
Chapter 71271

Pagetables and the VMSA1272

This chapter is based, in part, on: Chapter D5 of the Arm Architecture Reference Manual DDI 0487H.a; and, Relaxed1273

virtual memory in Armv8-A [54] by Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte,1274

Richard Grisenthwaite, and Peter Sewell, published in the proceedings of the 31st European Symposium on Programming1275

(ESOP, 2022).1276

7.1 Introduction1277

Modern computers heavily rely on virtual memory to enforce security boundaries: hypervisors and operating1278

systems manage mappings from virtual to physical addresses in order to restrict the access individual processes1279

and guest operating systems have to the underlying physical memory, and to memory-mapped devices. With1280

the endemic use of memory-unsafe languages, even for critical infrastructure, understanding and verifying the1281

programs which manage virtual memory mappings is more vital than ever, driving current interests in hypervisors.1282

The virtual machines those hypervisors enable are the key pieces of software which have become solely responsible1283

for implementing such critical security properties.1284

The following chapters focus on these aspects of the architecture, on virtual memory and virtualisation and the1285

software they enable, with the aim of giving a precise formal semantics for the purpose of verifying real systems1286

software which use those features.1287

I first give a description of the sequential behaviour of Arm’s virtual memory (this chapter); then describe the1288

relaxed behaviours and any open questions about Arm’s virtual memory (§8); give our precise axiomatic semantics1289

that capture these behaviours (§9); give an overview of the tooling and validation of the given model(s) (§10); and,1290

finally, a sketch of an equivalent operational semantics (§11).1291

This chapter overview The remainder of this chapter will give: a brief overview of Arm’s virtual memory1292

systems architecture (§7.2); a detailed description of the Arm translation table format (§7.3); an overview of the1293

multiple stages of translation (§7.4), and the different translation regimes (§7.5); a detailed explanation of the1294

official Arm translation table walk pseudocode (§7.6); and finally a discussion on the existence and purpose of1295

translation lookaside buffers (§7.7). This chapter does not present any new contributions or novel research, instead,1296

it is a brief but necessary overview of the required architectural features.1297

7.2 Virtual Memory1298

Armv8-A8’s virtual memory system architecture (or VMSA) defines the virtual memory and virtulisation features1299

of the Arm architecture. Its structure is described, in detail, in Chapter D5 of the Arm Architecture Reference1300

Manual [1].1301

Conventionally, we think of memory as being a flat array of bytes, indexed by physical addresses. For smaller1302

trusted devices, such as microcontrollers, this may be the end of the story. However larger ‘application’ class1303

processors rely heavily on virtual addressing: interposing one or more layers of indirection between the accesses1304

using the virtual addresses of the program and the ‘true’ physical addresses of memory. This indirection allows1305

systems running on those processors to:1306

43

1. partition the physical resources between different programs, giving access to only those resources that each1307

program needs, and protecting those resources from other programs that do not need to access them;1308

2. indirect accesses through specific ranges of addresses with convenient numeric values; and1309

3. update those indirections at runtime to add, remove, or otherwise modify, the mappings to physical memory,1310

to support techniques such as copy-on-write and paging.1311

To manage all this, typical operating systems splits the programs into distinct processes and associates each process1312

with its own virtual to physical mapping. These mappings take the form of partial functions from the process’1313

own (virtual) addresses to the real hardware physical addresses along with some permissions:1314

translate : VirtualAddress ⇀ PhysicalAddress× 2{Read,Write,Execute}

Note that this is a simplification. A more accurate translate function is given later on TODO: ?REF?.1315

Typically an operating system would create one such mapping for every process, partitioning the physical memory1316

into disjoint subsets of physical addresses (the range of the translate function), and would allocate some convenient1317

numeric values to be the virtual addresses the process interacts with (the domain of the translate function). Having1318

this separation allows the processes to be given convienently aligned contiguous chunks of virtual address space1319

even if the underlying physical resources are highly fragmented, or, in the case of paging, potentially not present1320

in memory at all. Additionally, operating systems can provide many processes with mappings to the same physical1321

resource (such as memory-mapped devices) and control which processes have access to such devices at any point1322

in time.1323

These mappings give rise to separate address spaces for each process. The diagram in Figure 7.1 illustrates an1324

example, with two processes named P0 and P1 each with their own virtual address space. The left-hand side1325

shows a representation of the ‘memory’ as the processes see it, with the memory split into pages (fixed-size blocks1326

of contiguous addresses). The right-hand side is the equivalent representation of the actual physical memory,1327

with each physical page of the available RAM. Note that this diagram shows the virtual address space as being1328

smaller than the physical one, but in general, they may be the same size, or the virtual address space may be even1329

larger than the physical space.1330

If we assume each page has size 0x1000 then page 1 contains addresses 0x1000 to 0x1FFF inclusive, and we can1331

interpret the diagram like so:1332

. For P0:1333

– virtual addresses in pages 1, and 3 are unmapped.1334

– virtual addresses in pages 0 and 2 map to physical addresses in physical page 1.1335

– virtual addresses in page 4 map to physical addresses in physical page 5.1336

. For P1:1337

– virtual addresses in pages 0 and 4 are unmapped.1338

– virtual addresses in page 1 map to physical addresses in physical page 5.1339

– virtual addresses in page 2 map to physical addresses in physical page 7.1340

– virtual addresses in page 3 map to physical addresses in physical page 8.1341

For example, if process P0 reads the address 0x2305, it will actually read from the physical location 0x1305, since1342

virtual page 2 was mapped to physical page 1 in P0’s address space.1343

Each address space corresponds to a distinct translate function. Note that these mappings may be: non-injective1344

(contain aliasing of multiple virtual addresses to the same physical address); partial (where some virtual addresses1345

do not map to a physical address at all); or overlapping with other processes’ address spaces, in either the domain1346

(for example, the physical page 5 is mapped in both P0 and P1), or range (for example, the virtual page 2 is mapped1347

in both P0 and P1 but to different physical pages), or both.1348

Large application-class processor architectures, such as Armv8-A, often provide hardware support in the form of1349

the memory management unit (the MMU), which, once configured by software, will automatically perform the1350

translation from virtual to physical addresses. Software is then required to manage a set of translation functions,1351

and is responsible for ensuring the correct translation function is being used by the MMU whenever a context1352

switch occurs, and handle any faults that the MMU generates.1353

44

P0

P1

RAM

0x0000

0x1000

0x2000

0x3000

0x4000

0x0000

0x1000

0x2000

0x3000

0x4000

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

0x8000

0x9000

Figure 7.1: Example virtual and physical address spaces for two processes.

7.3 Arm Translation Tables1354

Software configures the MMU through the creation and modification of sets of translation tables (also referred to1355

as page tables) for each of the translation functions.1356

The translation tables form an in-memory tree data structure which encode the (partial) translate function.1357

Software creates and maintains these trees, and tells the MMU which tree (and so which translation function) to1358

use at runtime. The hardware then reads from this tree structure to perform the translation, or from one of the1359

various caching structures described in TODO: ?REF?, whenever the process reads from, or writes to, memory.1360

A pointer to the root of the tree is stored in the TTBR (“Translation table base register”) register (or rather, one1361

of the various base registers described in more detail in TODO: ?REF?), and this determines which translation1362

function is currently in use by that processor.1363

Each node in the tree is a page-aligned chunk of memory which is treated as an array of 64-bit entries. Each entry1364

is responsible for mapping some fixed part of the domain of the translation function, with the root table mapping1365

the entire address space.1366

The tree is separated into different levels. with a root table pointed to by the base register and each subsequent1367

child tree increases in level going deeper into the tree. Typically the root is at level 0 with a maximum depth of 41368

(down to level 3), but the various configurations are discussed in the next section.1369

7.3.1 Translation table format1370

Arm’s virtual memory system architecture is highly configurable. Writing to the SCTLR (“System control register”)1371

and TCR (“Translation control register”) system registers allow the software developer to choose a configuration1372

from a whole host of various options. To give a flavour of this configurability I list some of the configuration bits,1373

some of which will be discussed in more detail in the next chapter; these include: the size of virtual addresses; the1374

number of levels in the tree; the starting level; the size of a single page (or in Arm terminology, the size of the1375

translation granule); the number of ASIDs and VMIDs; alignment requirements; memory attributes for hardware1376

walks; enabling hardware management of access flags and dirty bits; write-execute-never permissions; and so on.1377

To simplify things, in this dissertation, we consider just one common configuration, the one currently used by the1378

Linux kernel: a tree of translation tables with maximum depth 4, with 4KiB pages with 48-bit addresses, unless1379

explicitly stated otherwise.1380

Each node is a table of 512 64-bit entries, bound as one 4096-byte block of memory. Each table controls the1381

mapping of a fixed range of the virtual address space. This range is split into 512 equal slices, with each entry1382

responsible for its slice. Each of those entries can be one of:1383

45

1. An invalid entry, which indicates that this slice of the domain is unmapped;1384

2. A table entry, pointing to a next-level table (a child tree) which recursively maps this slice of the domain; or1385

3. A page (last-level) or block (non-last-level) entry which defines a single fixed-size mapping for this slice of1386

the domain.1387

Invalid entries An invalid entry is defined by bit[0] of the entry being 0. The top 63 bits are ignored by1388

hardware, and software is free to use those bits to store any metadata it wishes. Invalid entries may exist at any1389

level in the tree.1390

63 … 1 0
ignored 0

1391

Block or page entries Block and page entries are similar to each other; both create a mapping for a contiguous1392

slice of the domain mapped by the entry, encoded as an output address (OA) with some metadata (including access1393

permissions, memory type, and some software-defined bits).1394

The OA is aligned to the size of the slice of the domain being mapped. For page entries, the OA is aligned on a1395

page boundary. A block entry’s OA at level 2 would be 2MiB aligned, and a block entry’s OA at level 1 would1396

be GiB aligned. This corresponds to the hardware reserving bits[n:12] of the entry to be 0 depending on how1397

deep the entry is: at level 1 n==30; at level 2 n==21; and at level 3 n==12.1398

Block entries can exist at levels 1 and 2. Page entries can only exist at level 3.1399

For block entries bit[1] is 0, for page entries bit[1] is 1.1400

Metadata (access permissions, shareability, memory type) are encoded into the attrs bits.1401

63 50 47 n (n-1) 12 11 2 1 0
1pattrsignoredoutput address00attrs

1402

Table entries A table entry contains a page-aligned pointer to a child table, but can also contain similar1403

metadata as the block or page entry, including access permissions (read/write/execute), which are combined with1404

any permissions from the child table.1405

Table entries are allowed only at levels 0–2.1406

63 50 47 12 11 2 1 0
11Res01table pointer00attrs

1407

7.3.2 The Arm translation table walk1408

When the processor executes an instruction which takes an address, such as the Arm LDR or STR instructions,1409

those addresses are virtual (addresses used by instructions are always virtual addresses). The hardware converts1410

each virtual address to a physical address, and the MMU performs this conversion.1411

To do this, the MMU reads the TTBR to get the currently in-use tree of translation tables. Then the MMU itself1412

reads memory and walks the tree (except when it can read from a previously cached translation, as described in1413

the next chapter) effectively computing the partial translate function the tree encodes, producing the physical1414

address and any permissions, or reporting a fault back to the processor if the virtual address was unmapped, or if1415

the permissions forbid the requested operation.1416

Walk overview The hardware walker first slices up the input virtual address into chunks: the most-significant1417

bit is used to determine which base register to use (see §7.5); the next 15 bits are typically ignored by hardware;1418

the rest of the address is split into 9–bit fields which we refer to as fields a–d, with the remaining bits as field e.1419

Fields a–d are used for indexing into the tables; and field e is the offset in the page, which is added to the final1420

output address.1421

1The Arm architecture requires these bits are 0 and are reserved for future use.

46

VA

63 62 48 47 39 38 30 29 21 20 12 11 0
edcbaignored

1422

The walk then proceeds, with the MMU taking the following steps:1423

1 Read the TTBR register.1424

2 Perform a 64-bit single-copy atomic read of Mem[TTBR+8*a] to read the entry in the Level 0 table. Call the1425

result L0entry.1426

a If L0entry[0] is 0 (that is, it’s an invalid entry) then report a fault back to the processor.1427

b Otherwise if L0entry[1] is 0 then report a fault back to the processor (top-level tables cannot have1428

block mappings).1429

3 Perform a 64-bit single-copy atomic read of Mem[L0entry.table_pointer+8*b] to read the entry in the1430

Level 1 table, which we will call L1entry.1431

a If L1entry[0] is 0 then report a fault back to the processor.1432

b If L1entry[1] is 0 (it’s a block entry):1433

i If the access is not permitted (See §7.3.2 “Access permissions”), report a fault to the processor.1434

ii Otherwise, return the output address (See §7.3.2 “Computing the final output address”) back1435

to the processor.1436

4 Perform a 64-bit single-copy atomic read of Mem[L1entry.table_pointer+8*c] to read the entry in the1437

Level 1 table, which we will call L2entry.1438

a If L2entry[0] is 0 then report a fault back to the processor.1439

b If L2entry[1] is 0 (it’s a block entry):1440

i If the access is not permitted, report a fault to the processor.1441

ii Otherwise, return the output address back to the processor.1442

5 Perform a 64-bit single-copy atomic read of Mem[L2entry.table_pointer+8*d] to read the entry in the1443

Level 3 table, which we will call L3entry.1444

a If L3entry[0] is 0 then report a fault back to the processor.1445

b Else if L3entry[1] is 0, report a fault back to the processor (this encoding is reserved and is treated as1446

invalid).1447

c L3entry[1] is 1 (it’s a page entry):1448

i If the access is not permitted, report a fault to the processor.1449

ii Otherwise, return the output address back to the processor.1450

ttbr

Level 0

Level 1

Level 2

Level 3

table

table

table

page 4KiB

block 1GiB

a

b

c

d

1451

Computing the final output address The output address (OA) of the final descriptor is the start of the range1452

mapped by the entry. The low order bits are all 0 in the output address, and need to be added on to compute the1453

final output address of the translation.1454

To compute this final output address the MMU takes the OA from the entry, and the level in the tree the entry is1455

at, and ‘completes’ the address by bitwise appending the remaining fields to create the complete 48-bit output1456

address. Recall that the OA field of the block mappings gets wider the deeper in the tree you are, and so for a 1GiB1457

entry the OA field is only 18 bits wide but for a 4KiB page entry its OA field is the full 36 bits.1458

. For a 1GiB (level 1) block entry; PA = OA::c::d::e1459

. For a 2MiB (level 2) block entry; PA = OA::d::e1460

47

. For a 4KiB (level 3) page entry; PA = OA::e1461

Note that this process means that the least-significant 12 bits of the input VA are unchanged and remain the same1462

in the final output PA, regardless of how the translation function is configured.1463

Access permissions Once the walk is complete, and the final output address calculated, the MMU checks to1464

see whether the requested access is permitted. Each level of the table can contain some access permissions and1465

those permissions get combined at the end to calculate the final permissions.1466

For data accesses (reading and writing), table entries have an APTable field (bits[62:61]), and block/page entries1467

have AP[2:1]1 field (bits[7:6]). These fields can be decoded using the following table:1468

Field When set (1) When unset (0)
AP[2] Read-only Read&Write
AP[1] Allow at EL1&0 Allow at EL1 only
APTable[1] Force read-only No effect on permissions.
APTable[0] Force forbid access at EL0 No effect on EL0 permissions.

1469

For executable permissions, which permit or forbid instruction fetching from some region of memory, there are1470

no dedicated encodings of the access permission bits. Instead, all mappings are executable by default, unless one1471

of the following applies: the region is mapped writeable at EL0, as writable EL0 regions are never executable1472

at EL1; a global WXN (“Write-execute-never”) configuration bit is set, and the entry was writeable; or, when one1473

of the various translation table entry XN (“Execute-never”) bits are set. For simplicity, this chapter assumes1474

that execute-never bits are always disabled; see the full description in the Arm ARM TODO: ?REF?for more1475

information.1476

To combine access permissions from the whole walk, the MMU takes the bitwise union of each of the APTable1477

fields from each table entry, and then intersects the result with the final AP[2:1] field to produce a final set of1478

permissions. Figure 7.2 contains a decoding table for a given table and leaf access permissions, for testing whether1479

a requested access is permitted. If the requested access is not permitted, then the MMU generates a permission1480

fault, which is reported back to the processor.1481

Faults The MMU may emit one of several fault types during a translation table walk (these are referred to by1482

Arm as the MMU fault types):1483

. Translation fault.1484

These are caused by the mapping being invalid, either because bit[0] was 0, or because the descriptor1485

encoding was reserved-as-invalid. Translation faults also result from trying to translate an address that is1486

outside the 48-bit input address range.1487

. Permission fault.1488

For when the mapping was valid, but the access permissions do not permit the requested access (for example,1489

trying to write to a read-only address).1490

. Access flag fault.1491

These are generated when hardware management of access flags is disabled and the access flag bit is set.1492

. TLB Conflict aborts (see TODO: ?REF?).1493

. Alignment fault.1494

Generated when an operation expects an aligned memory address, but is given a misaligned one, and1495

alignment checking is enabled in the SCTLR.1496

. Address size fault.1497

For when the OA, or TTBR, has a value that is out of the physical address range.1498

. Synchronous external abort on a translation table walk.1499

These are external aborts (that come from the system not from the MMU) that happen due to accesses that1500

the MMU generated. For example, if the next-level table field pointed to an address for which there was no1501

memory or device, the system-on-chip would return a fault to the processor.1502

These faults lead to processor exceptions. The fault type is stored in the ESR_ELn (“exception syndrome register”)1503

register’s EC (“exception class”) field, and any supplementary information is stored in its ISS (“instruction specific1504

syndrome”) field (such as which level in the tree the fault came from, whether the originating instruction was a1505

read or a write, and). Exception handling code can read the ESR register to determine the fault type and cause,1506

1Block/page entries do not store the entire AP field but only AP[2:1]. AP[0] is not present in AArch64.

48

AP
Ta
bl
e[
1]

AP
Ta
bl
e[
0]

AP
[2
]

AP
[1
]

EL1 EL0
R W X R W X

0 0 0 0 X X X × × X
0 0 0 1 X X × X X X
0 0 1 0 X × × × × X
0 0 1 1 X × X X × ×
0 1 0 0 X X X × × X
0 1 0 1 X X × × × X
0 1 1 0 X × × × × X
0 1 1 1 X × X × × ×
1 0 0 0 X × X × × X
1 0 0 1 X × × X × X
1 0 1 0 X × × × × X
1 0 1 1 X × X X × ×
1 1 0 0 X × X × × X
1 1 0 1 X × × × × X
1 1 1 0 X × × × × X
1 1 1 1 X × X × × ×

Figure 7.2: Merging Access Permissions (Stage 1, EL1&0).
Entries in red highlight differences from the APTable=00.

and can read the FAR_ELn (“fault address register”) to determine the virtual address which triggered the fault, and1507

handle the fault appropriately.1508

Memory Attributes The processor does not necessarily know what is located at any physical address. There1509

may be some dynamic random-access memory (DRAM, what one would generally consider ‘memory’), but there1510

may also be other memory-mapped devices, or non-volatile memory, or other peripherals, or possibly nothing at1511

all.1512

To help accommodate this, hardware allows software to mark regions of memory as one of either device memory,1513

normal cacheable memory, or normal non-cacheable memory, using the translation tables.1514

The desired memory type is determined from the AttrIndx field (bits[4:2]) in block and page entries. Instead1515

of being directly encoded into this field, Arm chose to have the actual attributes stored in a separate register:1516

the MAIR (“Memory attribute indirection register”) register. The MAIR stores an array of eight 8-bit fields each of1517

which contains an encoding of a memory type. The AttrIndx field in the entry is an integer in the range 0–7,1518

which is the index of the field in the MAIR register to use.1519

This indirection means that the final result of translation depends not only on the value of the final leaf entry in1520

memory, but on the value of certain system registers, such as the MAIR, at that time of the translation table walk.1521

Below are the three most common encodings for a MAIR field, and the ones that will be useful later when discussing1522

tests:1523

. 0b0000_0000: device memory.1524

. 0b0100_0100: normal non-cacheable memory.1525

. 0b1111_1111: normal cacheable memory, inner&outer write-back non-transient, read&write-allocating.1526

Memory locations marked as device tell the hardware that reads or writes to those locations may have side-effects.1527

This means hardware treats those locations differently: there will be no speculative instruction fetches, reads,1528

or writes to those locations; writes to those locations will not gather into larger writes; reads and writes to1529

those locations will not re-order with respect to others; those locations generally will not get cached; and other1530

thread-local optimizations get disabled. Note that Arm define a wide range of device memory types, allowing1531

49

the systems programmer to selectively re-enable some of the previously described behaviours to enable better1532

performance where they deem it safe to do so.1533

For normal memory the software can choose between cacheable or non-cacheable memory. Arm provide a range1534

of different options for the cacheability:1535

. non-cacheable1536

. write-back cacheable1537

. write-through cacheable1538

As with other features, there is a wide scope for configuration: separately configuring inner (L1,L2) and outer (L3)1539

caches, and adding cache allocation hints (allocating on reads, writes or both).1540

As we will see later (TODO: ?REF?), the ability to change cacheability, or even have multiple aliases with different1541

cacheability attributes, give rise to interesting behaviours and security considerations.1542

7.4 Virtualisation and a second stage of translation1543

So far this chapter has focused on operating systems and processes. However, modern systems isolate not just1544

processes within an operating system but entire operating systems from one another, within a hypervisor.1545

To do this, software uses the virtual memory abstraction again, adding an extra layer. This layer, like the previous1546

one, is supported by hardware. Processes use virtual addresses which are converted to intermediate physical (also1547

sometimes known as guest physical) addresses using the operating system’s configured translation tables but then1548

these intermediate physical addresses (IPAs) go through another round of translation to convert those IPAs into1549

the final physical address.1550

Arm calls these stages of translation, and the MMU supports both stages and can perform the full translation from1551

virtual to physical (via the intermediate physical) address.1552

This means software must manage two sets of translation tables: operating systems manage the stage 1 tables to1553

convert VAs to IPAs; and hypervisors manage stage 2 tables to convert those IPAs to PAs; this gives two separate1554

translate functions, which the MMU composes together at runtime:1555

translate_stage1 : VirtualAddress ⇀ IPA× Permissions× MemoryType
translate_stage2 : IPA ⇀ PhysicalAddress× Permissions× MemoryType

Hypervisors (running at EL2) can configure the stage 2 translate function by creating translation tables with a1556

similar format as before and then storing a pointer to the root of this tree in the VTTBR (“Virtualization translation1557

table base register”) register. TheMMUwill read the VTTBRwhenever it needs to perform a second-stage translation1558

to convert an IPA to a PA, and will do the translation table walk over that tree in much the same way as described1559

earlier for (what we can now call) the first-stage translation.1560

This results in two address spaces, a virtual address space and an intermediate-physical address space. Figure 7.31561

contains an example layout of these address spaces for a machine running three processes (P0,P1,P2) in two1562

operating systems (OS0,OS1). As with the earlier diagram in Figure 7.1, each column is a (set of) address spaces,1563

with transformations between them defined by their respective translation functions. On the left-hand side are1564

the virtual address spaces of the various processes, whose virtual addresses are translated (using the translation1565

tables pointed to by the TTBR register) into intermediate-physical addresses in the central address spaces (for the1566

respective OS). Those IPAs are then translated (using the VTTBR) into the final physical address.1567

Concretely, if P1 reads from address 0x1001, it will be translated into the IPA 0x3001 in OS0’s address space,1568

which then gets translated again, and the processor will actually read from RAM at location 0x6001.1569

Differences in the translation table format from stage 1 Stage 2 translation tables are similar to their1570

stage 1 counterparts, but there are some minor differences:1571

. Stage 2 table entries do not have any additional attributes, and so do not have an APTable field.1572

. Stage 2 AP field (called S2AP) has a slightly different (and simpler) format, see Figure 7.4.1573

. Stage 2 block and page entries do not have a MemAttrIndx field but rather encode the memory type directly1574

into the MemAttr field bits[5:2] (see the full description in the Arm ARM [1, D5-4874] for all possible1575

encodings):1576

50

P0

P1

P2

OS0

OS1

RAM

0x0000

0x1000

0x2000

0x3000

0x4000

0x0000

0x1000

0x2000

0x3000

0x4000

0x0000

0x1000

0x2000

0x3000

0x4000

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

0x8000

0x9000

0x10000

0x11000

0x12000

0x13000

0x14000

0x15000

Using TTBR Using VTTBR

Figure 7.3: Example virtual, intermediate physical, and physical address spaces for three processes running on two
operating systems.

51

Field When set (1) When unset (0)
S2AP[1] Writeable not Writeable
S2AP[0] Readable not Readable

Figure 7.4: S2AP field encoding.

– 0b0000: Device memory.1577

– 0b0101: Normal non-cacheable.1578

– 0b1111: Normal write-back inner&outer cacheable.1579

These are interesting as they mean that the stage 1 and stage 2 attributes (permissions and memory types) must1580

be combined in order to produce the final output. This combination is not just a case of letting stage 2 overrule the1581

stage 1 settings but rather that both stages get a veto: if stage 1 sets the memory type to be device or non-cacheable1582

then it overrules what stage 2 sets. Similarly, if stage 1 permissions forbid an access then the stage 2 permissions1583

cannot overrule that.1584

Second-stage translations during a first-stage walk There is a complication with the story so far. The1585

stage 1 tables are created by the operating system, which is using an intermediate physical address space, not a1586

physical one. The writes the OS does to the tables will be translated, as they are normal data writes. But, the1587

tables themselves contain references to other tables, and those entries will be intermediate physical addresses,1588

and so, they must also be translated, including the value of the TTBR itself.1589

In our assumed configuration of 4KiB pages and 4 levels of translation, this leads to a maximum of 24 memory1590

accesses to perform the translation: 4 reads of stage 1 translation tables, 16 reads of stage 2 translation tables1591

during those stage 1 walks, and a final 4 reads of the stage 2 translation tables to translate the output IPA into the1592

final PA.1593

7.5 Translation regimes1594

As mentioned earlier, there are multiple translation table base registers. Each of them defines a translation1595

function, pointing to the root of the tree of translation tables which define it. These translation functions are then1596

composed together into various translation regimes, each defining the set of translation functions (and therefore1597

which translation table base registers) which will be used for translations done by the processor.1598

Arm define a set of these translation regimes. Figure 7.5 gives an overview of three of the most common regimes,1599

which are:1600

. EL1&0 (two-stage)1601

– For programs executing at EL0 or EL1 when virtualisation (at EL2) is enabled.1602

– VAs with the high bit set are translated into IPAs using the EL1-configured register, TTBR1_EL1.1603

VAs are typically split into ‘high’ and ‘low’ regions with different translations, primarily used for1604

separate kernel and user address spaces.1605

– VAs without the high bit set are translated into IPAs using the EL1-configured register, TTBR0_EL1.1606

– IPAs are translated to PAs using the EL2-configured VTTBR_EL2 register.1607

. EL1&0 (single-stage)1608

– For programs executing at EL0 or EL1 when virtualisation (at EL2) is disabled.1609

– VAs with the high bit set are translated into PAs using the EL1-configured register, TTBR1_EL1.1610

– VAs without the high bit set are translated into PAs using the EL1-configured register, TTBR0_EL1.1611

. EL21612

– For programs executing at EL2.1613

– VAs without the high bit set are translated into PAs using the EL2-configured register, TTBR0_EL2.1614

– VAs with the high bit set are always unmapped.1615

Which translation regime is being used is defined by various system registers and the current system state.1616

. Translations at EL1 or EL0 use one of the EL1&0 regimes.1617

. Translations at EL2 use the EL2 regime.1618

. TCR_EL2 (set at EL2) determines whether the EL1&0 is a single-stage or two-stage regime.1619

. TTBR0_EL1, TTBR1_EL1 determine the stage 1 of the EL1&0 regimes, and can be set at EL1 or higher.1620

. TTBR0_EL2 determines the stage 1 of the EL2 regime, and can only be set at EL2 or higher.1621

52

. VTTBR_EL2 determines the stage 2 of the EL1&0 regime, and can only be set at EL2 or higher.1622

Arm define a wide range of other regimes, see the Arm ARM TODO: ?REF?. For simplicity, we ignore secure1623

modes, including all of EL3.1624

0264

EL0/EL1 VA space

IPA space

PA space

TTBR0_EL1TTBR1_EL1

VTTBR_EL2

EL1&0 Regime

0264

EL0/EL1 VA space

PA space

TTBR0_EL1TTBR1_EL1
EL1&0 Regime, with EL2 disabled.

