs(phys, 1, hyp_attrs)

41 );

42

43 // (6) Epilogue: update the host register state

44 out:

45 ghost_write_gpr(g_post, 1, ret);

46 copy_registers_to_host(g_post);

47 return true;

48 }

(1) Address space conversions. Mirroring the implemen-
tation, the spec retrieves the hypercall argument from the
initial ghost state, in its copy of the saved on-entry host
(register) context for the current hardware thread, and looks
up the value of the x1 register. The argument here is the
page frame number of the page the host is requesting to
share with pKVM. The specification computes from this
the corresponding physical address phys, host intermediate-
physical address host_addr, and pKVM-internal virtual ad-
dress hyp_addr. These are pure computations using the ghost
state, and have no side-effects.

(2) Permissions checks. The spec is given in two parts:
the pre-condition, which checks the recorded pre-state for
error cases; and the update, computing the new expected
post-state. For host_share_hyp, it fails (with -ENOMEM) if the
physical page that the host is trying to share does not belong
exclusively to the host. That is, if it is not in the host anno-
tations or is already in the host’s shared mappings. Usually
these two checks come as a pair, and so we define an auxil-
iary function which checks both. If the check fails, the whole
spec function exits out early, before recording any update
(other than the error code) to the post-state.
This one relatively simple check on the pre-state captures
all the complex logic of the check_share walk seen earlier.
(3) Initialisation of the (partial) post-state. The update
for host_share_hyp should touch only the relevant parts of
the pre-state: the host and pKVM’s page tables. We start by
cloning those (and only those) parts of the pre-state into the
memory reserved for the post-state, which we will modify
to reflect the hypercall’s action later. Importantly, the spec
function does not mention the rest of the ghost state: the
state is partial and those parts may not exist on the pre-state.
(4) Construction of abstract mapping attributes. When
defining the abstract mapping wemust construct the maplets
with not only the correct target address, but also the at-
tributes: permissions, memory type, and what pKVM calls
the ‘page state’ which encodes the logical owner of the phys-
ical resource pointed to.
For pKVM the computation of these attributes is relatively
simple, there are two possible values for the permissions and
memory type depending on whether the address is in the
region defined to be DRAM or not (line 23), and then the
page state is marked as either owned-but-shared for the host
(line 25) or borrowed for pKVM (line 27).
(5) Update abstract mappings with new targets. Now the
specification updates the abstract mappings for the host and
pKVM, using the attributes we just computed.
For the host, we must update the mapping in the post-state
for the host, for the host input address host_addr (lines 30−
35) using the above host memory attributes. Similarly, the
pKVM abstract mapping in the post-state is updated with a
new mapping from hyp_addr to phys (lines 36 − 41).
(6) Epilogue: update the host register state and return to
the host. Finally, on success or error, the current hardware
thread’s registers need to be updated to reflect the return
code. The return code is stored in the post-state’s x1 register
for the current hardware thread. The call then returns true,
informing the parent specification function for the entire
exception handler (not shown) that a valid specification has
been written to the post-state.

Figure 5. Executable C specification for host_share_hyp.
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Figure 6. Instrumentation and checking timeline for host_share_hyp

but without execute permissions, and also normal memory;
and the zeroing of the registers used for passing arguments.

4.3 Recovering determinism
So far we have discussed the specifications as a deterministic
computation of the pre-state, to obtain a single post-state.
In practice, (a) the specification is parameterised over the
interaction with the environment, and (b) the specification
is loose in some ways. Both affect our ability to express the
specification as a deterministic function of the pre-state.

For example, the specification should not precisely model
how pKVM manages its memory, and exactly when hyper-
calls might fail with an out-of-memory error. Instead, we
adopt a loose specification that permits many hypercalls to
arbitrarily fail with −ENOMEM. We express this by making the
specification functions parametric not just on the abstract
pre-state, but also on the return code, which in runtime
checking we take from the implementation behaviour.

Nondeterminism also arises from pKVM’s interactions via
memory shared with the host, e.g. where pKVM reads hy-
percall struct arguments. The host still owns those locations
and can write to them freely, so pKVM’s accesses to them,
done with kernel READ_ONCE operations, do not have fixed
values. We therefore parameterise the specification on the
values read by these, and in runtime checking we record
them from the implementation.
The information recorded during implementation execu-

tion is stored in the local call data (§4.2) and is thus available
to the specification functions as the call argument (Fig. 5).

4.4 Separation and Interference
We additionally check two invariants: (1) non-interference
on the abstract state outside of locks, (2) separation of the
memory footprint of parts of pKVM’s concrete state.
To check that the abstract state is not changed between

hypercalls we maintain a single shared copy of the entire
ghost state which we use to check on acquiring a lock that
the state it protects has not changed since the last time the
abstract state was recorded.

We additionally track the maximal footprint of each page
table and fail if pages are allocated into the page tables out-
side of that footprint. This is essentially enforcing, at runtime,

a separation logic style separation of the page table part of
the heap and the rest of pKVM.

5 Exercising the executable specification
Testing and coverage analysis of hypervisor code is a chal-
lenge in itself, as the usual tools are not available in the
privileged EL2 state it executes in. Conventional pKVM de-
velopment relies largely on integration tests (e.g. booting the
Android kernel and running Android tests), and some tests
at the kernel syscall level, neither of which aim directly at
exercising the hypervisor code.

Test infrastructure. pKVM exposes its hypercall (and
other exception) API to the Linux kernel, which provides a
more generic virtual-machine API for user space (the KVM).
However, the security model of pKVM assumes that the ker-
nel is untrusted after initialisation, with the hypercall API
as the security boundary. We therefore have to exercise arbi-
trary such calls, but one wants to program tests in userspace,
not in the kernel. We develop a “hyp-proxy” kernel patch
to expose pKVM API calls, and the required kernel mem-
ory management, to user-space. We express tests above an
OCaml library that provides functions both for well-behaved
and arbitrary invocations of the pKVM API.

Coverage. Coverage, both of the implementation and of
the specification, is a useful initial guide when testing – but
the Linux built-in GCOV tooling for coverage is not applica-
ble to pKVM at EL2. We use the existing compiler support,
but had to implement the instrumentation hooks, re-engineer
the linker-dependent initialisation, and move the data from
the EL2 to EL1 to EL0 address spaces, to make it available in
userspace. This gives us branch, line, and function coverage
both of pKVM and of the specification code.

Handwritten Testing. We first wrote a small suite of
handwritten tests, currently 41, of which 19 target error-
free paths, 22 target various errors, and a handful are highly
concurrent and target locking. Coverage was important es-
pecially to hit the error cases. However, absolute coverage
numbers do not account for unreachable code paths, which
arises here e.g. in the use of generalised page-table utilities.
To accurately assess coverage for a sample exception handler,
the __pkvm_host_share_hyp of §4, we manually identified
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unreachable code in its call graph. Our manual tests give
100% line coverage of the remainder; we believe the other
hypercalls are similar. We also assess the coverage of the
specification functions. The specification for the same han-
dler (Fig. 5) is fully covered; overall coverage of specification
functions is 92% (459 of 497 lines), with only a few error
cases missing – some of which we believe are unreachable.

Random testing. Beyond handwritten tests, because it is
hard to anticipate how a corrupted host or VM could abuse
the API, one wants to do random testing with arbitrary val-
ues. However, there is a tension between randomness and
effective testing: (a) random API calls can crash the host by
changing memory ownership (and too many crashes would
lead to negligible test throughput); and (b) random calls
would be unlikely to make significant progress through the
pKVM state machine. We resolve this by guiding random
API call generation with a careful abstraction of the speci-
fication’s (already abstract) ghost state: a pool of allocated
host memory, the subset of that which has been donated to
pKVM, the VMs with their handles and their correspond-
ing shared memory, the vCPUs also with their handles and
corresponding shared memory, and the vCPU memcache
pages. This is used to guide the random sampling, e.g. to
choose known-valid memory addresses in some cases, and
to reject steps which it predicts will crash the host kernel or
the testing process (while finding pKVM crashes is of course
desirable). We ran the random tests in QEMU, on a Mac Mini
M2, which completes about 200,000 hypercalls per hour, with
our longest runs taking 24 hours. We found 9 errors in the
specification this way, all related to subtle error scenarios.

Synthetic bug testing. To further confirm the discrimi-
nating power of our testing, we introduced a small number
of synthetic bugs into pKVM and checked that it finds them.