0264

EL2 VA space

PA space

TTBR0_EL2
EL2 Regime (always single-stage)

Figure 7.5: Translation regimes that apply to EL0,EL1, and EL2.

7.6 Arm pseudocode1625

It is now useful to examine the official Arm pseudocode, especially those parts that relate to memory events.1626

We will do this in three steps: first, by looking at the pseudocode that is executed for an Arm store instruction;1627

following the memory accesses that it performs down to any translations it performs; finally looking at the Arm1628

translation table walker in full. There is a lot of detail infused throughout the Arm psueocode, so in this section1629

we shall focus on the most pertient parts, and give some idea of what detail is omitted.1630

7.6.1 The lifecycle of a store1631

Arm give precise executable semantics for every instruction in their domain-specific Architecture Specification1632

Language (ASL). This ASL code defines the sequential intra-instruction behaviour of each instruction, including1633

memory accesses, and any translation table walks they perform.1634

53

1 bits (64) address;
2 bits(datasize) data;
3
4 if HaveMTE2Ext () then
5 SetTagCheckedInstruction(tag_checked);
6
7 if n == 31 then
8 if memop != MemOp_PREFETCH then CheckSPAlignment ();
9 address = SP[];

10 else
11 address = X[n];
12
13 if ! postindex then
14 address = address + offset;
15
16 case memop of
17 when MemOp_STORE
18 if rt_unknown then
19 data = bits(datasize) UNKNOWN;
20 else
21 data = X[t];
22 Mem[address , datasize DIV 8, acctype] = data;
23
24 when MemOp_LOAD
25 data = Mem[address , datasize DIV 8, acctype];
26 if signed then
27 X[t] = SignExtend(data , regsize);
28 else
29 X[t] = ZeroExtend(data , regsize);
30
31 when MemOp_PREFETCH
32 Prefetch(address , t<4:0>);
33
34 if wback then
35 if wb_unknown then
36 address = bits (64) UNKNOWN;
37 elsif postindex then
38 address = address + offset;
39 if n == 31 then
40 SP[] = address;
41 else
42 X[n] = address;
43

Figure 7.6: Arm “STR (immediate)” ASL code.

TODO: the importance of the ASL, and of sequential v concurrent behaviour will already be explained,1635

but recap here anyway?1636

Figure 7.6 shows the Arm ASL for the “STR (Immediate)” instruction: STR Xt,[Xn]. This instruction writes the1637

value contained in register Xt into the memory location stored in register Xn. The figure has some uninteresting1638

(for this thesis) parts greyed out: those parts that deal with optional extensions such as memory tagging; unknown1639

register values; register writeback; and, the load and prefetch instructions which use the same ASL code.1640

The ASL code first reads the virtual address either from the stack pointer (line 9) or by reading register Xn (line 11).1641

It then reads the data from the register Xt (line 21), which will be written to memory. Finally, it performs the1642

store itself using the Mem[] function (line 22).1643

7.6.2 Writes to memory1644

The Mem[] function is responsible for checking alignment and performing each memory access the instruction1645

does. The ASL for Mem[] can be found in Figure 7.7.1646

54

It does some alignment checks, and then calls MemSingle[] once for each single copy atomic write the access1647

performs.1648

For example, for a fully aligned store, it calls MemSingle[] just once (lines 37 or 57), and, for a misaligned store, it1649

will call MemSingle[] once for each byte (line 51).1650

The MemSingle[] call then performs the translation, and (if successful), the actual write to memory. Its ASL can be1651

found in Figure 7.8, with parts for extensions and store pair greyed out. On line 12, it calls AArch64.TranslateAddress1652

to do the translation table walk. If the translation succeeds, then the code calls PhysMemWrite (on line 40), an1653

uninterpreted function with no behaviour in ASL, which represents the actual write to memory. After perhaps1654

handling any external aborts from the write, the function returns.1655

55

1 Mem[bits (64) address , integer size , AccType acctype , boolean ispair] = bits(size *8)
value_in

2 boolean iswrite = TRUE;
3 constant halfsize = size DIV 2;
4 bits(size *8) value = value_in;
5 bits(halfsize *8) lowhalf , highhalf;
6 boolean atomic;
7 boolean aligned;
8 if BigEndian(acctype) then
9 value = BigEndianReverse(value);

10
11 if ispair then
12 // check alignment on size of element accessed , not overall access size
13 aligned = AArch64.CheckAlignment(address , halfsize , acctype , iswrite);
14 else
15 aligned = AArch64.CheckAlignment(address , size , acctype , iswrite);
16 if ispair then
17 atomic = CheckAllInAlignedQuantity(address , size , 16);
18 elsif size != 16 || !(acctype IN {AccType_VEC , AccType_VECSTREAM }) then
19 if !HaveLSE2Ext () then
20 atomic = aligned;
21 else
22 atomic = CheckAllInAlignedQuantity(address , size , 16);
23 elsif (acctype IN {AccType_VEC , AccType_VECSTREAM }) then
24 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single -copy atomic

accesses
25 // 64-bit aligned.
26 atomic = address == Align(address , 8);
27 else
28 // 16-byte integer access
29 atomic = address == Align(address , 16);
30
31 if !atomic && ispair && address == Align(address , halfsize) then
32 single_is_aligned = TRUE;
33 <highhalf , lowhalf > = value;
34 AArch64.MemSingle[address , halfsize , acctype , single_is_aligned , ispair] =

lowhalf;
35 AArch64.MemSingle[address + halfsize , halfsize , acctype , single_is_aligned ,

ispair] = highhalf;
36 elsif atomic && ispair then
37 AArch64.MemSingle[address , size , acctype , aligned , ispair] = value;
38 elsif !atomic then
39 assert size > 1;
40 AArch64.MemSingle[address , 1, acctype , aligned] = value <7:0>;
41
42 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned

Device memory
43 // access will generate an Alignment Fault , as to get this far means the

first byte did
44 // not , so we must be changing to a new translation page.
45 if !aligned then
46 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
47 assert c IN {Constraint_FAULT , Constraint_NONE };
48 if c == Constraint_NONE then aligned = TRUE;
49
50 for i = 1 to size -1
51 AArch64.MemSingle[address+i, 1, acctype , aligned] = value <8*i+7:8*i>;
52 elsif size == 16 && acctype IN {AccType_VEC , AccType_VECSTREAM} then
53 <highhalf , lowhalf > = value;
54 AArch64.MemSingle[address , halfsize , acctype , aligned , ispair] = lowhalf;
55 AArch64.MemSingle[address + halfsize , halfsize , acctype , aligned , ispair] =

highhalf;
56 else
57 AArch64.MemSingle[address , size , acctype , aligned , ispair] = value;
58 return;
59

Figure 7.7: Arm Mem[] write function call ASL code.

56

1 AArch64.MemSingle[bits (64) address , integer size , AccType acctype , boolean aligned
, boolean ispair] = bits(size *8) value

2 assert size IN {1, 2, 4, 8, 16};
3 constant halfsize = size DIV 2;
4 if HaveLSE2Ext () then
5 assert CheckAllInAlignedQuantity(address , size , 16);
6 else
7 assert address == Align(address , size);
8
9 AddressDescriptor memaddrdesc;

10 iswrite = TRUE;
11
12 memaddrdesc = AArch64.TranslateAddress(address , acctype , iswrite , aligned , size)

;
13 // Check for aborts or debug exceptions
14 if IsFault(memaddrdesc) then
15 AArch64.Abort(address , memaddrdesc.fault);
16
17 // Effect on exclusives
18 if memaddrdesc.memattrs.shareability != Shareability_NSH then
19 ClearExclusiveByAddress(memaddrdesc.paddress , ProcessorID (), size);
20
21 // Memory array access
22 AccessDescriptor accdesc;
23 if HaveTME () then
24 accdesc = CreateAccessDescriptor(acctype);
25 accdesc.transactional = TSTATE.depth > 0;
26 if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs)

then
27 FailTransaction(TMFailure_IMP , FALSE);
28 else
29 accdesc = CreateAccessDescriptor(acctype);
30
31 if HaveMTE2Ext () then
32 if AArch64.AccessIsTagChecked(ZeroExtend(address , 64), acctype) then
33 bits (4) ptag = AArch64.PhysicalTag(ZeroExtend(address , 64));
34 if !AArch64.CheckTag(memaddrdesc , accdesc , ptag , iswrite) then
35 AArch64.TagCheckFault(ZeroExtend(address , 64), acctype , iswrite);
36
37 PhysMemRetStatus memstatus;
38 (atomic , splitpair) = CheckSingleAccessAttributes(address , memaddrdesc.memattrs ,

size , acctype , iswrite , aligned , ispair);
39 if atomic then
40 memstatus = PhysMemWrite(memaddrdesc , size , accdesc , value);
41 if IsFault(memstatus) then
42 HandleExternalWriteAbort(memstatus , memaddrdesc , size , accdesc);
43 elsif splitpair then
44 assert ispair;
45 bits(halfsize *8) lowhalf , highhalf;
46 <highhalf , lowhalf > = value;
47
48 memstatus = PhysMemWrite(memaddrdesc , halfsize , accdesc , lowhalf);
49 if IsFault(memstatus) then
50 HandleExternalWriteAbort(memstatus , memaddrdesc , halfsize , accdesc);
51 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
52 memstatus = PhysMemWrite(memaddrdesc , halfsize , accdesc , highhalf);
53 if IsFault(memstatus) then
54 HandleExternalWriteAbort(memstatus , memaddrdesc , halfsize , accdesc);
55 else
56 for i = 0 to size -1
57 memstatus = PhysMemWrite(memaddrdesc , 1, accdesc , value <8*i+7:8*i>);
58 if IsFault(memstatus) then
59 HandleExternalWriteAbort(memstatus , memaddrdesc , 1, accdesc);
60 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
61 return;
62

Figure 7.8: Arm MemSingle[] write function call ASL code. 57

7.6.3 Translation table walks1656

It is the AArch64.TranslateAddress function which begins the process that performs the actual translation table1657

walk, converting the input virtual address to the physical one. The full ASL code is too much to contain in a single1658

figure, and so it can be found in §7.8 at the end of this chapter. This section will reference the relevant lines from1659

the translation table walk ASL.1660

Figure 7.9 is an example trace of the execution of the STR Xt,[Xn] instruction, as it would happen if we were to1661

execute it from EL1 in the EL1&0 two-stage regime. Each node represents an event in the trace (a memory or1662

register access), and the arrows between them represent control flow. TODO: Generate from an actual isla1663

trace rather than by hand? at least to be proper… TODO: Give labels to each event?1664

As described before, the instruction starts by reading the Xt and Xn registers, before beginning the call to1665

AArch64.TranslateAddress.1666

The events drawn inside the dotted box come from accesses during the call to the translation table walk functions.1667

It first calls FullTranslate (in AArch64.TranslateAddress, page 61, line 2), which calls S1Translate (in1668

AArch64.FullTranslate, page 62, line 12), which calls S1Walk (in AArch64.S1Translate, page 63, line 29) to1669

do the actual first-stage translation table walk. It begins by reading the relevant TTBR register to get the root1670

table address (in AArch64.S1Walk, page 66, line 9). This is stored in a walkstate struct, which the ASL code1671

uses to keep track of the state that changes as the walk progresses, notably, the next-level table address and1672

any accumulated permissions. It then begins the loop to do the walk, starting from the table address read from1673

the TTBR. On each iteration of the loop, the intermediate-physical address of the entry to be read is computed1674

(in AArch64.S1Walk, page 66, line 38), and passed through a second stage of translation (in AArch64.S1Walk,1675

page 66, line 47).1676

This second stage translation calls S2Walk, which behaves similarly to the S1Walk function, taking the following1677

steps: it reads the VTTBR (in AArch64.S2Walk, page 70, line 11); computes the (now) physical address of the entry1678

to read (in AArch64.S2Walk, page 70, line 41); and reads it (in AArch64.S2Walk, page 70, line 44), eventually1679

calling PhysMemRead (in AArch64.FetchDescriptor, page 72, line 23), which appears as the first R S2 L0 node1680

in Figure 7.9.1681

S2Walk continues to loop, each time updating the running walkstate with the next-level table address from1682

the decoded descriptor (in AArch64.S2Walk, page 70, line 53), until a leaf entry is found. It is either invalid (in1683

AArch64.S2Walk, page 71, line 65), or, a valid page or block entry (in AArch64.S2Walk, page 71, line 70). These1684

correspond to the next three R S2 Ln events in the figure.1685

Assuming the walk did not fail with a fault, the S2Translate function returns with the physical address of1686

the stage 1 level 0 table. S1Walk can continue, performing a read of the physical memory in the table (in1687

AArch64.S1Walk, page 66, line 52). From there, S1Walk continues in much the same way as the stage 2 walk did:1688

computing the current table intermediate-physical address, translating it to get the physical address, performing1689

the read of memory to get the descriptor, until a leaf entry is found.1690

This process generates all the events up to, and including, the final stage 1 entry read (the R S1 L3 event),1691

returning the intermediate-physical address that S1Walk computed.1692

Finally, FullTranslate calls S2Translate one last time (in AArch64.FullTranslate, page 62, line 22) on the1693

intermediate-physical address, generating the last Rreg(VTTBR) and R S2 Ln events, and producing the final PA1694

of the translation.1695

This output PA is what is passed to the PhysMemWrite of the MemSingle[] call we saw earlier, generating the1696

final W [pa]=data event in the trace.1697

7.7 Caching in TLBs1698

Hardware does not simply perform the (up to) 24 additional memory accesses for every instruction-fetch, read,1699

or write. This would have an unacceptable performance penalty. Instead, the results of previous translations1700

of the same address are cached, in specialised structures called Translation Lookaside Buffers, or simply TLBs.1701

These TLBs can store whole translation results, or the separate virtual and intermediate-physcical mappings, or1702

individual translation table entries, or a mix of the above, which we will explore more in the next chapter.1703

58

Rreg(Xn)=va

Rreg(Xt)=data

Rreg(TTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR) Rreg(VTTBR)

R S2 L0 R S2 L0 R S2 L0 R S2 L0

R S2 L1 R S2 L1 R S2 L1 R S2 L1

R S2 L2 R S2 L2 R S2 L2 R S2 L2

R S2 L3 R S2 L3 R S2 L3 R S2 L3

R S1 L0 R S1 L1 R S1 L2 R S1 L3

R S2 L0

R S2 L1

R S2 L2

R S2 L3

W [pa]=data

AArch64.TranslateAddress

Figure 7.9: Memory and register accesses during a ‘STR Xt,[Xn]’ instruction.

When the processor translates a virtual address, it first looks for it in the TLB. If there is no entry, then this is1704

called a TLB miss and a translation table walk must be performed. The results of this walk are typically then1705

cached in the TLB, so future translations of the same address can directly grab the physical address, memory1706

attributes, and permissions, without needing to do another translation table walk. This process and the various1707

microarchitectural structures are explored more in §8.3.1.1708

If there is an entry, this is referred to as a TLB hit. In this case, the result can be taken directly from the TLB.1709

Under normal circumstances, the TLB is invisible to userspace programs. However, systems code is expected to1710

manage the TLBs explicitly, using a set of instructions which Arm provide specifically for this purpose: the family1711

of TLBI TLB-maintenance instructions. When context switching, the systems software must manually manage1712

the TLB, invalidating stale entries for old mappings out of the cache. The behaviours that arise from reading from1713

potentially stale TLB entries are explored in detail in §8.5.1714

Address space identifiers TLB misses and TLB maintenance are both expensive operations, and so to reduce1715

the burden, Arm provide a mechanism to permit multiple processes’ address spaces to be loaded into the TLB at1716

the same time, by allowing the software to mark each address space with a numeric label. Arm call these address1717

space identifiers (or ASIDs).1718

Entries in the TLB are tagged with the current ASID, and so only that process will see entries in the TLB with that1719

ASID.1720

The current ASID is encoded in the high order bits of the current TTBR. During a context switch, the system1721

software needs only switch to the new translation tables for the new address space of the other process, without1722

doing TLB maintenance, so long as it ensures the ASIDs are distinct.1723

There are only finitely many ASIDs available (typically it is an 8-bit field), and so eventually TLB maintenance is1724

required to re-use a previously allocated ASID for a new address space. But this happens far less frequently than1725

the context switches themselves. The provided TLB maintenance instructions can target specific ASIDs, avoiding1726

the need to over-invalidate other cached address space translations, preventing a cascade of TLB misses in other1727

processes, further improving the runtime performance for a small amount of additional effort on the software side.1728

VMIDs Address space identifiers are used only for stage 1 translations. Stage 2 has virtual machine identifiers1729

(VMIDs).1730

As before, the current VMID is encoded in the VTTBR_EL2 register, and the TLB entries are additionally tagged1731

with the current VMID (as well as the ASID), and a translation will only use TLB entries that match the current1732

ASID and VMID.1733

59

TLB maintenace instructions Arm define a whole family of instructions under the TLBI mnemonic.1734

The format for a TLBI instruction is a product of fields:1735

TLBI <type ><level ><broadcast >{,<reg >}1736
1737

<type > =1738

ALL | VMALL | ASID | VA{A|L} | IPAS21739

<level > =1740

E1 | E21741

<broadcast > =1742

{IS}1743

<reg > =1744

X0 | X1 | ... | X301745

Again, see the full description in the Arm manual for a more complete description [1, D5-4915].1746

The most common, and the ones that will be discussed in the following chapters, are as follows:1747

. TLBI VAE1,Xn: Invalidate this CPU’s cached copies of entries used to translate the virtual address in register1748

Xn, for the EL1&0 regime, for the current ASID and VMID.1749

. TLBI VALE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the virtual1750

address in register Xn, for the EL1&0 regime, for the current ASID and VMID.1751

. TLBI VAAE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the virtual1752

address in register Xn, for the EL1&0 regime, for the current VMID, for any ASID.1753

. TLBI VAE1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the virtual address in1754

register Xn, for the EL1&0 regime, for the current ASID and VMID.1755

(…and equivalent TLBI VAE2, TLBI VALE2, TLBI VAE2IS instructions for virtual addresses in the EL21756

regime)1757

. TLBI IPAS2E1,Xn: Invalidate this CPU’s cached copies of entries used to translate the intermediate physical1758

address in register Xn, for the EL1&0 regime, for the current VMID.1759

. TLBI IPAS2LE1,Xn: Invalidate this CPU’s cached copies of any last-level entries used to translate the1760

intermediate physical address in register Xn, for the EL1&0 regime, for the current VMID.1761

. TLBI IPAS2E1IS,Xn: Invalidate all CPU’s cached copies of entries used to translate the intermediate1762

physical address in register Xn, for the EL1&0 regime, for the current VMID.1763

. TLBI VMALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the current VMID.1764

. TLBI VMALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for the current VMID.1765

. TLBI ALLE1: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for any ASID or VMID.1766

. TLBI ALLE1IS: Invalidate all CPU’s cached copies of entries for the EL1&0 regime, for any ASID or VMID.1767

(…and equivalent TLBI ALLE2, and TLBI ALLE2IS instructions for the EL2 regime)1768

. TLBI ASIDE1,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the ASID specified1769

in register Xn.1770

. TLBI ASIDE1IS,Xn: Invalidate this CPU’s cached copies of entries for the EL1&0 regime, for the ASID1771

specified in register Xn.1772

(Note that the EL2 regime does not have ASIDs)1773

60

7.8 Arm ASL Reference1774

Here I include the actual Arm ASL for the various parts of the translation machinery. This listing contains a1775

verbatim subset of the ASL pseudocode for the translation table walk.1776

The sources have per-function line numbers and are annotated to direct the reader to those parts highlighted in1777

§7.6.3. Lines which handle out-of-scope features (access flags, dirty bits, shareability domains, debugging, realms,1778

secure states, atomics) are greyed out. Key lines have coloured annotations.1779

The ASL code listed here (minus the annotations) is copyright 2022 Arm Limited, company 02557590 registered in1780

England. The ASL code is publicly available on Arm’s webpage [55], we reproduce here only those parts of the1781

ASL being discussed here (the translation table walk), for the purpose of critism, review, and quotation [56, s. 30].1782

7.8.1 AArch64.TranslateAddress

1 AddressDescriptor AArch64.TranslateAddress(bits (64) va, AccType acctype , boolean
iswrite , boolean aligned , integer size)

2 result = AArch64.FullTranslate(va, acctype , iswrite , aligned); Do the translation
3
4 if !IsFault(result) && acctype != AccType_IFETCH then
5 result.fault = AArch64.CheckDebug(va, acctype , iswrite , size);
6
7 if HaveRME () && !IsFault(result) && (acctype != AccType_DC ||
8 boolean IMPLEMENTATION_DEFINED "GPC Fault on DC operations ") then
9 accdesc = CreateAccessDescriptor(acctype);

10 result.fault.gpcf = GranuleProtectionCheck(result , accdesc);
11
12 if result.fault.gpcf.gpf != GPCF_None then
13 result.fault.statuscode = Fault_GPCFOnOutput;
14 result.fault.paddress = result.paddress;
15 result.fault.acctype = acctype;
16 result.fault.write = iswrite;
17
18 if !IsFault(result) && acctype == AccType_IFETCH then
19 result.fault = AArch64.CheckDebug(va, acctype , iswrite , size);
20
21 // Update virtual address for abort functions
22 result.vaddress = ZeroExtend(va);
23
24 return result;

61

7.8.2 AArch64.FullTranslate

1 AddressDescriptor AArch64.FullTranslate(bits (64) va, AccType acctype , boolean
iswrite , boolean aligned)

2
3 fault = NoFault ();
4 fault.acctype = acctype;
5 fault.write = iswrite;
6
7 ispriv = PSTATE.EL != EL0 && !(acctype IN {AccType_UNPRIV , AccType_UNPRIVSTREAM });
8 regime = TranslationRegime(PSTATE.EL, acctype);
9 ss = SecurityStateAtEL(PSTATE.EL);

10
11 AddressDescriptor ipa;
12 (fault , ipa) = AArch64.S1Translate

Do the first stage of translation

(fault , regime , ss, va , acctype , aligned ,
iswrite , ispriv);

13
14 if fault.statuscode != Fault_None then Check for stage 1 translation fault

15 return CreateFaultyAddressDescriptor(va, fault);
16
17 assert (ss == SS_Realm) IMPLIES EL2Enabled ();
18 if regime == Regime_EL10 && EL2Enabled () then
19 s1aarch64 = TRUE;
20 s2fs1walk = FALSE;
21 AddressDescriptor pa;
22 (fault , pa) = AArch64.S2Translate

Do the second stage of translation

(fault , ipa , s1aarch64 , ss, s2fs1walk , acctype ,
aligned , iswrite , ispriv);

23
24 if fault.statuscode != Fault_None then Check for stage 2 translation fault

25 return CreateFaultyAddressDescriptor(va, fault);
26 else
27 return pa;
28 else
29 return ipa;

62

7.8.3 AArch64.S1Translate

1 (FaultRecord , AddressDescriptor) AArch64.S1Translate(FaultRecord fault_in , Regime
regime , SecurityState ss, bits (64) va, AccType acctype , boolean aligned_in ,
boolean iswrite_in , boolean ispriv)

2 FaultRecord fault = fault_in;
3 boolean aligned = aligned_in;
4 boolean iswrite = iswrite_in;
5 // Prepare fault fields in case a fault is detected
6 fault.secondstage = FALSE;
7 fault.s2fs1walk = FALSE;
8
9 if !AArch64.S1Enabled(regime) then

10 return AArch64.S1DisabledOutput(fault , regime , ss, va, acctype , aligned);
11
12 walkparams = AArch64.GetS1TTWParams(regime , va);
13
14 if (AArch64.S1InvalidTxSZ(walkparams) ||
15 (! ispriv && walkparams.e0pd == '1') ||
16 (! ispriv && walkparams.nfd == '1' && IsDataAccess(acctype) && TSTATE.depth >

0) ||
17 (! ispriv && walkparams.nfd == '1' && acctype == AccType_NONFAULT) ||
18)AArch64.VAIsOutOfRange(va, acctype , regime , walkparams)) then

Check VA is valid19 fault.statuscode = Fault_Translation;
20 fault.level = 0;
21 return (fault , AddressDescriptor UNKNOWN);
22
23 AddressDescriptor descaddress;
24 TTWState walkstate;
25 bits (64) descriptor;
26 bits (64) new_desc;
27 bits (64) mem_desc;
28 repeat
29 (fault , descaddress , walkstate , descriptor) = AArch64.