6 Discussion
Bugs found. To date this work has found five bugs in

pKVM, all acknowledged by the development team and all
but the last fixed in pKVM and/or upstream Linux: (1) A
missing alignment check in the internal allocator (memcache)
topup path, permitting a malicious host to zero memory. (2)
A missing size check in the memcache topup, potentially
hitting a signed integer overflow. (3) Missing synchronisa-
tion in the vCPU load/vCPU init permitted a relaxed race,
potentially accessing uninitialised memory. (4) On a host
pagefault, pKVM was not robust to the host modifying its
virtual mappings concurrently, potentially leading to a hy-
pervisor panic. (5) During initialisation of the pKVM virtual
linear map, for devices with very large amounts of physical
memory, the code could overlap the IO mappings and linear
map leading to unchecked accesses to IO devices.

Interestingly, most of these have been found while reading
the code, to understand it well enough to write the specifica-
tion. Exercising the specification then tests the correspon-
dence between our understanding and the implementation,
which found many errors in the specification itself, also
leading to clarifications with the developers. Thus, the speci-
fication process itself is a tool for thinking, just as much as
the specification itself is a tool for testing – and the ability
to cross-check by testing is essential for both.

Post hoc specification. A specification could be written
before, with, or after the implementation, with differing costs
and benefits. In this case it is the latter – it is a post hoc spec-
ification, following [5], built in communication with, but not
by, the pKVM development team. That brings an extra cost
for deeply understanding the code, but has the advantage
that the specifiers come without preconceptions, and can fo-
cus on potential pathological corners. It also means the code
we examine is already well-tested in their conventional ways,
and reasonably mature. Finer-grain integration, now that
feasibility has been demonstrated, would presumably find
more low-hanging bugs in code during early development.

Specification size. pKVM itself, including the parts shared
with KVM and local header files, but excluding generic Linux
header files, is approximately 11 000 raw LoC. Our specifi-
cation is 2600 for the hypercalls and traps and 1300 for the
abstraction recording functions, along with 4500 for the var-
ious abstract data types, and additional boilerplate code for
configuration, diffing, and printing; it totals around 14 000.
A hypervisor specification is necessarily somewhat in-

volved, but the specification abstracts from many implemen-
tation details, and it is expressed in a quite different style
to the implementation, emphasising clarity and with a flat-
ter structure. Writing it thus gives useful redundancy, with
limited chance of common-mode errors – and forces close
inspection of the code.

Effort and maintenance. For this to truly be a light-
weight approach to improving assurance, it is important that
the effort required is manageable. Our initial experiments
were low-intensity, exploring and establishing our solutions
to the challenges described in the introduction, at less than a
person-month per year from late 2020 to mid 2023. The main
specification development was then done by two people for
around four months, alongside other activities, with testing
infrastructure by two others, and maintenance and further
testing to the time of writing in early 2025. All this totals
around one person-year, a small fraction of the roughly 30
person-year pKVM development effort to date.
Maintainability is also crucial. Because our specification

has to check intensional properties of the pKVM state (as
those are observed by hardware page table walks), and be-
cause it is structured following the implementation owner-
ship structure, substantial changes to the implementation
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require corresponding changes to the instrumentation and
specification. We have successfully ported our machinery
across multiple Android version changes, with a port to An-
droid15 in progress. TheAPI and specifications do not change
much release-to-release, but some changes to ownership do
create friction.

Performance. Our specification is intended for use in
testing, not in production, so its overheads must be low
enough for that to be viable in the pKVM developers’ normal
(QEMU) environment. Beyond that, the exact performance
is not critical, except that the Linux kernel is designed to
ensure progress, and has timers that both monitor and as-
sume this. If the specification were too slow, tests might
not make progress. Perhaps surprisingly, given the poten-
tially expensive instrumentation, the overheads are perfectly
viable. The memory impact is minimal, around 18MB, domi-
nated by page-table representations and growing somewhat
with time and activity. The runtime overhead for boot is 3.2x
(1.49s to 4.76s), and for our hand-written tests is 11.5x (1.07s
to 12.3s). All these are using 4 cores, on an Intel Xeon Gold
6240 with 72 cores and 384GB.

Our specification should in principle also run on hardware,
but custom builds on devices that run development versions
of Android have required proprietary drivers, not available
to us. This should become feasible in future.