Do the translation table walk

S1Walk(fault , walkparams ,
va, regime , ss, acctype , iswrite , ispriv);

30
31 if fault.statuscode != Fault_None then Check for S1 translation fault
32 return (fault , AddressDescriptor UNKNOWN);
33
34 if acctype == AccType_IFETCH then
35 // Flag the fetched instruction is from a guarded page
36 SetInGuardedPage(walkstate.guardedpage == '1');
37
38 if AArch64.S1HasAlignmentFault(acctype , aligned , walkparams.ntlsmd , walkstate.

memattrs) then
39 fault.statuscode = Fault_Alignment;
40 elsif IsAtomicRW(acctype) then
41 if AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams , ispriv ,

acctype , FALSE) then
42 // The Permission fault was not caused by lack of write permissions
43 fault.statuscode = Fault_Permission;
44 fault.write = FALSE;
45 elsif AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams , ispriv ,

acctype , TRUE) then
46 // The Permission fault was caused by lack of write permissions
47 fault.statuscode = Fault_Permission;
48 fault.write = TRUE;
49 elsif AArch64.S1HasPermissionsFault(regime , ss, walkstate , walkparams , ispriv ,

acctype , iswrite) then Check for permission fault

50 fault.statuscode = Fault_Permission;
51
52 new_desc = descriptor;
53 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
54 // Set descriptor AF bit
55 new_desc <10> = '1';
56

63

57 // If HW update of dirty bit is enabled , the walk state permissions
58 // will already reflect a configuration permitting writes.
59 // The update of the descriptor occurs only if the descriptor bits in
60 // memory do not reflect that and the access instigates a write.
61 if (fault.statuscode == Fault_None &&
62 walkparams.ha == '1' &&
63 walkparams.hd == '1' &&
64 descriptor <51> == '1' && // Descriptor DBM bit
65 (IsAtomicRW(acctype) || iswrite) &&
66 !(acctype IN {AccType_AT , AccType_ATPAN , AccType_IC , AccType_DC })) then
67 // Clear descriptor AP[2] bit permitting stage 1 writes
68 new_desc <7> = '0';
69
70 AddressDescriptor descupdateaddress;
71 FaultRecord s2fault;
72 // Either the access flag was clear or AP <2> is set
73 if new_desc != descriptor then
74 if regime == Regime_EL10 && EL2Enabled () then
75 s1aarch64 = TRUE;
76 s2fs1walk = TRUE;
77 aligned = TRUE;
78 iswrite = TRUE;
79 (s2fault , descupdateaddress) = AArch64.S2Translate(fault , descaddress ,

s1aarch64 , ss, s2fs1walk , AccType_ATOMICRW , aligned , iswrite , ispriv);
80
81 if s2fault.statuscode != Fault_None then
82 return (s2fault , AddressDescriptor UNKNOWN);
83 else
84 descupdateaddress = descaddress;
85
86 (fault , mem_desc) = AArch64.MemSwapTableDesc(fault , descriptor , new_desc ,

walkparams.ee, descupdateaddress);
87
88 until new_desc == descriptor || mem_desc == new_desc;
89
90 if fault.statuscode != Fault_None then
91 return (fault , AddressDescriptor UNKNOWN);
92
93 // Output Address
94 oa = StageOA(va , walkparams.tgx , walkstate); Compute IPA

95 MemoryAttributes memattrs;
96 if (acctype == AccType_IFETCH &&
97 (walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime

))) then
98 // Treat memory attributes as Normal Non -Cacheable
99 memattrs = NormalNCMemAttr ();

100 memattrs.xs = walkstate.memattrs.xs;
101 elsif (acctype != AccType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
102 walkstate.memattrs.memtype == MemType_Normal) then
103 // Treat memory attributes as Normal Non -Cacheable
104 memattrs = NormalNCMemAttr ();
105 memattrs.xs = walkstate.memattrs.xs;
106
107 // The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
108 // on the Tagged attribute
109 if HaveMTE2Ext () && walkstate.memattrs.tagged then
110 memattrs.tagged = ConstrainUnpredictableBool(Unpredictable_S1CTAGGED);
111 else
112 memattrs = walkstate.memattrs;
113
114 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION

DEFINED
115 // to be either effective value or descriptor value
116 if (regime == Regime_EL10 && EL2Enabled () && HCR_EL2.VM == '1' &&
117 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1"))

then

64

118 memattrs.shareability = walkstate.memattrs.shareability;
119 else
120 memattrs.shareability = EffectiveShareability(memattrs);
121
122 if acctype == AccType_ATOMICLS64 && memattrs.memtype == MemType_Normal then
123 if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC then
124 fault.statuscode = Fault_Exclusive;
125 return (fault , AddressDescriptor UNKNOWN);
126
127 ipa = CreateAddressDescriptor(va, oa, memattrs);
128 return (fault , ipa) Return IPA and Memory Attributes;

65

7.8.4 AArch64.S1Walk

1 (FaultRecord , AddressDescriptor , TTWState , bits (64)) AArch64.S1Walk(FaultRecord
fault_in , S1TTWParams walkparams , bits (64) va , Regime regime , SecurityState ss,
AccType acctype , boolean iswrite_in , boolean ispriv)

2 FaultRecord fault = fault_in;
3 boolean iswrite = iswrite_in;
4 if HasUnprivileged(regime) && AArch64.S1EPD(regime , va) == '1' then
5 fault.statuscode = Fault_Translation;
6 fault.level = 0;
7 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN);
8
9 walkstate = AArch64.S1InitialTTWState(walkparams , va, regime , ss); read TTBR

10
11 // Detect Address Size Fault by TTB
12 if AArch64.OAOutOfRange(walkstate , walkparams.ps, walkparams.tgx , va) then
13 fault.statuscode = Fault_AddressSize;
14 fault.level = 0;
15 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN);
16
17 bits (64) descriptor;
18 AddressDescriptor walkaddress;
19
20 walkaddress.vaddress = va;
21 if !AArch64.S1DCacheEnabled(regime) then
22 walkaddress.memattrs = NormalNCMemAttr ();
23 walkaddress.memattrs.xs = walkstate.memattrs.xs;
24 else
25 walkaddress.memattrs = walkstate.memattrs;
26
27 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION

DEFINED
28 // to be either effective value or descriptor value
29 if (regime == Regime_EL10 && EL2Enabled () && HCR_EL2.VM == '1' &&
30 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1"))

then
31 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
32 else
33 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);
34
35 DescriptorType desctype;
36 repeat For each level in {0,1,2,3}

37 fault.level = walkstate.level;
38 FullAddress descaddress = AArch64.TTEntryAddress

Get IPA of entry to read

(walkstate.level , walkparams.tgx
, walkparams.txsz , va, walkstate.baseaddress);

39
40 walkaddress.paddress = descaddress;
41
42 if regime == Regime_EL10 && EL2Enabled () then
43 s1aarch64 = TRUE;
44 s2fs1walk = TRUE;
45 aligned = TRUE;
46 iswrite = FALSE;
47 (s2fault , s2walkaddress) = AArch64.S2Translate

Do S2 translation to get the
PA of the entry

(fault , walkaddress , s1aarch64 ,
ss, s2fs1walk , AccType_TTW , aligned , iswrite , ispriv);

48
49 if s2fault.statuscode != Fault_None then Check for S2 fault
50 return (s2fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
51
52 (fault , descriptor) = FetchDescriptor

Read memory to get descriptor
(walkparams.ee, s2walkaddress , fault);

53 else
54 (fault , descriptor) = FetchDescriptor(walkparams.ee, walkaddress , fault);
55
56 if fault.statuscode != Fault_None then Check for external abort
57 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN);
58

66

59 desctype = AArch64.DecodeDescriptorType(descriptor , walkparams.ds, walkparams.
tgx , walkstate.level);

60
61 case desctype of
62 when DescriptorType_Table
63 walkstate = AArch64.S1NextWalkStateTable

Extract next level table address

(walkstate , regime , walkparams ,
descriptor);

64
65 // Detect Address Size Fault by table descriptor
66 if AArch64.OAOutOfRange(walkstate , walkparams.ps, walkparams.tgx , va) then
67 fault.statuscode = Fault_AddressSize;
68 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
69
70 when DescriptorType_Page , DescriptorType_Block
71 walkstate = AArch64.S1NextWalkStateLast

Extract page start address

(walkstate , regime , ss , walkparams ,
descriptor);

72
73 when DescriptorType_Invalid
74 fault.statuscode = Fault_Translation;
75 return

Return fault if invalid

(fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN
);

76
77 otherwise
78 Unreachable ();
79
80 until desctype IN {DescriptorType_Page , DescriptorType_Block };
81
82 if (walkstate.contiguous == '1' &&
83 AArch64.ContiguousBitFaults(walkparams.txsz , walkparams.tgx , walkstate.level))

then
84 fault.statuscode = Fault_Translation;
85 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
86 fault.statuscode = Fault_Translation;
87 // Detect Address Size Fault by final output
88 elsif AArch64.OAOutOfRange(walkstate , walkparams.ps, walkparams.tgx , va) then
89 fault.statuscode = Fault_AddressSize;
90 // Check descriptor AF bit
91 elsif (descriptor <10> == '0' && walkparams.ha == '0' &&
92 !(acctype IN {AccType_DC , AccType_IC} &&
93 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC

operations ")) then
94 fault.statuscode = Fault_AccessFlag;
95
96 return (fault , walkaddress , walkstate , descriptor);

67

7.8.5 AArch64.S2Translate

1 (FaultRecord , AddressDescriptor) AArch64.S2Translate(FaultRecord fault_in ,
AddressDescriptor ipa , boolean s1aarch64 , SecurityState ss , boolean s2fs1walk ,
AccType acctype , boolean aligned , boolean iswrite , boolean ispriv)

2 walkparams = AArch64.GetS2TTWParams(ss, ipa.paddress.paspace , s1aarch64);
3 FaultRecord fault = fault_in;
4
5 // Prepare fault fields in case a fault is detected
6 fault.statuscode = Fault_None; // Ignore any faults from stage 1
7 fault.secondstage = TRUE;
8 fault.s2fs1walk = s2fs1walk;
9 fault.ipaddress = ipa.paddress;

10
11 if walkparams.vm != '1' then Check if in a two-stage regime

12 // Stage 2 translation is disabled
13 return (fault , ipa);
14
15 if (AArch64.S2InvalidTxSZ(walkparams , s1aarch64) ||
16 AArch64.S2InvalidSL(walkparams) ||
17 AArch64.S2InconsistentSL(walkparams) ||
18 AArch64.IPAIsOutOfRange(ipa.paddress.address , walkparams)) then
19 fault.statuscode = Fault_Translation;
20 fault.level = 0;
21 return (fault , AddressDescriptor UNKNOWN);
22
23 AddressDescriptor descaddress;
24 TTWState walkstate;
25 bits (64) descriptor;
26 bits (64) new_desc;
27 bits (64) mem_desc;
28 repeat
29 (fault , descaddress , walkstate , descriptor) = AArch64.S2Walk

Do translation table walk

(fault , ipa ,
walkparams , ss, acctype , iswrite , s1aarch64);

30
31 if fault.statuscode != Fault_None then Check for stage 2 translation fault

32 return (fault , AddressDescriptor UNKNOWN);
33
34 if AArch64.S2HasAlignmentFault(acctype , aligned , walkstate.memattrs) then
35 fault.statuscode = Fault_Alignment;
36 elsif IsAtomicRW(acctype) then
37 if AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss, walkparams , ispriv ,

acctype , FALSE) then
38 // The Permission fault was not caused by lack of write permissions
39 fault.statuscode = Fault_Permission;
40 fault.write = FALSE;
41 elsif AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss, walkparams ,

ispriv , acctype , TRUE) then
42 // The Permission fault was caused by lack of write permissions.
43 // However , HW updates , which are atomic writes for stage 1
44 // descriptors , permissions fault reflect the original access.
45 fault.statuscode = Fault_Permission;
46 if !fault.s2fs1walk then
47 fault.write = TRUE;
48 elsif AArch64.S2HasPermissionsFault(s2fs1walk , walkstate , ss, walkparams , ispriv

, acctype , iswrite) then Check for stage 2 permission fault

49 fault.statuscode = Fault_Permission;
50
51 new_desc = descriptor;
52 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
53 // Set descriptor AF bit
54 new_desc <10> = '1';
55
56 // If HW update of dirty bit is enabled , the walk state permissions
57 // will already reflect a configuration permitting writes.
58 // The update of the descriptor occurs only if the descriptor bits in

68

59 // memory do not reflect that and the access instigates a write.
60 if (fault.statuscode == Fault_None &&
61 walkparams.ha == '1' &&
62 walkparams.hd == '1' &&
63 descriptor <51> == '1' && // Descriptor DBM bit
64 (IsAtomicRW(acctype) || iswrite) &&
65 !(acctype IN {AccType_AT , AccType_ATPAN , AccType_IC , AccType_DC })) then
66 // Set descriptor S2AP [1] bit permitting stage 2 writes
67 new_desc <7> = '1';
68
69 // Either the access flag was clear or S2AP <1> is clear
70 if new_desc != descriptor then
71 (fault , mem_desc) = AArch64.MemSwapTableDesc(fault , descriptor , new_desc ,

walkparams.ee, descaddress);
72
73 until new_desc == descriptor || mem_desc == new_desc;
74
75 if fault.statuscode != Fault_None then
76 return (fault , AddressDescriptor UNKNOWN);
77
78 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
79 // Output Address
80 oa = StageOA(ipa_64 , walkparams.tgx , walkstate); Compute final PA

81 MemoryAttributes s2_memattrs;
82 if ((s2fs1walk &&
83 walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||
84 (acctype == AccType_IFETCH &&
85 (walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
86 (acctype != AccType_IFETCH &&
87 walkstate.memattrs.memtype == MemType_Normal && HCR_EL2.CD == '1')) then
88 // Treat memory attributes as Normal Non -Cacheable
89 s2_memattrs = NormalNCMemAttr ();
90 s2_memattrs.xs = walkstate.memattrs.xs;
91 else
92 s2_memattrs = walkstate.memattrs;
93
94 if !s2fs1walk && acctype == AccType_ATOMICLS64 && s2_memattrs.memtype ==

MemType_Normal then
95 if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs !=

MemAttr_NC then
96 fault.statuscode = Fault_Exclusive;
97 return (fault , AddressDescriptor UNKNOWN);
98
99 MemoryAttributes memattrs;

100 if walkparams.fwb == '0' then
101 memattrs = S2CombineS1MemAttrs(ipa.memattrs , s2_memattrs); Merge memory attributes

102 else
103 memattrs = s2_memattrs;
104
105 pa = CreateAddressDescriptor(ipa.vaddress , oa, memattrs);
106 return (fault , pa); Return PA and Memory Attributes

69

7.8.6 AArch64.S2Walk

1 (FaultRecord , AddressDescriptor , TTWState , bits (64)) AArch64.S2Walk(
2 FaultRecord fault_in , AddressDescriptor ipa , S2TTWParams walkparams ,

SecurityState ss, AccType acctype , boolean iswrite , boolean s1aarch64)
3
4 FaultRecord fault = fault_in;
5 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
6
7 TTWState walkstate;
8 if ss == SS_Secure then
9 walkstate = AArch64.SS2InitialTTWState(walkparams , ipa.paddress.paspace);

10 else
11 walkstate = AArch64.S2InitialTTWState(ss, walkparams); read VTTBR
12
13 // Detect Address Size Fault by TTB
14 if AArch64.OAOutOfRange(walkstate , walkparams.ps, walkparams.tgx , ipa_64) then
15 fault.statuscode = Fault_AddressSize;
16 fault.level = 0;
17 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN);
18
19 bits (64) descriptor;
20 AddressDescriptor walkaddress;
21
22 walkaddress.vaddress = ipa.vaddress;
23 if HCR_EL2.CD == '1' then
24 walkaddress.memattrs = NormalNCMemAttr ();
25 walkaddress.memattrs.xs = walkstate.memattrs.xs;
26 else
27 walkaddress.memattrs = walkstate.memattrs;
28
29 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);
30
31 DescriptorType desctype;
32 repeat For each level in {0,1,2,3}

33 fault.level = walkstate.level;
34
35 FullAddress descaddress;
36 if walkstate.level == AArch64.S2StartLevel(walkparams) then
37 // Initial lookup might index into concatenated tables
38 descaddress = AArch64.S2SLTTEntryAddress(walkparams , ipa.paddress.address ,

walkstate.baseaddress);
39 else
40 ipa_64 = ZeroExtend(ipa.paddress.address , 64);
41 descaddress = AArch64.TTEntryAddress(walkstate.level , walkparams.tgx ,

walkparams.txsz , ipa_64 , walkstate.baseaddress);

Get PA of entry to read
42
43 walkaddress.paddress = descaddress;
44 (fault , descriptor) = FetchDescriptor

Read descriptor from memory
(walkparams.ee, walkaddress , fault);

45
46 if fault.statuscode != Fault_None then Check for external abort
47 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN);
48
49 desctype = AArch64.DecodeDescriptorType(descriptor , walkparams.ds, walkparams.

tgx , walkstate.level);
50
51 case desctype of
52 when DescriptorType_Table
53 walkstate = AArch64.S2NextWalkStateTable

Extract next level table address
(walkstate , walkparams , descriptor);

54
55 // Detect Address Size Fault by table descriptor
56 if AArch64.OAOutOfRange(walkstate , walkparams.ps, walkparams.tgx , ipa_64)

then
57 fault.statuscode = Fault_AddressSize;
58 return (fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64)

UNKNOWN);
59
60 when DescriptorType_Page , DescriptorType_Block

70

61 walkstate = AArch64.S2NextWalkStateLast

Extract page start address

(walkstate , ss, walkparams , ipa ,
descriptor);

62
63 when DescriptorType_Invalid
64 fault.statuscode = Fault_Translation;
65 return

Return fault if invalid

(fault , AddressDescriptor UNKNOWN , TTWState UNKNOWN , bits (64) UNKNOWN
);

66
67 otherwise
68 Unreachable ();
69
70 until desctype IN {DescriptorType_Page , DescriptorType_Block };
71
72 if (walkstate.contiguous == '1' &&
73 AArch64.ContiguousBitFaults(walkparams.txsz , walkparams.tgx , walkstate.level))

then
74 fault.statuscode = Fault_Translation;
75 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
76 fault.statuscode = Fault_Translation;
77 // Detect Address Size Fault by final output
78 elsif AArch64.OAOutOfRange

Check output address is within bounds
(walkstate , walkparams.ps, walkparams.tgx , ipa_64) then

79 fault.statuscode = Fault_AddressSize;
80 // Check descriptor AF bit
81 elsif (descriptor <10> == '0' && walkparams.ha == '0' &&
82 !(acctype IN {AccType_DC , AccType_IC} &&
83 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC

operations ")) then
84 fault.statuscode = Fault_AccessFlag;
85
86 return (fault , walkaddress , walkstate , descriptor);

71

7.8.7 AArch64.FetchDescriptor

1 (FaultRecord , bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress ,
FaultRecord fault_in)

2 // 32-bit descriptors for AArch32 Short -descriptor format
3 // 64-bit descriptors for AArch64
4 //or AArch32 Long -descriptor format
5 assert N == 32 || N == 64;
6 bits(N) descriptor;
7 FaultRecord fault = fault_in;
8 AccessDescriptor walkacc;
9

10 walkacc.acctype = AccType_TTW;
11 // MPAM PARTID for translation table walk is determined by the access invoking the

translation
12 walkacc.mpam = GenMPAMcurEL(fault.acctype);
13
14 if HaveRME () then
15 fault.gpcf = GranuleProtectionCheck(walkaddress , walkacc);
16 if fault.gpcf.gpf != GPCF_None then
17 fault.statuscode = Fault_GPCFOnWalk;
18 fault.paddress = walkaddress.paddress;
19 fault.gpcfs2walk = fault.secondstage;
20 return (fault , bits(N) UNKNOWN);
21
22 PhysMemRetStatus memstatus;
23 (memstatus , descriptor) = PhysMemRead(walkaddress , N DIV 8, walkacc);
24 if IsFault(memstatus) then
25 fault = HandleExternalTTWAbort(memstatus , fault.write , walkaddress , walkacc , N

DIV 8, fault);
26 if IsFault(fault.statuscode) then
27 return (fault , bits(N) UNKNOWN);
28
29 if ee == '1' then
30 descriptor = BigEndianReverse(descriptor);
31
32 return (fault , descriptor);

72

Chapter 81783

Relaxed virtual memory1784

This chapter is based, in part, on: Relaxed virtual memory in Armv8-A [54] by Ben Simner, Alasdair Armstrong, Jean1785

Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell. Published in the proceedings of the 31st1786

European Symposium on Programming (ESOP, 2022).1787

Now we will introduce the main concurrency architecture design questions that arise for virtual memory in1788

Arm. As usual, the architecture defines the envelope of behaviours which hardware must guarantee and on which1789

software may rely. This envelope must be tight enough to give the guarantees software needs to function, but still1790

loose enough to admit the range of existing and conceivable microarchitectures whose optimization techniques1791

are necessary for performance.1792

This chapter therefore will discuss both the relevant microarchitecture as we understand it, and also the behaviours1793

which it is believed software relies upon. The discussion will touch on points of several kinds: some which are1794

clear in the current Arm prose documentation; some where Arm are in the process of architecting a change; some1795

that are not documented but where the semantics is (perhaps, after discussion with Arm) clear or constrained by1796

current hardware or software practice; and, some where their modelling raised questions for which the architecture1797

is not yet well-defined, and Arm must make an architectural decision.1798

Ideally, we would be able to specify which points belong to which kind. It is, however, not so easy. There is1799

no clean separation between aspects there are clearly defined in the architecture reference, and those that are1800

not; instead, the manual has a shallow covering of many of the behaviours described here. In other places, the1801

reference may have been updated or changed over the course of the work, clarifying parts of the architecture, and1802

while this may have happened concurrently with discussing those and other points with Arm, the reference text1803

itself is solely the responsibility of Arm. In §8.9 we will return to this question, and more directly address the1804

kinds of each point discussed.1805

Chapter overview The body of this chapter will explore a sequence of key behaviours, some of which the1806

architecture guarantee and some that it does not. Each contains a description of the behaviour, including whether1807

software relies on it or known hardware guarantees it; a short discussion of the architectural intent as we1808

understand it; and any associated litmus tests.1809

This chapter will discuss a variety of interesting behaviours. In an attempt to make this chapter more approachable,1810

it is broken down into a logical progression: slowly building up from the most simple and fundamental parts of1811

the architecture, to increasingly more complex cases.1812

We will first discuss (in §8.2) how translation affects the prior ‘data memory’ TODO: PS: user-mode? tests1813

covered in previous work. Then, we shall see how the caching of translation entries is limited (§⁇) and the1814

fundamental behaviours of the translation table walk (§8.4). Building upon that, we will see that these translation1815

table walks may be cached and re-used in later translations, which is explored in detail in §8.5. Then (in §8.6),1816

we will explore how the various kinds of TLB maintenance interact with those cached translations, and other1817

translation table walks. Finally, we touch on how all of the above fit together with system registers and other1818

context changing and synchronising operations in §8.7.1819

73

Chapter Contents1820

§8.2 Aliased data memory . 771821

§8.2.1 Virtual coherence . 771822

§8.2.2 Aliasing different locations . 811823

§8.2.3 Might be same (physical) address . 821824

§8.3 What can be cached in TLBs . 821825

§8.4 Reads not from TLB . 851826

§8.4.1 Out-of-order execution . 851827

§8.4.2 Enforcing thread-local ordering . 871828

§8.4.3 Enhanced Translation Synchronization . 931829

§8.4.4 Forwarding to the translation table walker . 951830

§8.4.5 Speculative execution . 951831

§8.4.6 Single-copy atomicity . 971832

§8.4.7 Multi-copy atomicity . 971833

§8.4.8 Translation-table-walk intra-walk ordering . 981834

§8.4.9 Multiple translations within a single instruction . 981835

§8.5 Caching of translations in TLBs . 1041836

§8.5.1 Cached translations . 1041837

§8.5.2 TLB fills . 1051838

§8.5.3 micro-TLBs . 1051839

§8.5.4 Partial caching of walks . 1071840

§8.5.5 Reachability . 1091841

§8.6 TLB maintenance . 1091842

§8.6.1 Recovering coherence . 1091843

§8.6.2 Thread-local ordering and TLBI . 1131844

§8.6.3 Broadcast . 1131845

§8.6.4 Virtualization . 1161846

§8.6.5 Break-before-make . 1191847

§8.6.6 ASIDs and VMIDs . 1191848

§8.6.7 Access permissions . 1211849

§8.7 Context synchronisation . 1251850

§8.7.1 Relaxed system registers . 1251851

§8.8 Details likely to change . 1261852

§8.9 Contributions . 1261853

74

8.1 Virtual memory litmus tests1854

AArch64 CoW
Initial State

0:R0=0x2

0:R1=x

0:R3=y

0:R4=z

0:R5=z

0:R6=0b0

0:R7=pte3(x)

0:R8=page(x)

0:R9=mkdesc3(oa=pa2)

0:R10=pte3(x)

0:R20=0b0

0:VBAR_EL1=0x1000

0:PSTATE.EL=0b00

virtual x y z;

physical pa1 pa2;

x 7→ pa1 with [AP = 0b11] and default;

x 7→ invalid;

x 7→ pa2 with [AP = 0b01] and default;

y 7→ pa1;

z 7→ pa2;

identity 0x1000 with code;

*pa1 = 1;

*pa2 = 0;

Thread 0
01. STR X0,[X1]

Thread 0 EL1 Handler
01. 0x1400:

02. CBNZ X20,exit

03. LDR X2,[X3]

04. STR X2,[X4]

05. DC CIVAC,X5

06. DSB SY

07. STR X6,[X7]

08. DSB SY

09. TLBI VALE1IS,X8

10. DSB SY

11. STR X9,[X10]

12. MOV X20,#1

13. ERET

14. exit:

15. MRS X21,ELR_EL1

16. ADD X21,X21,#4

17. MSR ELR_EL1,X21

18. ERET

Final State
pa1=1 & pa2=2

Allow

Figure 8.1: Test CoW: code listing

As previously discussed, one fundamental idea to come out of the field of1855

relaxed memory is the concept of litmus tests. Virtual memory is no different,1856

and exploring the architectural intent is best done through the creation, dis-1857

cussion and evaluation of small programs which are representative examples1858

of common patterns.1859

However, as we explore more of the system semantics more and more of the1860

system state plays an integral role in the behaviours we see. For this reason1861

we need a new language for describing the state of the system, with features1862

not supported by the language supported by the previous litmus, rmem, herd,1863

and diy tools [17, 28, 14, 21], in particular, the translation table state.1864

The litmus tests here are given in the isla-axiomatic test format. I describe1865

the isla tool itself, and the extended test format syntax, in more detail in1866

TODO: ?REF?.1867

A virtual memory litmus test To illustrate this isla test format, Figure 8.11868

contains the test listing for a non-trivial virtual memory litmus test called1869

CoW (or “Copy-on-Write”).1870

This test is derived from sequence of operations the Linux kernel takes when1871

performing copy-on-write. Thread 0 tries to write to a location (call it x) that1872

is currently read-only (line 1 in the thread code), then when the fault is taken1873

the Linux exception handler begins executing (line 1 in the handler), Linux1874

performs some checks that it’s okay to copy and that it hasn’t already done1875

so (not part of the test), and then copies the physical page (lines 3 and 4 in1876

the handler, although the test here only copies one value as demonstration),1877

before flushing the data caches (line 5) so that later reads will be guaranteed1878

to see the copied values. Then Linux needs to swap over the pagetable entry1879

for x from a read-only view on the original page to a writeable mapping on1880

the freshly copied page. It does this by first ‘breaking’ the entry, making1881

it invalid (line 7), then performing the necessary TLB maintenance (line 9),1882

before writing a new mapping to the new page (line 11). Now, Linux can1883

return from the handler (line 13) and re-try the store instruction, hopefully1884

this time successfully writing to the new page.1885

The test format is split into 4 main parts:1886

. The initial state, comprised of:1887

– the per-thread register state.1888

– the global memory and pagetable state.1889

. The thread code and any exception-handler code.1890

. The interesting final state, as a predicate over the final register and1891

memory state.1892

. And, optionally, whether the outcome is allowed or forbidden by the1893

model.1894

Initial state The initial state has three virtual addresses (x, y and z), and two physical addresses (pa1 and pa2).1895

Initial register values are written like 0:R4=z, meaning register R4 on Thread 0 initially contains the value z (in1896

this case, a virtual address). Helper functions like pte3, page and mkdesc3 are used to get the address of the leaf1897

entry, the page offset and to create a new valid descriptor with the given OA, a more detailed description of the1898

functions are given later.1899

Behind the scenes, isla creates a full instantiation of the Arm translation tables, but with some holes for symbolic1900

values where the test may modify the tables. There is a default translation table, where the code and the tables1901

themselves are mapped by default and everything else is invalid.1902

The pagetable setup is then defined in a small DSL which defines a delta to that default table, specifying that1903

certain pages should be mapped or unmapped initially, as well as being able to specify the set of locations and1904

75

Thread 0

a2: Fault (W)a1: T s1:l3pte(x)

b: R y/pa1 = 0x1

c: W z/pa2 = 0x1

d: dsb sy

e: W 0x303000/s1:l3pte(x) = 0x0

f: dsb sy

g: TLBI VALE1IS page=page(x)

h: dsb sy

i: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

j: eret

k2: W pa2 = 0x2k1: T s1:l3pte(x)

coco

Figure 8.2: Test CoW: execution diagram

their initial memory values the test will need.1905

Fundamentally we categorise those locations as either virtual, intermediate, or physical. The line virtual x y1906

z in the CoW test allocates 3 virtual contiguous pages, and labels their page-aligned addresses as x, y, and z. It1907

then allocates two physical pages with addresses pa1 and pa2. Next, the setup defines the initial value of the1908

translation tables, as well as specifying the set of potential translation tables that may be in use by the test (for1909

isla to create symbolic ‘holes’ for those). Namely, the initial state starts with x mapped to pa1 with the access1910

permissions bits set to 0b11 (read-only). The next two lines tell isla that during the test x may become unmapped1911

(the descriptor may be invalid), or mapped to pa2 with AP=0b01. The test also defines two other variables, y and z1912

as aliases to the two physical pages, to help with copying the data between them, just as Linux would. Since there1913

is an exception handler in this test, we need to ensure that the code page of the handler is mapped executable at1914

EL1, which is what the identity 0x1000 with code line does (note that the handler section starts within the1915

0x1000 page). Finally, we say that the initial values of pa1 and pa2 are 1 and 0 respectively.1916

Register translation helpers The initial register state can reference parts of the initial state related to pagetables1917

through the use of helper functions. Here are the helpers used by CoW, and most of the tests in this section. The1918

full description of this format is given in TODO: ?REF?if more information is needed.1919

. pte<N>(va): The (intermediate) physical address of the level N entry in the default translation tables that1920

maps va.1921

. desc<N>(va): The 64-bit descriptor from the initial state of the level N entry that maps va (the value of1922

pte<N>(va) in the initial state).1923

. page(va): The page number that va is in (equivalently: va � 12).1924

. mkdesc<N>(oa=pa): A fresh 64-bit descriptor for a valid leaf entry at level N where the output address is1925

given by the oa parameter.1926

. mkdesc<N>(table=pa): A fresh 64-bit descriptor for a valid table entry at level N where the next-level-table1927

address is given by the table parameter.1928

Entries listed as f<N> mean a family of functions f1, f2, f3 and so on.1929

Execution diagrams Figure 8.2 is the isla-generated execution diagram for the CoW test. It illustrates a1930

candidate execution which isla found (with any symbolic holes filled with concrete values) which matched the1931

final state of the execution, and was consistent with the axioms of the model (given in Chapter 9).1932

The execution is rendered as a diagram, with separate traces for each thread, with multiple columns per thread,1933

for translations and explicit events. In the diagram, there is one thread (Thread 0), and all events belong to1934

76

its trace. There are two columns; the right-hand side are the explicit events rendered in program-order, and1935

the left-hand side contains translation events alongside any explicit events from the same instruction. Not all1936

events from the trace are displayed in the execution diagram; many uninteresting events, of register reads and1937

writes, and translation reads of unchanged entries, are suppressed. The execution displayed here is one where the1938

initial store’s translation table walk (event a1) reads an valid entry from the initial state but which did not have1939

permissions to do a write, and so generates a Fault event (a2). The execution continues, copying the memory over1940

to a new page (events b-c), before updating the translation tables to point to the new page (d-h, see §8.6.5), before1941

returning from the exception handler (j) and re-trying the store which succeeds in writing to the new page (k2),1942

giving a final state consistent with the expected final state from the test listing in Figure 8.1.1943

In general, while there could be multiple executions that correspond to the final execution, the tests are usually1944

written in a way to ensure that there is only one consistent candidate execution which corresponds to the final1945

state. In cases where the test is forbidden by the model, we still have isla induce a concrete candidate, and render1946

a diagram of the interesting forbidden execution.1947

8.2 Aliased data memory1948

Much of the previous work on relaxed memory has been concerned with what we shall call ‘data memory’: the1949

weak behaviour of concurrent loads and stores to memory. For Arm, we shall see that these previous models were1950

implicitly assuming that all locations in the test were virtual addresses, with well-formed, constant, and injective,1951

address translation mappings, which mapped all locations as readable, writable, and executable, normal cacheable1952

memory.1953

Consider a non-injective mapping. Such mappings give rise to aliasing: the situation where two distinct virtual1954

addresses in the same address space map to the same output physical address. This section will explore how the1955

behaviours of those data memory tests change in the presence of aliasing.1956

8.2.1 Virtual coherence1957

For data memory accesses, one of the most fundamental guarantee that architectures provide is coherence: in1958

any execution, for each memory location, there is a total order of the accesses to that location, consistent1959

with the program order of each thread, with reads reading from the most recent write in that order. Hardware1960

implementations provide this, despite their elaborate cache hierarchies and out-of-order pipelines, by a combination1961

of coherent cache protocols and pipeline hazard checking, identifying and restarting instructions when possible1962

coherence violations are detected.1963

For Arm, coherence is with respect to physical addresses [1, B2.3.1 (p157)] [1, D5.11.1 (p4931)] . This means that if1964

two virtual addresses alias to the same physical address, then:1965

. a load from one virtual address cannot ignore a program-order previous store to the other, as seen in the1966

following CoWR.alias test [Figure 8.3]:1967

77

AArch64 CoWR.alias

Initial State
0:R0=0x1

0:R1=x

0:R3=y

physical pa1;

x |-> pa1;

y |-> pa1;

*pa1 = 0;

Thread 0
STR X0,[X1]

LDR X2,[X3]

Final State
0:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: R y/pa1 = 0x0

rf po

This test is a variation on the standard CoWR test, where the VA is replaced
with two distinct VAs, which both alias to the same PA.
The initial state is a configuration with two virtual addresses, x and y,
which are both mapped to the physical address pa1, whose initial value is
0. The thread then stores 1 to x, then loads y. It is then forbidden for this
load to read 0.
While the Armv8-A architecture reference manual describes data caches
as being physically-indexed [1, D5.11.1 (p4931)] and so accesses via the
same PA are ‘fully coherent’, further discussions with Arm clarify that
this implies not just this coherence test, but that all prior data memory
behaviours previously examined still apply when subjected to aliasing.

Figure 8.3: CoWR.alias test

. a load from one virtual address cannot ignore the write that a program-order previous load of the other1968

address saw (CoRR0.alias+po [Figure 8.4], CoRR2.alias+po [Figure 8.5]).1969

. a load from one virtual address can have its value forwarded from a store to the other, and similarly on a1970

speculative branch (MP.alias3+rfi-data+dmb [Figure 8.6], PPOCA.alias [Figure 8.6]).1971

78

AArch64 CoRR0.alias+po
Initial State

0:R0=0b1 1:R1=x

0:R1=x 1:R3=y

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1;

x |-> pa1;

y |-> pa1;

*pa1 = 0;

Thread 0 Thread 1

STR X0,[X1]
LDR X0,[X1]

LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

Thread 1

b: R x/pa1 = 0x1

c: R y/pa1 = 0x0

rf po
rf

This test is a variation of the data memory CoRR0 test, where one of
the loads has been replaced with a load of a distinct virtual address
which aliases to the same underlying physical address.
Note that, like the original test, it is forbidden to read from the initial
state in the later load, as this would violate coherence: exactly what
the earlier text from the manual explicitly forbade.

Figure 8.4: CoRR0.alias+po test

AArch64 CoRR2.alias+po

Initial State
0:R0=0b01 1:R0=0b10 2:R1=w 3:R1=y

0:R1=u 1:R1=v 2:R3=x 3:R3=z

2:PSTATE.SP=0b0 3:PSTATE.SP=0b0

2:PSTATE.EL=0b00 3:PSTATE.EL=0b00

physical pa1;

u |-> pa1;

v |-> pa1;

w |-> pa1;

x |-> pa1;

y |-> pa1;

z |-> pa1;

*pa1 = 0;

Thread 0 Thread 1 Thread 2 Thread 3

STR X0,[X1] STR X0,[X1]
LDR X0,[X1]

LDR X2,[X3]

LDR X0,[X1]

LDR X2,[X3]

Final State
2:X0=1 & 2:X2=2 & 3:X0=2 & 3:X2=1

Forbid

Thread 0

a: W u/pa1 = 0x1

Thread 1

b: W v/pa1 = 0x2

Thread 2

c: R w/pa1 = 0x1

d: R x/pa1 = 0x2

Thread 3

e: R y/pa1 = 0x2

f: R z/pa1 = 0x1

po po
co

rf

rf

rf

rf

This test is a variation of the data memory CoRR2 test. Here there are many options for adding aliasing, so we
choose the maximally aliased version where each individual store and load uses a distinct virtual address but
where all those virtual addresses alias to the same physical one.
This gives us a classic coherence shape, where it is forbidden for different threads to observe writes to the same

physical location in different orders.

Figure 8.5: CoRR2.alias+po test

79

AArch64 MP.alias3+rfi-data+dmb
Initial State

0:R0=0x1 1:R1=y

0:R1=x 1:R3=x

0:R3=z

0:R5=y

physical pa1 pa2;

x |-> pa1;

y |-> pa2;

z |-> pa1;

*pa1 = 0;

*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]

LDR X2,[X3]

STR X2,[X5]

LDR X0,[X1]

DMB SY

LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Allow

AArch64 PPOCA.alias

Initial State
0:R0=0x1 1:R1=y

0:R1=z 1:R2=0x1

0:R2=0x1 1:R3=x

0:R3=y 1:R5=w

1:R7=z

physical pa1 pa2 pa3;

w |-> pa1;

x |-> pa1;

y |-> pa2;

z |-> pa3;

*pa1 = 0;

*pa2 = 0;

*pa3 = 0;

Thread 0 Thread 1

STR X0,[X1]

DMB SY

STR X2,[X3]

LDR X0,[X1]

CBNZ X0,L0

L0:

STR X2,[X3]

LDR X4,[X5]

EOR X8,X4,X4

LDR X6,[X7,X8]

Final State
1:X0=1 & 1:X4=1 & 1:X6=0

Allow

Thread 0

a: W x/pa1 = 0x1

b: R z/pa1 = 0x1

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: dmb sy

f: R x/pa1 = 0x0

porf

po

podata

porf

rf

Thread 0

a: W z/pa3 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W x/pa1 = 0x1

f: R w/pa1 = 0x1

g: R z/pa3 = 0x0

po

rf

poctrl

ctrl

ctrl

addr po

po

rf
rf po

These tests are variations of the standard PPOCA and MP+rfi-data+dmb tests, but with some aliasing. Both are
examples of forwarding: a thread-local read of a write before that write has been propagated to memory. These
two tests, determined to be allowed architecturally from our discussions with Arm, show that the processor can
forward from a write even if the read was for a different virtual address so long as the physical addresses match,

even down a speculative path.

Figure 8.6: PPOCA.alias and MP.alias3+rfi-data+dmb tests.

80

8.2.2 Aliasing different locations1972

In the previous section, we explored taking tests over a single location, and rewriting the test to use many locations,1973

which all alias to the same address. One can also take a test that has multiple locations and make some of them1974

alias to the same address.1975

Multi-location data memory tests, which are architecturally allowed, may become forbidden in the presence of1976

aliasing. For example, taking the traditional MP+pos test, when the two locations are aliased to the same physical1977

address then we get the forbidden MP.alias+pos test [Figure 8.7]. This new test is, essentially, equivalent to the1978

old CoRR0 test: coherence with two writes and two reads to the same location; just using different aliases.1979

AArch64 MP.alias+pos
Initial State

0:R0=0x1 1:R1=y

0:R1=x 1:R3=x

0:R2=0x1

0:R3=y

physical pa1;

x |-> pa1;

y |-> pa1;

*pa1 = 0;

Thread 0 Thread 1
STR X0,[X1]

STR X2,[X3]

LDR X0,[X1]

LDR X2,[X3]

Final State
1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: W y/pa1 = 0x1

Thread 1

c: R y/pa1 = 0x1

d: R x/pa1 = 0x0

rf po
rf

co po

Because x and y alias to the same phsical address pa1, the
two loads (c and d) read the same location, and so cannot
read different writes out-of-order.

Figure 8.7: Test MP.alias+pos

81

8.2.3 Might be same (physical) address1980

There is a corner case that we now should consider. For load and store instructions, when the last register used in1981

the calculation of the address is read, the address becomes known. This allows, in the flat model, for program-order1982

later instructions to begin execution (or at least, know they will not be restarted) at that point.1983

With the introduction of address translation, however, this point happens much later, after the whole translation1984

table walk is performed. Between the read of the register and the completion of the translation table walk, other1985

instructions may perform some part of their functionality. This may include reading from a different virtual1986

address, before the physical address of a program-order previous instruction is known, but after the virtual address1987

is known.1988

One might expect that, when deciding whether to propagate a store, if the page offset of the virtual address is1989

different to that of the in-flight program-order earlier instructions, then the write could go ahead early, knowing1990

that the access could not be to the same physical address as any of those instructions. However, this is not the1991

case. Although the accesses definitely will not access the same physical address, the program-order earlier access1992

may still fault, meaning the write will not be reached. This means that writes must wait for program-order earlier1993

translations to finish (or at least, be known to not fault) before they can be propagated to other threads.1994

8.3 What can be cached in TLBs1995

As was described in §7.7, Arm hardware can have TLBs, caching previously seen translations. But, there are1996

some restrictions to this; both in what information a TLB must cache when it does so, but also in what kind of1997

information it is not permitted to cache at all.1998

8.3.1 Microarchitectural TLBs1999

Herewemust make a clear distinction between the actualmicroarchitectural translation caching onemay encounter2000

inspecting hardware, and the architectural model being discussed here.2001

While there are possibly many different ways to describe the same architectural intent, here we carefully choose2002

one which will make building tooling, extending the model, discussions with architects, and explaining individual2003

tests easier. We will first look at a specific example to pin down terminology and gain some intuition for hardware,2004

before giving a model MMU and TLB that abstracts away from the details.2005

Microarchitectural MMU – A53 Let us explore more closely how the actual hardware fill and walk works on2006

a modern microprocessor. The Arm Cortex A53 is an Arm-designed application class processor. Previous relaxed2007

memory work included exercising this core design extensively during litmus testing validation of the models,2008

finding it to be relaxed, exhibiting many relaxed behaviours, but not aggressively so. This makes the A53 a good2009

candidate as a demonstrator of an average relaxed processor design. While other processors by Arm are more2010

aggressive in their optimisations, the MMU and TLB layout of the A53 seems typical: other cores, such as the2011

A57 TODO: ?CITE?, A72 TODO: ?CITE?, A76 TODO: ?CITE?, A78 TODO: ?CITE? and A715 TODO: ?CITE?2012

all have comparable, or simpler, TLB configurations.2013

The Arm A53 Technical Reference Manual (TRM) describes, in detail, the structure of the Memory Management2014

Unit [57, 5-2] of the A53, and its constituent parts. Figure 8.8 shows a hand-written block diagram representing2015

the key information from the TRM.2016

We see that each core has its own MMU, and that each MMU contains a unit that will perform the translation2017

table walk, in addition to a selection of translation caching structures:2018

. one instruction micro-TLB;2019

. one data micro-TLB;2020

. one unified TLB;2021

. one walk cache; and,2022

. one IPA cache.2023

The microarchitectural TLBs store whole translations: virtual to physical mappings, plus permissions and so-on,2024

tagged with their context. The TLBs are arranged hierarchically. With small, 10-entry, ‘micro’ TLBs for instruction2025

and data streams separately, and one large 512-entry unified TLB.2026

82

CPUn

MMU

Walker

i-µTLB d-µTLB

Unified TLB

Walk Cache IPA Cache

Figure 8.8: A53 Memory Management Block Diagram.

On a TLB miss, the MMU performs a translation table walk using the walker, computing the Arm translation2027

table walk ASL code which we previously explored in §7.6.2028

When it begins this walk, the MMU first checks the walk cache for a matching entry. Walk cache entires are2029

mappings from virtual address to the physical address of the last level translation table. If an entry is present the2030

MMU can skip most of the walk entirely, performing just the very last read to read the leaf entry.2031

If a second stage of translation is required during the walk, the IPA cache is used (and may be, or not, used many2032

times during the same walk). The IPA cache stores mappings from intermediate physical to physical memory —2033

with no associated virtual address — which can be used during both the final stage 2 walk and any intermediate2034

stage 2 walks during a stage 1 walk.2035

TODO: PS: walk cache s1 only? BS: that is one of thibaut’s questions to RG2036

The MMU is free to save the result of any translation table walk into these structures, including for walks due to2037

speculation, prefetching, or architectural execution. This, essentially, allows the MMU to perform a walk for any2038

arbitrary VA or IPA, at any point in time.2039

8.3.2 Model MMU2040

To abstract away from any specific microarchitecture, we will model the MMU as if it were a separate asynchronous2041

unit, one for each thread, each with an overapproximate ‘TLB’.2042

Later, we will see tests that justify and ground this particular choice of abstraction, and we will explore this model2043

and the mathematics which corresponds to it in more rigorous detail. But for now, we can imagine this model2044

MMU as a set of (concurrently) executing translation table walks and a ‘model TLB’ cache of translation table2045

entries.2046

Model TLB entries In general, the architecture permits hardware to cache whatever information from the2047

translation process the hardware sees fit, this may include the output of whole translation table walks (complete2048

virtual to physical mappings) or individual translation table entries, or even the result of partial walks (the address2049

of the last-level table, for example).2050

It would not be feasible to even attempt to enumerate all the possible shapes of TLBs and the kinds of information2051

they can cache. Instead, we will define amodel TLB.This model will treat the TLB as a cache of writes of translation2052

table entries, each tagged with some context. This allows the model to cache any combination of entries read from2053

a translation table walk, making it weak enough to allow all known TLB implementations, but strong enough to2054

not break any of the guarantees Arm require of those TLB implementations. These guarantees are explored, in2055

detail, in §8.4 and §8.5.2056

83

TranslationTableEntry ≡ u64
Context ≡ ArchContext × Stage × option VA × option IPA × PA × Level
ArchContext ≡ VMID × ASID × Regime
CachedTranslationTableEntry ≡ PA × TranslationTableEntry × Context
TLB ≡ set CachedTranslationTableEntry

Figure 8.9: Model TLB type definitions.

Each entry in the model TLB contains the information about the write itself: the physical address of the entry,2057

and the cached 64-bit entry. But it must also be tagged with some contextual information, some used during TLB2058

lookup and some used to identify cached entries during TLB invalidation. Figure 8.9 gives a consise summary of2059

the model TLB definition in some psuedo-type-definitions.2060

This contextual information includes:2061

. the architectural context information of the translation: the VMID, ASID (or a “global indicator”), and the2062

translation regime;2063

. some extended context information, required for implementing TLB maintenance:2064

– the virtual address, intermediate physical address, and/or physical address of the translation;2065

– the translation stage and level at which the write was used;2066

– the system register values used in the translation (those which can be cached); and,2067

– for an entry used for a Stage 1 translation, whether it has been invalidated at both stages.2068

The model MMU then performs all translations by doing a full translation table walk, but being able to optionally2069

satisfy any read during that walk from a matching entry in the model TLB which matches the architectural context2070

and input address.2071

We imagine that any behaviour exhibited by a specific micro-architectural MMU and TLB configuration would2072

also be explainable in this model.2073

TLB fills Hardware has a variety of mechanisms which may lead to a translation table walk: direct architectural2074

execution of instructions, pre-fetching of data or instructions, and speculation down branches. These translation2075

table walks may result in TLB misses, and those misses then result in reads from memory and the MMU ‘filling’2076

the TLB with a copy of the information it can use in future.2077

Arm do not wish to enumerate all the possible speculation machinery or prefetchers so instead opt for a model2078

that is weaker: at any point in time, any thread’s MMU can spontaneously perform a translation table walk for any2079

virtual or intermediate-physical address for the current architectural context (VMID, ASID, etc, as in §8.3.2), and2080

any reads that the translation table walk performs can either read from other TLB entries, or perform a non-TLB2081

read of memory and then potentially cache a copy of the write it reads from in the TLB tagged with the extended2082

context information from the walk. The behaviour of those non-TLB reads are explored more in §8.4.2083

8.3.3 Invalid entries2084

It is architecturally forbidden to cache information from attempted translations which result in translation faults,2085

access flag faults, or address size faults (Note that a translation table walk may give rise to other faults as well,2086

as discussed in §7.3.2, such as permission faults and alignment faults, which do not impose restrictions on TLB2087

caching). More specifically, a TLB entry cannot be a write of a translation table entry which is the direct cause of2088

such a fault. In particular, the TLB cannot cache translation table entries whose valid bit is not set.2089

This is important, as it gives software a mechanism in which it can safely update a mapping without potentially2090

having multiple entries in the TLB for the same virtual address. These problems are described in more detail2091

during the exploration of break-before-make in §8.6.5.2092

TODO: PS: no forward refs to tests?2093

84

AArch64 CoWTf.inv+po

Initial State
0:R0=desc3(y)

0:R1=pte3(x)

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X2,#0

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

po

trf

iio

po

Thread local re-ordering lets the translation (b1) of the
load instruction happen earlier than the write to the trans-
lation table (a). This allows the load to trigger a data abort
(a translation fault, b2).

Figure 8.10: Test CoWTf.inv+po

8.4 Reads not from TLB2094

The requirement that invalid entries are not cached in the TLB gives us a way to directly observe non-TLB reads:2095

translation table reads which result in a translation fault must have come from a non-TLB read.2096

We will see that these reads have some important properties that software can rely on, but that some of those2097

properties will depend on certain architecture features being enabled (namely FEAT_ETS).2098

In this section will we explore the properties these reads have, and the guarantees software can rely on. We shall2099

see that these reads are affected by thread-local re-ordering, even to a greater extent than data memory reads, and2100

the synchronization that recovers the sequential semantics. We will see how these reads from the translation2101

table walk relate to data memory reads, with respect to coherence, multi-copy atomicity, write forwarding and so2102

on. Finally, we will see how the FEAT_ETS architectural feature can change the required synchronization software2103

needs to perform.2104

8.4.1 Out-of-order execution2105

First, let us consider whether reads that do not come from the TLB preserve the original program order.2106

po-previous writes One of the simplest questions one might ask is whether a translation-table-walk non-TLB2107

read can ignore a program-order previous store.2108

This scenario is captured by the CoWTf.inv+po test [Figure 8.10]. Starting with a VA x initially invalid at level 3,2109

and so cannot have its level 3 entry cached in any TLB (directly or indirectly), the test then overwrites the invalid2110

entry with a new valid entry pointing to the physical address pa1. Program-order later, the thread then attempts2111

to read x.2112

We see that the thread can take a translation fault. This fault is caused by reading an invalid entry, which was read2113

from a stale entry in memory, ignoring the program-order previous store to the translation table entry’s location.2114

One explanation that suffices to allow this outcome is that the instructions can be locally re-ordered; the translation2115

table walk of the later load instruction can happen much earlier than the program-order previous store, and satisfy2116

its read from memory first.2117

po-previous reads Similarly, the reads of a translation table walk can be locally re-ordered with respect to2118

program-order earlier loads of the translation table entry, as demonstrated in the CoRpteTf.inv+po test [Figure 8.11].2119

85

AArch64 CoRpteTf.inv+po
Initial State

0:R0=desc3(y) 1:R1=pte3(x)

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

option default_tables = true;

physical pa1;

intermediate ipa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

identity 0x1000 with code;

*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]
LDR X0,[X1]

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=desc3(y) & 1:X2=0

Allow

The translation read (event c1) can be re-ordered with
respect to the program-order previous load of l3pte(x)
(b), even though the load read the new translation table
entry, for the same location the translation reads from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf po

iio

rf

Figure 8.11: Test CoRpteTf.inv+po

86

AArch64 LB.TT.inv+pos
Initial State

0:R1=x 1:R1=y

0:R2=mkdesc3(oa=pa1) 1:R2=mkdesc3(oa=pa1)

0:R3=pte3(y) 1:R3=pte3(x)

0:VBAR_EL1=0x1000 1:VBAR_EL1=0x2000

0:PSTATE.SP=0b0 1:PSTATE.SP=0b0

0:PSTATE.EL=0b00 1:PSTATE.EL=0b00

physical pa1;

x |-> invalid;

y |-> invalid;

x 7→ pa1;

y 7→ pa1;

*pa1 = 1;

identity 0x1000 with code;

identity 0x2000 with code;

Thread 0 Thread 1
MOV X0,#0

LDR X0,[X1]

STR X2,[X3]

MOV X0,#0

LDR X0,[X1]

STR X2,[X3]

Thread 0 EL1 Handler Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

0x2400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

0:X0=1 & 1:X0=1

Forbid

Thewrites to the translation tables (b and d) are forbidden
from propagating to other threads before the program-
order earlier translations (a1 and c1) are satisfied, forbid-
ding them from reading from each other’s writes.

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303008/s1:l3pte(y) = mkdesc(addr=page(pa1))

Thread 1

c2: R y/pa1 = 0x1c1: T s1:l3pte(y)

d: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio iio
po potrf

trf

Figure 8.12: Test LB.TT.inv+pos

po-future writes A translation table walk read may not, in general, be re-ordered with program-order later2120

stores.2121

This is consistent with the description in §8.2.3, as the program-order later store might not architecturally happen2122

if the translation table walk read were to fault. So, the later writes are speculative until the translation has finished,2123

preventing the write from propagating until then.2124

This forbids both the general re-ordering of the propagation of the write to other threads (LB.TT.inv+pos [Fig-2125

ure 8.12]) with program-order earlier translation table walks, and, translations reading from program-order later2126

writes (CoTW1.inv [Figure 8.13]).2127

8.4.2 Enforcing thread-local ordering2128

Since non-TLB reads do not necessarily preserve the program order, it appears that there are no coherence2129

guarantees one can make about them. However, by introducing some thread-local ordering constructs, we can2130

recover some of the strong guarantees we are used to.2131

To force a non-TLB read to happen after some program-order earlier event we can insert the two-instruction2132

sequence DSB SY ; ISB between them. The DSB (“Data Synchronization Barrier”) waits for all loads to satisfy2133

and for all stores to have finished and be visible to translation table walkers, before the ISB (“Instruction2134

Synchronization Barrier”) flushes the pipeline and restarts any program-order later instructions, including any2135

translation table walks they perform.2136

Locally-ordered-previous writes If we introduce this sequence into the previous CoWTf.inv+po test we obtain2137

the CoWTf.inv+dsb-isb test [Figure 8.14], which is forbidden by Arm. This is because the non-TLB reads, in the2138

87

AArch64 CoTW1.inv

Initial State
0:R1=x

0:R2=desc3(y)

0:R3=pte3(x)

0:VBAR_EL1=0x1000

0:PSTATE.EL=0b00

0:PSTATE.SP=0b0

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0
LDR X0,[X1]

STR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X0,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

0:X0=1

Forbid

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio
po

trf

The store to the translation table (b) cannot be re-ordered
with the program-order earlier translation table walk (a),
preventing that walk from reading from the store.

Figure 8.13: Test CoTW1.inv

absence of non-coherent TLB caching structures (discussed more in §8.6.1), will read from the coherent storage2139

subsystem, and so will be required to see the new write, or something coherence after it.2140

Locally-ordered-previous reads If a program-order previous load has already seen some other-thread write,2141

either through a translation (CoTTf.inv+dsb-isb [Figure 8.15]), or through a normal data load of the translation2142

table (CoRpteTf.inv+dsb-isb [Figure 8.16]), then translation table non-TLB reads which are ordered after that read2143

must also see that write, or a write coherence after it. These tests use the DSB; ISB sequence previously described,2144

but any ordering to the translation table walk (described in §8.4.3) will suffice.2145

Microarchitecturally this is because translation table walkers are ‘separate observers’. The idea is that the MMU2146

performs reads of memory the same way any of the other observers (threads) do, meaning that those reads behave2147

almost exactly like normal data memory reads.2148

This ‘separate observers’ principle is a reasonable model, however, we will see later on in §8.4.4 where it begins to2149

break down.2150

Instruction synchronization barrier and control dependencies The ISB instruction naturally orders all2151

translation table walks of program-order later instructions with the ISB itself. This is because the ISB effectively2152

restarts all program-order later instructions, including any translations they do.2153

However, an ISB is not naturally ordered with respect to program-order earlier instructions. That is why in the2154

previous tests we introduced a DSB. But a control-dependency would also work (CoTTf.inv+ctrl-isb [Figure 8.17]).2155

Address dependencies In previous work, address dependencies were assumed fundamental, but now we can2156

define what an address dependency is: a register dataflow dependency into the translation table walk reads.2157

Address dependencies remain a strong way to order events. Arm, here and in general, avoid speculation of the2158

values and addresses of the explicit reads and writes to memory. This means that a translation table walk will not2159

start until after its address dataflow dependent registers are fully determined. Note, that this does not mean that2160

pre-fetching and caching of the walk cannot happen, it’s just that the architectural translation table walk must2161

retrieve any cached values after it is known what the address will be, see §TODO: ?REF?.2162

For non-TLB translation reads this means that a non-TLB read is locally ordered after any read whose value flows2163

into the non-TLB read, as in CoRpteTf.inv+addr [Figure 8.18].2164

Memory barriers Much of the earlier work in relaxed-memory concurrency was dedicated to the behaviour of2165

barriers. The Arm data memory barrier (DMB) creates ordering between memory events program-order earlier2166

than the barrier, and memory events program-order after the barrier.2167

88

AArch64 CoWTf.inv+dsb-isb
Initial State

0:R0=desc3(y)

0:R1=pte3(x)

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X2,#0

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

0:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

The write to the translation table (a) is ordered before the
non-TLB read of the entry (d1) because of the intervening
DSB;ISB sequence, creating local order. This ordering
ensures that the non-TLB read respects the coherence
order up to the point of the write a, preventing the non-
TLB read from reading from a write coherence-before
a.