7 Related work
Research since the 1960s has explored many approaches to
improving software quality with varying combinations of
specification, testing, and verification – with many advances,
and interestingly different trade-offs in different contexts.

Full functional correctness verification with inter-
active proof assistants. As we noted in the Introduction,
interactive mechanised proof is very flexible, provides high
level of assurance, and has had notable recent successes –
but it also carries substantial barriers to broad adoption.

More automated verification. Chong et al. [13] ver-
ify functional correctness by CBMC model-checking (fully
unwinding loops). Their specifications are pre and post-
conditions, in C extended with CBMC builtins (assume, as-
sert, is_writable, etc.). They do not do runtime testing of
specifications. This is applied to several substantial exam-
ples of existing code, and integrated into their development.
Whether such model-checking would be feasible for code
like pKVM, and for pKVM together with the spec, are inter-
esting questions. There is extensive recent work on semi-
automated verification tools, such as Boogie [4], CN [43],
F∗ [48], Frama-C [15], Prusti [2], RefinedC [44], VeriFast [23],
and Verus [30, 31, 51], some successfully applied to (or gen-
erating) low-level systems code. These aim for lower verifi-
cation costs and specialised skills than interactive proof, but
still present substantial barriers to entry from a conventional

developer perspective. Most do not attempt to combine proof
and runtime testing. Turning to full automation, Nelson et al.
[40] (Hyperkernel) and Cebeci et al. [12] (TPot) propose au-
tomation for code written for verification following very
specific disciplines, which would be impractical for a pro-
duction hypervisor like pKVM. Nelson et al. [39] (Serval)
applies to larger examples but again substantially designed
and simplified for verification: finitised, and avoiding general
page-table manipulation.

Testing against rich specifications. The idea of writing
specifications that one can use for both testing and proof
dates back at least to the 1970s with Euclid [29], and run-
time checking of assertions and of pre- and post-conditions
has been emphasised in Design-by-Contract by Meyer [38]
since the 1980s, and by many others. Much of this work uses
custom specification languages for pre- and post-conditions,
e.g. recently the Frama-C E-ACSL [16, 46, 47], and CN Fulmi-
nate [3], respectively in an extension of first-order logic and
in separation logic, that can be translated into in-line C for
runtime testing. Bishop et al. [6, 7] emphasised the post-hoc
construction of test-oracle specifications by testing against
implementations, expressing the specifications in a theorem-
prover language. Disselkoen et al. [17] develop new code
(Cedar, in Rust) in tandem with a formal specification (in
Lean), with proofs about the latter and differential random
testing between the two, and some property-based testing.

All the above require custom tooling of some kind. Property-
based testing [14] generates tests and checks against specifi-
cations written in the ambient language – typically, though
not necessarily, partial specifications of particular properties,
rather than full functional correctness.

Closest to our work, Bornholt et al. [9] define a sequential
executable functional-correctness specification for a key-
value storage node in the language (Rust) of the production
code, and differentially test the production code against that
– along with stateless model-checking of linearisability. They
aim for essentially the same position in the trade-off space,
foregoing the high assurance of full verification, and the
convenience and expressiveness of custom specification lan-
guages, for the sake of very low barrier to entry (no custom
tooling for the first part), and incremental benefits scaling
with effort. The differences between our work and theirs
arise mainly from the different context, of a concurrent hy-
pervisor in C, rather than a user-space fault-tolerant storage
node in Rust, and the challenges we describe in the Intro-
duction that led us to specifications using abstract states and
abstraction functions that mirror implementation ownership.

For both, it is striking that the basic approach could have
been followed, and become pervasive, at any point since the
1970s, but it remains vanishingly rare – so further convincing
demonstrations can be valuable.

Testing against implicit specifications. Even lighter-
weight, as they do not require writing specifications, but for
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correspondingly weaker properties, are sanitisers, fuzzing,
model-checking, and static analysis against implicit specifi-
cations, of no crashes or no undefined behaviour.

8 Conclusion
Very lightweight full-functional-correctness specification
and testing is eminently feasible and useful, even for a con-
current production hypervisor in C. It requires no special
skills or tooling beyond those that developers already have,
beyond the ability to clearly distinguish specification and
implementation as activities and code styles. It does need
careful structuring and attention to the implementation own-
ership discipline (which brings some specification mainte-
nance burden).
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