Figure 8.14: Test CoWTf.inv+dsb-isb

AArch64 CoTTf.inv+dsb-isb
Initial State

0:R0=desc3(y) 1:R1=x

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

LDR X2,[X1]

MOV X0,X2

DSB SY

ISB
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Forbid

The second translation-table non-TLB read of x (e1) is
locally ordered after the first translation table walk (b1)
because of the intervening dsb; isb sequence, and so
cannot see a write coherence-before the write the earlier
(b1) translation-read read from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

iio
po

iio

trf

Figure 8.15: Test CoTTf.inv+dsb-isb

89

AArch64 CoRpteTf.inv+dsb-isb
Initial State

0:R0=desc3(y) 1:R1=pte3(x)

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

option default_tables = true;

physical pa1;

intermediate ipa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

identity 0x1000 with code;

*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]

LDR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=desc3(y) & 1:X2=0

Forbid

The final translation table walk of x (e1) cannot be re-
ordered with the program-order previous load of pte3(x)
(b), because of the intervening DSB;ISB sequence. The
non-TLB translation read of pte3(x) (e1) therefore must
read from the same write as the earlier load, or something
coherence-after it.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

po

iio

rf

Figure 8.16: Test CoRpteTf.inv+dsb-isb

90

AArch64 CoTTf.inv+ctrl-isb
Initial State

0:R0=desc3(y) 1:R1=x

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

MOV X0,#0

LDR X0,[X1]

EOR X4,X0,X0

CBNZ X4,LC00

LC00:

ISB
MOV X2,#0

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Forbid

Control-ISB locally-orders the later translation table walk
(d1) after the resolution of the control flow, which hap-
pens only after the satisfaction of the read b2.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

trf

iio
poctrl

ctrl

ctrl

iio

trf

Figure 8.17: Test CoTTf.inv+ctrl-isb

91

AArch64 CoRpteTf.inv+addr
Initial State

0:R0=desc3(y) 1:R1=pte3(x)

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

option default_tables = true;

physical pa1;

intermediate ipa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

identity 0x1000 with code;

*pa1 = 1;

Thread 0 Thread 1

STR X0,[X1]

LDR X0,[X1]

EOR X4,X0,X0

LDR X2,[X3,X4]

Thread 1 EL1 Handler
0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=desc3(y) & 1:X2=0

Forbid

The address dependency from the load b to the second
load, orders the reads due to the translation table walk
of that load (c1) after b. Since c1 is a non-TLB read, it
cannot read from a write coherence-before the write b
read from.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf
addr

po

iio

rf

Figure 8.18: Test CoRpteTf.inv+addr

92

AArch64 CoWTf.inv+dmb

Initial State
0:R0=desc3(y)

0:R1=pte3(x)

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1;

x |-> invalid;

x 7→ pa1;

y |-> pa1;

*pa1 = 1;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DMB SY

LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X2,#0

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

0:X2=0

Allow (if not ETS)

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

po

trf

iio

po

The non-TLB read c1 is not locally ordered after the write
a, despite the intervening dmb sy barrier (b).

Figure 8.19: Test CoWTf.inv+dmb

We will see that this applies to explicit memory events only: the principal reads and writes that load and store2168

instructions perform, not the implicit reads and writes they do during translations (or instruction fetching, TODO:2169

ref: ifetch chapter).2170

Ordering of the explicit memory events does not, automatically, induce ordering between those explicit events2171

and any reads due to translation table walks performed by those instructions. In the next subsection, we will2172

see how FEAT_ETS (§8.4.3) extends the architecture to include more orderings between translations and other2173

memory events in the same thread.2174

Figure 8.19 shows a simple coherence test, with a data memory barrier between a store to the translation tables2175

and a load whose translation table walk might read from that. We can see that the barrier does not enforce that2176

the translation table walk sees the update to the translation tables. From the previous tests, we know this means2177

that the translation table walk happened (microarchitecturally) before the store was propagated to memory.2178

The arm DMB vs DSB instructions TODO: PS: discuss DMB v DSB2179

The architectural intent for DMB’s ordering with respect to translation table walkers in the absence of FEAT_ETS is2180

still tentative, so we shall focus on the fragment with FEAT_ETSTODO: … and continue.2181

8.4.3 Enhanced Translation Synchronization2182

TODO: PS: litmus tests?2183

Recent versions of the Arm architecture require support for FEAT_ETS: Enhanced Translation Synchronization.2184

This feature does not change the ISA, but instead, requires implementations to enforce extra ordering.2185

The Arm Architecture Reference Manual says the following [1, D5.2.5 (p4802)] :2186

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second
memory access RW2, then RW1 is also Ordered-before any translation table walk
generated by RW2 that generates any of the following:

. A Translation fault.

. An Address size fault.

. An Access flag fault.
2187

This prose description is a little ambiguous, and we feel, needs some clarification: The scenario being described2188

here is a case with two instructions, I1 and I2, each either a load or store. Imagine I1 and I2 both executing to2189

completion, without generating any translation, address size, or access flag faults. Then, each instruction would2190

93

T100 T101 E10: R x

T200 Tf201 E20: Fault (W)

iio iio

iio iio

addrob

I1:

I2:

Figure 8.20: ETS Ghost events example: A load instruction (I1) followed followed (in program order) by a store
instruction (I2), which faults. The address dependency means that the read event E10 is syntactically ordered-before
the (ghost) write event E20, and so the read event is ordered before the reads of the translation table walk for I2 read
from the TLB or memory (represented by the dashed ob line).

have generated one or more explicit memory events. For example, a store might generate up to 8 separate write2191

events (one for each byte). Call those events Eij for the jth explicit event of instruction Ii.2192

Each explicit event Eij would have required a translation table walk, generating translation read events which we2193

can call Tijk for the kth translation-table-walk read for the jth explicit memory event for instruction Ii.2194

Then, if I2 generates a translation, address size, or access flag fault, and E1n would have been locally-ordered-before2195

E2m in the imagined execution without the fault (and which we can consider a kind of ghost event in the real2196

execution), and FEAT_ETS is enabled, then, E1n is locally ordered before any translation table read T2m_ in the2197

execution with the fault. This scenario is described pictographically in Figure 8.20.2198

The intuition here is that, microarchitecturally, on implementations that support FEAT_ETS, when an instruction2199

takes an exception, the access that caused it is re-tried once the prefix of instructions is non-restartable. This2200

reduces spurious aborts: faults that come from an out-of-order read of a (what is now) stale value from memory.2201

Other effects Thearchitecturally desired effect of FEAT_ETS seems to be that no additional context-synchronisation2202

should be required to prevent spurious aborts, and that simple local orderings (barriers, dependencies) should be2203

enough. To make this so, ETS must implicitly enforce more than just the aforementioned ordering constraints.2204

Specifically, TLBI instructions must have stronger thread-local orderings to translation-table walks (described in2205

more detail later); translation table walks must be (other) multi-copy atomic; and, translation table walk reads2206

must be coherent and single-copy atomic.2207

non-ETS fragment There is a question here as to whether we should consider the non-ETS behaviours of the2208

architecture. On the one hand, hardware in use today is from a pre-ETS version of the architecture and so we2209

cannot assume that the behaviours of those devices are consistent with ETS. On the other hand, ETS is a feature2210

that is widely assumed by software, even if not present on hardware.2211

Linux, for example, assumes implementations are ETS compatible even when they are not. Building models that2212

capture the full extent of the non-ETS fragment would have questionable benefits as one would have to assume2213

an ETS model when verifying software. Additionally, as ETS is becoming a mandatory feature, the concerns over2214

non-ETS hardware will diminish over time, perhaps even by the publication of this thesis, they will be questions of2215

the past. Finally, the semantics of this non-ETS fragment is still unclear; there are numerous questions, especially2216

around forwarding and multi-copy atomicity generally, which are grey areas in the non-ETS fragment which Arm2217

have yet to explicitly decide one way or another.2218

For these reasons we will assume FEAT_ETS is present and enabled, unless explicitly stated otherwise.2219

Ordering to the translation table walk We can now define which constructs give rise to local ordering2220

into a translation table walk. Address dependencies, and locally-ordered context-synchronisation (in particular,2221

the DSB; ISB sequence) always give rise to ordering to the translation table walks. Control dependencies, on2222

their own, never give rise to such ordering. If using FEAT_ETS, then a plain DSB orders translation table walks of2223

program-order later instructions after it. TODO: BS: even if there’s no fault? Other barriers may give ordering2224

to the translation table walker, if using FEAT_ETS and the translation results in a translation fault, and those2225

barriers would have ordered the event that would have happened otherwise.2226

94

AArch64 R.TR.inv+dmb+trfi
Initial State

0:R0=0x2 1:R0=mkdesc3(oa=pa1) 2:R1=pte3(w)

0:R1=x 1:R1=pte3(w)

0:R2=0x2 1:R3=w

0:R3=pte3(w) 1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1;

w |-> invalid;

w 7→ pa1;

w 7→ raw(2);

x |-> pa1;

*pa1 = 0;

identity 0x1000 with code;

Thread 0 Thread 1 Thread 2
STR X0,[X1]

DMB SY

STR X2,[X3]

STR X0,[X1]

MOV X2,#1

LDR X2,[X3]

LDR X0,[X1]

LDR X2,[X1]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X2=0 & 2:X0=2 & 2:X2=mkdesc3(oa=pa1)

Allow

The write of the new valid entry (d) can be
forwarded locally to the translation of w (e1)
allowing the read of w (e2) to satisfy early.
TODO: PS: Thread2 needs explaining

Thread 0

a: W x/pa1 = 0x2

b: dmb sy

c: W 0x303000/s1:l3pte(w) = 0x2

Thread 1

d: W 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

e2: R w/pa1 = 0x0e1: T s1:l3pte(w)

Thread 2

f: R 0x303000/s1:l3pte(w) = 0x2

g: R 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

po

rf po

iio

po
rf

po
trf

co

rf

Figure 8.21: Test R.TR.inv+dmb+trfi

8.4.4 Forwarding to the translation table walker2227

Writes take time to propagate out to memory to other cores. One common performance optimization is gathering:2228

collecting multiple writes together in a store buffer and propagating them all out together.2229

To maintain uniprocessor semantics, the core can read from its own store buffer, in effect, allowing it to read from2230

writes before they’ve been propagated out to other cores. This behaviour is referred to as write forwarding.2231

Although the translation table walker is described as a ‘separate’ observer, it is also part of the core that hosts it,2232

and is allowed to read from that core’s store buffer, effectively allowing writes to be ‘forwarded’ to the walker, as2233

shown in the R.TR.inv+dmb+trfi test [Figure 8.21].2234

The simplest model here is one where non-TLB translation reads behave as a normal data memory read, reading2235

either from forwarding from the store buffer, or from the coherence-latest write in the storage subsystem.2236

8.4.5 Speculative execution2237

To facilitate fast out-of-order pipelines the machine has to begin fetching and executing the next instruction2238

before the earlier instructions are finished. But, those instructions might control the flow of execution through2239

the program. Executing later instructions before they are finished means that those later instructions are being2240

executed speculatively: they may, if the predicted flow turns out to be incorrect, need to be discarded, TODO: PS:2241

what about restarting on coherence violations? to avoid the need for rollback across threads.2242

When executing down a speculative path like this, there are additional restrictions that the core must adhere to. For2243

example, stores should not be propagated out to memory, although they can still be read from by program-order2244

later reads in the same thread.2245

Since we know reads and writes can be performed speculatively, their associated translations must also be allowed2246

95

AArch64 MP.RTf.inv+dmb+ctrl
Initial State

0:R0=desc3(z) 1:R1=y

0:R1=pte3(x) 1:R3=x

0:R2=0b1 1:VBAR_EL1=0x1000

0:R3=y 1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1 pa2;

x |-> invalid;

x 7→ pa1;

z |-> pa1;

*pa1 = 1;

y |-> pa2;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

DMB SY

STR X2,[X3]

LDR X0,[X1]

CBNZ X0,L0

L0:

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Allow

The non-TLB read in Thread 1 (e1) is not locally ordered
after the earlier load (d), despite the control dependency.
This is because the processor can speculatively perform
the translation table walk, before the earlier read is satis-
fied.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po po

trf ctrlpo

ctrliio

po

rf

Figure 8.22: Test MP.RTf.inv+dmb+ctrl

to have been performed speculatively. This is what allows the MP.RTf.inv+dmb+ctrl test [Figure 8.22] to see an old2247

value for the translation table entry, as the translation can be performed speculatively. TODO: PS: If this were a2248

”user” test, I’d say that e1 was satisfied out-of-order w.r.t. d, not that e1 was ”performed speculatively”.2249

Or I’d expect to see a test with control-flow speculation, or argument that the second instruction is2250

speculative until the first is known not to fault. Are you not distinguishing between out-of-order and2251

speculative execution any more? TODO: BS: but speculation implies OoO?2252

However, forwarding from a speculative write to the translation table walker is disallowed. Since reads to read-2253

sensitive locations (such as devices) can have side-effects, software can protect those locations by marking them as2254

device memory in the translation tables, or leaving them unmapped altogether. A speculative write could update2255

the translation tables arbitrarily, including allowing reads to read-sensitive locations, so it must be forbidden for a2256

translation read to read from a still speculative write. The MP.RT.inv+dmb+ctrl-trfi test [Figure 8.23] demonstrates2257

this, requiring that the translation table walk on the speculative path cannot read from the still-speculative store2258

to the translation tables.2259

Instruction restarts A related, but separate, concept, is that of instruction restarts. In the TODO: PS: user-2260

mode? base memory model a read might be satisfied early, out-of-order with respect to program-order previous2261

instructions, even before those instructions’ accesses addresses are known. If such an earlier access turned out to2262

be to the same address, and the later access is not a read of the same write, then the later access must be restarted2263

to avoid coherence violations.2264

Translation table walk reads, while they are reads, do not do this hazard checking, and so are not required to be2265

restarted to recover coherence. See §8.2 for more discussion on this. TODO: PS: 8.2 has a lot of stuff, point to2266

specifics?2267

96

AArch64 MP.RT.inv+dmb+ctrl-
trfi

Initial State
0:R0=0b1 1:R1=y

0:R1=x 1:R2=mkdesc3(oa=pa1)

0:R2=0b1 1:R3=pte3(w)

0:R3=y 1:R5=w

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1 pa2;

w |-> invalid;

w 7→ pa1;

x |-> pa1;

*pa1 = 0;

y |-> pa2;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

DMB SY

STR X2,[X3]

LDR X0,[X1]

CBZ X0,LC00

LC00:

STR X2,[X3]

LDR X4,[X5]

Thread 1 EL1 Handler
0x1400:

MOV X4,#2

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X4=0

Forbid

Thread 0

a: W x/pa1 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

f2: R w/pa1 = 0x0f1: T s1:l3pte(w)

po rf

ctrl

ctrl po

iio

po

rf

trf
po

The non-TLB read of the translation table entry (f1) can-
not read from a forwarded thread-local write (event e)
when on a speculative path, requiring that f1 be ordered
after d. TODO: PS: manual layout this

Figure 8.23: Test MP.RT.inv+dmb+ctrl-trfi

8.4.6 Single-copy atomicity2268

In the base memory model, there are two key guarantees on the atomicity of reads and writes: single-copy and2269

multi-copy atomicity.2270

Recall that, single-copy atomic reads always read the maximum it can from another single-copy atomic write; in2271

particular a 64-bit atomic never partially reads from another 64-bit atomic write.2272

Translation table walk reads are 64-bit single-copy-atomic reads of memory. This means that each of the reads2273

generated by a translation table walk will read the entire descriptor in one shot. This causes the CoWroW.inv+dsb-2274

isb test [Figure 8.24] to be forbidden, disallowing reading the output address obtained from one write, and access2275

permissions from another.2276

8.4.7 Multi-copy atomicity2277

Multi-copy atomicity is a guarantee that requires any update to memory to propagate to all other threads2278

simultaneously. This is one of the core guarantees Armv8 and RISC-V give, but earlier versions of Arm and IBM’s2279

current Power architectures do not. This has a caveat for Armv8, which is described as other-multi-copy atomic:2280

threads can observe their own writes early (through write forwarding).2281

Microarchitecturally, a thread can only read another thread’s write by reading from a global coherent storage2282

subsystem. This ensures that after the thread reads from that write, any other thread must also see that write, or2283

something coherence after it. While this is a property that the base model seems to have, whether it is true for2284

accesses during translation table walks is a separate question.2285

The non-TLB reads during a translation table walk, in fact, do seem to respect this property: if one other thread2286

has observed a write through a translation table walk then future translation table walk non-TLB reads by other2287

threads will also observe that write (or something newer). Axiomatically, if one thread translation-reads-from a2288

write, then all translation-table-walk reads locally-ordered after another memory event, which is itself ordered2289

after the other thread’s translation-table-walk read, will be ordered after that translation-table-walk read.2290

There are three combinations of multi-thread reads of interest, where a weaker architecture (with separate2291

pagetable and data memory storage) might have mixed non-multi-copy atomic behaviours. The first of these is2292

97

AArch64 CoWroW.inv+dsb-isb

Initial State
0:R0=mkdesc3(oa=pa1, AP=0b11)

0:R1=pte3(x)

0:R2=0x1

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1;

x |-> invalid;

x 7→ pa1 with [AP = 0b11] and default;

*pa1 = 0;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DSB SY

ISB
STR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

pa1=1

Forbid

The translation table walk of the
second store must read from the
entire write from the earlier store,
or not at all, forbidding its trans-
lation walk from reading a mix of
both the initial state and the ear-
lier write. Thismeans there should
be no way the final store can hap-
pen, as it must either be invalid or
read-only.
Note that, isla does not generate
candidates with non-atomic reads
which are supposed to be single-
copy atomic, and so the diagram
is hand-drawn TODO: Draw it.

Figure 8.24: Test CoWroW.inv+dsb-isb

the most basic; translation-read to translation-read, that is, the pagetable accesses are multi-copy atomic, and2293

this is what forbids reading the old translation table value in Thread 2 in the WRC.TRTf.inv+po+dsb-isb test2294

[Figure 8.25]. The other two are combinations of read-to-translation-read and translation-read-to-read, these2295

show us that the translation accesses and explicit data accesses are architecturally unified: information about the2296

memory state learned through one kind of access apply to accesses of the other. This is what forbids the following2297

WRC.RRTf.inv+dmb+dsb-isb [Figure 8.26] and WRC.TRR.inv+po+dsb [Figure 8.27] tests, from reading the old2298

value from memory at the end of Thread 2.2299

TODO: PS: these all need text captions2300

8.4.8 Translation-table-walk intra-walk ordering2301

All the tests so far have been concerned with changes to at most one of the translation table entries during a2302

single walk, however, as we saw in §7 a translation table walk may perform many reads for a single translation.2303

The ASL for the translation table walker performs each translation, in order, starting with the root, and ending2304

with the leaf entry.2305

While reads in a thread can be re-ordered, translation-reads within a translation table walk cannot, as this would2306

require the hardware to do value speculation on the next-level table address, and as discussed in §8.4.5 reading2307

from speculative values in a translation table walk is generally forbidden.2308

Requiring the translation reads from a translation table walk to be satisfied in translation walk order has an2309

observable effect, for example in the following ROT.inv+dsb test [Figure 8.28] the translation table walk of the2310

read in Thread 1 must see the writes to the translation table done by Thread 0 in the order they were propagated2311

out to memory, and so reading from the old level 3 entry is forbidden.2312

8.4.9 Multiple translations within a single instruction2313

Some instructions generate multiple explicit memory events, such as for the load pair and store pair instructions,2314

or misaligned accesses, or potentially some read-modify-writes. When there are multiple explicit memory events,2315

there will be a dedicated translation for each of them, with its own translation table walk.2316

Here the architecture as it is written today is overly sequentialised: the ASL for these cases performs each2317

translation (and the respective access) in some order, but the architectural intent is that the separate translations2318

should be unordered with respect to each other.2319

98

AArch64 WRC.TRTf.inv+po+dsb-isb
Initial State

0:R0=desc3(z) 1:R1=x 2:R1=y

0:R1=pte3(x) 1:R2=0b1 2:R3=x

0:PSTATE.EL=0b00 1:R3=y 2:VBAR_EL1=0x2000

0:PSTATE.SP=0b0 1:VBAR_EL1=0x1000 2:PSTATE.SP=0b0

1:PSTATE.EL=0b00 2:PSTATE.EL=0b00

1:PSTATE.SP=0b0

physical pa1 pa2;

x |-> invalid;

x 7→ pa1;

z |-> pa1;

*pa1 = 1;

y |-> pa2;

identity 0x1000 with code;

identity 0x2000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]
LDR X0,[X1]

STR X2,[X3]

LDR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 1 EL1 Handler Thread 2 EL1 Handler
0x1400:

MOV X0,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

0x2400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 2:X0=1 & 2:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: isb

g2: Fault (R)g1: T s1:l3pte(x)

h: eret

po

po

po

trf

iio
popo

iio

trf

rf

Figure 8.25: Test WRC.TRTf.inv+po+dsb-isb

99

AArch64 WRC.RRTf.inv+dmb+dsb-isb
Initial State

0:R0=desc3(z) 1:R1=pte3(x) 2:R1=y

0:R1=pte3(x) 1:R2=0b1 2:R3=x

0:PSTATE.EL=0b00 1:R3=y 2:VBAR_EL1=0x2000

0:PSTATE.SP=0b0 1:PSTATE.EL=0b00 2:PSTATE.SP=0b0

1:PSTATE.SP=0b0 2:PSTATE.EL=0b00

physical pa1 pa2;

x |-> invalid;

x 7→ pa1;

z |-> pa1;

*pa1 = 1;

y |-> pa2;

identity 0x1000 with code;

identity 0x2000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]

LDR X0,[X1]

DSB SY

STR X2,[X3]

LDR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 2 EL1 Handler
0x2400:

MOV X2,#0

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=desc3(z) & 2:X0=1 & 2:X2=0

Forbid

TODO: PS: why DSB not just any R/R ordering.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: W y/pa2 = 0x1

Thread 2

e: R y/pa2 = 0x1

f: dsb sy

g: isb

h2: Fault (R)h1: T s1:l3pte(x)

i: eret

po po

po

po

trf

popo

iio

rf

rf

Figure 8.26: Test WRC.RRTf.inv+dmb+dsb-isb

100

AArch64 WRC.TRR.inv+po+dsb
Initial State

0:R0=mkdesc3(oa=pa1) 1:R0=0b0 2:R1=y

0:R1=pte3(x) 1:R1=x 2:R3=pte3(x)

0:PSTATE.EL=0b00 1:R2=0b1 2:PSTATE.SP=0b0

0:PSTATE.SP=0b0 1:R3=y 2:PSTATE.EL=0b00

1:VBAR_EL1=0x1000

1:PSTATE.EL=0b00

1:PSTATE.SP=0b0

physical pa1 pa2;

x |-> invalid;

x 7→ pa1;

y |-> pa2;

*pa1 = 1;

identity 0x1000 with code;

Thread 0 Thread 1 Thread 2

STR X0,[X1]
LDR X0,[X1]

STR X2,[X3]

LDR X0,[X1]

DSB SY

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 2:X0=1 & ˜2:X2=0

Allow

TODO: PS: why DSB not just any R/R ordering.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

po

iio
popo

trf

rf

rf

Figure 8.27: Test WRC.TRR.inv+po+dsb

101

AArch64 ROT.inv+dsb
Initial State

0:R0=mkdesc3(oa=ipa1) 1:R1=x

0:R1=pte3(x, new_table) 1:VBAR_EL1=0x1000

0:R2=mkdesc2(table=0x283000)

0:R3=pte2(x)

0:PSTATE.EL=0b01

physical pa1;

intermediate ipa1;

assert pa1 == ipa1;

ipa1 |-> pa1;

x |-> invalid at level 2;

x 7→ table(0x283000) at level 2;

s1table new_table 0x280000 {

x |-> invalid;

x 7→ ipa1;

};

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

STR X2,[X3]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

// read ESR EL1.ISS, to see if fault at Level 2 or 3.

MRS X14,ESR_EL1

AND X14,X14,#0b111

CMP X14,#0b111

MOV X17,#1

MOV X18,#2

// if ESR EL1.ISS.DFSC == Translation Level 3 then x0 = 1 else x0 = 2

CSEL X0,X17,X18,eq

// advance ELR

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

// return

ERET
Final State

1:X0=1

Forbid

The translation-table walk from the read of x in Thread 1
must perform its translation non-TLB reads in the order
they appear in the walk, forbidding reading from the new
level 2 table entry in d1, but then reading the stale initial
value for that entry from memory.
The test listing contains some concrete values to make
it executable in isla, namely fixing the location of the
new table at 0x280000 so it’s not symbolic, and the exact
location of the level 3 entry within the new table will be
at 0x283000 (known from the fixed isla configuration).
Whether the exception comes from the level 2 or the
level 3 entry can be determined by reading the ISS field of
the ESR_EL1 register, which the exception handler does.

Thread 0

a: W 0x283000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: Fault (R)d2: T new table:l3pte(x)d1: T s1:l2pte(x)

e: eret

po

po

trf

iio iio
po

trf

Figure 8.28: Test ROT.inv+dsb

102

Misaligned accesses, and the load and store pair instructions, should generate explicit memory events and2320

associated translations which are unordered with respect to each other.2321

TODO: PS: litmus test with misalgined?2322

103

AArch64 CoWinvT+po
Initial State

0:R0=0b0

0:R1=pte3(x)

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b2: R x/pa1 = 0x0b1: T s1:l3pte(x)

trf

iio

po

The translation read (b1) of the last-level entry for x can
be re-ordered with respect to the program-order earlier
store (a) to pte3(x).

Figure 8.29: Test CoWinvT+po

8.5 Caching of translations in TLBs2323

We have seen in §8.4 that, while non-TLB reads do not necessarily preserve the program-order without additional2324

synchronisation due to the out-of-order execution of instructions, those translation table reads get satisfied from2325

the coherent storage subsystem or from forwarding from earlier stores, much like the normal explicit data reads2326

do. This section will explore what happens when translation table walk reads may instead be satisfied from the2327

TLB.2328

Unfortunately for the programmer, the TLB need not be coherent with memory: it can have stale values. This2329

section explores the behaviours that arise from this caching of stale values.2330

8.5.1 Cached translations2331

In the previous section we carefully constructed tests which began with an initially invalid translation, to avoid2332

TLB caching issues. Here, we will generally start with entries that are valid, and so might be present in the TLB.2333

The following CoWinvT+po test [Figure 8.29] begins with an initially valid (and therefore potentially initially2334

cached in the TLB) translation for the virtual address x. It then updates the last-level translation table entry for x,2335

setting it to 0, making it invalid (and thus unmapping x). Then, program order later, the same thread tries to read2336

x.2337

The read can succeed, as its translation can read from the old value from memory. We saw earlier that translation2338

table walks can be re-ordered with respect to program order, but even inserting thread-local ordering to the2339

translation, such as in test CoWinvT+dsb-isb [Figure 8.30], does not forbid it.2340

104

AArch64 CoWinvT+dsb-isb

Initial State
0:R0=0b0

0:R1=pte3(x)

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1400:

MOV X2,#1

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

0:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: R x/pa1 = 0x0d1: T s1:l3pte(x)

po

potrf

iio

po

The translation read (d1) of the last-level entry for x is
required to be satisfied after the earlier store (a) to the
entry’s location because of the intervening dsb sy; isb
sequence, but can be satisfied from a cached value in the
TLB, allowing d1 to read from a stale value.

Figure 8.30: Test CoWinvT+dsb-isb

8.5.2 TLB fills2341

Translation table walks can be requested by the core in two different ways: (1) through the architectural execution2342

of an instruction; or, (2) from a spontaneous translation table walk (for example, due to speculation and prefetching2343

of data or instructions). In either case, the result of that walk can be cached in the TLB and recalled for other2344

translation table walks.2345

Architecturally a TLB fill is no different to a normal translation table walk; each fill originates from a non-TLB2346

read, with all the behaviours described in the previous sections. Later translation table walks are allowed, however,2347

to recall an earlier value and then reuse that rather than doing a fresh read.2348

Spontaneous walks The hardware may, at any time, try to prefetch or speculatively read some address.2349

Architecturally these appear as spontaneous translation table walks. Those spontaneous walks may be cached.2350

We can see this occuring in the following MP.RT.inv+poloc-dmb+ctrl-isb test [Figure 8.31], where a spontaneous2351

translation and the resulting TLB fill allows a future translation table walk to see a stale value.2352

Speculative paths Since translation table walks, and therefore TLB fills from the result of those walks, can2353

happen at any point, there is no need to consider TLB fills of architectural translation table walks down speculative2354

paths as any such behaviour is subsumed by a spontaneous fill.2355

However, as described earlier, we saw that writes cannot be forwarded to translation table walks when down2356

speculative paths (§8.4.5), as this would lead to security violations. This naturally excludes TLB fills of still2357

speculative writes; since a speculative write cannot be used in the result of a translation table walk, it cannot end2358

up cached in a TLB.2359

8.5.3 micro-TLBs2360

So far we have spoken as if entries are, at any particular moment in time, either present in the TLB or not.2361

Hardware, however, may have multiple micro-TLBs for the same thread, each with their own potential cached2362

entry for the same address.2363

In effect, these micro-TLBs behave as if they were a larger non-deterministic TLB with potentially many values2364

for each entry. The presence of these smaller caching structures in a superscalar machine means that different2365

instructions may be accessing different TLBs at the same time. This allows later instructions to ‘skip’ over a2366

previously seen cached entry, and then see it again later.2367

These effects can be seen in the CoTfT+dsb-isb test [Figure 8.32], where the presence of these micro-TLBs (or2368

other distributed caching structures) allow later events (even locally-ordered later) to see old cached entries after2369

105

AArch64 MP.RT.inv+poloc-
dmb+ctrl-isb

Initial State
0:R0=mkdesc3(oa=pa1) 1:R1=y

0:R1=pte3(x) 1:R3=x

0:R2=0b0 1:VBAR_EL1=0x1000

0:R3=pte3(x) 1:PSTATE.SP=0b0

0:R4=0b1 1:PSTATE.EL=0b00

0:R5=y

physical pa1 pa2;

x |-> invalid;

x 7→ pa1;

y |-> pa2;

*pa1 = 0;

*pa2 = 0;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

STR X2,[X3]

DMB SY

STR X4,[X5]

LDR X0,[X1]

CBNZ X0,L0

L0:

ISB
MOV X2,#1

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Allow

A spontaneous walk and fill can happen on Thread 1 after
the write of the valid entry to pte3(x) (a), but before
the immediate re-invalidation of that entry (b), allowing
the later translation table walk to see the old cached
entry (g1), even though the architectural translation table
walk could not have happened while the valid entry was
visible.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x303000/s1:l3pte(x) = 0x0

c: dmb sy

d: W y/pa2 = 0x1

Thread 1

e: R y/pa2 = 0x1

f: isb

g2: R x/pa1 = 0x0g1: T s1:l3pte(x)

po

po

poctrl

ctrl

iio

copo

trf
po

rf

Figure 8.31: Test MP.RT.inv+poloc-dmb+ctrl-isb

106

AArch64 CoTfT+dsb-isb
Initial State

0:R0=0b0 1:R1=x

0:R1=pte3(x) 1:R3=x

1:VBAR_EL1=0x1000

1:PSTATE.SP=0b0

1:PSTATE.EL=0b00

physical pa1;

x |-> pa1;

x 7→ invalid;

y |-> pa1;

*pa1 = 0;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

LDR X2,[X1]

MOV X0,X2

DSB SY

ISB
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

Thread 1

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

iiotrf

The earlier translation read (b1) reads from the new in-
valid entry, reading from memory (as it cannot have been
in the TLB), but a later translation read (f1) of the same
location can still potentially see a stale cached entry.

Figure 8.32: Test CoTfT+dsb-isb

earlier events witnessed a TLB miss.2370

Break-before-make and restrictions We will see later that the ability to have multiple cached entries for a2371

single address causes problems for software managing coherence, and imposes extra restrictions on software2372

practice. This means that, in general, the effects of the micro-TLBs are restricted to only those combinations that2373

do not cause break-before-make violations (see §8.6.5).2374

8.5.4 Partial caching of walks2375

TLBs need not cache entire virtual to physical translations. Instead, they are free to cache any subset of the reads2376

from the walk separately.2377

Caching up to last-level table The most common kind of caching structure we are aware of in microarchitec-2378

ture is the walk cache (see §8.3.1). Traditionally a TLB would store entire virtual to physical mappings, making it2379

fast to lookup the translation (often a single cycle), but there was limited space and induced heavy burden on2380

a TLB miss or TLB invalidation. Walk caches store the last-level table entry, allowing TLB invalidation of leaf2381

entries and TLB misses to re-use a prefix of the walk and perform a minimal number of accesses. This can be seen2382

in the MP.RTT.inv3+dmb-dmb+dsb-isb test [Figure 8.33], where a walk cache could allow the table entry to be2383

cached separately from the last-level entry, allowing the last translation read to read from a much newer value.2384

Caching of whole translation A common configuration for the TLB is to cache whole translation walks, from2385

virtual to physical. This kind of caching has an important caveat: there is no requirement for the TLB to remember2386

the intermediate physical address of any stage 2 translations that were done during the walk, including the final2387

stage 2 walk of the access address itself. This means that TLB invalidations by IPA might not remove all the2388

cached data associated with a cached entry for that IPA, if there is a whole cached translation which used that2389

entry. TODO: ?REF?.2390

Independent caching of IPAs In a two-stage regime, the virtual addresses are first translated into intermediate2391

physical address. The secondary translations based on the intermediate physical addresses, either of the final2392

output address or of any of the intermediate table addresses, may be cached in the TLB without remembering the2393

originating virtual address.2394

This means these cached translations may be recalled for translations of different virtual addresses.2395

107

AArch64 MP.RTT.inv3+dmb-
dmb+dsb-isb

Initial State
0:R0=0b0 1:R1=y

0:R1=pte2(x) 1:R3=x

0:R2=mkdesc3(oa=pa1) 1:VBAR_EL1=0x1000

0:R3=pte3(x) 1:PSTATE.SP=0b0

0:R4=0b1 1:PSTATE.EL=0b00

0:R5=y

virtual x y;

physical pa1 pa2;

assert x[48..21] = y[48..21];!
x |-> invalid;

x 7→ pa1;

x 7→ invalid at level 2;

y |-> pa2;

*pa1 = 0;

*pa2 = 0;

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DMB SY

STR X2,[X3]

DMB SY

STR X4,[X5]

LDR X0,[X1]

DSB SY

ISB
MOV X2,#1

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Allow

The translation-read of the level 2 entry for x (i1) can read
from stale writes from a translation that the subsequent
level 3 translation-read (i2) does not read from, as the
level 2 entry could have been cached in the ‘TLB’ (in this
case, a co-located ‘walk cache’ structure), while the level 3
entry gets read from memory. TODO: PS: explain the
magic numbers and tfr edge a bit.

Thread 0

a: W 0x302018/0x302018 = 0x0

b: dmb sy

c: W 0x303000/0x303000 = mkdesc(addr=page(pa1))

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i3: R x/pa1 = 0x0i2: T 0x303000i1: T 0x302018

po po

po

po

trf

po

iio iio

po

po

trf
rf

Figure 8.33: Test MP.RTT.inv3+dmb-dmb+dsb-isb

108

In addition, pre-fetching may perform translations of arbitrary IPAs. This means that any cached translations2396

might not correspond to any valid whole translation table walk, but may still be used during such walks.2397

This is most clear in ROT.invs1+dmb2 [Figure 8.34], where, although the IPA was never reachable from the stage 12398

translations, the old IPA to PA mapping was cached and used later.2399

Caching of individual entries Architecturally, Arm wish to allow many more implementations of TLBs and2400

translation caching structures than currently known hardware contains.2401

The weakest variation on this is allowing each individual translation table entry to be cached separately and2402

independently.2403

One could construct litmus tests for each of the possible combination of translation table entries, but there would2404

be overwhelmingly many of these, or even a ‘most relaxed’ version where every translation table entry comes2405

from different previous translations, but this would be too large to show here. So, for simplicity I show just one of2406

them here, ROT.inv2+dmb [Figure 8.35]; where the last-level entry came from a newer value than the previous2407

levels.2408

8.5.5 Reachability2409

One key property that the TLB must have is that it may only cache translation table entries which are reachable2410

from a translation in the current context. That is, it can only cache an entry which is the result of a valid translation2411

table walk, either using values from memory or other valid translation table entries from the TLB, using the2412

current system register state.2413

This means that writes coherence-before the most recent write at the time a translation table entry location2414

becomes reachable are not visible to the walker, and cannot have been cached in any TLB.2415

This is captured in the RUE+isb [Figure 8.36] (“Read-unreachable-entry”) test, which is forbidden as the write to2416

the translation table from before the time the location becomes reachable by translation table walkers cannot2417

have been cached in any TLBs, or read from by any spontaneous walks.2418

This area is currently under discussion with Arm.2419

8.6 TLB maintenance2420

Recovering coherence for translation reads in the presence of TLB caching can be achieved through the use of2421

TLB maintenance instructions: namely the TLBI (“TLB invalidate” instruction).2422

TLB maintenance generally causes two microarchitectural effects: erasing stale entries from the TLB, ensuring2423

future TLB fills (for example, due to a translation read) will see the coherent value from memory; and, discarding2424

any partially executed instructions, on other cores, which had already begun execution using a stale entry but2425

had not yet finished executing. We will explore both of these effects and the subtle interaction with other parts of2426

the virtual memory systems architecture in more detail throughout this section.2427

8.6.1 Recovering coherence2428

We saw earlier, in Section 8.5.1, that stale values cached in the TLB can cause coherence violations in the translation,2429

for example, in the CoWinvT+dsb-isb test [Figure 8.30]. By inserting the correct TLBI sequence into that test, we2430

produce a new test, CoWinvT.EL1+dsb-tlbi-dsb-isb [Figure 8.37], which is now forbidden.2431

There are many flavours of TLBI that could have been inserted into this test, the one in the figure is TLBI VAE1, or,2432

TLB invalidation by virtual address, for the EL1&0 translation regime. Using a TLBI-by-VA means the programmer2433

has to provide the virtual page to invalidate, and the TLBI only affects addresses for that specific invalidated entry,2434

not all of them.2435

Using the incorrect TLBI leads to insufficient invalidation occuring. For example, if in the aforementioned2436

CoWinvT.EL1+dsb-tlbi-dsb-isb the TLBI had the wrong page, then it would have no effect and the test would2437

remain allowed.2438

109

AArch64 ROT.invs1+dmb2

Initial State
0:R0=mkdesc3(oa=pa1) 1:R1=x

0:R1=pte3(x, s2_table) 1:VBAR_EL1=0x1000

0:R2=0b0 1:VBAR_EL2=0x2000

0:R3=pte3(x, s2_table)

0:R4=mkdesc3(oa=ipa1)

0:R5=pte3(x)

0:PSTATE.EL=0b01

physical pa1;

intermediate ipa1;

x |-> invalid at level 2;

x 7→ ipa1;

ipa1 |-> pa1;

ipa1 7→ invalid;

*pa1 = 1;

identity 0x1000 with code;

identity 0x2000 with code;

Thread 0 Thread 1
STR X0,[X1]

DMB SY

STR X2,[X3]

DMB SY

STR X4,[X5]

MOV X0,#0

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Thread 1 EL2 Handler
0x2400:

MRS X13,ELR_EL2

ADD X13,X13,#4

MSR ELR_EL2,X13

ERET
Final State

1:X0=1

Allow

The translation read of the stage 2 leaf entry for x (f2)
can read from an old cached version, from the write (a)
even though it was not reachable by any translation table
walk for any VA, as the IPA it maps was not mapped by
any stage 1 tables before it was overwritten by (b).
This test relies on translation table walks being naturally
ordered (by iio), see §8.4.8.

Thread 0

a: W 0x203000/s2:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W 0x203000/s2:l3pte(x) = 0x0

d: dmb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

f3: R x/pa1 = 0x1f2: T s2:l3pte(x)f1: T s1:l3pte(x)

po

po

iio iio

co

po

trf

po
trf

Figure 8.34: Test ROT.invs1+dmb2

110

AArch64 ROT.inv2+dmb
Initial State

0:R0=0b0 1:R1=x

0:R1=pte3(x, new_table) 1:VBAR_EL1=0x1000

0:R2=mkdesc2(table=0x283000)

0:R3=pte2(x)

0:PSTATE.EL=0b01

physical pa1;

intermediate ipa1;

assert pa1 == ipa1;

ipa1 |-> pa1;

x |-> invalid at level 2;

x 7→ table(0x283000) at level 2;

s1table new_table 0x280000 {

x |-> ipa1;

x 7→ invalid;

};

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DMB SY

STR X2,[X3]

MOV X0,#1

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=0

Allow

The translation-read of the level 3 entry (d2) can read from
a stale cached translation, which was cached before the
write to the level 2 entry (c). Note that this test assumes
that the original new_tablewas reachable (and therefore
could be cached) before the write c. See §8.5.5 for a
discussion on this.

Thread 0

a: W 0x283000/new table:l3pte(x) = 0x0

b: dmb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: R x/pa1 = 0x0d2: T new table:l3pte(x)d1: T s1:l2pte(x)

po

trf

iio iio
po

trf

Figure 8.35: Test ROT.inv2+dmb

111

AArch64 RUE+isb
Initial State

0:R0=mkdesc3(oa=pa1)

0:R1=0x0

0:R2=pte3(x, new_table)

0:R3=ttbr(asid=0x01, base=new_table)

0:R4=x

0:VBAR_EL1=0x1000

0:PSTATE.EL=0b01

0:PSTATE.SP=0b1

intermediate ipa1;

physical pa1;

*pa1 = 0;

s1table new_table 0x2C0000 {

identity 0x1000 with code;

x |-> invalid;

x 7→ pa1;

};

identity 0x1000 with code;

Thread 0
01. STR X0,[X2]

02. STR X1,[X2]

03. MSR TTBR0_EL1,X3

04. ISB
05. MOV X1,#1

06. LDR X1,[X4]

Thread 0 EL1 Handler
01. 0x1200:
02. MRS X20,ELR_EL1

03. ADD X20,X20,#4

04. MSR ELR_EL1,X20

05. ERET
Final State

0:X1=0

Thread 0

a: W 0x2c4000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x2c4000/new table:l3pte(x) = 0x0

c: l0pte(x))

d: isb

e2: R x/pa1 = 0x0e1: T new table:l3pte(x)

po

po

iio

trf

co po

po

The write to the new_table translation table entry for x
(a) is not visible at the point of the change of TTBR (c),
and so the later translation table walk (e1) cannot read
from it.
Note that isla currently does not do any kind of reacha-
bility analysis, and so does not forbid this test.

Figure 8.36: Test RUE+isb

AArch64 CoWinvT.EL1+dsb-
tlbi-dsb-isb

Initial State
0:R0=0b0

0:R1=pte3(x)

0:R3=x

0:R5=page(x)

0:VBAR_EL1=0x1000

0:PSTATE.EL=0b01

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DSB SY

TLBI VAE1,X5

DSB SY

ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1000:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

0:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1 page=page(x)

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

po

The read of the translation table entry for x (f1) is re-
quired to happen after the earlier store (a), because of
the intervening dsb sy; isb sequence (d and e), and
cannot be satisfied from the TLB, because of the TLBI
(c), forbidding it from still seeing a stale value. Note that
TLBI instructions can only be executed from EL1, so this
test starts execution at EL1 rather than the usual default
of EL0.

Figure 8.37: Test CoWinvT.EL1+dsb-tlbi-dsb-isb

112

AArch64 CoWinvT.EL1+tlbi-
dsb-isb

Initial State
0:R0=0b0

0:R1=pte3(x)

0:R3=x

0:R5=page(x)

0:VBAR_EL1=0x1000

0:PSTATE.EL=0b01

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

TLBI VAE1,X5

DSB SY

ISB
LDR X2,[X3]

Thread 0 EL1 Handler
0x1000:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

0:X2=0

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: TLBI VAE1 page=page(x)

c: dsb sy

d: isb

e2: R x/pa1 = 0x0e1: T s1:l3pte(x)

po

po

potrf

iio

po

The TLBI (b) can be re-orderedwith program-order earlier
events, due to the lack of DSBs ordering it after them,
allowing the store (a) to happen later, letting the final
translation read (e1) still see the old stale translation.

Figure 8.38: Test CoWinvT.EL1+tlbi-dsb-isb

FEAT_nTLBPA2439

Armv8.4-A introduced a new optional Arm feature, FEAT_nTLBPA [1, A2.2.1 (p79)] .2440

This feature adds a field to the memory model feature register (AA64MMFR1_EL1) which can identify whether the2441

current processor’s TLB (and related microarchitectural caching structures) may contain non-coherent copies of2442

stage 1 entries indexed by those entries intermediate physical address. Microarchitecturally, this corresponds to2443

there being non-coherent caches associated with the TLB, which must be flushed on a TLBI.2444

These caches would allow TLB misses to read from a non-coherent cache, thus not seeing the most up-to-date2445

value from the coherent storage subsystem like described in §8.4.2446

Note that the text in the reference manual is a little ambiguous, the entry in A2.2.1 describes it as a “mechanism2447

to identify if [TLB caching] does not include non-coherent caches [of old translation entries] since the last2448

completed TLBI”. This change adds a field to the register, whose reserved value in Armv8.0 corresponds to the2449

non-coherent caches existing. This implies that implementation of the feature is not only the existence of the2450

runtime identification register’s field, but additionally that its value is 0b0001 (that is, that non-coherent caches2451

do not exist). This further implies that in processors without FEAT_nTLBPA one should assume that TLBs may2452

contain non-coherent caching structures.2453

8.6.2 Thread-local ordering and TLBI2454

TLB maintenance instructions are not naturally locally ordered with respect to other instructions in the instruction2455

stream, this means that they can be re-ordered with other instructions. To ensure they are synchronized with2456

other instructions, the programmer can use the DSB barrier instruction to order instructions before and after it.2457

Leaving out one, or both, of the DSBs around the TLBI leads to insufficient ordering around the TLBI and allows2458

the invalidation to occur at the wrong time. For example, the CoWinvT.EL1+tlbi-dsb-isb test [Figure 8.38] is2459

allowed as the initial write and TLBI may be re-ordered, negating the architectural effect of the TLBI.2460

TODO: talk about FEAT_ETS2461

8.6.3 Broadcast2462

Arm provide broadcast variants of the TLBI instructions. These are generally suffixed with the letters IS (for2463

“Inner-shareable”).2464

113

AArch64 MP.RT.EL1+dsb-tlbiis-
dsb+dsb-isb

Initial State
0:R0=0b0 1:R1=y

0:R1=pte3(x) 1:R3=x

0:R2=0b1 1:VBAR_EL1=0x1000

0:R3=y 1:PSTATE.SP=0b0

0:R4=page(x) 1:PSTATE.EL=0b00

0:PSTATE.EL=0b01

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

y |-> pa2;

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI VAE1IS,X4

DSB SY

STR X2,[X3]

LDR X0,[X1]

DSB SY

ISB
LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MOV X2,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T s1:l3pte(x)

po

po po

po

po

trf

po

iio

po

rf

Thebroadcast TLBI onThread 0 (c) ensures that the earlier
unmapping (a) is seen by the ordered later translation
read on Thread 1 (i1), by ensuring Thread 1’s local TLB is
cleaned of any stale entries for x.

Figure 8.39: Test MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb

Broadcast TLBIs, sometimes referred to as TLB shootdowns, allow one processor to perform maintenance on2465

another core’s TLB.2466

This is in contrast to other systems, such as for IBM’s Power architecture, where maintenance of other cores must2467

be achieved in software through the use of only thread-local invalidation instructions.2468

TLB invalidation on another core One of the simplest examples is a message passing invalidation pattern,2469

where the old entry is removed and a message is sent to another core. This can be seen in the MP.RT.EL1+dsb-2470

tlbiis-dsb+dsb-isb test [Figure 8.39].2471

Instruction restarts Broadcast TLBIs must do more than touch the other thread’s TLB. If the other processor2472

had already performed translation, using the old stale value, but has not yet finished execution, then that instruction2473

must be restarted.2474

This ensures that Arm broadcast TLBIs have the same behaviour as the traditional software IPI-based shootdown2475

(With context synchronization); but also provides a needed security guarantee.2476

If a mapping is taken away from a process, then future writes to the physical location it used to map to, should2477

not be visible to that process anymore.2478

This guarantee is captured in the RBS+dsb-tlbiis-dsb [Figure 8.40] (Read-broken-secret) test. Once a mapping has2479

been broken, and sufficient TLB maintenance performed, any future reads or writes to the original physical location2480

will not be visible through that mapping anymore. Note, however, that this does not mean that instructions which2481

have already completed their execution will be restarted, even if they occur after an earlier restarted instruction.2482

This can be seen in the RBS+dsb-tlbiis-dsb+poloc test [Figure 8.41], where the program-order later load can see2483

the old value, even after the first faults.2484

While here I describe things in terms of instruction restarting, these behaviours can be (and presumably are)2485

implemented in terms of waiting: instead of the TLBI forcibly restarting instructions that already started but2486

haven’t finished, the TLBI can simply wait for them to complete. This phrasing of waiting for completion is how2487

this process is described in the Arm ARM [1, D5.10.2 (p4928)] .2488

Atomic TLBIs In the previous RBS-shaped tests, I describe the behaviour in terms of writes that occur ‘before’2489

the TLBI.2490

114

AArch64 RBS+dsb-tlbiis-dsb
Initial State

0:R0=0b0 1:R1=x

0:R1=pte3(x) 1:VBAR_EL1=0x1000

0:R5=page(x)

0:R2=0x2

0:R3=y

0:PSTATE.EL=0b01

physical pa1;

x |-> pa1;

x 7→ invalid;

y |-> pa1;

*pa1 = 0;

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI VAE1IS,X5

DSB SY

STR X2,[X3]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

MOV X0,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=2

Forbid

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: R x/pa1 = 0x2f1: T s1:l3pte(x)

po

po

po

trf

iio
po

rf

The broadcast TLBI of x (c) ensures that the execution of
the load of x in Thread 1 either entirely executes using
the old translation and finishes before the TLBI does, or
begins execution after the TLBI finishes.

Figure 8.40: Test RBS+dsb-tlbiis-dsb

AArch64 RBS+dsb-tlbiis-
dsb+poloc

Initial State
0:R0=0b0 1:R1=x

0:R1=pte3(x) 1:R3=x

0:R5=page(x) 1:VBAR_EL1=0x1000

0:R2=0x2

0:R3=y

0:PSTATE.EL=0b01

physical pa1;

x |-> pa1;

x 7→ invalid;

y |-> pa1;

*pa1 = 0;

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI VAE1IS,X5

DSB SY

STR X2,[X3]

MOV X0,#1

LDR X0,[X1]

MOV X2,#1

LDR X2,[X3]

Thread 1 EL1 Handler
0x1400:

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=1 & 1:X2=0

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: Fault (R)f1: T s1:l3pte(x)

g: eret

h2: R x/pa1 = 0x0h1: T s1:l3pte(x)

po

po

po

po

potrf rf

iio

iio

trf
po

Even though the broadcast TLBI on Thread 0 (c) ensures
that not-yet-completed instructions using the old map-
ping are restarted, it does not require that the second
load of x in Thread 1 (h) be restarted if it has already
satisfied its value, as that value must have come from a
write before the TLBI.

Figure 8.41: Test RBS+dsb-tlbiis-dsb+poloc

115

Microarchitecturally a TLBI instruction is very non-atomic: it sends messages to all other cores, performs some2491

action, and sends messages back to the originating core. The program-order earlier DSB ensures that program-order2492

earlier instructions are complete before sending the messages. The program-order later DSB ensures that all2493

program-order later instructions wait for those messages to return.2494

The presence of these DSBs ensure that the TLBI’s effect happens entirely at that point in the instruction stream,2495

and cannot be broken up and re-ordered amongst the other instructions in the stream. This, coupled with the fact2496

that these messages strengthen and never weaken the behaviour of other cores, means that you cannot observe a2497

partial TLBI effect. So long as the programmer takes care to maintain the required thread-local ordering.2498

Because of this, we can think of the TLBI as executing either before an instruction or after an instruction, but2499

do not need to consider a TLBI executing in the middle of another instruction. This allows us to simplify things,2500

fitting TLBIs into a (generalised) coherence order, with other writes occurring either before or after.2501

8.6.4 Virtualization2502

Throughout this section we have considered tests for stage 1 translation with virtual mappings. But many of these2503

questions and behaviours also apply to the stage 2 intermediate physical mappings, with some key differences.2504

Virtual to physical and IPA caches The existence of TLBs that cache virtual to physical mappings (§8.5.4)2505

complicates the TLB maintenance sequence required for changes to the intermediate physical mappings.2506

When invalidating stale second stage entries from the TLB, it is required for the programmer to do two sets of2507

invalidations: first one TLB invalidation to remove any of the old entries for the old IPA to PA, then, perhaps2508

surprisingly, a second TLB invalidation is needed to remove any stale whole translation, VA to PA mappings or2509

any combination thereof, as these could have indirectly cached the result of a second stage translation without2510

remembering the IPA.2511

This can be seen in MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb [Figure 8.42], where invalidation of just the IPA is not2512

enough. Adding an invalidation of the VA (or all VAs), like in MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb2513

[Figure 8.43], ensures that later translations cannot see the stale value anymore.2514

116

AArch64 MP.RT.EL2+dsb-
tlbiipais-dsb+dsb-isb

Initial State
0:R0=0b0 1:R1=y

0:R1=pte3(ipa1, s2_table)1:R3=x

0:R2=0b1 1:VBAR_EL2=0x2000

0:R3=z 1:PSTATE.EL=0b00

0:R4=page(ipa1)

0:PSTATE.EL=0b10

physical pa1 pa2;

intermediate ipa1 ipa2;

x |-> ipa1;

ipa1 |-> pa1;

ipa1 7→ invalid;

y |-> ipa2;

ipa2 |-> pa2;

z |-> pa2;

identity 0x2000 with code;

*pa1 = 0;

*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI IPAS2E1IS,X4

DSB SY

STR X2,[X3]

LDR X0,[X1]

DSB SY

ISB
MOV X2,#1

LDR X2,[X3]

Thread 1 EL2 Handler
0x2400:

MRS X13,ELR_EL2

ADD X13,X13,#4

MSR ELR_EL2,X13

ERET
Final State

1:X0=1 & 1:X2=0

Allow (if not ETS)

Despite the TLB invalidation of the stale IPA (c), a later
stage 2 translation-read of that IPA (i1) can still see the
old stale value.

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: W z/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T 0x203000

po

popo

po

po

trf

po

iio

po

rf

Figure 8.42: Test MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb

117

AArch64 MP.RT.EL2+dsb-
tlbiipais-dsb-tlbiis-

dsb+dsb-isb
Initial State

0:R0=0b0 1:R1=y

0:R1=pte3(ipa1, s2_table)1:R3=x

0:R2=0b1 1:PSTATE.EL=0b00

0:R3=z 1:PSTATE.SP=0b0

0:R4=page(ipa1) 1:VBAR_EL2=0x2000

0:PSTATE.EL=0b10

physical pa1 pa2;

intermediate ipa1 ipa2;

x |-> ipa1;

ipa1 |-> pa1;

ipa1 7→ invalid;

y |-> ipa2;

ipa2 |-> pa2;

z |-> pa2;

identity 0x2000 with code;

*pa1 = 0;

*pa2 = 0;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI IPAS2E1IS,X4

DSB SY

TLBI VMALLE1IS

DSB SY

STR X2,[X3]

LDR X0,[X1]

DSB SY

isb
LDR X2,[X3]

Thread 1 EL2 Handler
0x2400:

MOV X2,#1

MRS X13,ELR_EL2

ADD X13,X13,#4

MSR ELR_EL2,X13

ERET
Final State

1:X0=1 & 1:X2=0

Forbid

By performing TLB invalidation of the stage 1 entries (e)
after invalidating the stage 2 ones (c1), it is guaranteed
that the later translation-read (k1) cannot see the old stale
value anymore.

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: TLBI VMALLE1IS vmid=0x0

f: dsb sy

g: W z/pa2 = 0x1

Thread 1

h: R y/pa2 = 0x1

i: dsb sy

j: isb

k2: R x/pa1 = 0x0k1: T 0x203000

po

po

popo

po

po

po

trf

po

iio

po

rf

Figure 8.43: Test MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb

118

8.6.5 Break-before-make2515

TLBs are not required to store only a single cached translation for a given address. There may, in general, be2516

multiple valid translations cached in the TLB.2517

To avoid this possibility, the architecture provides a break-before-make sequence, which will ensure that there2518

cannot be two cached translations existing in the TLB at the same time.2519

The architecture requires break-before-make when writing to the translation tables to update an already valid2520

entry with a new valid entry, and the change involves any of the following1:2521

. A change in output address, if the new or old entry is writeable.2522

. A change in output address, if the new and old locations have different contents.2523

. A change in memory type.2524

. A change in block size (e.g. replacing a page of 4KiB leaf with a 2MiB block mapping).2525

For those cases where break-before-make is required, the programmer must:2526

(1) write an invalid entry to overwrite the currently valid translation table entry in memory;2527

(2) perform a dsb sy (or equivalent);2528

(3) perform any TLB maintenance required to sufficiently invalidate the old entry from any TLB(s) required;2529

(4) perform a dsb sy (or equivalent);2530

(5) write the new valid translation table entry, overwriting the old invalid entry.2531

Litmus test For completeness, the BBM+dsb-tlbiis-dsb [Figure 8.44] gives possibly the simplest valid to valid2532

concurrent update test,2533

Break-before-make violations2534

Architecturally, there is no hard requirement to perform break-before-make. Failure to do so simply leads to a2535

degraded state, defined by ConstrainedUnpredictable behaviour.2536

The Arm reference manual does make it clear that failure to perform break-before-make when required can lead2537

to failure of single-copy atomicity, coherence or even the full breakdown of uniprocessor semantics. While the2538

reference manual does not give motivation for this, we can speculate that this is to allow hardware to perform2539

multiple translations during execution of the instruction, for example, during hazard checking. As such, we do2540

not try to give a full picture of ConstrainedUnpredictable behaviour arising from break-before-make not being2541

followed.2542

Understanding ConstrainedUnpredictable in full is future work, but a quick summary might be ‘any behaviour2543

that this program could have performed if it wanted to’. That is, an instantenous change in the state to a random2544

new state that would have been reachable by executing arbitrary code at that same exception level, security state2545

and translation regime.2546

8.6.6 ASIDs and VMIDs2547

In an effort to reduce the expense of TLB maintenance the architecture provides a mechanism to separate out the2548

address spaces by tagging translations with address space identifiers (or ASIDs). These ASIDs allow TLB entries to2549

be tagged with only the address space they are used with, and allow TLB maintenance operations to selectively2550

target only the address space being updated.2551

Crucially, this allows software to switch between address spaces without having to invalidate the TLB.2552

This idea is extended not just to address spaces at EL1 (used primary for the operating system and its processes),2553

but to EL2 with virtual machine identifiers (or VMIDs). These VMIDs serve the same function as ASIDs, giving IDs2554

to address spaces, except in this case IDs to second-stage IPA to PA address spaces.2555

1See the Arm ARM “TLB maintenance requirements and the TLB maintenance instructions” [1, D5.10.1 (p4913)] . for the full list of
conditions.

119

AArch64 BBM+dsb-tlbiis-dsb
Initial State

0:R0=0b0 1:R1=x

0:R1=pte3(x) 1:VBAR_EL1=0x1000

0:R2=mkdesc3(oa=pa2) 1:PSTATE.SP=0b0

0:R4=0b1 1:PSTATE.EL=0b00

0:R6=page(x)

0:PSTATE.EL=0b01

physical pa1 pa2;

x |-> pa1;

x 7→ invalid;

x 7→ pa2;

identity 0x1000 with code;

*pa2 = 2;

Thread 0 Thread 1
STR X0,[X1]

DSB SY

TLBI VAE1IS,X6

DSB SY

STR X2,[X1]

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

MOV X0,#1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET
Final State

1:X0=0

Allow

The update of the translation table entry for x in Thread 0
follows the break-before-make sequence, first breaking x
(a), then performing the necessary TLBI sequence (b-c-d),
before making x be the new mapping (e). This ensures
the concurrent access in Thread 1 is guaranteed to see
either the old value, the intermediate broken page (and
so a page fault), or the new value. This test is the variant
whose final state asserts that the old value was read.

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

Thread 1

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

trf

iio
po

co

Figure 8.44: Test BBM+dsb-tlbiis-dsb

120

8.6.7 Access permissions2556

Accesses which result in permission faults can have been satisfied from the TLB, and writes which update2557

translation table entries AP field can be cached in the TLB.2558

Translations can give rise to permission faults. These are unlike translation faults, in that, they are based not just2559

upon the descriptor read, but also on the kind of access requested: whether a read, or a write.2560

Accesses which result in permission faults result in exceptions, much like translation faults do, but may have been2561

read from the TLB. This can clearly be seen in the CoWinvTp.ro+dsb-isb test [Figure 8.45], where ordered after a2562

write to the translation tables a permission failure is experienced, whose descriptor must have come from the TLB.2563

Multiple cached entries The changing of access permissions not necessarily being break-before-make vi-2564

olations allows us to observe multiple cached entries within the TLB. It is permitted for these entries to exist2565

simultaneously.2566

When reading from the TLB, and there existing multiple entries for the same input address, it is allowed for the2567

hardware to generate a TLB conflict abort. These aborts are reported as data aborts.2568

If the hardware does not generate a conflict abort, then translation reads of that address are ConstrainedUn-2569

predictable, nondeterministically able to read one or the other or an “amalgamation” of the values [1, K1.2.32570

(p11243)] .2571

Here there seems a contradiction:it is not required to perform break-before-make, but there is no requirement that2572

only one entry be cached in the TLB. We can side step this issue by constructing a test that only changes a single2573

bit of the descriptor, in a way that is not a break-before-make violation, and therefore avoiding any questions2574

about how ‘amalgamation’ of entries happens. This can be seen with the MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb2575

test [Figure 8.46], where the existence of multiple cached entries in the TLB allows multiple translation-reads to2576

read from different stale writes.2577

Atomic TLB reads Existence of multiple cached translation table entries in the TLB, without break-before-2578

make violations, introduces the question of whether those TLB fills and subsequence TLB reads must read from2579

entire single-copy atomic writes of the original translation table entries (much like a read of memory would)2580

or whether a translation read can read from a mix of different writes. RMD+dmb [Figure 8.47] (“Read-mixed-2581

descriptor”) shows that translation reads cannot read partially read from a write, it must read from the entire2582

write or none of it.2583

121

AArch64 CoWinvTp.ro+dsb-isb
Initial State

0:R0=0x0

0:R1=pte3(x)

0:R2=0x1

0:R3=x

0:VBAR_EL1=0x1000

0:PSTATE.SP=0b0

physical pa1;

x |-> pa1 with [AP = 0b11] and default;

x 7→ invalid;

*pa1 = 0;

identity 0x1000 with code;

Thread 0
STR X0,[X1]

DSB SY

ISB
MOV X13,#0

STR X2,[X3]

Thread 0 EL1 Handler
0x1400:

// read ESR EL1.ISS to see if Permission or Translation fault

MRS X14,ESR_EL1

AND X14,X14,#0b1111

CMP X14,#0b1111

MOV X15,#1 // Permission

MOV X16,#2 // Translation

CSEL X13,X15,X16,eq

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

0:X13=1

Allow

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: Fault (W)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

The translation-read (d1) of x, which happens after the
program-order earlier store to the translation tables (a)
because of the intervening dsb; isb sequence (b-c), can
read from a stale value and result in a permission fault, as
the read-only entry from the initial state may be cached
in the TLB.

Figure 8.45: Test CoWinvTp.ro+dsb-isb

122

AArch64 MP.RTpT.ro+dmb-
dmb+dsb-isb-dsb-isb

Initial State
0:R0=mkdesc3(oa=pa1, AP=0b10)1:R1=y

0:R1=pte3(x) 1:R4=x

0:R2=0b0 1:VBAR_EL1=0x1000

0:R3=pte3(x) 1:PSTATE.SP=0b0

0:R4=0b1

0:R5=y

physical pa1 pa2;

x |-> pa1 with [AP = 0b11] and default;

x 7→ pa1 with [AP = 0b10] and default;

x 7→ invalid;

y |-> pa2;

*pa1 = 0;

identity 0x1000 with code;

Thread 0 Thread 1

STR X0,[X1]

DMB SY

STR X2,[X3]

DMB SY

STR X4,[X5]

LDR X0,[X1]

DSB SY

ISB
LDR X13,[X4]

MOV X2,X13

DSB SY

ISB
LDR X13,[X4]

MOV X3,X13

Thread 1 EL1 Handler
0x1400:

// read ESR EL1.ISS to see if Permission or Translation fault

MRS X14,ESR_EL1

AND X14,X14,#0b1111

CMP X14,#0b1111

MOV X15,#1 // Permission

MOV X16,#2 // Translation

CSEL X13,X15,X16,eq

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

1:X0=1 & 1:X2=1 & 1:X3=0

Allow

The first translation-read of x (i1) reads from the write
that removes read permissions (a) and this write must
have come from the TLB because of the intervening in-
validation (c), message pass (e-f), and dsb; isb sequence
(g-h). The later translation-read of x (m1) can still see an
even older value with read permissions, from the initial
state, as it may also have been cached in the TLB.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(AP=0x3, addr=page(pa1))

b: dmb sy

c: W 0x303000/s1:l3pte(x) = 0x0

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: Fault (R)i1: T s1:l3pte(x)

j: eret

k: dsb sy

l: isb

m2: R x/pa1 = 0x0m1: T s1:l3pte(x)

po

po

po

po po

po

po po

trf

iio

po

iio

co
trf

po

po

rf

Figure 8.46: Test MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb

123

AArch64 RMD+dmb

Initial State
0:R0=mkdesc3(oa=pa2, AP=0b10)1:R1=x

0:R1=pte3(x) 1:VBAR_EL1=0x1000

0:R2=0x1 1:PSTATE.SP=0b0

0:R3=y

physical pa1 pa2;

x |-> pa1 with [AP = 0b11] and default;

x 7→ pa2 with [AP = 0b10] and default;

y |-> pa2;

*pa1 = 0;

*pa2 = 1;

identity 0x1000 with code;

Thread 0 Thread 1
STR X0,[X1]

DMB SY

STR X2,[X3]

MOV X0,#0

LDR X0,[X1]

Thread 1 EL1 Handler
0x1400:

MRS X20,ELR_EL1

ADD X20,X20,#4

MSR ELR_EL1,X20

ERET
Final State

1:X0=1

Forbid

The translation-read of x (d1) cannot read from both the
64-bit single-copy atomic write a as well as from the
initial state. Note that this test does not, as far as we
can see, violate the break-before-make requirements, as
currently prescribed by the Arm manual, as the contents
in memory of both locations pa1 and pa2 are the same
at the time of the write to the translation tables.
This diagram was generated by hand, as isla does not
generate a candidate execution of this shape.

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d2: R x/pa2 = 0x1d1: l3pte(x)

po

trf

iiotrf
po

rf

Figure 8.47: Test RMD+dmb

124

8.7 Context synchronisation2584

There are many operations which change the current context the system is in. We will focus in on two of these:2585

taking and returning from exceptions, and writing to system registers.2586

These actions can change the context that the system is executing in: the current exception level, the translation2587

regime, the translation table base, the ASID or VMID, and a variety of other system configuration state.2588

8.7.1 Relaxed system registers2589

So far, in this and previous work, register reads and writes have been completely coherent: instructions program-2590

order after a write to a register will always read from that write (or an intervening write) when it reads that2591

register. System registers break this guarantee.2592

Arm System registers may require the programmer to insert explicit synchronization, as stated clearly in the Arm2593

reference manual [1, D13.1.2 (p5235)] :2594

Reads of the System registers can occur out of order with respect to earlier instructions
executed on the same PE, provided that both:

. Any data dependencies between the instructions, including read-after-read depen-
dencies, are respected.

. The reads to the register do not occur earlier than the most recent Context syn-
chronization event to its architectural position in the instruction stream.

2595

This means a read of a system register might not read from the most recent write to that system register.2596

To ensure that writes to system registers are seen by program-order later reads, the programmer can ensure2597

that a Context synchronization event occurs. These are typically things which flush the pipeline causing future2598

instructions to restart: The ISB instruction and taking and returning from exceptions.2599

There are two important caveats: (1) this does not apply to non-System registers, such as special-purpose or2600

general-purpose registers, and they never require synchronization; and (2), the synchronization required for2601

System registers depends on the kind of accesses.2602

There are typically two kinds of accesses to System registers: direct, and indirect. Direct accesses are the way we2603

think of registers: instructions which specifically read or write to those registers. Indirect accesses happen when2604

an instruction which does not explicitly mention the register by name performs an access, a read or a write, to2605

that register, during the execution of its behaviour.2606

Because of the out-of-order nature of the pipeline, these indirect register reads and writes may occur out-of-order2607

with respect to any program-order earlier direct reads or writes of that register. This means that before any direct2608

read, and after any direct write, the programmer must perform a context-synchronizing event to ensure that these2609

direct accesses occur in-order with respect to other indirect accesses. The programmer does not have to insert2610

context-synchronization after any direct read, as it is guaranteed that register reads or writes cannot be affected2611

by program-order later accesses.2612

System register ASL In the previous chapter we explored the Arm ASL code for the translation table walk2613

and for one of the store instructions. We saw that this ASL code reads from system registers (as indirect reads).2614

A naive attempt at a first interpretation of the relaxed semantics is to allow these reads to read-from the most2615

recent indirect write and any program-order later direct writes since the last context synchronization event.2616

However, this would not give the correct behaviour.2617

The Arm ASL is not written to accommodate relaxed system register behaviours. It leaves questions open about2618

whether these registers can be redundant re-read during execution, whether the instruction reads the entire2619

register at once or piecemeal over the course of execution, and whether repeated accesses to the same register2620

within an instruction are able to read-from different writes. These questions, and others, are still under discussion2621

with Arm.2622

We will see later in §TODO: ?REF? that we give a simple incomplete (and possibly unsound) interpretation in2623

our model in the pointed set semantics of system registers, which allows the model to observe some of the known2624

behaviours in this area, without yet fully exploring the architecture.2625

125

Caching of system registers in TLBs In addition to being out-of-order due to pipeline effects, some system2626

registers may be indirectly cached within the TLB.2627

We have already seen one of these: the MAIR register. Direct writes to the MAIR may not be seen by program-order2628

later translations, even after context-synchronization, as the translations may get their value from the TLB and2629

the TLB may have stored a result which depended on the previous value of the MAIR, effectively causing a stale2630

read of it at that point in the instruction stream.2631

To ensure that an update to the MAIR is observed by later translations therefore requires both TLB maintenance2632

and context synchronization, in that order.2633

The registers which can be cached in this way, and the behaviours that arise from this caching, are still under2634

current investigation with Arm.2635

8.8 Details likely to change2636

There have been a few places so far I’ve added words to the effect of ‘this is currently under discussion with Arm’.2637

In this section I will summarise those things which we know some things, but also know that it is is likely to2638

change and the ways in which it will.2639

Caching of entries in the TLB The biggest change we are aware of to the model is a strengthening in caching2640

of entries in the TLB. We have assumed that the TLB can cache any combination of translation table entries for a2641

walk, and recall any cached combination as well. We are aware that Arm wish to strengthen this, to make the2642

model TLB more in-line with the hardware TLB: essentially requiring the model TLB to behave as a walk cache,2643

caching whole walks (or prefixes of walks) rather than individual entries.2644

TLB Invalidation We have primarily considered TLB invalidations of cached level 3 (that is, last level) entries.2645

When invalidating entries higher in the table, they affect more of the address space (as described in §7.3.1), and2646

so the TLB invalidation must affect addresses outside of just the page referenced. The model currently does not2647

support this, this is a simple oversight and we believe not hard to update the model to handle this case.2648

More complex invalidation patterns, for example, zeroing and invalidating table entries, is still under discussion2649

with Arm.2650

ETS We are aware of changes to the architecture regarding ETS. Every attempt has been made to try incorporate2651

those changes into the model as we become aware, however, often they are changes driven by others and we only2652

become aware as they are publically released.2653

It is very likely the parts of the model dedicated to ETS will gain new strength over the coming weeks and months,2654

it is unfortunately not possible at this time to give a detailed description of what the final state of ETS will look2655

like, partially for confidentiality reasons and partially because Arm have not yet decided.2656

System registers As previously described, the current state of relaxed system register reads and writes is2657

unclear. We are in discussion with Arm on this aspect. It is not possible at this time to describe what the final2658

model will look like, or what changes will need to be done to the model presented here.2659

Exceptions and context-synchronisation We are in discussion with Arm about the nature of exceptions and2660

their context-synchronising nature and how this interacts with the memory model.2661

We believe the changes required to the model presented here will be minor, although they will probably be neither2662

a relaxation nor a strengthening of the current model, but rather an incomparable change.2663

8.9 Contributions2664

We have now covered all the relaxed memory behaviours, and will, in the next chapter, move on to discuss the2665

extant models created to capture those behaviours. But before that, it may at this point be unclear what the2666

contribution of this chapter is. They come in three forms: (1) the attempt at some systematic coverage of the kinds2667

of behaviours which systems software must account for; (2) the precise, formal description (in prose, and as litmus2668

126

tests) of those behaviours; and, (3) the clarification of the architecture where such behaviours were otherwise2669

unclear.2670

Coverage of behaviours While this chapter attempts to systematically cover the behaviours we imagine2671

software may try to rely on, starting from the basics of translation table walks and exploring the effects of2672

out-of-order pipelines, caching, and barriers, we cannot claim it is exhaustive. As this is a manually compiled and2673

curated list of behaviours, from reading the text and talking with architects, there are surely corner cases missed2674

and software patterns overlooked. However, we believe we have covered those patterns known and required for2675

the features we cover enough for software verification efforts of microkernels and hypervisors.2676

Clarification of architecture Attempts to clarify the architecture come primarily from the confidential discus-2677

sions with architects. The behaviours discussed usually fell into one of three categories, whether they were clear2678

already, needed further exploration or are, still, under invesitgation by Arm.2679

The first major category are those behaviours which were already clear and potentially covered in the architecture2680

text. As alluded to right at the start of this chapter, these are not whole sections or sub-sections or even necessarily2681

whole tests. The most obvious cases are §8.3.3 (‘Invalid entries’), §8.2.1 (‘Virtual coherence’), and §8.6.5 (‘Break-2682

before-make’). These are fundamental behaviours to the correctness of all modern systems software, and for2683

which the architecture reference manual has clear words (at least, enough to cover the basic sequences software2684

rely upon).2685

Most of the subsections fall into a more general category, of things that either had some associated reference2686

materials, or was otherwise clear from discussion with architects, but for which further invesitgation was needed.2687

This includes: forwarding (§8.4.4) and speculation (§8.4.5) for translation table walks; multi-copy atomic translation2688

table walks (§8.4.7); intra-instruction ordering (§8.4.8,§8.4.9); micro-TLBs (§8.5.3) and partial walk caching (§8.5.4);2689

a variety of TLBI questions (§8.6); and, system register accesses (§8.7.1).2690

Despite the work conducted here, from reading the architecture reference text, discussions with architects, and2691

the testing of existing hardware, there are still many questions which are under current invesitgation with Arm.2692

These include further questions about the scope of TLBIs, interaction with exceptions and interrupts, changes in2693

cacheability, translations for instruction fetching, and relaxed system register accesses. Those areas will require2694

more work before giving a concrete semantics.2695

127

Chapter 92696

An axiomatic VMSA model2697

This chapter is based, in part, on: Relaxed virtual memory in Armv8-A [54] by Ben Simner, Alasdair Armstrong, Jean2698

Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell. Published in the proceedings of the 31st2699

European Symposium on Programming (ESOP, 2022).2700

We now define a semantic model for Armv8-A relaxed virtual memory that, to the best of our knowledge, captures2701

the Arm architectural intent for the questions discussed in Chapter 8, including Stage 1 and Stage 2 translation-table2702

walks and the required TLB maintenance.2703

In §8 we described the design issues in microarchitectural terms, discussing the behaviour of translation table2704

walks and TLB caching, along with the needs of system software. We now abstract from microarchitecture:2705

constructing a model based on ordering between translation-read events and others, avoiding modelling TLBs2706

and out-of-order pipelines directly.2707

This chapter will present this model, as an extention to the ‘user-mode’ Armv8-A axiomatic model presented in2708

§TODO: ?REF?.2709

9.1 Extended candidate executions2710

The base Armv8-A axiomatic model is defined as a predicate over candidate executions, each of which is a graph2711

with various events (reads, writes, barriers) and relations over them, notably the per-thread program order2712

po, the per-location coherence order co, the reads-from relation rf from writes to reads, the addr, data, and2713

ctrl-dependency subsets of po, and others.2714

We extend these candidates with both new events and new relations over those events, as well as modifying some2715

of the original ones.2716

9.1.1 Candidate events2717

In addition to the events of the original model, we add the following events to the candidates:2718

. T for reads originating from architected translation-table walks.2719

These roughly correspond to the actual satisfaction from memory which with TLBs may happen very early.2720

. TLBI events for each TLBI instruction, with a single such event per TLBI instruction, corresponding to the2721

TLBI being completed on all relevant cores.2722

. TE and ERET events for taking and returning from an exception (these might not correspond to changes in2723

exception level).2724

. MSR events for writes to relevant system registers, such as the TTBR.2725

. DSB events for DSB instructions.2726

. Fault events for translation and permission faults.2727

Translation-reads During execution of the ASL TranslateAddress function (§7.6) there will be many reads,2728

which would usually generate R events. When those reads happen during the TranslateAddress call, they2729

instead generate T events. This means that each translation table walk may generate up to 24 T events, before the2730

instruction generates the (explicit) R|W event.2731

128

Alternative representations were explored, including leaving them as R events or collecting all reads into a single2732

large translation event. But these options did not give the clarity and fine granularity we desired in the model,2733

and would require more relations and axioms than presented here.2734

We also choose not to include TLB hits and misses in the model directly, but instead model the TLB as a relaxation2735

of the values the walk can read from, much like normal R data memory read events and modelling load buffering,2736

write gathering and caches.2737

We add a helper set, T_f, for translation reads which read-from a write whose value is even. That is, an entry2738

whose invalid bit is 0. If a translation read results in a fault, either because it was an invalid entry and we get a2739

translation fault, or because the access permissions of the resulting translation do not permit the kind of requested2740

access and so result in a permission fault, the candidate will contain a Fault event (partitioned into Fault_t and2741

Fault_p for translation and permission faults) in po order where the explicit memory event would have been.2742

See text on obETS for more discussion of these ‘ghost’ fault events.2743

We partition the T set into two subsets: Stage1 and Stage2 for translation read events from a stage 1 or stage 22744

walk respectively (stage 2 reads during a stage 1 walk are marked as stage 2, not stage 1).2745

Finally, we leave the M set unchanged, which contains only the explicit reads and writes performed by instructions.2746

TLBIs As described in §7.7 Arm have a variety of TLBI instructions, with varying arguments. All of these2747

TLBIs generate a single TLBI event.2748

To aide in modelling, there are a set of subsets of TLBI for various kinds of TLBI:2749

. TLBI-S1 for invalidations of Stage 1 entries.2750

. TLBI-S2 for invalidations of Stage 2 entries.2751

. TLBI-IPA for invalidations by intermediate physical address.2752

. TLBI-VA for invalidations by virtual address.2753

. TLBI-ASID for invalidations by ASID.2754

. TLBI-VMID for invalidations by VMID.2755

. TLBI-ALL for the TLBI ALL instructions.2756

. TLBI-IS for broadcast TLBIs.2757

. TLBI-EL1 for invalidations of the EL1&0 regime.2758

. TLBI-EL2 for invalidations of the EL2 regime.2759

These events do not cut the TLBI set into partitions, but rather any TLBI event may belong to multiple. For2760

example, a TLBI VAE1IS event would belong to TLBI-VA, TLBI-VMID, TLBI-EL1, and TLBI-IS.2761

We also include all TLBIs in a general C (“Cache maintenance”) set.2762

Exceptions Despite not modelling exceptions in general in this work, we do need to include some exception ma-2763

chinery in the model to capture the minimal ordering requirements arising from both their context synchronisation2764

effects and also behaviours from crossing exception level boundaries.2765

To support this we add two new events to capture taking and returning from exceptions: TE (“Take-exception”)2766

and ERET.2767

Barriers The Arm DSB (“Data synchronization barrier”) instruction is required for TLB maintenace, as was seen2768

in the previous chapter. We include DSB events, one for each kind of DSB instruction:2769

. DSBSY and DSBISH (here, equivalent as we do not model shareability domains)2770

. DSBNSH, for thread-local effects.2771

. DSBST, DSBLD, for DSBs affecting only loads or stores.2772

. DSBISHST, DSBISHLD, and so on, for all combinations of DSB instruction domain and access types.2773

Arm define a hierarchy of barriers where, for example: DMB.LD < DMB.SY < DSB.SY That is, any ordering imposed2774

by a DMB.LD is also imposed by a DMB.SY, and therefore also a DSB.SY.2775

To help capture this, and reduce the explosion in the number of relations in the model later on, we simplify and2776

update the barrier story in the Arm model and include the helper sets given in Figure 9.1.2777

129

let dsbsy = DSBISH | DSBSY | DSBNSH
let dsbst = dsbsy | DSBST | DSBISHST | DSBNSHST
let dsbld = dsbsy | DSBLD | DSBISHLD | DSBNSHLD
let dsbnsh = DSBNSH
let dmbsy = dsbsy | DMBSY
let dmbst = dmbsy | dsbst | DMBST | DSBST | DSBISHST | DSBNSHST
let dmbld = dmbsy | dsbld | DMBLD | DSBISHLD | DSBNSHLD
let dmb = dmbsy | dmbst | dmbld
let dsb = dsbsy | dsbst | dsbld

Figure 9.1: Barrier helper sets.

Context changing and synchronisation Finally, we add events for context-changing and context-synchronising2778

operations. Context changes involve updates to system registers which change the current translation regime,2779

which generate MSR events. We add a general context-synchronisation event set CSE which includes ISB, TE and2780

ERET.2781

Changes to system registers may have relaxed behaviours, as described in §8.7.1, but full relaxation of the system2782

register reads done by the Arm psueocode is unlikely to be valid, consistent or meaningful. Instead, we introduce2783

a pointed-set semantics: when generating a candidate, we keep a per-system-register set of writes to that register,2784

remembering which one is the most recent. On a write to that system register, we add it to the set. On a read of that2785

system register, we generate one candidate for each value in the set, and then ‘lock’ the remainder of the execution2786

of that instruction to that value so repeated reads will see the new value. When a context-synchronization event2787

is generated (that is, an event that will be in the CSE set) all the sets are reduced to singleton sets containing only2788

the most recent write.2789

This gives us some relaxed behaviours, enough to see relaxed behaviours around changes to the TTBR, but we2790

note that this is unlikely to be the full story for relaxed system registers.2791

9.1.2 Candidate relations2792

In addition to those new events, we introduce new relations over those (and other) events:2793

. trf and tfr as analogues to rf and fr but for translation-read (T) events.2794

. iio (“intra-instruction order”) which relates events of the same instruction in the order they occur during2795

execution of that instruction’s intra-instruction semantics as defined by the Arm ASL.2796

. same-va, same-ipa, same-pa relations which relate events whose virtual, intermediate physical or physical2797

address of the associated explicit memory access are the same.2798

. same-va-page, same-ipa-page, same-pa-page which relate events whose associated explicit memory2799

events are in the same page (e.g. 4KiB chunk) of the virtual, intermediate physical or physical address space.2800

. same-asid, same-vmid relates events for which translations for the associated memory event are using the2801

same ASID or VMID.2802

. wco, a generalised coherence order which includes TLBIs.2803

Addresses, ASIDs and VMIDs Each translation table walk will read from registers and system registers and2804

get a value for the (input) address, the current ASID and current VMID. We then relate each T with any other T2805

where the translation associated with it is for the same virutal address (with same-va), the same intermediate-2806

physical address (with same-ipa), or the same resulting physical address (same-pa). This means that all T events2807

within a translation have the same same-* relations. We also include relations which match translation’s virtual,2808

intermediate physical and physical addresses if they are in the same page rather than exactly, with the same rules,2809

but as a same-*-page relation.2810

If two translations are for the same ASID, their translation reads are related by same-asid. If two translations are2811

for the same VMID, their translation reads are related by same-vmid.2812

To use these relations we also include TLBI events. A TLBI-X is related to T by same-X if the parameter to the2813

TLBI instruction (the page, vmid, or asid) either passed by register, immediate or through the current context, if2814

the T event’s associated translation matches X. For example, a TLBI-IPA event would be same-ipa-page related2815

to a T whose translation was for an intermediate physical address in the page provided as the parameter to the2816

TLBI IPA instruction.2817

130

Generalised coherence order We create an extended coherence order wco, which is the usual co (a per-location2818

total order of writes to that location) as well as their relative ordering to all TLBI events.2819

One might be concerned at the validity of doing this, on two fronts. Generally, extending coherence to a total2820

order over all locations is sound [9, §10.5 p174], and so there is no issue in doing this. Secondly, for broadcast2821

TLBIs, microarchitecture will implement these with message passing to and from each core separately, and so2822

there is no single moment the TLBI ‘happens’. However, as described in §8.6.7 we seem to be able to consider2823

TLBI instructions as executing ‘atomically’ so long as there are no break-before-make violations. This is a similar2824

justification as to including DC and IC events in a similar generalised coherence order for instruction fetching [58,2825

§5 p29].2826

Dependencies A candidate execution consists not only of events, and reads-from relations but also a set of2827

dependencies: addr, data, ctrl, po and loc. We add iio and tdata to these.2828

The intra-instruction ordering iio relation relates two events in the same instruction in the order the Arm2829

pseudocode generated the events. This relation therefore captures a total order over all events within an instruction,2830

regardless of the intra-instruction dependencies (control, data) or unordered accesses (for example, for misaligned2831

accesses). We are currently invesitagting a relaxation of this ordering, and associated changes in the underlying2832

Arm pseudocode definitions, to enable a more relaxed definition of the ordering within an instruction to handle2833

these cases.2834

We make loc relate events with the same physical address (for T events, this is the physical location of the2835

translation table entry).2836

Program order (po) is restricted to explicit events: R, W, F, C, CSE and MSR. Implicit translation reads (T) and any2837

indirect reads or writes of registers are not included in po.2838

Address dependencies were once fundamental, but now we can define address dependencies in the presence of2839

address translation as dependencies into the translation table walk. To do this, we include a new relation tdata2840

that relates reads with the translation read events of a translation which reads from the register written by that2841

read to compute the address. The traditional addr can be recovered as tdata ; iio* ; [M].2842

9.2 Cat model2843

The base Arm axiomatic model had three axioms: internal, external, and atomic. These were acyclicity and2844

emptyness checks of unions of set of relations: obs, dob, aob and bob. We will slightly modify three of these2845

relations obs, bob and dob, and add 5 new ones (tob, obtlbi, ctxob, obfault, obETS) to handle the ordering2846

between translations and TLBIs, and include them in the external acyclicity check. Then we will introduce one2847

final new axiom translation-internal.2848

Figure 9.2 contains the axioms and relations for the updated Armv8-A relaxed virtual memory axiomatic model2849

(RVM). Unchanged parts from the original are greyed out. Note that some helper relations are elided here, and will2850

be described in more detail later.2851

9.3 Axioms2852

The RVM model axioms are, mostly, a syntactic extension to the original Armv8-A axiomatic model presented in2853

§TODO: ref intro. This is deliberate. Although there may be other, perhaps even nicer or more succinct, ways of2854

phrasing the given model, the variation presented here is designed to be syntactically as close as possible to the2855

original. This helps with readability for those familiar with the original; it allows us to present the differences2856

to the original in an easier form; it makes recovery of the original model easier; and, it makes it easier to prove2857

equivalance of the axiomatic models in the presence of constant address translation, increasing the confidence we2858

have in the model.2859

The model has 3 kinds of axioms: internal ones for per-location guarantees, an external axiom for the global2860

happens-before ordering, and the atomic axiom for RMWs (untouched in this work).2861

Internal axioms The new model has two per-location axioms: internal and translation-internal.2862

131

let speculative =
ctrl

| addr; po
| [T]; instruction -order

(* translation -ordered -before *)
let tob =

[T_f]; tfre
| [T]; iio; [R|W]; po; [W]
| speculative; trfi

(* observed by *)
let obs = rfe | fr | wco

| trfe

(* ordered -before TLBI and translate *)
let obtlbi_translate =

[T & Stage1] ; tlb_barriered ; [TLBI -
S1]

| ([T & Stage2] ; tlb_barriered ; [TLBI
-S2])
& (same -translation ; [T & Stage1] ;
trf^-1 ; wco^-1)

| (([T & Stage2] ; tlb_barriered ; [
TLBI -S2]) ; wco? ; [TLBI -S1])
& (same -translation ; [T & Stage1] ;
maybe_TLB_cached)

(* ordered -before TLBI *)
let obtlbi =

obtlbi_translate
| [R|W|Fault_T]; iio^-1; (

obtlbi_translate & ext); [TLBI]

(* context -change ordered -before *)
let ctxob =

speculative; [MSR]
| [CSE]; instruction -order
| [ContextChange]; po; [CSE]
| speculative; [CSE]
| po; [ERET]; instruction -order; [T]

(* ordered -before a translation fault *)
let obfault =

data; [Fault_T & FaultFromW]
| speculative; [Fault_T & FaultFromW]
| [dmbst]; po; [Fault_T & FaultFromW]
| [dmbld]; po; [Fault_T & (FaultFromW|

FaultFromR)]
| [A|Q]; po; [Fault_T & (FaultFromW |

FaultFromR)]
| [R|W]; po; [Fault_T &

FaultFromReleaseW]

(* ETS -ordered -before *)
let obETS =

(obfault; [Fault_T]); iio^-1; [T_f]
| ([TLBI]; po; [dsb]; instruction -order

; [T]) & tlb -affects

(* dependency -ordered -before *)
let dob =

addr | data
| speculative; [W]
| addr; po; [W]
| (addr | data); rfi
| (addr | data); trfi

(* atomic -ordered -before *)
let aob = rmw

| [range(rmw)]; rfi; [A | Q]

(* barrier -ordered -before *)
let bob = [R]; po; [dmbld]

| [W]; po; [dmbst]
| [dmbst]; po; [W]
| [dmbld]; po; [R|W]
| [L]; po; [A]
| [A | Q]; po; [R | W]
| [R | W]; po; [L]
| [F | C]; po; [dsbsy]
| [dsb]; po

(* Ordered -before *)
let ob = (obs | dob | aob | bob

| iio | tob | obtlbi | ctxob | obfault
| obETS)^+

(* Internal visibility requirement *)
acyclic po -loc | fr | co | rf as internal
(* External visibility requirement *)
irreflexive ob as external
(* Atomic requirement *)
empty rmw & (fre; coe) as atomic
(* Writes cannot forward to po -future

translates *)
acyclic (po -pa | trfi) as translation -

internal

Figure 9.2: RVM axioms and relations

132

(* Internal visibility requirement *)
acyclic po-loc | fr | co | rf as internal
(* Writes cannot forward to po-future translates *)
acyclic (po -pa | trfi) as translation -internal

2863

Unchanged from the original, the internal axiom captures the SC-per-location guarantee briefly discussed in2864

§TODO: ?REF?. Translations, however, do not have the same per-location guarantees. To account for this,2865

we introduce a second axiom, translation-internal, which captures the weaker per-location guarantee for2866

translation table walks. Since translation reads, in the presence of TLB caching and out-of-order pipelines, do not2867

guarantee even coherence, the only behaviour this axiom ends up preventing is translation reads reading from2868

program-order later stores.2869

External axiom The external axiom asserts acyclicity of the global happens-before ordering for Arm. The2870

happens-before (called ob, ‘ordered-before’, in Arm) relation is the union of all the ordering relations, given in2871

§9.4.2872

(* Ordered -before *)
let ob = (obs | dob | aob | bob | iio | tob | obtlbi | ctxob | obfault |

obETS)^+
(* External visibility requirement *)
irreflexive ob as external

2873

We choose to include all the pipeline and TLB effects as ordering requirements, rather than introducing new2874

ordering axioms just for translation and TLB invalidation. This produces a model that is more consistent with2875

the previous Arm memory models, and ensures ordering information gained through observing translation table2876

walks are respected by non-translation-table accesses.2877

Atomic axiom The atomic axiom remains unchanged. In this work we do not consider the interaction of2878

translation with atomic accesses.2879

(* Atomic requirement *)
empty rmw & (fre; coe) as atomic

2880

9.4 Relations2881

The RVM model modifies some of the original, and introduces some new, ordering relations. This section goes2882

through each in detail, describing the mechanism and justifying the existence or non-existence of particular2883

clauses.2884

9.4.1 obs2885

(* observed by *)
let obs = rfe | fr | wco | trfe

2886

The ‘observed-by’ relation. It includes the original rf and fr (over physical locations), the generalised coherence2887

order wco (§9.1.2), and the trfe (translation-reads-from-external) relation.2888

Generalised coherence Including wco, which is existentially quantified over the candidates, fixes some global2889

order the writes and TLBIs happen in. Consider, informally, somemicroarchitectural execution. It would propagate2890

writes to the coherent storage subsystem, and would complete TLBI instructions, and these events would be2891

interleaved in some whole-machine trace. The generalised wco relation captures the relative ordering of these2892

events in the axiomatic model, as they would have happened in the traces of machine executions. The model is2893

then quantified over all such orderings, accounting for any interleaving of these events.2894

133

External translation reads Inclusion of trfe enforces that translation-table-walk translation reads, which2895

could not come from forwarding, must have originally come from the coherent storage subsystem and so the2896

write must have been globally propagated before the translation read happened (§8.4.2, §8.4.7).2897

However, the translation read might have happened much later, either due to extreme out-of-order (§8.4.1) or TLB2898

caching (§8.5.1), and so we do not include tfre (translation-from-reads-external) in ob.2899

Additionally, writes may be propagated to that thread’s translation table walker before they are propagated to the2900

coherent storage subsystem (§8.4.4), in other words, they can be forwarded. Therefore we do not include trfi2901

(translation-reads-from-internal) in obs.2902

9.4.2 dob2903

let dob =
addr | data

| speculative; [W]
| addr; po; [W]
| (addr | data); rfi
| (addr | data); trfi

2904

The dependency-ordered-before relation is mostly unchanged, we add a single (addr | data); trfi clause to2905

the end to forbid thin-air creation of values (§8.4.1, §8.4.2, TODO: need dedicated thin air paragraph/test in2906

prev chapter) similarly to the original model for data memory reads.2907

9.4.3 bob2908

let bob =
[R]; po; [dmbld]

| [W]; po; [dmbst]
| [dmbst]; po; [W]
| [dmbld]; po; [R|W]
| [L]; po; [A]
| [A | Q]; po; [R | W]
| [R | W]; po; [L]
| [F | C]; po; [dsbsy]
| [dsb]; po

2909

We rewrite the original barrier-ordered-before relation to use the barrier helpers defined in Figure 9.1. This2910

does not change the underlying model for DMB instructions, but allows those same clauses to capture the barrier2911

hierarchy imposing the same ordering when using stronger barriers (namely, DSBs).2912

The Arm DSB instruction has some extra ordering however. Firstly that a DSB SY orders TLBI instructions (§8.6.2)2913

and so we include [F|C];po;[dsbsy]. Secondly, all program-order later events must wait for an earlier DSB to2914

finish before performing its explicit memory events, so we also include [dsb];po in ob.2915

9.4.4 tob2916

let tob =
[T_f]; tfre

| [T]; iio; [R|W]; po; [W]
| speculative; trfi

2917

Translation table walks themselves impose ordering on the surrounding events.2918

Invalid writes The first of these is one of the key behaviours described in §8.3.3, that reads of invalid entries2919

must not have come from the TLB. So we add the [T_f];tfre edge to capture this, that any translation-reads2920

which read an invalid entry must happen before any writes coherence after the one it read from.2921

There is a major caveat here: write forwarding to the translation table walker. We cannot simply have [T_f];tfr2922

as a thread-local write may be forwarded to the translation table walker before it’s propagated to memory (§8.4.4).2923

134

However, it should not be the case that the write is forwarded from a write that is too old or behind a DSB if2924

FEAT_ETS, except it may be the case that there might be other intervening writes in between. For now, we are2925

unable to give a precise bound on the ordering for thread-local [T_f];tfr, and this area is still currently under2926

investigation with Arm.2927

Speculation As we saw earlier, speculation interacts with translation in two ways: first, it is forbidden to2928

read-from a still speculative write (§8.4.5), and, secondly, events program-order after an instruction which does a2929

translation table walk are speculative until the translation table walk completes (§8.4.1).2930

To capture these we first define when one event is considered speculative until another event happens, with a2931

new speculative relation, defined as following:2932

let speculative = ctrl | addr; po | [T]; instruction -order

2933

This captures all the control-flow dependencies that we model here, the classic ctrl and addr; po, as well as a2934

new general [T]; instruction-order which says that all events ordered (iio|po)+ after a translation read are2935

speculative until the translation read satisfies. We can then include speculative ; trfi to succinctly forbid2936

any forwarding of still-speculative writes to translation table walks.2937

Finally, we include [T]; iio; [M]; po; [W] which captures that writes cannot propagate until program-order2938

earlier instructions have their physical address (so, do not fault). Although, this edge is subsumed by the2939

speculative; [W] edge in dob, it is kept here for clarity.2940

9.4.5 ctxob2941

NOTE: The model for exceptions and context-synchronising events is currently under
revision, and what is presented here is likely to change.

2942

let ctxob =
speculative; [MSR]

| [CSE]; instruction -order
| [ContextChange]; po; [CSE]
| speculative; [CSE]
| po; [ERET]; instruction -order; [T]

2943

The ctxob relation captures the orderings required from context changing and synchronising operations, without2944

trying to capture the full extent of the relaxed behaviours. As such, these orderings are likely to be incomparable2945

to the real semantics.2946

Speculation The first guarantee we see is that context changes and synchronisation should not happen specu-2947

latively. Speculative context changes may end up creating translation table roots and therefore translation table2948

walks using unreachable writes (§8.5.5). To prevent this we ensure that context changing operations only happen2949

once they are non-speculative, by enforcing speculative; [MSR] in ob. Forbidding speculative execution of2950

context synchronisation is done through the inclusion of speculative; [CSE] in ob.2951

Context synchronising A context synchronisation event (such as an ISB or ERET instruction) should ensure that2952

program-order earlier context-changing events are seen by program-order later instructions. Microarchitecturally2953

this is achieved by having context-synchronisation events flushing the pipeline, restarting all program-order later2954

instructions. For now this effect seems fixed in the architecture (§8.7), and so we get [CSE]; instruction-order2955

in ob subsuming the earlier ISB orderings.2956

To ensure that context changes are seen after the synchronisation we include [ContextChange]; po; [CSE],2957

and the union of these two relations ensures the context change is ordered before any program-order later events.2958

Exceptions Taking and returning from exceptions are context synchronising (§8.7), and so those are captured2959

by the previous clauses. However, translation reads of a lower exception level should not satisfy during execution2960

at a higher exception level. We over approximate this with po; [ERET]; instruction-order; [T] ensuring2961

all translation reads after an ERET wait.2962

135

9.4.6 obfault and obETS2963

(* ordered -before a translation fault *)
let obfault =

data ; [Fault_T & FaultFromW]
| speculative ; [Fault_T & FaultFromW]
| [dmbst] ; po ; [Fault_T & FaultFromW]
| [dmbld] ; po ; [Fault_T & (FaultFromW | FaultFromR)]
| [A|Q] ; po ; [Fault_T & (FaultFromW | FaultFromR)]
| [R|W] ; po ; [Fault_T & FaultFromW & FaultFromReleaseW]

(* ETS -ordered -before *)
let obETS =

(obfault; [Fault_T]); iio^-1; [T_f]
| ([TLBI]; po; [dsb]; instruction -order; [T]) & tlb -affects

2964

To capture the specific guarantees described by FEAT_ETS (§8.4.3, §8.6.2), we include ‘ghost’ Fault events in the2965

candidate executions. These events sit in the execution (in po order) where the explicit memory event would have2966

been if there was no fault, and tags the fault with the kind of fault it was (translation or permission).2967

Ordering to a fault To fully capture the strength of FEAT_ETS we keep track of syntactic dependencies into2968

the instruction which faulted, and apply those dependencies to the Fault event itself. obfault then the syntactic2969

subset of bob and dob where the right-hand side of each clause is substituted with a Fault_T (a translation fault).2970

Using obfault we can then keep track of the (syntactic) subset of ob that would have ordered the explicit event2971

after, and associate those relations with the Fault_T event instead. obETS’s first clause then adds to ob this2972

ordering, but attached to the translation read of the invalid entry itself, as architected by FEAT_ETS.2973

Note that dependencies and orderings from a faulting instruction seem not respected, and so we do not induce2974

orderings out of a Fault_T.2975

FEAT_ETS and TLBI The second clause of obETS captures the second architected behaviour of FEAT_ETS2976

(§TODO: TLBI ordering needs ETS explained), that faults after a thread-local TLBIs do not need context2977

synchronisation to be ordered after the TLBI. Note that one still needs a DSB to complete the TLBI in that case.2978

9.4.7 obtlbi2979

(* ordered -before TLBI *)
let obtlbi =

obtlbi_translate
| [R|W|Fault_T]; iio^-1; (obtlbi_translate & ext); [TLBI]

(* translate ordered -before TLBI *)
let obtlbi_translate =

[T & Stage1] ; tlb_barriered ; [TLBI -S1]
| (([T & Stage2] ; tlb_barriered ; [TLBI -S2]) ; wco? ; [TLBI -S1])

& (same -translation ; [T & Stage1] ; maybe_TLB_cached)
| ([T & Stage2] ; tlb_barriered ; [TLBI -S2])

& (same -translation ; [T & Stage1] ; trf^-1 ; wco^-1)

2980

Finally, there is the obtlbi relation which captures the ordering from translations (and their explicit memory2981

events) and the TLB invalidations which affect them. The relation is split in two: the obtlbi_translate clause2982

enforces order between stale translations and the TLBIs they are invalidated by, the second clause covers broadcast2983

TLBIs.2984

Capturing stale TLB entries When a translation read happens, it is allowed for it to read from a stale write2985

(§8.5.1). That is, the translation need not be ordered before writes which come after the write it actually reads2986

from. Consequently the tfre relation is not included in ob.2987

We strengthen this, by including some edges from translations to TLBIs, when there is an interposing newer write.2988

The general shape of this ordering is illustrated in Figure 9.3.2989

136

a: W pte(x)=old

b: W pte(x)=new

c: TLBI

d: T x

trfwco

wco

tfr

tlb-affects

ob

Figure 9.3: General obtlbi_translate shape.

This shape is succinctly captured by the tlb_barriered auxiliary relation, which relates any translate-read that2990

reads from a write which is wco before another write which is wco before a TLBI which targets the address, ASID2991

or VMID of the translation:2992

let tlb_barriered =
([T] ; tfr ; wco ; [TLBI]) & tlb -affects^-1

2993

We cannot simply include tlb_barriered in ob, however. Instead, we must consider the orderings for stage 12994

and stage 2 translation reads separately.2995

Stale stage 1 reads For stage 1 translation reads, either in single-stage regimes or as part of a two-stage2996

regime, we can include a variant of tlb_barried specialised to stage 1 translation-reads and TLBIs which affect2997

stage 1 entries.2998

Stale stage 2 reads Stage 2 walks are more subtle. The requirement to perform stage 1 invalidation (§8.6.4)2999

means that, in those instances, we do not get tlb_barriered directly.3000

Instead, we have to case split on the execution: either, (1) the translation table walk does a stage 1 translation3001

read which reads-from an older write, in which case there may have been a whole cached translation that must3002

be invalidated; or, (2) one of the stage 1 translation reads of the translation table walk reads from a write that is3003

newer than the stage 2 TLBI and so there cannot have been any cached whole translation entries in the TLB and3004

so, logically, we only need the stage 2 invalidation. These cases are illustrated in Figure 9.4, and correspond to the3005

two clauses of obtlbi_translate which match on stage 2 translation reads.3006

a: W s1pte(x)=new

b: W s2pte(x)=new

c: TLBI-S2

d: TLBI-S1

e1: T_Stage1 x

e2: T_Stage2 x

trf

tfrwco

wco

wco?

same-trans

ob

Case (1)

a: W s2pte(x)=new

b: TLBI-S2

c: W s1pte(x)=new

e1: T_Stage1 x

e2: T_Stage2 x
trf

tfrwco

wco

same-trans

ob

Case (2)

Figure 9.4: obtlbi stage 2 scenarios.

We capture the general shape of (1), where a translation-read may have been cached in the TLB, with the following3007

maybe_TLB_cached relation:3008

let maybe_TLB_cached = ([T]; trf^-1; wco; [TLBI]) & tlb -affects^-1

3009

137

We then use this relation to add ordering from a stage 2 translation-read to the stage 1 TLBI, wco-after a stage 23010

TLBI that removed any stale IPA mappings, which would remove any cached whole-translation any stage 13011

translation-read might have read from, and after which any fresh translation table walk would be required to not3012

see the stale stage 2 entry the translation-read read from.3013

Broadcast TLBIs Recall that broadcast TLBIs impose restrictions on other threads (§8.6.3). When a broadcast3014

TLBI’s invalidation affects a translation on another core, then it must also affect the explicit memory effect3015

associated with it. This shape is illustrated in Figure 9.5, and corresponds to the final clause of obtlbi.3016

a: W pte(x)=new

b: TLBI

e1: T x

e2: R|W x

tfr

obtlbi_translate
iio

ob

Figure 9.5: obtlbi broadcast TLBI shape.

Connecting TLB invalidations to translation reads The final part of the puzzle is how to relate TLBI events3017

with translations which may be affected by the invalidation. Recall that the TLBIs are grouped into subsets of3018

TLBI-S1, TLBI-VA, and so on. We define a tlb_might_affect that is the cross-product of these with the same-*3019

relations:3020

let tlb_might_affect =
[TLBI -S1 & ~TLBI -S2 & TLBI -VA & TLBI -ASID & TLBI -VMID] ; (same -va-

page & same -asid & same -vmid) ; [T & Stage1]
| [TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & TLBI -ASID & TLBI -VMID] ; (same -

asid & same -vmid) ; [T & Stage1]
| [TLBI -S1 & ~TLBI -S2 & ~TLBI -VA & ~TLBI -ASID & TLBI -VMID] ; same -vmid

; [T & Stage1]
| [~TLBI -S1 & TLBI -S2 & TLBI -IPA & ~TLBI -ASID & TLBI -VMID] ; (same -ipa

-page & same -vmid) ; [T & Stage2]
| [~TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID] ; same -vmid

; [T & Stage2]
| [TLBI -S1 & TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & TLBI -VMID] ; same -vmid

; [T]
| (TLBI -S1 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID) * (T &

Stage1)
| (TLBI -S2 & ~TLBI -IPA & ~TLBI -ASID & ~TLBI -VMID) * (T &

Stage2)

3021

Finally, we get tlb-affects by attaching tlb_might_affect to events in the same thread, and if a TLBI-IS, to3022

ones in other threads too:3023

let tlb -affects =
[TLBI -IS]; tlb_might_affect

| ([~TLBI -IS]; tlb_might_affect) & int

3024

9.5 Interface3025

To support the new Armv9 ISA and the new concurrency interface, we produce architecture-specific definitions3026

using the new isla-cat language features in isla-axiomatic.3027

Barriers are instances of the sail_barrier outcome. For Arm we instantiate these with the Arm Barrier union.3028

Figure 9.6 contains the isla-cat definitions for the Arm barriers. The sail Arm Barrier union is reproduced here3029

for the reader’s benefit but is not required (nor present) in the source cat file. Similar unions, structs, enums and3030

138

(* F for all fences *)
accessor F: bool = is sail_barrier

(* from the Arm ASLl , compiled to sail *)
union Barrier = {

Barrier_DSB : DxB ,
Barrier_DMB : DxB , // The nXS field is ignored from DMBs
Barrier_ISB : unit ,
Barrier_SSBB : unit ,
Barrier_PSSBB : unit ,
Barrier_SB : unit ,

}

(* accessors for each relevant constructor *)
accessor z_dmb: bool =

.match {
Barrier_DMB => true ,
_ => false

}

accessor z_dsb: bool =
.match {

Barrier_DSB => true ,
_ => false

}

accessor z_isb: bool =
.match {

Barrier_ISB => true ,
_ => false

}

(* cat event sets for the different barriers *)
define DMB(ev: Event): bool =

F(ev) & z_dmb(ev)

define DSB(ev: Event): bool =
F(ev) & z_dsb(ev)

define ISB(ev: Event): bool =
F(ev) & z_isb(ev)

Figure 9.6: isla-cat accessors for Arm barriers.

corresponding accessors and definitions exist for the Arm barrier domains (NSH, ISH, OSH) and access types (ST,3031

LD, SY), elided here for brevity.3032

We make use of accessors to access fields of the sail structs and unions, both here for barriers, and also for3033

exceptions (faults), and TLBIs, as well as defining the trf and wco (found in Figure 9.7) relations. The full3034

isla-cat-defined interface can be found in the AppendixTODO: make appendix.3035

139

declare wco(Event , Event): bool

(* wco has domain and range of W,CacheOp *)
assert forall ev1: Event , ev2: Event =>

wco(ev1 , ev2) -->
(W(ev1) | C(ev1) | (ev1 == IW)) & (W(ev2) | C(ev2))

(* wco is transitive *)
assert forall ev1: Event , ev2: Event , ev3: Event =>

wco(ev1 , ev2) & wco(ev2 , ev3) --> wco(ev1 , ev3)

(* wco is total *)
assert forall ev1: Event , ev2: Event , ev3: Event =>

wco(ev1 , ev3) & wco(ev2 , ev3) & ~(ev1 == ev2) -->
wco(ev1 , ev2) | wco(ev2 , ev1)

(* wco is irreflexive *)
assert forall ev1: Event , ev2: Event , ev3: Event =>

wco(ev1 , ev2) --> ~(ev1 == ev2)

(* wco is antisymmetric *)
assert forall ev1: Event , ev2: Event =>

wco(ev1 , ev2) --> ~wco(ev2 , ev1)

(* all write/cache -op pairs are wco related *)
assert forall ev1: Event , ev2: Event =>

W(ev1) & C(ev2) -->
wco(ev1 , ev2) | wco(ev2 , ev1)

(* wco is consistent with co *)
assert forall ev1: Event , ev2: Event =>

co(ev1 , ev2) --> wco(ev1 , ev2)

(* all C are wco after IW
* n.b. all W are wco after IW, because all W are co after IW and co =>

wco
*)

assert forall ev: Event =>
C(ev) --> wco(IW, ev)

Figure 9.7: wco.cat: isla-cat definition of wco.

140

